Autor |
Cardoso, Ismael Messias Gomes; |
Lattes do autor |
http://lattes.cnpq.br/5533293195733527; |
Orientador |
Barbosa, Jorge Luis Victória; |
Lattes do orientador |
http://lattes.cnpq.br/6754464380129137; |
Instituição |
Universidade do Vale do Rio dos Sinos; |
Sigla da instituição |
Unisinos; |
País da instituição |
Brasil; |
Instituto/Departamento |
Escola Politécnica; |
Idioma |
pt_BR; |
Título |
Vulcont: A Recommender System based on Contexts History Ontology; |
Resumo |
The use of recommender systems is already widespread. Everyday people are exposed to different items’ offering that infer their interest and anticipate decisions. The context information (such as location, goals, and entities around a context) plays a key role in the recommendation’s accuracy. Extending contexts snapshots into contexts histories enables that information to be exploit. It is possible to identify context’s sequences, similar contexts histories and even predict future contexts. In this work we present Vulcont, a recommender system based on a contexts history ontology. Vulcont merges the benefits of ontology reasoning with contexts histories in order to measure contexts history similarity, based on semantic and ontology’s properties provided by context’s domain. Vulcont considers synonymous and classes’ relations to measure similarity. After that, a collaborative filtering approach identifies sequences’ frequency to identify potential items for recommendation. We evaluated and discussed the Vulcont’s recommendation in four scenarios in an offline experiment, which presents Vulcont’s recommendation power, due the exploit of semantic value of contexts history.; |
Abstract |
O uso de sistemas de recomendação já é amplamente difundido. Diariamente pessoas são expostas a ofertas de itens que inferem seus interesses e antecipam decisões. As informações de contexto (como localização, objetivos, e entidades que cercam um contexto) tem um papel chave na acurácia da recomendação. Ampliando o uso de contextos para histórico de contextos, essa informação pode ser explorada ainda mais. É possível identificar sequências de contextos, similaridade entre histórico de contextos, e até prever contextos futuros. Neste trabalho é apresentado o Vulcont, um sistema de recomendação baseado numa ontologia de histórico de contextos. Vulcont une os benefícios do raciocínio da ontologia com o uso de histórico de contextos para quantificar a similaridade entre histórico de contextos, com base na semântica e
outras propriedades da ontologia definidas pelo domínio do contexto. Vulcont considera sinônimos e relações de classes para calcular a similaridade. Por seguinte, um filtro colaborativo identifica a frequência de sequências para estimar items em potencial de recomendação. As recomendações do Vulcont foram avaliadas e discutidas em quatro cenários num experimento offline. O experimento apresentou o poder de recomendação do Vulcont, que é devido a exploração do valor semântico de histórico de contextos.; |
Palavras-chave |
Sistemas de recomendação; Ontologia; Histórico de contextos; Filtragem colaborativa; Recommender systems; Ontology; Contexts history; Collaborative filtering; |
Área(s) do conhecimento |
ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação; |
Tipo |
Dissertação; |
Data de defesa |
2017-03-16; |
Agência de fomento |
UNISINOS - Universidade do Vale do Rio dos Sinos; |
Direitos de acesso |
openAccess; |
URI |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/6352; |
Programa |
Programa de Pós-Graduação em Computação Aplicada; |