Resumo:
A explosão no volume de dados e a sua velocidade de expansão tornam as tarefas de descoberta do conhecimento e a análise de dados desafiantes, ainda mais quando consideradas bases não-estacionárias. Embora a predição de valores futuros exerça papel fundamental em áreas como: o clima, problemas de roteamentos e economia, entre outros, a classificação ainda parece ser a tarefa mais explorada. Recentemente, alguns algoritmos voltados à regressão de valores foram lançados, como por exemplo: FIMT-DD, AMRules, IBLStreams e SFNRegressor, entretanto seus estudos investigativos exploraram mais aspectos de inovação e análise do erro de predição, do que explorar suas capacidades mediante critérios apontados como fundamentais para data stream, como tempo de execução e memória. Dessa forma, o objetivo deste trabalho é apresentar um estudo investigativo sobre estes algoritmos que tratam regressão, considerando ambientes dinâmicos, utilizando bases de dados massivas, além de explorar a capacidade de adaptação dos algoritmos com a presença de concept drift. Para isto três bases de dados foram analisadas e estendidas para explorar os principais critérios de avaliação adotados, sendo realizada uma ampla experimentação que produziu uma comparação dos resultados obtidos frente aos algoritmos escolhidos, possibilitando gerar indicativos do comportamento de cada um mediante os diferentes cenários a que foram expostos. Assim, como principais contribuições deste trabalho são destacadas: a avaliação de critérios fundamentais: memória, tempo de execução e poder de generalização, relacionados a regressão para data stream; produção de uma análise crítica dos algoritmos investigados; e a possibilidade de reprodução e extensão dos estudos realizados pela disponibilização das parametrizações empregadas