Resumo:
A computação ubíqua quando na forma de sistemas ubíquos e utilizados no suporte e cuidado de Doenças Crônicas priorizam o monitoramento do paciente e a geração de diversos tipos de alerta, porém, o suporte à tomada de decisões por parte dos sistemas ubíquos existentes é ainda pouco utilizado em sistemas específicos para o gerenciamento e controle de Doenças Crônicas Não Transmissíveis. Como o cuidado de doença crônica deve ser feito de forma contínua, torna-se importante para o paciente ter um conhecimento prévio sobre o andamento do seu tratamento e se as ações por ele feitas no dia a dia estão lhe ajudando com o tratamento ou não. Como mecanismo de predição, uma das principais técnicas utilizadas atualmente são as Redes Bayesianas. Sendo assim, esta dissertação propõe um modelo computacional ubíquo de prognóstico de fatores de risco de Doenças Crônicas Não Transmissíveis, denominado ChronicPrediction. O modelo ChronicPrediction utiliza Redes Bayesianas criadas a partir do mapeamento de relações de causalidade existentes entre cada um dos fatores de risco da DCNT a qual se deseja observar. Essas relações são definidas a partir de opinião de especialistas ou geradas automaticamente através de dados históricos e com base em dados fornecidos pelos próprios pacientes sobre seus hábitos alimentares diários, rotina de exercícios físicos e a medição de suas taxas. São discutidas também características pertencentes a trabalhos relacionados, além de descrever o modelo em detalhes e apresentar os aspectos considerados no desenvolvimento e avaliação por meio de um protótipo desenvolvido. O processo de avaliação se apresenta na forma de experimentos descritos através de cenários, os quais possuem como objetivo avaliar as hipóteses relacionadas a cada um deles. O ponto inicial para a formulação de cada uma das hipóteses é o fato de que se tem uma ideia de uma causa e o efeito relacionado a ela. Cada um dos cenários visa descrever situações comuns que possam ocorrer durante o dia a dia de pacientes (causas e efeitos) com algum tipo de Doença Crônica Não Transmissível. Além disso, a diversidade entre os cenários torna-se importante para aperfeiçoar a abrangência da avaliação do modelo. Ao efetuar as avaliações conclui-se que o modelo ChronicPrediction amplia as funcionalidades do Modelo UDuctor e do assistente pessoal ChronicDuctor, passando a oferecer suporte a ao monitoramento de múltiplas DCNT simultaneamente, fornecendo feedbacks e recomendações ao paciente com o intuito de ajudá-lo a acompanhar seu tratamento de forma contínua e podendo readequá-lo de forma a promover seu bem-estar e aprimorando sua qualidade de vida.