Resumo:
Este trabalho tem como principal objetivo propor um modelo para classificação automática(ou semi-automática) de grupos de pessoas utilizando informações de geometria e detecção da atividade intragrupo em sequências de vídeo. Para a classificação de grupos de pessoas, utiliza-se um algoritmo de acompanhamento de objetos para rastrear as posições das pessoas ao longo do tempo, e explora-se a relação entre essas pessoas e suas orientações para deteção e classificação de grupos com base em informações sociológicas
(proxemics, distâncias interpessoais, etc.). A geometria do grupo formado, assim como sua evolução ao longo do tempo, também são analisadas. Para a avaliação da atividade
intragrupo, a evolução das áreas dos blobs correspondentes a cada pessoa é avaliada, para detecção de movimentos de gesticulação em grupos estáticos. Como aplicações deste trabalho, pode-se mencionar a detecção e classificação automática de pequenos grupos em um shopping center, para que seja possível extrair padrões de comportament