Resumo:
A estrutura tridimensional de uma proteína está diretamente ligada a sua função. Diversos projetos de seqüenciamento genéticos acumulam um grande número de seqüências de proteínas cujas estruturas primárias e secundárias são
conhecidas. Entretanto, as informações sobre suas estruturas tridimensionais estão disponíveis somente para uma pequena fração destas proteínas. Este fato evidencia a necessidade da criação de métodos automáticos para a predição de estruturas
terciárias de proteínas a partir de suas estruturas primárias. Conseqüentemente, ferramentas computacionais são utilizadas para o tratamento, seleção e análise destes
dados. Atualmente, um novo método de aprendizado de máquina denominado Máquina de Suporte Vetorial (MSV) tem superado métodos tradicionais como as Redes Neurais Artificiais (RNA) no tratamento de problemas de classicação. Nesta dissertação utilizamos as MSV para a classicação automática de proteínas. A principal contribuição deste trabalho foi a metodologia proposta para o tratamen