Autor |
Cassel, Gustavo André Setti; |
Lattes do autor |
http://lattes.cnpq.br/9850732321135399; |
Orientador |
Righi, Rodrigo da Rosa; |
Lattes do orientador |
http://lattes.cnpq.br/2332604239081900; |
Co-orientador |
Bez, Marta Rosecler; |
Lattes do co-orientador |
http://lattes.cnpq.br/0416601437290797; |
Instituição |
Universidade do Vale do Rio dos Sinos; |
Sigla da instituição |
Unisinos; |
País da instituição |
Brasil; |
Instituto/Departamento |
Escola Politécnica; |
Idioma |
pt_BR; |
Título |
Hierarchical fog-cloud architecture to process priority-oriented health services with serverless computing; |
Resumo |
Cidades inteligentes e serviços de saúde vêm ganhando muita atenção nos últimos anos, pois os benefícios proporcionados por esse campo de pesquisa são significativos e melhoram a qualidade de vida. Os sistemas podem detectar proativamente problemas de saúde, monitorando os sinais vitais de uma pessoa e tomando decisões automatizadas para evitar que esses problemas se agravem. Exemplos incluem serviços de saúde enviando notificações para o smartphone do usuário quando um problema de saúde é detectado, ou chamando automaticamente uma ambulância quando sinais vitais indicam que um problema grave está prestes a acontecer nos próximos minutos. Com este contexto em mente, destacamos dois requisitos essenciais que as arquiteturas para cidades inteligentes devem considerar para alcançar alta qualidade de experiência no campo da saúde. A primeira é executar serviços de saúde com tempos de resposta curtos na ingestão de sinais vitais prioritários, para que pessoas com comorbidades possam ter problemas de saúde identificados o mais rápido possível. A segunda é empregar técnicas de escalabilidade para lidar com os picos de uso causados por pessoas que se concentram em bairros específicos da cidade. Trabalhos relacionados já propõem soluções para minimizar o tempo de resposta, mas defendemos que considerar a semântica de prioridade do usuário e prioridade do serviço na área da saúde é essencial para garantir a qualidade adequada da experiência. Nosso entendimento é que usuários com comorbidades devem ter mais prioridade do que usuários saudáveis quando os recursos computacionais são escassos, e serviços de saúde específicos devem ter maior prioridade do que outros. Pensando nisso, esta tese contribui para esse campo de pesquisa ao propor o SmartVSO - um modelo computacional de arquitetura hierárquica, escalável, em nuvem de névoa, que executa serviços de saúde com throughput de execução otimizado e tempo de resposta minimizado para sinais vitais críticos. Empregamos computação em névoa para obter tempos de resposta curtos e computação em nuvem para obter recursos de computação virtualmente infinitos. Uma primeira heurística favorece sinais vitais críticos na disputa por recursos escassos e de baixa latência durante picos de alta utilização. Isso inclui o cálculo de uma classificação do sinal vital recebido, que considera as prioridades do usuário e do serviço que representam semanticamente a importância do sinal vital. Quando os sinais vitais colidem com o mesmo ranking calculado, uma segunda heurística usa técnicas de previsão para favorecer os serviços de saúde que serão concluídos mais rapidamente, com o objetivo de otimizar o rendimento da execução. Consideramos a computação sem servidor como a principal tecnologia para implantar e executar serviços de saúde, pois permite que terceiros autorizados implementem seus próprios serviços de saúde em uma abordagem distribuída e conectável, sem recompilar os módulos de tomada de decisão propostos. Finalmente, introduzimos um mecanismo recursivo que descarrega os sinais vitais para os nós de névoa pai quando os recursos de computação locais estão sobrecarregados, até que o sinal vital possa ser processado em um nó de névoa com recursos de computação disponíveis ou seja transferido para a nuvem como último recurso. Um experimento com 80.000 sinais vitais indica que nossa solução processa 60% dos sinais vitais críticos em não mais que 5,3 segundos, enquanto uma arquitetura ingênua que não emprega computação em névoa e não favorece os sinais vitais críticos leva até 231 minutos (cerca de 3 horas e 51 minutos) para processar 60% dos sinais vitais críticos.; |
Abstract |
Smart cities and healthcare services have been gaining much attention in recent years, as the benefits provided by this field of research are significant and improve quality of life. Systems can proactively detect health problems by monitoring a person’s vital signs and making automated decisions in order to prevent these problems from worsening. Examples include health services sending notifications to the user’s smartphone when a health problem is detected, or automatically calling an ambulance when vital signs indicate that a severe problem is about to happen in the next minutes. With this context in mind, we highlight two essential requirements that architectures for smart cities should consider to achieve high quality of experience in the field of health. The first is to execute health services with short response times when ingesting high-priority vital signs, so people with comorbidities can have health problems identified as soon as possible. The second is to employ scalability techniques to deal with high usage peaks caused by people concentrating in specific city neighborhoods. Related works already propose solutions to minimize response time, but we argue that considering the semantics of user priority and service priority in the field of health is essential to ensure the appropriate quality of experience. Our understanding is that users with comorbidities should have more priority than healthy users when computing resources are scarce, and specific health services should have higher priority than others. With this in mind, this thesis contributes to this field of research by proposing SmartVSO - a computational model of a hierarchic, scalable, fog-cloud architecture, which executes health services with optimized execution throughput and minimized response time for critical vital signs. We employ fog computing to achieve short response times and cloud computing to achieve virtually infinite computing resources. A first heuristic favors critical vital signs when disputing for scarce, low-latency resources during high usage peaks. This is encompassed by calculating a ranking for the incoming vital sign, which considers both user and service priorities that semantically represent the vital sign’s importance. When vital signs
collide with the same calculated ranking, a second heuristic uses forecasting techniques to favor health services that will complete faster, with the goal of optimizing execution throughput. We consider serverless computing as the primary technology for deploying and running health services because this allows authorized third parties to implement their own health services in a distributed and pluggable approach, without recompiling the proposed decision-making modules. Finally, we introduce a recursive mechanism that offloads vital signs to parent fog nodes when local computing resources are overloaded, until the vital sign can be processed on a fog node with available computing resources, or is offloaded to the cloud as the last resort. An experiment with 80.000 vital signs indicates that our solution processes 60% of critical vital signs in no more than 5,3 seconds, while a naive architecture that does not employ fog computing and does not favor critical vital signs takes up to 231 minutes (around 3 hours and 51 minutes) to process 60% of critical vital signs.; |
Palavras-chave |
Healthcare; Architecture; Internet of Things; Priority; Response time; Throughput; Serverless computing; Serviços de saúde; Arquitetura; Internet das Coisas; Prioridade; Tempo de resposta; Computação sem servidor; |
Área(s) do conhecimento |
ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação; |
Tipo |
Dissertação; |
Data de defesa |
2023-02-24; |
Agência de fomento |
Nenhuma; |
Direitos de acesso |
openAccess; |
URI |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/12440; |
Programa |
Programa de Pós-Graduação em Computação Aplicada; |