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ABSTRACT

CONTEXT: Advances in studies at the molecular and genetic sequencing have brought
significant progress in understanding the behavior, treatment, and prognosis of breast cancer.
However, the diagnosis of breast cancer in the early stages is still essential for successful
treatment. Currently, the gold standard for breast cancer diagnosis, treatment, and management
is a histological analysis of a suspected section. Histopathology consists of analyzing the
characteristics of the lesions through sections of tissue stained with Hematoxylin and Eosin.
However, pathologists are currently subjected to high workloads, mainly due to the
fundamental role played by histological analysis in the treatment of the patient. In this context,
applications that can reduce the time of histological analysis, provide a second opinion, or
even point out suspicious locations as a screening tool can help the pathologist.
OBJECTIVE: We envision two main challenges: the first, how to identify cancerous regions
in Whole Slide Imaging (WSI) using Deep Learning (DL) with an accuracy comparable to the
pathologist’s annotations, considered the gold standard in the literature. And second, how a
DL-based model can provide an interpretable diagnosis. The scientific contribution consists in
proposing a model based on Convolutional Neural Networks (CNN) to provide a refined and
multi-class segmentation of WSI in breast cancer. METHODOLOGY: The methodology
consists of proposing and developing a model called DeepBatch. The DeepBatch is divided
into four modules: Preprocessing, ROI Detection, ROI Sampling, and Cell Segmentation.
These modules are organized to decode the information learned using CNNs in interpretable
predictions for pathologists. = The Preprocessing module is responsible for removing
background and noise from WSI. At ROI Detection, we use the U-Net convolutional
architecture to identify suspicious regions in low magnification WSI. Suspected areas
identified are mapped from low magnifications by ROI Sampling to 40 x magnifications. Cell
Segmentation then segments high-magnification areas. Segmentation is performed using a
ResNet50/U-Net. To validate the DeepBatch, we use datasets from different sources that can
be used together or separately in each module, depending on the module’s objective.
RESULTS: The evaluations performed demonstrate the feasibility of the model. We assessed
the impact of four-color spaces (RGB, HSV, YCrCb, and LAB) for multi-class segmentation of
breast cancer WSI. We used 205 WSI of breast cancer for training, validation, and testing. For
the detection of suspicious regions by ROI Detection we obtained a IoU of 93.43%, accuracy
of 91.27%, sensitivity of 90.77%, specificity of 94.03%, F1-Score of 84.17%, and an AUC of
0.93. For the refined segmentation of WSI by the Cell Segmentation module we obtained a
IoU of 88.23%, accuracy of 96.10%, sensitivity of 71.83%, specificity of 96.19%, F1 -Score of
82.94%, and an AUC of 0.86. CONCLUSION: As a contribution, DeepBatch provides
refined segmentation of breast cancer WSIs using a cascade of CNNs. This segmentation helps
the interpretation of the diagnosis by the pathologist, accurately presenting the regions
considered during the inference of WSI. The results indicate the possibility of using the model
as a second reading system.

Keywords: Breast Cancer. Histopathological Images. Deep Learning. Interpretable
Diagnosis. Convolutional Neural Network. Whole-Slide Image. Image Segmentation.



RESUMO

CONTEXTO: Os avancos em estudos a nivel molecular e de sequenciamento genético
trouxeram significativos progressos no compreendimento do comportamento, tratamento e
progndstico do cancer de mama. No entanto, o diagndstico do cincer de mama em estagios
iniciais ainda é essencial para o sucesso no tratamento. Atualmente, o padrdo ouro para o
diagndstico, tratamento e gerenciamento do cincer de mama € a andlise histolégica de uma
secdo suspeita. A histopatologia consiste na andlise das caracteristicas das lesdes através de
cortes de tecido corados com Hematoxilina e Eosina. Contudo, atualmente os patologistas sao
submetidos a altas cargas de trabalho, muito devido ao papel fundamental desempenhado pela
andlise histologica no tratamento do paciente. Neste contexto, aplicacdes que possam reduzir o
tempo da analise histologica, fornecer uma segunda opinido, ou ainda apontar locais suspeitos
como ferramenta de triagem podem auxiliar o patologista. OBJETIVO: Desse modo,
vislumbramos dois desafios principais: o primeiro, como identificar regides cancerigenas em
Whole Slide Imaging (WSI) utilizando Deep Learning (DL) com uma precisdao comparavel as
anotagdes do patologista, consideradas como padrdo ouro na literatura. E, segundo, como um
modelo baseado em DL pode fornecer um diagndstico interpretdvel. A contribuicao cientifica
consiste em propor um modelo baseado em Convolutional Neural Networks (CNN) para
fornecer uma segmentagdo refinada e multi-classe de WSI do cancer de mama.
METODOLOGIA: A metodologia consiste em propor e desenvolver um modelo chamado de
DeepBatch. O DeepBatch € dividido em quatro médulos: Preprocessing, ROI Detection, ROI
Sampling e Cell Segmentation. Estes modulos sdo organizados de maneira a decodificar as
informacdes aprendidas utilizando CNNs em previsdes interpretdveis para os patologistas. O
modulo de Preprocessing é responsavel pela remog¢do do fundo e de ruido das WSI. No ROI
Detection utilizamos a arquitetura convolucional U-Net para identificar regides suspeitas em
WSI de baixa ampliacdo. As regides suspeitas identificadas sdo mapeadas de baixas
ampliagdes pelo ROI Sampling para ampliacdes de 40x. As regides em alta ampliacdo sdo
entdo segmentadas pela Cell Segmentation. A segmentacdo € realizada utilizando uma
ResNet50/U-Net. Para a validacdo do DeepBatch, utilizamos datasets de diversas fontes que
podem ser utilizados em conjunto ou separadamente em cada médulo, conforme o objetivo do
médulo. RESULTADOS: As avaliagdes realizadas demonstram a viabilidade do modelo.
Avaliamos o impacto de quatro espacos de cores (RGB, HSV, YCrCb e LAB) para a
segmentacdo multi-classe de WSI do ciancer de mama. Utilizamos para o treinamento,
validacdo e teste 205 WSI do cancer de mama. Para a detecgdo de regides suspeitas pelo ROI
Detection obtivemos uma IoU de 93.43%, acurdcia de 91.27%, sensibilidade de 90.77%,
especificidade de 94.03%, F1-Score de 84.17% e uma AUC de 0.93. Para a segmentacéo
refinada das WSI pelo médulo de Cell Segmentation obtivemos uma IoU de 88.23%, acurdcia
de 96.10%, sensibilidade de 71.83%, especificidade de 96.19%, F1-Score de 82.94% e uma
AUC de 0.86. CONCLUSAO: Como contribui¢iio, o DeepBatch fornece uma segmentacio
refinada das WSI do cancer de mama utilizando uma cascata de CNNs. Esta segmentacdo
facilita a interpretacdo do diagndstico pelo patologista, fornecendo com precisdo as regides
consideradas durante a inferéncia da WSI. Os resultados indicam a possibilidade de utilizacdo
do modelo como um sistema de segunda leitura.

Palavras-chave: Cancer de Mama. Imagem Histopatolégica. Aprendizado Profundo.
Diagnéstico Interpretdvel. Redes Neurais Convolucionais. Whole-Slide Image. Segmentagao
de Imagem.



Figure 1 —

Figure 2 —
Figure 3 —
Figure 4 —
Figure 5 —
Figure 6 —
Figure 7 —
Figure 8 —
Figure 9 —
Figure 10 —
Figure 11 -
Figure 12 —

Figure 13 —

Figure 14 —

Figure 15 —

Figure 16 —
Figure 17 —
Figure 18 —
Figure 19 —

Figure 20 —

Figure 21 —
Figure 22 —

LIST OF FIGURES

Process of tissue preparation for histological study. The process steps are
briefly: fixation, the tissues are placed in chemical solutions that cross-
link proteins and inactivate enzymes; Dehydration, removal of water from
tissues using alcoholic solutions; Clearing, process to lighten the tissue;
Embedding, the tissue is placed in a mold of melted paraffin to harden;
Trimming, the result is then trimmed to section the tussue. . . . . . . . ..
Example of breast tissue stained with H&E. The pink tones represent
structures of the cytoplasm and collagen. Meanwhile, bluish tones are
components of the tissuecore. . . . . . . .. ... ... ... ... ...,
The relations of the breast. . . . . . . . .. ... ... ... .. ......
A, the lobe is composed of multiple acins (responsible for milk
production). B, the lobular duct is on the left, coming out of the lobe. . . .
Histopathological findings in a series of women seeking breast lump
evaluation. . . . . . ...
A, Fibroadenoma: biopsy with a well-defined mass of connective tissue
and tubule-like structures. B, Hyperplasia, duct filled with heterogeneous
cells. . . . o e
A representation of the structure of a biological neuron. . . . . . ... ..
A simple mathematical model foraneuron. . . . . . ... ... ... ...
Activation functions and their derivatives. (A) Activation functions. (B)
Derivatives of the activation functions. . . . . . . . . ... ... ... ..
Representation of a Multilayer Perceptron. . . . . . . ... ... ... ..
CNN classification flow. . . . . . . ... ... ... oL
A filter convolving across animage. . . . . . . . . ... ... ..
222 pixel max-pooling process with a 2 pixel stride applied to a 4x4 pixel
image, resulting in a 222 pixel image. . . . . . . .. ... ... ... ...
(Left) A linear function fit to the data suffers from underfitting — it
cannot capture the curvature that is present in the data. (Center) A
quadratic function fit to the data generalizes well to unseen points. It does
not suffer from a significant amount of overfitting or underfitting. (Right)
A polynomial of degree 9 fit to the data suffers from overfitting. . . . . . .
(A) Input image. (B and C) Two activation maps of the first layers of a
CNN, indicating the identification of lines, contours, and the child’s shirt.
(D, E, and F) Activation maps of the last layers, showing the identification
of complex objects such as grass, people, and the sky. (G) Example of an
activation map for a scanned mammogram. . . . . . . . ... ... .. ..
Fully Convolutional Network . . . . . . ... ... ... .. .......
U-Net . . . . e e
SegNet . . . . . . e e
Examples of dilated convolution filter with 3x3 size. (A) Dilation factor =
1, (B) Dilation factor = 2 and (C) Dilation factor=3. . . . . . .. ... ..
Adaptation of the ResNet architecture to DRN. Where d is the expansion
factor, h and w are the height and width of the maps, and c is the number
of characteristicmaps. . . . . . . . . . . . .. . e
Search string used for database queries. . . . . . . . ... ... L.
Article selection process. . . . . . . . ...



Figure 23 —

Figure 24 —

Figure 25 —
Figure 26 —

Figure 27 —

Figure 28 —
Figure 29 —

Figure 30 —
Figure 31 —
Figure 32 —

Figure 33 —

Figure 34 —
Figure 35 —
Figure 36 —

Figure 37 —

Figure 38 —

Figure 39 —
Figure 40 —

Publication chronology. The numbers above years indicate the number of
articles published. . . . . . . . ... .. L 58
State of the Art articles considered in this survey with number of citations
and average per year. Articles are organized in order of publication and
classification by h5-index.  Information about Journals articles is
represented by solid lines, while dashed lines represent details from
conferences. . . . . . . ... e 59
Taxonomy of intelligent analysis of histopathological data from breast cancer. 61

Example of H&E stained tissue section. A) tissue overlap; B) Image

artifact due to tissue rupture. . . . . . . . ... ... 64
Techniques used for the analysis of histopathological images and their

percentages of US€ i OUT COTPUS. . . .« . v v v v v v v v v e e e et e e 68
Performance evaluation methods applied in selected studies. . . . . . . . . 72
Main challenges related to intelligent analysis of breast cancer

histopathological images. . . . . . . . . . .. .. . ... ... ...... 73
Proposal to integrate the DeepBatch model into the pathologist’s routine. . 75

DeepBatch model. In Slide Processing, we show an example of WSI
being analyzed by the DeepBatch model. In the System Overview, we
demonstrate, in a conceptual way, the operation of the DeepBatch. . . . . . 77

Preprocessing Module steps. WSI goes through a process of preparation
for use by the DeepBatchmodel. . . . . . ... ... ... ........ 78

Convolutional architecture for ROI Detection Module. The gray part of
the figure represents the summarized flow of the network. On the left side,
the detailed blocks of the downsampling of the images are represented.
In the right part, the detailed blocks of the upsampling of the images are
represented. Each convolutional layer is represented as follows: kernel,
feature maps and stride. . . . . . .. ... L Lo 79

ROI Detection Module steps. Preprocessed WSI undergoes tile sampling
and data augmentation to be trainedona CNN. . . . . . ... ... .. .. 79

Sampling Module. Suspicious regions identified by the ROI Detection
Module are mapped to high magnification regions. . . . . . . .. ... .. 80

Cell Segmentation Module steps. High magnification images go through a
tile sampling process and data augmentation to be segmented by a CNN. . 81

Convolutional architecture for the Cell Segmentation Module. The gray
part of the figure represents the summarized flow of the network. Next to
each Dense Block, the number of times it will be repeated in the
architecture is specified. On the left side, the detailed blocks of the
downsampling of the images are represented. In the right part, the detailed
blocks of the upsampling of the images are represented.  Each
convolutional layer is represented as follows: kernel, feature maps and

Stride. . . . . .. 81
Example of a pixel-wise annotated WSI from the BACH dataset. Red is

benign; Green is in situ; Blue isinvasive. . . . . . . ... ... ... ... 85
Example of a pixel-wise annotated image from the BreCaHAD dataset. . . 85

An example of a slide section of the BREAKHIS base seen in different
magnification factors: (a) 40X, (b) 100X, (c) 200X, and (d) 400X. . . . . . 86



Figure 41 —

Figure 42 —

Figure 43 —
Figure 44 —

Figure 45 —

Figure 46 —
Figure 47 —

Figure 48 —
Figure 49 —

Figure 50 —

Figure 51 -
Figure 52 —

Figure 53 —

Figure 54 —

Figure 55 —

Figure 56 —

Figure 57 —

Figure 58 —

Example of tissue sections from the BIOIMAGING 2015 dataset. A)
normal tissue; b) benign tissue; c) carcinoma in situ; or d) invasive
CATCINOMA. . .« v v v v v e e e e e e e e e e e e e e 87

Example of a metastatic region of the CAMELYON17 dataset. (a) WSI at
1 x magnification; (b) red rectangular region of part (a) seen in a 10x
magnification; (c) red rectangular region of part (b) seen at 40x

magnification. . . . . . ... 87
An example of WSI from the TCGA base in a magnification of 1x. . . . . 89
Sample images of the UCBS dataset. Top row - benign tumor images, and

bottom row - malignant tumor images. . . . . . . . . .. .. ... ... 89
An example of a 3 x 3 confusion matrix for classes A—C (left) and the

corresponding binary confusion matrix for class A (right). . . . . . .. .. 91
A basic ROC graph showing five discrete classifiers. . . . . . ... .. .. 92
Diagram of the proposed methodology, based on a U-Net and Resnet model

for the WSI segmentation of breastcancer. . . . . .. ... ... ... .. 93
Distribution of WSI according to height and width in pixels. . . . . . . .. 95

Examples of removing pen markings in WSI. On the left, black, blue, and
green markings. On the right, the regions removed in black pixels. . . . . . 96

An example of WSI resized after going through the Preprocessing Module.
In brackets, the sizeofeach WSL. . . . . . . . . .. ... ... ...... 97

An example of an annotation after going through the Preprocessing Module. 98

Tile sampling process for the ROI Detection module. Each rectangular
region is a 256 x 256 pixels image generated and used in the training and
validation steps as a basis for data augmentation. . . . . . .. .. ... .. 99

Sampling process from low to high magnification regions. (A) Region
segmented by the ROI Detection Module with points with greater and
lesser coordinates for the y-axis (X1, X3) and x-axis (X2, X4). (B) The
rectangular region in high magnification obtained based on the
coordinates identified in step (A). (C) The rectangular region highlighted
in WSI. (D) Region sampled at 40x magnification that will be used as an
input to the Cell Segmentation Module. . . . . . .. ... ... ...... 100

Tile sampling process for the Cell Segmentation module. (A) Tissue
section at 40x magnification. (B) Segmentation produced by the ROI
Detection Module. (C) Segmented tissue with tiles of 256 x 256 pixels. . . 101

Loss graphs for training and validation data for each CNNs: (A) RGB; (B)
HSV; (C) YCrCb; D)LAB. . . . . . . . 104

BACH case A0l with the segmentation provided by the base and the
results for the CNNs: (A) RGB; (B) HSV; (C) YCrCb; (D) LAB. In the
annotations, the black color indicates healthy tissue or background, blue
benign tissue, green in-situ carcinoma, red invasive carcinoma. . . . . . . 106

Graphs for loss and metrics for each epoch. (A) Loss over epochs; (B)
Metrics over epochs for the training set; (C) Metrics over epochs for the
validationset. . . . . . . ... L. 108

The performance of mass segmentation in terms of ROC curves in test set
for the ROI Detection Module. . . . . . . ... ... ... .. ....... 109



Figure 59 —

Figure 60 —

Figure 61 —

Figure 62 —

Figure 63 —

Figure 64 —

Figure 65 —
Figure 66 —
Figure 67 —

BACH case A03. (A) WSI input for inference. (B) Pathologist annotation.
(C) WSI with pathologist annotation highlighted. (D) Annotation
produced by the ROI Detection Module. (E) WSI with inferred annotation
highlighted. In the annotations, the black color indicates a healthy tissue
or background. The white color indicates suspicious tissue. . . . . . . ..
TCGA case TCGA-A2-AOCZ. (A) WSI input for inference. (B)
Pathologist annotation. (C) WSI with pathologist annotation highlighted.
(D) Annotation produced by the ROI Detection Module. (E) WSI with
inferred annotation highlighted. In the annotations, the black color
indicates a healthy tissue or background. The white color indicates
SUSPICIOUS LISSUC. . .« . v v v v v v v e e e e e e e e e e e
Graphs for loss and metrics for each epoch. (A) Loss over epochs; (B)
Metrics over epochs for the training set; (C) Metrics over epochs for the
validationset. . . . . . ... L
The performance of mass segmentation in terms of ROC curves in test set
for the Cell Segmentation Module. . . . . . .. ... .. ... ......
BACH case AO1. (A) WSI input for inference. (B) Pathologist annotation.
(C) WSI with pathologist annotation highlighted. (D) Annotation
produced by the Cell Segmentation Module. (E) WSI with inferred
annotation highlighted. In the annotations, the black color indicates
healthy tissue or background, blue benign tissue, green in-situ carcinoma,
red invasive carcinoma. . . . . . . . ... .o e e e e e e
BACH case A03. (A) WSI input for inference. (B) Pathologist annotation.
(C) WSI with pathologist annotation highlighted. (D) Annotation
produced by the Cell Segmentation Module. (E) WSI with inferred
annotation highlighted. In the annotations, the black color indicates
healthy tissue or background, blue benign tissue, green in-situ carcinoma,
red invasive carcinoma. . . . . . . . . . ... a e e
Heat map for case AO1 from BACH. . . . ... .. ... ... ......
Heat map for case AO3 fromBACH. . . ... ... ... .........
Heat map for a suspected region in the BACH case A03. . . . . .. .. ..



Table 1 —
Table 2 —
Table 3 —
Table 4 —
Table 5 —
Table 6 —

Table 7 —
Table 8 —
Table 9 —
Table 10 —
Table 11 —
Table 12 —

Table 13 —
Table 14 —

Table 15 —

Table 16 —

Table 17 —

Table 18 —

LIST OF TABLES

Some loss functions. . . . . . . .. L L L
Research questions. . . . . . . . . .. ... ... ... ... ...
Quality Assessment of article structure and related questions. . . . . . . .
Final corpus of articles published in journals. . . . . . ... ... ... ..
Final corpus of articles published in conferences. . . . . . . . .. ... ..
Challenges regarding the intelligent analysis of breast cancer
histopathological images. . . . . . . . . . .. .. ... ... ... . ...
Public data sets of histopathological images of breast cancer identified in
thereview. . . . . . . . L
Main preprocessing techniques applied to intelligent analysis of breast
cancer histopathological images. . . . . . .. .. ... .. .. ......
Public datasets of histopathological images of breast cancer. . . . . . . . .
HASHI dataset. . . . ... ... .. ... ... ... .. .. ...
Confusion Matrix . . . . . . ... ... L
Public datasets used in DeepBatch modules. . . . . ... ... ... ...
Whole-slide imaging statistics used in DeepBatch modules. . . . . . . ..
Set of thresholds used to remove pen demarcations in WSI. The columns
R, G, and B represent the operator and the threshold applied to each of the
pixelsinthe RGB colorspace. . . . . .. ... ... .. ..........
Results for the test set for each color space: (A) RGB; (B) HSV; (C)
YCrCb; (D) LAB. In bold, the best results. (Accu. pixel is the accuracy at
the pixel level. The columns Benign, In situ, Invasive, and Background
correspond to the percentage of pixels correctly classified for each of
these classes). . . . . . . . ..
Results for the performance metrics in the test set for the ROI Detection
Module. . . . . . ..
Results for the performance metrics in the test set for the Cell Segmentation
Module. . . . . . ..
Comparison of the DeepBatch model with the related works. Acc is the
Accuracy, Sen is the Sensitivity, Spe is Specificity, F/ is the F1-Score, and
AUC is the area under the ROC curve. . . . . . . .. .. ... ... ....



2D

3D

Al
ANN
AUC
BACH
CAD
CADx
CNN
DIP
DL
DNA
FN

FP
HSV
H&E
INCA
KNN
LDA
LSTM
MIL
ML
MLP
PCA
RCNN
RF
RGB
RNA
ROC
ROI
SLR
SOM
SSA

LIST OF ACRONYMS

Two-Dimensional
Three-Dimensional

Artificial Intelligence

Artificial Neural Network

Area Under the ROC curve

The Grand Challenge on Breast Cancer Histology Images
Computer-Aided Detection
Computer-Aided Diagnosis
Convolutional Neural Networks
Digital Image Processing

Deep Learning
Deoxyribonucleic Acid

False Negative

False Positive

Hue, Saturation e Value
Hematoxylin and Eosin
Instituto Nacional do Céancer
k-Nearest Neighbors

Linear Discriminant Analysis
Long Short-Term Memory
Multiple Instance Learning
Machine Learning

Multilayer Perceptron

Principal Component Analysis
Recurrent Convolutional Neural Network
Random Forest

Red, Green e Blue

Ribonucleic Acid

Receiver Operating Characteristic
Region of Interest

Systematic Literature Review
Self-Organizing Map

Stacked Sparse Autoencoder



SVD
SVM
TCGA
TN

TP
TUPAC16
WHO
WSI

Singular Value Decomposition

Support Vector Machines

The Cancer Genome Atlas Program

True Negative

True Positive

Tumor Proliferation Assessment Challenge 16
World Health Organization

Whole Slide Imaging



CONTENTS

1 INTRODUCTION

1.1 Motivation . . . . . . . . . ...
1.2 Research Question . . . . . . . . . . .. ... . ... .
1.3 Goals . . . . . . e
1.4 Scientific Contributions . . . . . . . .. ... ... ... 0oL
1.5 Text Organization . . .. . ... ... ... ... ... ... ... ......
2 BACKGROUND
2.1 Pathology and Breast Cancer . . . . . . . .. ... ... ...........
201 Cancer. . . . . .. e
2.1.2 Histopathology and Cancer . . . . . .. .. ... ... ... ......
2.1.3 Breast Anatomy . . . . . . .. ...
2.1.4 Breast Cytology and Histology . . . . . ... ... ... .. ......
2.1.5 BreastCancer . . . . . . . . . . . ...
2.2 Digital Image Processing . . . . . .. .. ... ... ... ... ... ...
221 DigitalImage . . . . . . . ... .
2.2.2  Morphological Image Processing . . . . . .. ... ... .. ......
2.2.3 Image Segmentation . . . . . . . ... ... ..o
2.2.4 Adaptive thresholding . . . . . . ... ... ... ... ... ...,
2.3 Artificial Intelligence . . . . . . . . .. ... L Lo
2.3.1 Artificial Neural Networks . . . . . . . ... ... ... ... .....
2.3.2 Convolutional Neural Networks . . . . . . ... ... .........
2.3.3 Opverfitting and Underfitting . . . . . . .. ... ... ... ...,
2.4 Convolutional Neural Networks for Semantic Segmentation . . .. .. ..
24.1 Fully Convolutional Network . . . . . .. ... ... .. ........
242 U-Net . . . .. e
243 SegNet . . . . . e
2.4.4 Dilated Residual Network . . . . .. .. ... .. ... .. ......
25 FinalRemarks . . . ... ... ... ... .. ... ... ..
3 RELATED WORK
3.1 Methodology . . . . .. .. . . . . ...
3.1.1 Studydesign . . . ...
3.1.2 ResearchQuestions . . . . . . ... . ... .. ... ... .. ...,
3.1.3 Searchstrategy . . . . .. . .. .. .. ...
3.1.4 Articleselection. . . . . . .. ... ...
3.1.5 Qualityassessment . . . . . . . .. ...
3.1.6 Dataextraction . . . . . .. .. .. ...
3.2 Results and discussion . . . . . . . ...
3.2.1 Articleselection. . . . .. ... ...
3.2.2 Data Extraction and Answers to the Research Questions . . . . . . ..

3.3 Challenges and Research Opportunities . . . . . . .. ... ... ......

19
20
21
21
22
23

24
24
24
25
26
28
29
32
33
33
34
35
35
37
42
45
47
47
48
49
50
51



4 DEEPBATCH MODEL 75

4.1 ProjectDecisions . . . . . . . . . ... ... 76
4.2 Architecture . . . . . ... 76
42.1 PreprocessingModule . . ... ... ... ... ... ... ... 77
422 ROIDetectionModule . ... ... ................... 78

423 SamplingModule . . . .. ... ... 79
4.2.4 Cell Segmentation Module . . . . ... ... .. ... ... ... 80

43 FinalRemarks . . . .. ... ... ... .. 81
S MATERIALS AND METHODS 83
5.1 Materials Description . . . . . . ... ... ... ... ... ...... 83
5.1.1 BACH . . . . o e 83

5.1.2 BreCaHAD . . . . . . . . . . e 85
5.1.3. BREAKHIS . . . . . . . .. 86

5.1.4 BIOIMAGING 2015 . . . . . . . . 86

5.1.5 CAMELYONI17 . . . . . .. e 87

5.1.6  HASHI . . . . . . . e 88

517 TCGA . . . o e 88

5.1.8 UCSB BreastCancerCell . ... ... ................. 89

5.2 Metrics: Quantifying the Quality of Predictions . . . . .. ... ... ... 90
5.2.1 Metrics Based on the Confusion Matrix . . .. ... .......... 90

5.22 ROCgraphs . . . . . . . . e 91
5.2.3 Dicecoefficient . . . . ... .. ... e 92

5.3 Comparative Analysis of the Influence of Color Spaces on WSI Segmentation 92
5.3.1 WSI Acquisition and Preprocessing . . . . . . ... ... ....... 93

5.3.2 Dataaugmentation . . . . . . . .. ..o e 93

5.3.3 Convolutional Model . . . . . ... ... ... ... ... ..., 94

5.4 DeepBatch Experimental Setup . . . . . . .. .. ... ... oL, 94
5.4.1 Datasets Distribution and Analysis . . . . . ... .. ... ... .... 94

5.4.2 PreprocessingModule . . ... ... o Lo 95

543 ROIDetectionModule . . ... .. ... ..... .. ......... 98

54.4 SamplingModule . . . . .. ... L oo 99

5.4.5 Cell Segmentation Module . . . . .. ... ... ... ......... 99

5.5 FimalRemarks . . . . . ... ... .. .. ... 101
6 RESULTS AND DISCUSSIONS 103
6.1 Comparative Analysis of the Influence of Color Spaces on WSI Segmentation 103
6.1.1 Training and Validationof CNNs . . . . . . ... . ... ... ..... 103

6.1.2 CNNsEvaluation . . . .. ... ... ... .. .. ... .. ... 104

6.1.3 Qualitative Evaluation . . . . . ... ... ... ............ 105

6.2 ROI Detection Module . . . . . . .. ... ... ... ... ... ... 106
6.2.1 Training and Validation . . . . . .. ... ... ... ... ....... 107

6.2.2 Evaluation . . . . . . . .. ... 107

6.2.3 Qualitative Evaluation . . . .. .. ... ... ... ... ....... 109

6.3 Cell Segmentation Module . . . . ... ... ... ... ........... 109
6.3.1 Training and Validation . . . . . . . .. .. .. ... L. 112

6.3.2 Evaluation . . . . . .. ... ... 112

6.3.3 Qualitative Evaluation . . . .. ... ... ... ............ 114

6.4 Discussion . . . . . . .. s 119



7 CONCLUSION
7.1 Publications
7.2 Future Work

REFERENCES



19

1 INTRODUCTION

The last few decades have been of significant advances in the health area, especially in
molecular studies and Deoxyribonucleic Acid (DNA) sequencing, allowing a deeper
understanding of the causes of cancer initiation and progression. However, cancer prevention
and treatment remains a worldwide public health problem. Estimates from World Health
Organization (2019a) (WHO) show this problem, pointing to 9.6 million deaths due to cancer
in 2018. Also, according to the organization, 20 to 50% of these deaths could be avoided with

early detection and adequate treatment.

In the female population, breast cancer is the one with the highest incidence and mortality
rates in the world (BRAY et al., 2018; World Health Organization, 2019a; DEBELEE et al.,
2020). In Brazil, breast cancer incidence rates are even more worrying when compared to global
averages. For a group of 100,000 women, approximately 63 have breast cancer, while the global
average is around 46 (World Health Organization, 2019a). Estimates by the Instituto Nacional
do Cancer (INCA) pointed to almost 60 thousand new cases and more than 15 thousand deaths
for the year 2018 in Brazil due to breast cancer (BRASIL, 2019).

Although hereditary factors are related to the development of the disease (about 5 to 10%),
the main risk factors are related to menstruation (early or late menopause), reproduction (over
the age of 30), hormonal intake (contraceptives or hormone replacement), overweight, alcohol
consumption, and smoking (BRAY et al., 2018; World Cancer Research Fund, 2019; BRASIL,
2019).

Early detection is essential for combating the disease and for a better prognosis. Clinical
breast examination or imaging tests, such as mammography, ultrasound, or magnetic
resonance, are non-invasive methods used to perform breast cancer screening (BRASIL, 2019;
World Health Organization, 2019a). However, the gold standard for confirming the diagnosis,
treatment, and management of breast cancer is given by the histological analysis of a section of
the suspected area by a pathologist (BEJNORDI et al., 2017b; World Health Organization,
2019b; YAN et al., 2019; BENHAMMOU et al., 2020).

To perform the microscopic analysis, the suspect tissue undergoes a process of fixation and
staining on glass slides. The slides are usually stained with Hematoxylin and Eosin (H&E)
(ROY et al., 2019). Hematoxylin is responsible for staining the DNA of the cell nucleus,
Ribonucleic Acid (RNA) of the cytoplasm, and cartilage, producing a bluish color in the
structures (ROY et al., 2019). While eosin stains cytoplasm structures and pink-colored
collagen (YAN et al., 2019). The staining process is necessary because most of the cells and
extracellular material are colorless (MESCHER, 2018).

However, some characteristics in histological analysis cause intra and inter-observer
variations in diagnosis (MITTAL; SARASWAT, 2019). These variations occur mainly due to
the subtle differences between the cancer cells of the types of breast cancer. Besides, the

chemical properties of the reagents, differences in the protocols used, and the skills of
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pathologists cause variations in the analysis of histopathological slides (KHAN;
SIRINUKUNWATTANA; RAJPOOT, 2015; DEBELEE et al., 2020).

Recently, full-slide scanners have become a useful tool for pathologists.  With
digitalization, case sharing can take place without the slides being physically sent and
providing new possibilities for a case evaluation. The digitization of the slides, known in the
literature as Whole Slide Imaging (WSI) (SPANHOL et al., 2016a), spread interest in research
for the development of computer systems to assist pathologists. For the analysis of
histopathological images of breast cancer, Computer-Aided Detection (CAD) or
Computer-Aided Diagnosis (CADX) systems have already proved useful, for example, for the
detection of mitosis (WANG et al., 2014; MAROQOF et al., 2020), cell classification (PAN et
al., 2018), and nuclei segmentation (BAKER et al., 2018).

Therefore, the main focus of this Master Thesis is to provide the pathologist with a second
opinion for the analysis of histopathological slides of breast cancer in an interpretable way,
to improve the diagnosis. To achieve this goal, we propose a model based on a cascade of
Convolutional Neural Networks (CNN) that work together to provide a diagnostic suggestion.
The model obtains global information from WSI at lower magnification, optimizing the use
of computational resources. Based on this global information, a refined analysis is performed
at higher magnification. We base the extraction of knowledge on the pathologists’ workflow,
which locates relevant regions based on a global view, to perform a local and detailed analysis

at higher magnification.

1.1 Motivation

The current moment in computing is a reflection of a series of developments and advances,
mainly in processing and storage capacities. These advances have enabled the development
and improvement of digital image processing techniques and Artificial Intelligence (AI). Using
these techniques, some CAD systems applied to medical or biomedical imaging can achieve
results close to human capacity (VETA et al., 2014). Especially in recent years, intelligent
systems to aid the diagnosis, prognosis, classification or segmentation of pathologies have
become the focus of several lines of research (SPANHOL et al., 2016a; CRUZ-ROA et al.,
2018; ARESTA et al., 2019).

The need for detection in the early stages of breast cancer supports the need for an
increasingly accurate and agile diagnosis (BRASIL, 2019; World Health Organization, 2019a).
However, the pathologist is subjected to high workloads in public health care (MAJEED et al.,
2018). Allied to this, the various restrictions regarding the heterogeneity of cancer cells,
different staining protocols, and chemical properties of the reagents are all factors that
contribute to increasing the analysis time, the level of concentration, and the dependence on
pathologists’ experience and expertise (SPANHOL et al., 2017). For most of the studies in the
literature, the intelligent analysis of histopathological images of breast cancer is directed only
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to analyze sections of the WSI (SPANHOL et al., 2016a; SPANHOL et al., 2017;
GANDOMKAR; BRENNAN; MELLO-THOMS, 2018a), is based on small datasets (ROY et
al., 2019), or just classify the slides (BEJNORDI et al., 2017b). Therefore, this Master Thesis
presents a methodology for the intelligent analysis of breast cancer WSI. The model explores
WSI analysis based on the pathologist’s slide analysis routine and provides the pathologist

with interpretable information used during the inference to the diagnosis.

1.2 Research Question

This work seeks to answer the following research question:

Is an intelligent model based on deep learning capable of detecting and providing an
interpretable diagnosis of breast cancer to pathologists in Whole-Slide Imaging with

precision comparable to the golden standard?

This work seeks to answer which characteristics are necessary so that a CAD can be
optimized to the interests of the pathologist in assisting the WSI analysis of breast cancer. In
this way, we conducted a Systematic Literature Review (SLR) to identify the state of the art,
challenges, and open opportunities in assisting the diagnosis in histopathological images of
breast cancer.

In this master’s thesis, we are interested in analyzing how CNNs can learn the
characteristics necessary to detect breast cancer in WSI. As a way to facilitate the learning of
CNNs, preprocessing techniques can be used to remove any unwanted noise from the WSI,
such as pen markings. We selected CNNs as techniques to compose the methodology of this
Master Thesis based on the results analyzed in the SLR.

Finally, as a way of providing an interpretable diagnosis, CNN will be responsible for
generating WSI global and local segmentation. The segmentation will present the affected area
to the pathologist. The inferences produced by the CNNs will be compared with the golden
standard utilizing performance metrics identified in the SLR. In this Master Thesis, we
consider the annotations labeled by pathologists and provided by public datasets as the golden

standard.

1.3 Goals

The general goal of this work is to propose an intelligent and interpretable architecture to
assist in the detection of breast cancer WSI. And so, this CAD system offers a means to reduce
intra and inter-observer variations and allow a faster and more accurate diagnosis. To achieve

this objective, we have defined some specific goals:

e Conduct initial research to understand the breast cancer WSI analysis process;
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Conduct a SLR to obtain the state of the art of our object of study, identify possible gaps,

challenges, technologies used, and available public datasets;

Propose an intelligent and hybrid architecture to fill the identified gaps;

Implement the proposed architecture;

Validate the architecture based on the validation metrics identified in the SLR using

images from public datasets.

1.4 Scientific Contributions

In this Master Thesis, we investigate an intelligent model based on Deep Learning (DL) for
the detection of breast cancer in WSI. With the model, we intend to provide the pathologist with
information regarding the inference made by the techniques, allowing the interpretation of the

diagnostic suggestion. In this way, the main contributions of this work can be described below.

o State of the art mapping. In order to identify the state-of-the-art for intelligent analysis
of histopathological images and the challenges that involve this area, we reviewed the
literature. We selected articles published in the last decade in conferences and journals.
As a way to conduct the study analysis methodology, we used the SLR method
(KITCHENHAM; CHARTERS, 2007; ROEHRS et al., 2017; COVER et al., 2018;
MONTENEGRO; COSTA; RIGHI, 2019; GUBERT; COSTA; RIGHI, 2019; ARJI et al.,
2019). In this context, we present an extensive literature review in intelligent
histopathological image analysis of breast cancer. In particular, we propose an updated
taxonomy emphasizing aspects of the proposed methods, as divided into four main
topics: preprocessing techniques, processing techniques, post-processing techniques,

and evaluation metrics.

e Novel convolutional architecture for WSI segmentation. Based on the challenges and
open gaps identified in the SLR, we defined the direction of our research. In this way,
the main scientific contribution of this dissertation is the proposal of a novel
convolutional model for the segmentation of WSI at the pixel level. The model provides
segmentation using a cascade of CNNs organized in two levels. In the first, global level,
our method analyzes WSI at low magnification and with a larger receptive field. In the
second level, our method examines WSI at high magnification, focusing on details and

cellular characteristics.

o Interpretable inferences. The proposed model is based on the analysis carried out by
the pathologist, analyzing global characteristics, and then focusing on local cellular
functions. The pixel-level classification allows the pathologist to be provided in an

interpretable and detailed way with the cellular aspects that influenced the diagnosis,
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both globally and locally. Providing the locations of the regions with precision can assist
and accelerate the process of analysis and identification of neoplastic areas in WSI of

breast cancer. Finally, we provide a set of heat maps that can help in decision making.

1.5 Text Organization

The remainder of the study is divided into seven chapters. Chapter 2 presents the concepts
related to the present work, introducing technologies and algorithms that are used for the
development of the proposed system. Then, in Chapter 3, the related works are discussed to
present the state-of-the-art in WSI intelligent analysis of breast cancer. Chapter 4 presents the
proposed model and design decisions. Chapter 5 presents the validation methodology and
metrics for the model. Chapter 6 presents the results, evaluation, and discussions for the
proposed model. Finally, Chapter 7 presents the final considerations regarding the findings and

future work.
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2 BACKGROUND

This chapter presents the essential concepts used in this Master Thesis that guide the
development of intelligent architecture to assist in the detection and classification of breast
cancer WSI. Characterization of fundamental properties and concepts regarding cancer and
histopathology are detailed in Section 2.1. In Section 2.2, we explain some useful digital
image preprocessing techniques to assist in the process of learning intelligent algorithms.
Meanwhile, in Section 2.3, the theory related to artificial intelligence relevant to this work is
discussed. Finally, Section 2.4 presents neural network architectures applied to semantic

segmentation.

2.1 Pathology and Breast Cancer

Pathology can be defined as the study of structural and functional changes that manifest
themselves as diseases in the body (RUBIN et al., 2015). Given the diversity of the human
body, the pathology is subdivided into several specific areas, such as microbiology, hematology,
biochemistry, genetics, and cyto-histology (HERRINGTON, 2014). Within histopathology, cell
and tissue analysis, both structural and behavioral, plays a fundamental role in the diagnosis and
staging of cancer, as well as generating future prognosis (YAN et al., 2019). Within this point,
in the next subsections, we present concepts regarding histopathological analysis and breast

cancer.

2.1.1 Cancer

The first evidence of cancer, also called a malignant neoplasm or malignant tumor, goes
back to periods of prehistory, with mention of the disease in Egyptian, Indian, and Babylonian
writings (RUBIN et al., 2015). The evasion of rural life towards an industrial and urban style
and behavior exposes man, increasingly, to the growing list of factors that stimulate the
emergence of neoplasms (HOFF et al., 2012). A neoplasm can be characterized as an
abnormal mass of tissue with uncontrolled growth and proliferation (HERRINGTON, 2014;
KUMAR; ABBAS; ASTER, 2018). The capacity for self-renewal, induction of inflammation
and tissue invasion, resistance to antiproliferative factors, avoidance of cell death and
immunity mechanisms, induction of angiogenesis (formation of new blood vessels), metabolic
changes for adaptation contribute to the development of carcinogenesis (HANAHAN;
WEINBERG, 2011).

The disease originates from genetic disorders, that is, mutations in human genes that
regulate multiplication and differentiation (how much normal cells look like neoplastic cells),
providing advantages to altered cells and allowing uncontrolled and autonomous proliferation
(HERRINGTON, 2014; BRASILEIRO FILHO, 2016; KUMAR; ABBAS; ASTER, 2018).
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The characteristics of such cells will probably reflect the characteristics of the tumors in
question, even with the cell population of the same tumor having different aspects, that is, the

tumor cells may have different characteristics (HOFF et al., 2012).

There is also a relevant classification that differentiates, due to pathophysiological
characteristics, two types of neoplasms: malignant and benign. Malignant neoplasms, or
cancer, are tumors capable of rapidly expanding, invading adjacent or distant tissues
(metastases). Benign neoplasms are characterized by a well-defined tissue mass, with slower
growth and without invasion in adjacent tissues. They are less lethal than the malignant ones,
but they can act by compressing neighboring organs or vasculatures, thus evolving into
complications (HOFF et al., 2012; DEVITA; LAWRENCE; ROSENBERG, 2018). The
classification is confirmed only with a detailed analysis of the suspect tissue. This analysis is

known as histopathology.

2.1.2 Histopathology and Cancer

Although findings in clinical and radiological exams (X-ray, magnetic resonance and
computed tomography) contribute to the diagnosis and staging of different types of cancer, the
gold standard is the macro and microscopic pathological anatomical analysis. In the
microscopic examination, the analysis is performed at the cellular level (histopathology)
(HOFF et al., 2012; BEJNORDI et al., 2017b; YAN et al., 2019).

Histopathology consists of studying samples of diseased tissue (biopsy) in a microscopic
inspection (ROY et al., 2019). With the histopathological exam, it is also possible to obtain
indicators for the staging (study to assess the location and extent of the tumor used to choose
the ideal treatment) and prognosis (evaluation of possible development or future responses) of
cancer (HERRINGTON, 2014).

Obtaining tissue for analysis is done through a biopsy, which can be performed in three
ways: excisional when the entire region of the lesion is removed for analysis; incisional, the
surgeon removes part of the tissue from the lesion; and by needle, being a less invasive method
where light instruments are used with the aid of radiological methods to remove a small but
sufficient tissue sample from the lesion (HERRINGTON, 2014). After the acquisition of the
tissue, it is prepared according to the steps illustrated in Figure 1.

After the tissue preparation is completed, the resulting sections are placed on glass slides to
undergo a process of coloring the structures and examination by electron microscopy
(HERRINGTON, 2014). The most frequently used staining method is the combination of
H&E (MESCHER, 2018). H&E staining the structures by relating chemical affinities of the
dye to simple cell structures. Eosin, a pink dye, due to its acidic and negatively charged
(anionic) character, stains basic cellular structures. As an example of structures stained with
Eosin, we can mention the cell cytoplasm and mitochondria (KUMAR; ABBAS; ASTER,

2016). Hematoxylin, a bluish-colored dye, has a basic character and positive charge (cationic),
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Figure 1 — Process of tissue preparation for histological study. The process steps are briefly:
fixation, the tissues are placed in chemical solutions that cross-link proteins and inactivate
enzymes; Dehydration, removal of water from tissues using alcoholic solutions; Clearing,
process to lighten the tissue; Embedding, the tissue is placed in a mold of melted paraffin to
harden; Trimming, the result is then trimmed to section the tussue.

52°-60°C
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Source: Mescher (2018)

stains acidic cell structures called basophils (ROY et al., 2019). As an example of a basophilic
structure, we can mention the cell nucleus itself, which is composed of its acidic groups. The
staining process is necessary for most cells and extracellular material to be colorless when
observed via microscopy (MESCHER, 2018). An example of a histopathological slide image

of breast tissue stained with H&E is shown in Figure 2.

The diversity of colors produced by the interaction of an acid and basic dyes on the slide
makes it possible to identify and evaluate even functional issues of the cell. The wide range of
tones produced, the intensity of the dye in the medium, and the texture enhanced by the pigment
that appears on the slides exposes important cellular information to the medical environment
(CHAN, 2014), capable of communicating and differentiating, even, normal or pathological
cellular processes (MITTAL; SARASWAT, 2019).

For the diagnosis of neoplasms, and the distinction between benign and malignant, in
histopathological slides, the following characteristics are briefly considered: the degree of cell
differentiation, mitotic activity, growth pattern, invasion of adjacent tissue, and presence of
metastases (HERRINGTON, 2014; RUBIN et al., 2015). Still, when studying and analyzing
sections of stained tissue, the pathologist needs to stick to artifacts produced during the stages
of the tissue preparation process. Because this process can distort tissues, cause wrinkles, dyes
may not correctly dye specific cellular structures, in addition to being aware of interpreting a
three-dimensional (3D) structure in a two-dimensional (2D) space (MESCHER, 2018).

2.1.3 Breast Anatomy

The anatomy of the breast is directly related to the behavior of breast cancer (JESINGER,
2014; KUMAR; ABBAS; ASTER, 2016). Therefore, it is essential to understand the structures
that make up the mammary gland. The breasts are superficial glands that protrude from the
anterior wall of the human chest. They are formed by glandular tissue, which provides nutrition

to newborns, fibrous and adipose tissue forming the stroma that supports and shapes the breast
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Figure 2 — Example of breast tissue stained with H&E. The pink tones represent structures of
the cytoplasm and collagen. Meanwhile, bluish tones are components of the tissue core.

=

Source: Pawlina e Ross (2018)

(MOORE; DALLEY; AGUR, 2013). Amid these tissues, there is rich vascularization for tissue
nutrition, lymphatic ducts, and nerves. The breasts are located in what we call the subcutaneous
mesh, anterior to the pectoralis major and minor muscles (STANDRING, 2015). A detailed

representation of the breast anatomy is illustrated in Figure 3.

Figure 3 — The relations of the breast.

Source: Adapted from Standring (2015)

The breast is accommodated in a space that extends from the lateral margin of the external,
long bone in the medial portion of the chest, up to the midline of the ribs II to VI. A pectoral
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fascia forms this bed over the pectoralis major and serratus anterior muscle. Between the breast
and the space of the fascia (mentioned above) is the retro mammary space, which gives a certain
degree of movement to the breast. A part of the mammary gland can be found in the axillary
region (MOORE; DALLEY; AGUR, 2013). The visualization of the locality and involvement

with the superficial chest can be visualized in Figure 3.

2.1.4 Breast Cytology and Histology

The mammary gland is composed of 15 to 20 lobules of tubuloalveolar glands, located in
the subcutaneous tissue. These glands differ during the woman’s development from apocrine
sweat glands. The lobes radiate from the nipple, also called the mammary papilla, located at the
center of the areola, and divide into numerous lobular units of the terminal duct (PAWLINA;
ROSS, 2018). Each of these terminal units of the mammary gland is a set of small secretory
alveoli or terminal ducts surrounded by intralobular stroma. It should be noted that each lobe
is composed of at least three essential parts (PAWLINA; ROSS, 2018): terminal ducts, which
are part of the inactive gland and, when activated, differentiates into alveoli producing breast
milk; intralobular collecting duct, which transports glandular secretions from the alveoli into
the galactophore duct in the nipple; and intralobular stroma, which is nothing more than the
tissue that is attached to the alveoli and is sensitive to maternal hormones. The components are

illustrated in Figure 4.

Figure 4 — A, the lobe is composed of multiple acins (responsible for milk production). B, the
lobular duct is on the left, coming out of the lobe.
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Source: Pawlina e Ross (2018)
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2.1.5 Breast Cancer

The development of breast tumors is one of the most common in humans. In the female
population, they reach up to a quarter of the total number of cancers in the world (World Health
Organization, 2019a). It is noteworthy that, even though the number of confirmed tumors is 100
times higher in women, men can also be affected by the disease (MAKKI, 2015).

Although most breast cancers start in cells close to the ducts or lobes (American Cancer
Society, 2019), it can manifest in any of the cells of the mammary gland (MAKKI, 2015).
This characteristic makes neoplasms highly heterogeneous, both at the molecular and clinical
levels (POLYAK, 2007; CIANFROCCA; GRADISHAR, 2009; ELIYATKIN et al., 2015). The
WHO defines classifications for the types of breast cancer, but there are doubts about whether
this classification is biologically significant (LAKHANI; CANCER; ORGANIZATION, 2012;
ELIYATKIN et al., 2015). These doubts are justified by the wide variation in morphological
characteristics, immunohistochemical profiles, and pathological subtypes, which result, in most
cases, in a single outcome for each patient (MAKKI, 2015). In the next subsections, we discuss
and present some characteristics that differentiate benign and malignant tumors, as well as some

representative subdivisions.
2.1.5.1 Benign Breast Lesions

Benign lesions of the breast correspond to more than 50% (Figure 5) of the cases of
histopathological analyzes of breast cancer (KUMAR; ABBAS; ASTER, 2016). Benign
lesions that are not associated with an increased risk of malignancy include duct ectasia

(dilation or enlargement of the tubular structure), simple fibroadenoma, fibrosis, mastitis, mild
hyperplasia, and cysts (DABBS, 2017).

Figure 5 — Histopathological findings in a series of women seeking breast lump evaluation.

Without Disease

Fibrocystic changes

Cancer

Benign Miscellaneous Fibroadenoma

Source: Adapted from Kumar, Abbas e Aster (2016)

Cysts and fibrosis are the most common non-proliferative lesions, characterized by
increased stroma and dilation of the ducts (KUMAR; ABBAS; ASTER, 2016). Another

common histopathological finding is fibroadenoma (Figure 6 - A), common in women of the
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third age, with stromal proliferation associated with a variable number of tubular structures
(HERRINGTON, 2014). In hyperplasia, on the other hand, there is an increase in the number
of cells that fill the duct (Figure 6 - B), in a normal duct this filling is a double layer of cells
(KUMAR; ABBAS; ASTER, 2013).

Figure 6 — A, Fibroadenoma: biopsy with a well-defined mass of connective tissue and tubule-
like structures. B, Hyperplasia, duct filled with heterogeneous cells.
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Source: Adapted from Herrington (2014)

In ductal ectasia, dilation of the ducts occurs, with chronic inflammation, usually without
significant symptoms and characteristics that can develop into a malignant neoplasm
(HERRINGTON, 2014). Fibroadenoma is not usually associated with the development of
malignant neoplasms. However, in more severe cases, with the presence of cysts or
calcification, the chance is slightly higher (DABBS, 2017). Phylloid tumors and papillomas are
benign lesions that can also be associated with the development of breast cancer (RUBIN et al.,
2015). Phylloid tumors, in the vast majority, are benign lesions, have a well-defined abnormal
mass, and are composed of stromal cells and covered by epithelium (HERRINGTON, 2014).
Meanwhile, papilloma is more frequent in premenopausal women, with heterogeneous cell
proliferation in the ducts, and is generally associated with nipple secretion (KUMAR;
ABBAS; ASTER, 2013). In this work, we will use the definition of benign disease for all

changes found in histopathological images that are not considered carcinogenic changes.
2.1.5.2 Malignant Breast Lesions

Breast carcinoma is the most common malignancy among women (KUMAR; ABBAS;
ASTER, 2016). Of these, almost 95% are originated and limited to the breast duct and lobular
system (MAKKI, 2015). When they are of epithelial origin, and there has not yet been an
invasion of adjacent tissues, they are referred to in the literature as carcinomas in situ
(MOINFAR, 2007). Data refer to that, of the patients who did not receive the appropriate
treatment, from 20% to 30% subsequently developed invasive carcinoma (RUBIN et al., 2015).
When the tumor escapes from the epithelial tissue and compromises other tissues becoming
invasive, it can be classified into two types: those that arise from the ducts, ductal carcinoma,
and those that arise from the lobes, lobular carcinoma. However, both types of tumors

originate in the same segment of the mammary gland, called the lobular unit of the terminal
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duct, as seen in Figure 4 (MAKKI, 2015). The carcinoma develops in the mammary stroma
and infiltrates the basement membrane. In these cases, there is the possibility that invasions to
the surrounding tissues reach the lymph nodes or blood vessels and create metastases
(KUMAR; ABBAS; ASTER, 2016). The following are the main classifications defined by

WHO and some relevant characteristics for carcinomas:

e Ductal Carcinoma in situ: this type of tumor is characterized by its proliferation in the
epithelial cells limited to the ducts or lobes. It is considered the precursor carcinoma of
invasive pathologies (MAKKI, 2015). Corresponds to about 25% of breast cancers in
screened populations (KUMAR; ABBAS; ASTER, 2016);

e Lobular Carcinoma in situ: it is also an abnormal proliferation of cells within ducts and
lobes, that is, intralobular, but without altering the spaces involved during the spread of
the neoplasia (KUMAR; ABBAS; ASTER, 2013). It happens with the proliferation of
small and heterogeneous cells with weak intercellular cohesion. This type of carcinoma
occurs between 25% to 30% (around 1% per year) of patients who are monitored for more
than 20 years (MAKKI, 2015);

e Invasive Ductal Carcinoma: of invasive breast cancers, 50% to 70% fall into this
category. In Invasive Ductal Carcinoma, malignant ductal proliferation occurs with an
invasion of the mammary stroma. It is a heterogeneous group of tumors classified
according to the architectural structure of the cells, with a series of variations in
morphology, location, and immunohistochemistry (MAKKI, 2015). Invasive Ductal
Carcinoma can be further divided into Invasive Ductal Carcinoma of non-specific type,
Tubular Carcinoma, Mucinous Carcinoma, Papillary Carcinoma, Adenoid Cystic
Carcinoma, Metaplastic Carcinoma, Micropapillary Carcinoma, Lipid-rich Carcinoma,

Secretory Carcinoma, or as Cell Carcinoma Acinar;

e Invasive Lobular Carcinoma: it consists of cells morphologically similar to Lobular
Carcinoma in situ, and almost 70% of cases are derived from it. In addition, the cells
invade the stroma and organize themselves aligned in cord forms (KUMAR; ABBAS;
ASTER, 2016). The cell group is usually rounded, small, uniform, and without
cohesion. It has a standard growth characteristic with a single infiltration for the breast
stroma (MAKKI, 2015). Invasive Lobular Carcinoma can be further divided into
Pleomorphic Lobular Carcinoma, Histiocytoid Carcinoma, Signet Ring Cell Carcinoma,

or Tubulo-lobular Carcinoma;

Currently, with all technological advances that involve the health area, the deepening of
molecular knowledge and DNA sequencing has allowed to develop content and understanding
of the initiation and progression of diseases, including breast cancer. Thus, this new

classification appears based on the expression of proteins and genes (GOBBI, 2012). The main
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breast cancer subtypes, according to this classification, are luminal A, luminal B, protein
HER?2, and triple-negative (MAKKI, 2015).

Finally, the correct classification of the lesion according to histological characteristics is
essential for defining the appropriate treatment and influencing the outcome and response to
treatment (MAKKI, 2015). Therefore, a detailed analysis of the suspected tissue sections by
the pathologist is of fundamental importance. Image processing techniques are already used in
the pathologist’s routine to assist in the detection of suspicious regions, and present in software
such as ImageJ (RASBAND et al., 1997). In this regard, we present in the next section essential

concepts for image processing and its applications in WSI.

2.1.5.3 Prognostic

The tumor stage directly influences the patient’s prognosis (RUBIN et al., 2015). The
staging of a malignant neoplasm is a classification of how far the tumor has spread to
determine the appropriate treatment (KUMAR; ABBAS; ASTER, 2016). The system used for
more than 50 years for the staging of malignant neoplasms is TNM, based on the anatomical
extension of the primary tumor (T), lymph node characteristics (N), and the presence or
absence of distant metastasis (M) (KUMAR; ABBAS; ASTER, 2013). In the last revision of
the system, there was a substantial modification, in addition to the anatomical characteristics
of the lesion, the system now integrates biomarkers as the second level of prognostic modifiers
(GIULIANO et al., 2017).

Another essential prognostic classification is histological grading. The system currently
used is known as the Nottingham Classification System. It evaluates the percentage of tubular
differentiation, nuclear pleomorphism, and the mitotic index (GALEA et al., 1992). From this
percentage, the lesion is classified in one of the following degrees: G1- well differentiated; G2
- moderately differentiated, and G3 - weakly differentiated (RUBIN et al., 2015).

2.2 Digital Image Processing

Digital Image Processing (DIP) is used to assist or automate the solution of several
problems, such as remote sensing, automated inspection of manufactured products, analysis of
medical images, and security systems (JAHNE, 2005). DIP, unlike human vision, can cover
almost the entire electromagnetic spectrum (GONZALEZ; WOODS, 2018). Therefore, DIP
can be defined as a set of computational techniques to capture, represent, manipulate, and
extract information from digital images (JAHNE, 2005; PEDRINI; SCHWARTZ, 2008).
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2.2.1 Digital Image

The computational representation of a digital image can be performed in several ways, the
most common being the spatial representation (JAHNE, 2005). The spatial representation is
composed of a finite set of M x N elements, where M and N correspond, respectively, to the
height and width of the image (GONZALEZ; WOODS, 2018). Each of these elements, also
called pixels, constitutes a discretization of a rectangular region of the scene or component to
be digitally characterized (BURGER; BURGE, 2009).

A monochrome digital image f(x,y), where = and y are spatial coordinates, and f
corresponds to the intensity or level of gray in the image, can be represented as a 2D matrix
(JAHNE, 2005; GONZALEZ; WOODS, 2018). For a color digital image, in general, a 3D
representation is required (BURGER; BURGE, 2009). The most used standardized models for

the 3D representation of digital color images are:

o RGB (Red, Green and Blue): each channel represents one of the primary colors, and the
sum of the intensities for each channel forms the final color (GONZALEZ; WOODS,
2018);

e HSV (Hue, Saturation and Value): the first channel represents the base color of the
spectrum, the second channel indicates the hue of the final color (the lower the value, the
closer to a shade of gray the color will be), and the last channel defines the brightness of
the color (BURGER; BURGE, 2009) ;

e CIELAB: itis represented by three channels, L, which corresponds to intensity, A colored
component that varies from green to magenta, and B colored part that changes from blue
to yellow (GONZALEZ; WOODS, 2018).

2.2.2  Morphological Image Processing

Morphological image processing (or just morphology) is the branch of digital image
processing that focuses on the study of geometric structures present in the image (MARQUES
FILHO; VIEIRA NETO, 1999). The morphological operations are applied to the images with
the structuring elements, which are small sets or sub-images used to search for the information
of interest (GONZALEZ; WOODS, 2018).

Dilation is a morphological process responsible for increasing the structures that make up
an image (BURGER; BURGE, 2009). The operation can be defined mathematically as:

A® B ={z|[(B). N A] C A} @.1)

The Equation 2.1 indicates that the expansion of A by B is the set of all the displacements

of z, so that Band A overlap at least one instead (GONZALEZ; WOODS, 2018). Where A is
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the image, and B is the structuring element.
While the expansion expands the elements that make up an image, erosion does the reverse

process, reducing the size of the objects.

A© B={2|(B). C A} (2.2)

The Equation 2.2 indicates that the erosion of A by B is the set of all points z, so that B,
translated by z, is contained in A (GONZALEZ; WOODS, 2018). Where, again, A is the image,

and B is the structuring element.
2.2.3 Image Segmentation

Segmentation is defined as the subdivision of an image into two or more significant regions
(GONZALEZ; WOODS, 2018). The division is carried out at the pixel level, so those pixels
with the same label are connected concerning some visual or semantic property (GHOSH et al.,
2019). With the segmented image, it is possible to identify the boundaries between the objects
and the shape of the objects (JAHNE, 2005).

The thresholding technique is equivalent to classifying each pixel of the image in
background and object based on a predefined threshold value (BURGER; BURGE, 2013). It is
a useful and straightforward technique to perform an image binarization or to remove noise
(GONZALEZ; WOODS, 2018).

The Equation 2.3 defines mathematically how the thresholding of an image occurs.
Therefore, given an input image, a threshold value 7' is specified, this threshold is a number
referring to the intensity of color or shade of gray present in the image. After setting the
threshold, iterates over all the pixels of the image to check their values and divide them into
two classes: the first class is made up of pixels with values less than or equal to 7' that assume
the value O (background); the second class is composed of values higher than 7' that assume
the value 1 (object). Therefore, the segmented image can be obtained by g(z,y) (BURGER;
BURGE, 2009):

1, if f(z,y) > T
9(z,y) = \ . ) (2.3)
0, otherwise

The definition of the threshold 7" is an essential factor in the segmentation of the image,
being responsible for defining which part of the image (background or object) the pixel
belongs. A method to obtain a global threshold, to separate an object from the background,
was proposed by Otsu (1979), wherefrom an image in shades of gray, ideal value for the limit
is determined. The proposed algorithm iterates through all the pixels of the image looking for
a value that minimizes the sum of the variance between classes, separating the image in
background and object, that is, trying to make the pixel variance in each of the categories to be
minimal (BURGER; BURGE, 2013; GONZALEZ; WOODS, 2018).
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2.2.4 Adaptive thresholding

It is essential to consider that segmentation with the thresholding technique only achieves
satisfactory results in images in which there is a distinction between the colors of the
background and the objects (SONKA; HLAVAC; BOYLE, 2015). A solution for images with
variation in lighting, backgrounds, or objects of uneven color tones can be the use of adaptive
thresholding. Adaptive thresholding uses variable limits to perform segmentation, considering
local characteristics of the image (BURGER; BURGE, 2013).

One of the most basic ways to perform adaptive thresholding is to split the original image
into several sub-images and apply the Otsu (1979) method to each of these sub-images
(GONZALEZ; WOODS, 2018). Another approach is to calculate the threshold for each (x, y)
point based on the characteristics of your neighborhood (BURGER; BURGE, 2013). A
common way to perform this processing is taking into account the standard deviation and the
average of the pixels in the vicinity of each point in the image so that the segmented image can

be calculated as:

o(e.y) = { L, if f(z,y) > aoyy + bmy, 2.4)

0, otherwise

where f(x,y) is the input image, a and b are positive constants, ¢ and m correspond,
respectively, to the standard deviation and the average of the pixels contained in the
neighborhood 5, (GONZALEZ; WOODS, 2018).

However, the simple use of image processing algorithms does not guarantee the
identification of patterns in images is due to the variability of factors that influence them, such
as luminosity, depth, and even the location of objects in the image (HAN et al., 2017; PAN et
al.,, 2018; FENG; ZHANG:; YI, 2018; MITTAL; SARASWAT, 2019). Thus, the use of
techniques that can provide the computer with artificial learning capacity is necessary to

achieve satisfactory results.
2.3 Artificial Intelligence

"Can machines think?" is a discussion that started in the 50s, so it is considered as one of the
first articles to discuss Al (TURING, 1950). After seven decades, Al has transformed human
interactions significantly, influencing which meals we eat, which routes we take to work, which
people we relate to, which destinations we visit, among others (ALPAYDIN, 2016; MULLER;
GUIDO et al., 2016). However, for Al applications on a global scale to be possible, advances
in various areas of computing were necessary, allowing the existence of mobile and accessible
computing with significant capacity for processing, storing, and transmitting information in

real-time (ALPAYDIN, 2016).

Al is a broad area, studying systems that can automate intellectual tasks performed by
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humans (COPPIN, 2010). In the early days of Al, the automation of tasks was implemented,
defined rules manually by programmers, based on human knowledge of the process. This
process was also known as symbolic Al (MULLER; GUIDO et al., 2016). However, this
approach was not efficient for solving complex problems, such as image classification and
speech recognition (CHOLLET, 2018). The two main issues of rule-based Al: small changes
may require rewriting the entire system and the need for in-depth knowledge of the problem to
be automated (MULLER; GUIDO et al., 2016).

In this context, Al systems need to acquire their knowledge and be able to adapt to changes
(ALPAYDIN, 2016). It is from this problem that a new Al subfield, Machine Learning (ML),
emerges. Unlike symbolic AI, ML seeks to obtain a set of rules that solve the problem. For
this, ML algorithms are trained to identify a function f : X — Y that maps the input X
(data) to an output Y (predictions for the problem) (BEKKERMAN; BILENKO; LANGFORD,
2011; CHOLLET, 2018). Therefore, ML can be defined as the process of gathering a data set
and developing an algorithm that generates a statistical model based on this data set to solve a
practical problem (BURKOV, 2019).

Within ML, algorithms are often classified into four categories: supervised learning,
unsupervised learning, semisupervised learning, and reinforcement learning (GERON,
2017). In supervised learning, the data used in training needs to be previously labeled by an
expert. Based on this data, the algorithms are trained, mapping an input X to an output Y,
producing a model (BURKOV, 2019). After training, the model can be saved and used to
predict results based on new data (GOODFELLOW; BENGIO; COURVILLE, 2017).
Unsupervised learning uses data where only the entry X is known, requiring no data labeled
(MULLER; GUIDO et al., 2016). The algorithms seek to find similarities, patterns, or
irregularities to group data, detect anomalies, or reduce the dimensionality of the X entry
(GERON, 2017). As the data labeling process is usually expensive and time-consuming, some
techniques can use partially labeled data. These algorithms are classified as semisupervised
learning. When using semisupervised learning techniques, it is expected that the unlabeled
data can somehow help the model to find a better solution (BURKOV, 2019). Finally, in
reinforcement learning, the learning system, called an agent, can observe the environment,
selecting and executing actions, and receiving rewards in exchange (GERON, 2017).
Reinforcement learning techniques can be characterized as an agent who learns a policy from
reward signs, interacting with his environment. The agent aims to find an ideal policy that
maximizes your cumulative reward (SUTTON; BARTO, 2018).

Within ML techniques, we can highlight a subset of methods that have been gaining
prominence in research in recent years called DL. DL is based on the neural connections that
exist in the human brain (GOODFELLOW; BENGIO; COURVILLE, 2017). The connections
are simulated using dozens and sometimes hundreds of levels of mathematical functions
providing a different interpretation of the data it receives (CHOLLET, 2018). With regard to
this focus, we discuss in the next subsections relevant details of the Artificial Neural Network
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(ANN). This theoretical basis is necessary to understand the methods discussed in the next

sections.
2.3.1 Artificial Neural Networks

The human brain has hundreds of billions of interconnected neurons that process
information from the human body or the external environment (BUDUMA; LOCASCIO,
2017). A biological neuron is composed of four main elements: dendrites, axons, cell body,
and synaptic terminals (RUSSELL; NORVIG, 2010). In Figure 7, a biological neuron is
illustrated, and the dendrites are the receptors for information and stimuli. Each of these inputs
has a connecting force, which can be weakened or reinforced according to its use. Through the
process of weakening or strengthening connections, the learning process occurs (BUDUMA;
LOCASCIO, 2017). When the information reaches the cell body, it is added and propagated
along the axon reaching the synaptic terminals that are connected to other neurons (HAYKIN,
2009).

Figure 7 — A representation of the structure of a biological neuron.
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With the neurobiological analogy as a source of inspiration, research to create an ANN
has been conducted since the beginning of AI (HAYKIN, 2009; RUSSELL; NORVIG, 2010;
BUDUMA; LOCASCIO, 2017). In the next subsections, we cover notions that form the basis

of ANNs and the learning process with neural networks.
2.3.1.1 Artificial Neuron

McCulloch e Pitts (1943) were the first to study and propose a mathematical model of an
artificial neuron. The proposed model was composed of one or more binary inputs and a binary
output. With this model, any logical proposition door could be built as desired (GERON, 2017).
However, this model was still very primitive (RUSSELL; NORVIG, 2010). An evolution was
proposed by Rosenblatt (1958), allowing the input to the neuron to be any numerical value and
the output being calculated from a threshold function, this model became known as Perceptron.

As in the biological neuron, the artificial neuron (Figure 8) is made up of some a; entries,
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each multiplied by a specific w; weight that corresponds to the strength of the connection
(BUDUMA; LOCASCIO, 2017). In addition, each neuron usually has a constant as a fictitious
input from the network, known as bias, and with a value normally equal to 1 (RUSSELL;
NORVIG, 2010). The weighted inputs are added together, and the result is applied to a g
function, also known as an activation function, to produce the output of the neuron (HAYKIN,
2009).

Figure 8 — A simple mathematical model for a neuron.
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2.3.1.2 Activation function

The input of a neuron is a linear transformation (a; * w;). However, complex problems,
such as image classification, are non-linear problems. Thus, the objective with the use of the
activation functions is to introduce nonlinearity to the neuron (GOODFELLOW; BENGIO;
COURVILLE, 2017). Therefore, an activation function «(v) defines the output of the neuron
v and must be differentiable and capable of mapping any entry from —oco to 400 to a specific
interval, for example, between {0.1} or {—1.1} (HAYKIN, 2009).

e Step or threshold: the output is equal to 1 if the value obtained by the weighted sum of

the inputs is greater than or equal to zero. Otherwise, it will be -1, is defined by:

1sev <0
a)=4{ U= 2.5)
—1lsev <0

It is important to note that the step function is not differentiable (Figure 9 (B)); therefore
its use in ANN is not indicated (HAYKIN, 2009).

e Sigmoid: the sigmoid function graphically has an "S" shape (Figure 9 (A)). We can also
see that when the weighted sum of the inputs is small, the output will be close to 0. When
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the weighted sum is large, the output will be close to 1. The sigmoid function is defined
by:

1
 14ev

a(v) (2.6)

e Tanh: tanh graphically behaves similarly to sigmoid (Figure 9 (A)). However, the range
is from -1 to 1. Tanh is defined by:
a(v) = tanh(v) (2.7)

e Rel.U: the ReLLU activation function is often used in computer vision tasks (BUDUMA;
LOCASCIO, 2017). Its main advantage over sigmoidal is the fact that it does not suffer
from gradient saturation, and its computation is faster. The ReLU returns the maximum

between 0 and the value of the weighted sum of the inputs in a neuron, is defined as:

a(v) = maz(0,v) (2.8)

Figure 9 — Activation functions and their derivatives. (A) Activation functions. (B) Derivatives
of the activation functions.
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2.3.1.3 Multilayer Perceptron

Some of Perceptron’s limitations, for example, the unique OR classification problem
(XOR) (MINSKY; PAPERT, 1969), can be eliminated by organizing a set of neurons in layers.
The organization of neurons in layers is known as Multilayer Perceptron (MLP) (RUSSELL,;
NORVIG, 2010). An MLP consists of an input layer, one or more hidden layers, and an output
layer. Each output signal from a neuron is passed on to all neurons in the adjacent layer; this

process is known as propagation. The output signal of a layer is given by processing all output
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signals from the previous layer (COPPIN, 2010), as can be seen in Figure 10. The input layer
usually just passes the data without modifying it. Most computing takes place in the hidden
layers. The output layer converts the activations of the hidden layer into an output, as a
classification (BURKOV, 2019).

Figure 10 — Representation of a Multilayer Perceptron.
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Mathematically an MLP can be expressed by the following formula:

n

yi — O_(Z Wiyi—l 4 bz

1=0

~—

(2.9)

where ¢ is output from the layer i, W* corresponds to the weights of the layer, 3! the
outputs from the previous layer, b to the bias of the current layer and o the activation function
(HAYKIN, 2009).

The weight update process, also known as learning, is an iterative method. In a neural
network, learning occurs by propagating the inputs on the network and computing an error in the
output layer. This error is measured using a loss function (or cost function). The measured error
is then backpropagated from the output neurons to all other errors using the back-propagation
algorithm. In the next subsections, we present the essential concepts of these two fundamental

elements in the neural network learning process.
2.3.1.4 Loss functions

The purpose of the loss functions is to measure the difference between the estimated and true
values for a given data set (BURKOV, 2019). The lower the value obtained after calculating
the loss function, the better the model behaves (CHOLLET, 2018). However, it is necessary to
define the loss function carefully; for example, it is worse to classify a non-spam message as
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spam, than to classify spam as non-spam (RUSSELL; NORVIG, 2010). Thus, it is necessary to
understand how each loss function is calculated and choose the one that is consistent with our
problem (CHOLLET, 2018).

In Table 1 we can see some loss functions currently used. Binary Cross-Entropy measures
the performance between the classification of the model with a probability between 0 and 1.
The closer the output is to 0, the closer the model’s prediction to the expected value. However,
Binary Cross-Entropy can only be used for binary classification problems. For multiclass
classification problems, we must use the Categorical Crossentropy, which calculates a separate
loss for each observed class and makes a sum of the result to infer the error of the model
(GOODFELLOW; BENGIO; COURVILLE, 2017).

For regression problems, we can use Mean Absolute Error or Mean Squared Error. Mean
Absolute Error can be defined as the absolute sum of the differences between the target and
predicted variables. Mean Squared Error is the mean of the difference squared between the
forecasts and the actual observations (GOODFELLOW; BENGIO; COURVILLE, 2017).

Table 1 — Some loss functions.

Name Goal Equation

Binary Crossentropy Classification —(ylog(p) + (1 —y)log(1l —p))
Categorical Crossentropy Classification — Z?;l Yo.c 10g(Do.c)

Mean Absolute Error Regression Lin byl

n (Y py2
2121(% yi)

Mean Squared Error Regression -

Source: Elaborated by the author.

2.3.1.5 Gradient Descent and Back-propagation

To obtain the set of weights that minimize the value obtained from the loss function, the
back-propagation method is used. While the = input signals propagate from the input layer to
each of the hidden layers producing an output 3/, the back-propagation takes the opposite path
(RUSSELL; NORVIG, 2010). From the output 3’ and with the output labeled vy, the difference
in the forecast is calculated with a loss function. The gradient of the loss function is then
computed (GOODFELLOW; BENGIO; COURVILLE, 2017). The gradient of a real and
continuous function f : R™ — R is the column vector of the partial derivatives of the function
at any point.

The gradient obtained for the loss function is then propagated from the output layer to the
hidden cameras to calculate the error in each neuron. The hidden layer error is obtained by
calculating those derived by the chain rule (GOODFELLOW; BENGIO; COURVILLE, 2017).
The neuron weights are then updated by subtracting a proportion of the gradient from the current
value of the weights. The calculation of this proportion is defined by multiplying the gradient
by the learning rate (COPPIN, 2010). The learning rate is a hyperparameter used to control the
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magnitude of the update, which influences the convergence of the algorithm. The definition of
this parameter must be done carefully. If the value is too high, the ANN can fluctuate, and if it

is too low, the training can be slow and end up stuck in local minimums (HAYKIN, 2009).

2.3.2 Convolutional Neural Networks

Human vision is incredibly advanced, being able to detect objects and patterns in our visual
field in fractions of a second (BUDUMA; LOCASCIO, 2017). However, for computer systems,
this is still a complex task, due to the variability of objects, dependence on the point of view
and the high variability of classes (CIRESAN et al., 2011). Traditionally, the identification of
patterns in images was carried out in two stages: resource extraction and classification. The
resources described the images numerically and served as input for the classifiers. The main
problem with this approach was the dependence on accuracy in identifying patterns with the
resource extraction stage (LECUN et al., 1998).

In this context, the use of DL models, such as CNN, proves to be efficient in reducing the
dependence on the resource extraction stage (RAWAT; WANG, 2017). Like MLP, CNN was
inspired by the visual recognition process of our brain (HAYKIN, 2009). A CNN architecture
typically has three layers: convolution, subsampling, and completely connected (KANG;
WANG, 2014). Figure 11 illustrates a typical CNN architecture for image classification. The
convolutional and subsampling layers are directly inspired by the notions about the functioning
of cells in visual neuroscience (HUBEL; WIESEL, 1962).

Figure 11 — CNN classification flow.
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In the next subsections, we present the essential components of a CNN, along with some
key ideas of the CNN.

2.3.2.1 Convolutional Layers

A convolution is a special type of linear operation in two functions of an argument with a
real value that expresses how the other modifies the shape of one (GOODFELLOW; BENGIO;
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COURVILLE, 2017). The s(t) convolution of two functions z(¢) and w(a) is an integral that

expresses the overlap of these two functions, shifting w(a) over x(t), being defined as:

s(t) = (xxw)(t) = / h z(a)w(t — a)da (2.10)

The function s(¢) can be seen as the function x(t) weighted by w(a). The convolution
operation presented in Equation 2.10 assumes that we can obtain data at any time. However,
normally in computer systems, time is discrete, and data is received or collected at regular
intervals (GOODFELLOW; BENGIO; COURVILLE, 2017). Therefore, the operation of

convolution in discrete data is defined by:

o0

s[t] = (@*w)[t] = Y zlaJwlt —a (2.11)

In the context of CNN, we can adapt the discrete convolution process by taking the function
x[t] as the input image I, the function w|t] as the filter F' and the result s[t] as S feature map,

the operation being defined by:
Sli,j] = (I« F)] ZZImn i—m,j—n] (2.12)

Making an analogy with MLP, in CNN, the trainable weights are a set of combined filters,
forming a convolutional layer (CHOLLET, 2018). However, while in an MLP, a neuron is
connected to all neurons of the next layer in the CNN, a neuron affects only a subset of the
neuron of the next layer (GOODFELLOW; BENGIO; COURVILLE, 2017). This change in
the weight connection provides CNNs with two advantages: sparse connections and weight
sharing (LECUN; BENGIO; HINTON, 2015). In images, patterns are often repeated in different
positions. In this way, with sparse connections, we can identify small sets of patterns, such
as lines and curves in the initial layers, and more complex patterns such as animals, people,
and cars in the last layers (ZEILER; FERGUS, 2014). The identification of the patterns is
performed using small filters (usually much smaller than the input images) that are slid over the
entire image (GOODFELLOW; BENGIO; COURVILLE, 2017). This process is illustrated in
Figure 12. Therefore, each filter is responsible for detecting a type of feature in the image, thus
generating several feature maps throughout the processing of an image (LECUN; BENGIO;
HINTON, 2015).

A convolutional layer has some hyperparameters that need to be controlled, namely:

e Filter size: defines the size of the convolution filter, in Figure 12 the size is 222 pixels;

e Number of filters: defines the number of filters in the current layer, in the representation

of Figure 12 we have only one filter;

e Padding: in Figure 12, we can see that the size of the obtained feature map is smaller
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Figure 12 — A filter convolving across an image.
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than the size of the input image. Therefore, in some situations, it is interesting to fill the
edges of the input image with zeros or based on some statistical measures so that the size

of the feature map is equal to the input image;

e Stride: defines the size of the step that the filters perform on convolution, in Figure 12,

for example, the step is 1 pixel.
2.3.2.2 Pooling Layers

The objective with the use of pooling functions is to reduce the spatial resolution of feature
maps (LECUN et al., 1998; LECUN; BENGIO; HINTON, 2015). Like the convolutional
layers, the pooling layers have hyperparameters to be defined, namely: size, padding, and
stride. However, the pooling layers do not have trainable parameters (GERON, 2017). A
common pooling function is max pooling, which returns the maximum value for a region
(GOODFELLOW; BENGIO; COURVILLE, 2017). Figure 13 illustrates the max-pooling

process.
2.3.2.3 Fully Connected Layers

Finally, in the last layer of convolutional architectures, fully connected layers are used. In

these layers, the behavior of neurons is connected to all activations of the previous layer, as



45

Figure 13 — 222 pixel max-pooling process with a 2 pixel stride applied to a 4z4 pixel image,
resulting in a 222 pixel image.

Source: Adapted from Rawat e Wang (2017)

in MLP (GERON, 2017; GOODFELLOW; BENGIO; COURVILLE, 2017; RAWAT; WANG,
2017).

2.3.3 Overfitting and Underfitting

For an ML model to be considered efficient, it must also perform well on data not used
in the training process. This capability is called generalization (GOODFELLOW; BENGIO;
COURVILLE, 2017). Usually, when we start the process of training an ML model, we divide
our data set into three parts: training, validation, and testing. In the case of ANN, the training
set is used in the weight optimization process. With the validation set, we can monitor the
model’s behavior, and thus select the best set of weights. Finally, the test set is used to measure
the performance of the model to solve the task (GERON, 2017).

The monitoring of the model’s behavior regarding the metrics obtained for the training and
validation sets is essential to identify two challenges in ML: underfitting and overfitting (Figure
14). Underfitting occurs when the model is unable to obtain a low error for the task being
trained in the training set. Overfitting, on the other hand, occurs when the gap between training
error and validation is very large (GOODFELLOW; BENGIO; COURVILLE, 2017).

Some of the techniques that help to avoid overfitting or underfitting on CNNs are:

e Dropout: Dropout is a recent method for regularizing ML models (GOODFELLOW;
BENGIO; COURVILLE, 2017). The main idea of a dropout layer is to disable a
percentage of neurons during training randomly. In this way, each time a slightly
different neural network is used (SRIVASTAVA et al., 2014). With neurons deactivated
randomly, the models are not dependent on a neuron or connection, thus significantly
reducing overfitting. In addition, dropout layer processing is computationally cheap
(GOODFELLOW; BENGIO; COURVILLE, 2017).

e Early Stopping: the Early Stopping technique stops training before the model overfits.
The interruption is performed based on a stop criterion on the loss function rates in the

training and validation set. For example, if the loss function has not changed for some
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Figure 14 — (Left) A linear function fit to the data suffers from underfitting — it cannot capture
the curvature that is present in the data. (Center) A quadratic function fit to the data generalizes
well to unseen points. It does not suffer from a significant amount of overfitting or underfitting.
(Right) A polynomial of degree 9 fit to the data suffers from overfitting.
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Source: Goodfellow, Bengio e Courville (2017)

time, it means that the algorithm has locked in a local minimum, and the additional
adjustment of the weights is unnecessary and leads to a waste of computational
processes and the excessive adjustment of the model (GOODFELLOW; BENGIO;
COURVILLE, 2017).

e Batch Normalization: it is a layer that allows the network to converge more quickly
(IOFFE; SZEGEDY, 2015). The process consists of adding a data normalization step
between the layers of the network. Since H is a set of feature maps of the layer to be

normalized, we have:

(2.13)

where y is the average and o is the standard deviation of the feature maps of the layer
to be normalized. H’ are normalized feature maps that are processed in the same way
as if the network were processing /1 without normalization (GOODFELLOW; BENGIO;
COURVILLE, 2017).

e Transfer Learning: when we start training an ANN, the initialization of the weights is
usually done at random. For a CNN model, for example, to adjust these weights in order
to obtain a generalization of the problem, thousands or millions of labeled examples are
needed. However, getting these labeled and public data sets is not always easy, as in
health data. One solution is to use the transfer learning technique. The technique consists
of using trained weights for a A problem in the initialization of the network weights to
solve the B problem. During the training stage, you can adjust the weights of all layers
or even freeze some, avoiding their update (GOODFELLOW; BENGIO; COURVILLE,
2017). However, it is essential to note that this technique is useful in data sets that share
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common characteristics (SHORTEN; KHOSHGOFTAAR, 2019).

e Data Augmentation: in contrast to the previously mentioned techniques that work on
model characteristics, the data augmentation addresses the training data set (SHORTEN;
KHOSHGOFTAAR, 2019). The process consists of generating synthetic data based on
the original set. The operations generally applied to images are rotation, translation,
horizontal and vertical flip, subsampling, distortions, among others. However, some
attention is needed to avoid generating noise in the training dataset. For example, in the
character recognition task, the letters b’ and ’d’ will have the same format if the image
flips, so they are not operations to be considered to increase the data set
(GOODFELLOW; BENGIO; COURVILLE, 2017). Another more recent technique for

increasing data is the use of Generative Adversarial Networks (WEI et al., 2019).

2.4 Convolutional Neural Networks for Semantic Segmentation

Semantic segmentation is a problem derived from image segmentation (GARCIA-GARCIA
et al., 2017). In semantic segmentation, each pixel is classified into one of the predefined sets
of classes, so those pixels belonging to the same class belong to a unique semantic entity in the
image (GHOSH et al., 2019). Semantic segmentation is considered one of the most challenging
problems in computer vision (GUO et al., 2018).

The oldest methods performed the semantic segmentation process using resource extraction,
taking into account, for example, contours and borders (YU et al., 2018). However, these
methods are dependent on the researcher’s knowledge of the problem (SHEN; WU; SUK, 2017).
With the development of DL, it was observed that after CNN training, the convolutional nuclei
produced activation maps that referred to segmentation masks (Figure 15) (ZEILER; FERGUS,
2014). Most modern semantic segmentation methods use this property of CNNs to generate, in
some way, the segmentation masks (GHOSH et al., 2019). In this section, we discuss the main

techniques that use convolutional cameras to perform semantic segmentation.

2.4.1 Fully Convolutional Network

Based on the results obtained in the image classification Long, Shelhamer e Darrell (2015),
they adapted classification networks to carry out the classification pixel by pixel. This work
was one of the first to adopt a convolutional methodology. The methodology consisted of
removing the fully connected layers from the AlexNet (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012), VGG 16 (SIMONYAN; ZISSERMAN, 2014), and GooglLeNet (SZEGEDY
et al., 2015) architectures by replacing them with a 1x1 convolutional layer. This layer is
commonly called deconvolution because it creates an output larger than the input (LONG;
SHELHAMER; DARRELL, 2015). In addition, the authors added jump connections in the

network to combine high-level resources with specific representations obtained in the last
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Figure 15 — (A) Input image. (B and C) Two activation maps of the first layers of a CNN,
indicating the identification of lines, contours, and the child’s shirt. (D, E, and F) Activation
maps of the last layers, showing the identification of complex objects such as grass, people, and
the sky. (G) Example of an activation map for a scanned mammogram.

Source: Adapted from Ghosh et al. (2019)

layers of the network. Figure 16 illustrates the architecture of the Fully Convolutional Network
that achieved the best results for the VOC2012 test suite.

Figure 16 — Fully Convolutional Network

forward /inference

backward /learning

Source: Long, Shelhamer e Darrell (2015)

242 U-Net

The U-Net was designed especially for the segmentation of medical images
(RONNEBERGER; FISCHER; BROX, 2015). Its name is due to the symmetrical shape of the
model (Figure 17), which can be divided into two parts: downsampling and upsampling.
Downsampling extracts features with two 3x3 convolutions and gradually reduces the spatial
size of the images using the max-pooling operation. While upsampling reconstructs the images
using the deconvolution and concatenation process with the characteristics extracted in the
downsampling process. In the end, a 1x1 convolutional layer is used to map each resource map

to the number of classes in the data set.
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Figure 17 — U-Net
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2.4.3 SegNet

The SegNet network architecture is similar to U-Net; it also has a network division in
downsampling and upsampling (BADRINARAYANAN; KENDALL; CIPOLLA, 2017). The
difference is in the number of convolutional layers and the addition of batch normalization
after each convolutional layer. SegNet’s downsampling stage is topologically identical to the
convolutional layers of VGG16 (SIMONYAN; ZISSERMAN, 2014). The fully convolutional
layers of the VGG16 network were removed, and replaced by deconvolutional layers,
corresponding to the convolutional layers of the downsampling stage. An illustration of the

SegNet architecture is shown in Figure 18.

Figure 18 — SegNet
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Source: Badrinarayanan, Kendall e Cipolla (2017)
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2.4.4 Dilated Residual Network

The global information of the images in the last layers of the convolutional architectures
that use pooling is inferior. Pooling layers are useful for eliminating redundant information
and speeding up training. However, this causes the loss of some global details (JEONG et al.,
2019). The extended convolution helps to capture global information in a larger region without
reducing the resolution (YU; KOLTUN; FUNKHOUSER, 2017). This process is due to the
way in which the convolution process occurs, which starts to be performed in a spaced manner

according to some specified expansion rate; an example is shown in Figure 19.

Figure 19 — Examples of dilated convolution filter with 3x3 size. (A) Dilation factor = 1, (B)
Dilation factor = 2 and (C) Dilation factor = 3.

Source: Jeong et al. (2019)

The Dilated Residual Network (DRN) is an architecture that uses the dilated convolution
(YU; KOLTUN; FUNKHOUSER, 2017). In this network, the authors adapted the ResNet
architecture (HE et al., 2016), replacing certain convolutional layers with dilated convolutional

layers. Figure 20 illustrates the process of changing part of ResNet to DRN.

Figure 20 — Adaptation of the ResNet architecture to DRN. Where d is the expansion factor, h
and w are the height and width of the maps, and c is the number of characteristic maps.
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2.5 Final Remarks

This chapter presented the main concepts involved in the proposal for an intelligent breast
cancer WSI analysis system, characterizing the development of breast cancer and how it is
identified by histological analysis. The chapter also includes techniques considered state of the
art for digital image processing and pattern identification in images.

CAD systems meet the need to provide means of early detection of breast cancer (VETA et
al., 2014). In this sense, for intelligent analysis of WSI, some characteristics make the process
challenging. Unlike most natural images, WSI are images with billions and sometimes trillions
of pixels. These pixels transmit essential information for the detection of breast cancer. And
the same challenges faced by the pathologist in the analysis of the slides are transferred to CAD
systems. Thus, the use of PDI in conjunction with Al techniques is necessary to achieve results
comparable to state of the art in the detection of breast cancer in WSI. In the next chapter, we
analyze, using an SLR, the works considered state of the art to investigate the current methods,

challenges, and research opportunities that guided this Master Thesis.
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3 RELATED WORK

This chapter aims to present studies and work from different authors, related to our
proposed thematic and model. This SLR is divided into three main parts, methodology, results
and discussion and challenges, and future directions. The methodology describes the
procedures adopted for the selection of studies. In the discussion, we present an analysis of the
selected studies, proposing a taxonomy and identifying datasets, pre-processing methods, and
intelligent techniques used in the processing of breast cancer WSI. Finally, we identified

challenges and open gaps in the literature, indicating future research directions.

3.1 Methodology

In this section, we describe the protocol adopted for performing the SLR, presenting the
research questions, the search and selection strategy, quality criteria, and how we obtain the
information to answer our questions. The main advantage of an SLR is the identification,
evaluation, and interpretation of works with methodology and defined results for a given
research question without the bias of a traditional literature review (KITCHENHAM;
CHARTERS, 2007).

3.1.1 Study design

This study aims to map relevant work and identify the gaps in the intelligent analysis of
breast cancer histopathological images for future research. The SLR steps are defined below,
based on methodologies used in previous work (ROEHRS et al., 2017; COVER et al., 2018;
MONTENEGRO; COSTA; RIGHI, 2019; GUBERT; COSTA; RIGHI, 2019; ARJI et al., 2019).

e Research questions: introduce the research questions investigated;

Search strategy: outline the strategy and libraries explored to collect data;

Article selection: explain the criteria for selecting the studies;

Quality assessment: describe the quality assessment applied to the selected studies;

Data extraction: compare the selected studies and research questions.
3.1.2 Research Questions
Defining research questions is the fundamental part of a SLR (KITCHENHAM;

CHARTERS, 2007; COVER et al., 2018) because, based on these questions, we get evidence
to define, apply, and gain knowledge in the intelligent analysis of breast cancer images. Thus,
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we organized our questions into two groups: General Question (GQ) and Specific Question
(SQ). The Table 2 lists all the research questions investigated.

Table 2 — Research questions.

Group and identifier Issue
General questions (GQ)
GQl What is the state of the art in intelligent methods to aid in the
diagnosis of breast cancer, based on histopathological images?
GQ2 What is the taxonomy for intelligent detection of breast cancer in
histopathological images?
GQ3 What are the main challenges in this area?
Specific questions (SQ)
SQ1 What public datasets are used?
SQ2 What are the preprocessing techniques used?
SQ3 What machine learning techniques are used for breast cancer
detection?
SQ4 What are the metrics for the validation of the work?

Source: Elaborated by the author.

3.1.3 Search strategy

To identify the answers to the previously proposed questions, we need to select a set of
relevant studies. So the next step is to define keywords and search scope (ROEHRS et al.,
2017; COVER et al., 2018). The keywords were determined based on the authors’ experience,
reading articles of the area of interest, and final validation by an experienced pathologist. We
then grouped the keywords by boolean operators correlating synonyms, acronyms, and words
inserted in the same context (KITCHENHAM; CHARTERS, 2007). Figure 21 presents the

search string used in the selected bases.

Figure 21 — Search string used for database queries.

Search String

("breast cancer" OR "breast carcinoma") ("histopathology"
OR "histopathological") ("medical image" OR "biomedical

image" ) ("detect” OR "classify" OR "segment") ("machine
learning" OR "deep learning" OR "artificial intelligence")

Source: Elaborated by the author.

To search for articles, we selected the following databases: ACM Digital Library, IEEE
Xplore Library, PubMed, Google Scholar, ScienceDirect, Scopus, SpringerLink, and Web of
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Science. We based our choice on the significant sample indexing of relevant full-text journals
and conference proceedings in the health field involving the detection of breast cancer in
histopathological images. Given the specifications of each base, we adapt our string to the

rules provided by them.

3.1.4 Article selection

After the base searches, we applied some exclusion criteria to keep only the most
representative articles for our search problem. First, we performed an impurity removal,
removing duplicate papers, and non-English studies. In the next steps, we performed the
analysis of the titles and abstracts of the articles, removing works that did not meet our criteria.

The criteria are based on our search string and are defined as follows:

e Exclusion criteria 1: articles that are not explicitly applied to histopathological images of

breast cancer;

e Exclusion criteria 2: articles that do not use intelligent methods to perform image

analysis.

After this step, we removed theses, books, and articles shorter than four pages, focusing
only on scientific articles from journals and conferences. The final process consisted of a
complete analysis of the works, selecting only the papers that presented architectural proposals

and methods matching our search string.

3.1.5 Quality assessment

For a SLR, the quality of the corpus is essential. Quality criteria assist in the selection of
relevant works (KITCHENHAM; CHARTERS, 2007; COVER et al., 2018). In our work, we
defined some indexes to measure the quality of the selected studies. The h5-index is a way of
quantifying the relevance of journals and conferences in the last five years, based on citations of
articles published in the journal MONTENEGRO; COSTA; RIGHI, 2019). We defined a cutoff
for the studies in this SLR, considering only articles published in journals and conferences with
h5-index greater than or equal to 10. We also use the SJR indexes for journals and CORE for
conferences. However, the CORE index does not index some conferences. Thus, we chose to
keep the studies as long as they reach the minimum score defined in the h5-index. Maintaining
these studies is justified by the relevance of the works for the discussion of research questions.
In addition, some specific conferences are relatively recent and have not yet been indexed by

the index.
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3.1.6 Data extraction

In this section, we describe (Table 3) the correlation between our questions and the sections

in which we expect to find relevant information to answer them.

Table 3 — Quality Assessment of article structure and related questions.

Section Description Research Questions
Open Content
Title GQl1, GQ2, SQ1
Abstract All questions
Keywords GQl1, SQ1
Article Content
Introduction All questions
Method All questions
Results All questions
Discussion All questions
Conclusion All questions

Source: Elaborated by the author.

3.2 Results and discussion

In this section, we present the results and discussions of SLR, based on the research

questions defined above.

3.2.1 Article selection

We use the methodology mentioned above in the process of selecting articles from each
database to compose our corpus. We also limit our selection by year of publication, selecting
only studies from the last ten years and excluding patents, citations, and articles published in
journals or conferences with h5-index less than 10.

The process of selecting corpus articles is detailed in Figure 22. Our search in the
databases listed above and according to the proposed string returned a total of 4,299 articles.
After the first filtering, removing impurities remained 2,837 (65.99 %) articles. In the second
stage, the selection was based on the title of the articles, removing studies that were not related
to intelligent breast cancer analysis techniques, remaining 684 (24.10 %) articles. Thus, we
performed the complete reading of the abstract, with a total of 256 (37.42 %) studies
remaining after this stage. The next step was the removal of sections of books, thesis, and
articles with less than four pages, leaving 218 (85.15 %) studies. Finally, we performed a
complete analysis of the articles, taking into account our previously defined criteria in the
Section 3.1.4 and Section 3.1.6, reaching a final corpus of 53 (24.31 %) articles. We divided



56

our corpus into primary studies published in Journals, Table 4, and in Conferences, Table 5,

sorted in descending order by year of publication.

Figure 22 — Article selection process.
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Table 4: Final corpus of articles published in journals.

References Publisher hS SJR
(GUO et al., 2019) Nature 151 1,414
(VO; NGUYEN; LEE, 2019) Elsevier 94 1,62
(XIE et al., 2019) Frontiers 59 1,888
(LL; WU; WU, 2019) IEEE 57 0,609
(MURTAZA et al., 2019) Springer 45 0,335
(DAS; DUTTA, 2019) Elsevier 39 0,57
(MITTAL; SARASWAT, 2019) Elsevier 32 1,278
(ALOM et al., 2019) Springer 29 0,666
(ROY et al., 2019) Elsevier 29 0,805
(GHAZVINIAN ZANJANI et al., SPIE 16 0,6
2019)
(Sabeena Beevi; NAIR; BINDU, Elsevier 16 0,438
2019)

(ALQUDAH; ALQUDAH, 2019)
(CRUZ-ROA et al., 2018)
(OLIVEIRA et al., 2018)

Taylor & Francis 15 0,207
PLOS 180 1,1
Elsevier 92 1,19

Continued on next page




Table 4 — continued from previous page

References Publisher h5S SJR
(GECER et al., 2018) Elsevier 74 1,363
(ZHENG et al., 2018) IEEE 66 2,188
(LIetal., 2018) Elsevier 57 2,452
(BARDOU; ZHANG; AHMAD, IEEE 57 0,609
2018)
(FONDC)N et al., 2018) Elsevier 39 0,57
(GANDOMKAR; BRENNAN; Elsevier 32 1,025
MELLO-THOMS, 2018b)
(SAHA; CHAKRABORTY; Elsevier 29 0,805
RACOCEANU, 2018)
(FENG; ZHANG:; YI, 2018) Springer 28 0,625
(PAN et al., 2018) Elsevier 27 0,402
(HAN et al., 2017) Nature 151 1,414
(ZHENG et al., 2017) Elsevier 74 1,363
(WAN et al., 2017b) Elsevier 71 0,996
(PAN et al., 2017) Elsevier 71 0,996
(WAN et al., 2017a) Elsevier 71 0,996
(WAHAB; KHAN; LEE, 2017) Elsevier 39 0,57
(BEJNORDI et al., 2017b) SPIE 16 0,6
(KRAWCZYK et al., 2016) Elsevier 77 1,216
(XU et al., 2016) IEEE 66 2,188
(ZHANG et al., 2016) IEEE 56 1,122
(CHAN; TUSZYNSKI, 2016) The Royal Soc. 32 1,131
(BALAZSI et al., 2016) SPIE 16 0,6
(KORKMAZ; KORKMAZ; Springer 11 0,61
POYRAZ, 2016)
(TASHK et al., 2015) Elsevier 67 0,873
(ZHANG et al., 2015) IEEE 66 2,188
(KHAN; SIRINUKUNWATTANA; IEEE 56 1,122
RAJPOOT, 2015)
(WANG et al., 2014) SPIE 16 0,6
(LOUKAS et al., 2013) Hindawi 31 0414
(ISSAC NIWAS et al., 2012) Springer 45 0,565
(DUNDAR et al., 2011) IEEE 69 1,256

57
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Table 5: Final corpus of articles published in conferences.

References Publisher h5 CORE
(YAN et al., 2019) IEEE 16 -
(GUPTA; BHAVSAR, 2018) IEEE 47 -
(BAKER et al., 2018) IEEE 12 C
(GANDOMKAR; BRENNAN; SPIE 10 -
MELLO-THOMS, 2018a)
(SPANHOL et al., 2017) IEEE 23 -
(SPANHOL et al., 2016a) IEEE 32 A
(BAYRAMOGLU; KANNALA; IEEE 28 B
HEIKKILA, 2016)
(LI; PLATANIOTIS, 2015) SPIE 13 -
(CRUZ-ROA et al., 2014) SPIE 13 -
(JELEN; FEVENS; KRZYZAK, SPIE 14 -

2009)

In Figure 23, we present an evolution of the publications of the corpus in the last decade.
Analyzing the distribution over time, we can see that the amount of primary studies is practically

all located in the previous five years, indicating the relevance of research in this area today.

Figure 23 — Publication chronology. The numbers above years indicate the number of articles
published.
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Source: Elaborated by the author.

This distribution is related to higher processing, storage, and, above all, data transmission
capacities that impacted the interest of several research groups in improving the intelligent
algorithms (GHAZVINIAN ZANJANI et al., 2019). In the context of intelligent analysis of
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WSI, these advances have allowed the analysis and manipulation of images even by personal
computers. In addition, the realization of challenges and the availability of public datasets
contribute to spread interest in the problem and to improve the results in the automatic analysis

of WSI for breast cancer.
3.2.2 Data Extraction and Answers to the Research Questions

Based on the 53 articles selected during SLR, we discussed the main challenges, models,
techniques, and objectives of the studies to answer research questions in the context of
intelligent histopathological analysis of breast cancer imaging.

GQ1 What is the state of the art in intelligent methods to aid in the diagnosis of breast
cancer, based on histopathological images?

As a way to answer the question GQ1, we present in Figure 24 the number of citations of the
corpus, based on the values given by Google Scholar. Also, an average of citations per year is
presented. With this analysis, it is possible to measure the relevance of each study to the current

literature, and consequently identify the most significant methods to conduct future work.

Figure 24 — State of the Art articles considered in this survey with number of citations and
average per year. Articles are organized in order of publication and classification by h5-index.
Information about Journals articles is represented by solid lines, while dashed lines represent
details from conferences.
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According to Figure 24, studies without citations or with few citations are concentrated in
the last two years. It is also possible to notice that the articles with the highest citation rates and
average citation per year are located in the last five years.

In the studies analyzed, we can highlight the use of deep learning techniques, such as
CNN. Even with the scarcity of available data, CNN can achieve the best results in the
analyzed literature for binary classification, multi-class classification of patches (regions of
interest extracted from WSI or directly from histopathological slides), or the segmentation of
WSI (SPANHOL et al., 2016a; HAN et al., 2017; GUO et al., 2019). Another highlight is the
use of CNN in conjunction with the representation of image resources (morphology, color, and
texture features) to reduce the cost of computational processing (WANG et al., 2014).

CNN can also be used as extractors of characteristics for the classification of breast cancer
lesions (ZHENG et al., 2017). Alternatively, feature extraction techniques were used to classify
intraductal lesions (DUNDAR et al., 2011). In the specific questions, we present in greater
detail all the methods selected for the corpus of the article.

GQ2 What is the taxonomy for intelligent detection of breast cancer in histopathological
images?

With the analysis of the corpus studies, we defined a taxonomy as a way to classify the
intelligent analysis of histopathological images of breast cancer. This taxonomy is illustrated in
Figure 25, is organized into classes that are based on the technologies, methods, and problems
identified in the studies. Articles generally combine multiple classes, so the classes are not
mutually exclusive. In the process of analyzing the studies, we defined four main categories:
(1) Preprocessing techniques, (2) Processing techniques, (3) Post-processing techniques, and
(4) Evaluation metrics. State of the art in the field of intelligent analysis of histopathological
images has been grouped into the classes corresponding to the steps generally performed in
a CAD system (Preprocessing techniques, processing techniques, post-processing techniques)
and the evaluation metrics used in the analyzed studies (PEDRO; MACHADO-LIMA; NUNES,
2019).

In the first class, we present the preprocessing techniques that seek to assist in the learning
process. Preprocessing techniques for analyzing histopathological images are applied to remove
background images (GUO et al., 2019), color normalization (KHAN; SIRINUKUNWATTANA;
RAJPOOT, 2015; LI; PLATANIOTIS, 2015; GANDOMKAR; BRENNAN; MELLO-THOMS,
2018a) or to enlarge the dataset (KRAWCZYK et al., 2016; GUO et al., 2019).

In the second class, we define the types of learning techniques that are used for breast cancer
histopathological image analysis. Using intelligent techniques, jobs can perform classification
(BARDOU; ZHANG; AHMAD, 2018), segmentation (PAN et al., 2017), or detection tasks
(GECER et al., 2018), and the data during the training step can be labeled or not.

In the third class are defined techniques that seek to improve the quality of results after
learning processes based on histopathological images. The goal with the use of post-processing

techniques is mainly noise removal to improve outcomes. For segmentation tasks, for example,



Figure 25 — Taxonomy of intelligent analysis of histopathological data from breast cancer.
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we can remove isolated pixels using the morphological cleaning and opening operation (PAN
et al., 2017). Finally, the fourth class presents the metrics used to evaluate intelligent methods.
After each class, the taxonomy presents the corpus attributes related to each central concept.
This breakdown is presented later in this article when we answer the specific questions.
GQ3 What are the main challenges in this area?
To answer GQ3, we list and identify the challenges found according to the corpus studies.
The problems were then summarized and grouped into two groups, as shown in Table 6. Based
on this grouping, we selected some articles and discussed the challenges related to intelligent

analysis of breast cancer histopathological images.

Table 6 — Challenges regarding the intelligent analysis of breast cancer histopathological

images.
Field Challenges Articles
Computer Science Clinical Acceptance (BALAZSI et al., 2016)
Different  Protocols of (LOUKAS et al., 2013; KORKMAZ; KORKMAZ;
Analysis and Stained POYRAZ, 2016; LI; PLATANIOTIS, 2015;
KRAWCZYK et al, 2016; FENG; ZHANG; YI,
2018; YAN et al., 2019; VO; NGUYEN; LEE, 2019;
XIE et al., 2019; ROY et al., 2019)
Few Labeled Images (XU et al., 2016; KRAWCZYK et al., 2016; SPANHOL
et al., 2017; BEJNORDI et al., 2017b; FENG; ZHANG:;
Y1, 2018; OLIVEIRA et al., 2018; GUO et al., 2019; VO;
NGUYEN; LEE, 2019)
Ignorance  of  Patient’s (ISSAC NIWAS et al., 2012)
Medical History
Images Size (CRUZ-ROA et al.,, 2014; SPANHOL et al., 2016a;
ZHENG et al., 2017, WAN et al.,, 2017b; PAN et
al., 2018; GUO et al., 2019; YAN et al., 2019;
GHAZVINIAN ZANJANI et al., 2019)
Image Processing Time (TASHK et al., 2015; MITTAL; SARASWAT, 2019)
Pathology Different Magnification (ZHANG et al., 2016; BAYRAMOGLU; KANNALA;
Factors HEIKKILA, 2016; GANDOMKAR; BRENNAN;

MELLO-THOMS, 2018a; CRUZ-ROA et al.,, 2018;
ALOM et al., 2019)

Disagreement in Diagnosis (DUNDAR et al.,, 2011; CHAN; TUSZYNSKI,
2016; HAN et al, 2017; WAN et al., 2017b;
GANDOMKAR; BRENNAN; MELLO-THOMS,
2018a; GANDOMKAR; BRENNAN; MELLO-
THOMS, 2018b; BARDOU; ZHANG; AHMAD,
2018; MURTAZA et al., 2019)

Tissue Overlap and (JELEN; FEVENS; KRZYZAK, 2009; WANG

Structure Similarity et al., 2014; ZHANG et al, 2015; KHAN;
SIRINUKUNWATTANA; RAJPOOT, 2015; WAHAB;
KHAN; LEE, 2017; HAN et al., 2017; PAN et al., 2017;
FENG; ZHANG:; YI, 2018; GECER et al., 2018; LI et
al., 2018; BAKER et al., 2018; PAN et al., 2018; SAHA;
CHAKRABORTY; RACOCEANU, 2018; ZHENG et
al., 2018; FONDON et al., 2018; GUPTA; BHAVSAR,
2018; MITTAL; SARASWAT, 2019; Sabeena Beevi;
NAIR; BINDU, 2019; VO; NGUYEN; LEE, 2019; LI;
WU; WU, 2019; XIE et al., 2019; DAS; DUTTA, 2019;
ALQUDAH; ALQUDAH, 2019)

Source: Elaborated by the author.
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The processes of preparation, staining, and digitization of tissue slides carried out by
pathologists may suffer from inadequate fixations. These problems can generate changes in
tissue morphology and induce incorrect tissue morphometry by analyzing images (ROY et al.,
2019). Another challenge are sections that have not been adequately stained (these may be
over- or under-stained) and assembled, this may result in regions out of focus or missing parts
(LI et al., 2018). In addition, slight variations in coloring conditions can lead to changes in the
appearance of the tissue (YAN et al., 2019). Also, the subtle differences between multiple
classes and high coherence of cancer cells ultimately lead to heterogeneity in the color
distribution in images (HAN et al., 2017; MITTAL; SARASWAT, 2019).

Due to the above resources, there is a shortage of pathologists for the analysis of slides
in H&E, mainly due to the difficulty of inheriting or innovating the necessary experience and
expertise (HAN et al., 2017). Due to the lack of even primary care, the process of labeling
WSI or sections thereof is an expensive and time-consuming process, reflecting the scarcity of
public data on the available histopathological images (KRAWCZYK et al., 2016; GECER et
al., 2018; GUO et al., 2019; YAN et al., 2019). According to (FENG; ZHANG; YI, 2018),
published breast cancer data sets are generally involved on a small scale and without expert
notes. Another problem for the creation of several sets of biomedical images is the impossibility
of using crowdsourcing methods, as in natural images, precisely due to experience and expertise
to interpret them (YAN et al., 2019). In addition, it is common for the labeling process to suffer
inter and intraobserver variations (MITTAL; SARASWAT, 2019).

Technical and computational problems are common when discussing intelligent analysis
techniques. In the histopathological images, the main problem in the computational and
technical scope is the size of the WSI. A WSI, for example, cannot be used directly on a neural
network because it contains billions of pixels, in the range of 100K x100K pixels (GECER et
al., 2018; GUO et al., 2019; YAN et al., 2019). Associated with this, another limitation is the
different nucleus shapes, sophisticated tissue appearance, tissue overlap, and texture difference
of the tissues that make up the image (Figure 26) (HAN et al., 2017; PAN et al., 2018; FENG;
ZHANG; YI, 2018; MITTAL; SARASWAT, 2019). These subtle differences in images are
directly aligned with the number of breast cancer types (FENG; ZHANG; YI, 2018). These
characteristics, coupled with the limited publicly available data and the differences between
the occurrence of cancer types, cause a class imbalance in histopathological images of breast
cancer, making it a challenge to apply Machine Learning (KRAWCZYK et al., 2016).

Motivated by the factors mentioned, selecting the magnification factor for intelligent
analysis is another challenge (ZHANG et al., 2016). The study of (GANDOMKAR;
BRENNAN; MELLO-THOMS, 2018b) made a comparison for the classification at first for
benign/malignant and after for eight histological types of breast cancer. The best result for
binary classification was the 40x magnification factor, while for histological types of breast

cancer, the best result was obtained at 200 x magnification.

Finally, there is a need for studies that may cover the patient’s medical history (ISSAC
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Figure 26 — Example of H&E stained tissue section. A) tissue overlap; B) Image artifact due to
tissue rupture.

Source: Elaborated by the author.

NIWAS et al., 2012). Interesting research along these lines is the fusion of mammographic data
with histopathological images (KORKMAZ; KORKMAZ; POYRAZ, 2016). Allied to this, the
studies proposed so far do not verify the real clinical acceptability of the methods and how they
fit the pathologist’s routine.

SQ1 What public datasets are used?

The purpose of SQI is to identify publicly available datasets and their characteristics used
by articles reviewed by SLR. In Table 7 we list all public datasets with their main features.

BreakHis is a set of images collected from histopathological slides of partial mastectomy or
excisional biopsy from 82 patients, with manual selection of significant regions by pathologists
(SPANHOL et al., 2016b). Already Bioimaging 2015 is proposed for use in the challenge of
a congress. After the event, the data were made available for use and comparison with the
results obtained in the contest. The collection was similar to BreakHis, with images labeled and
selected by two pathologists (ARAUJO et al., 2017). Camelyon16 and Camelyon17 have also
emerged for use in a challenge, but unlike the previous ones, they provide WSI, thus allowing
complete tissue analysis. In addition, they provide the boundaries of the abnormalities present
in each WSI and the case diagnosis (BEJNORDI et al., 2017a).

UCSB Breast Cancer Cell is a smaller dataset of benign and malignant breast cancer regions
with the ground truth of the nuclei present in the patches (GELASCA et al., 2008). Mitos-
Atypia-14 is the extension of the Mitos-ICPR12 dataset, providing information on the presence
of mitosis and degree of nuclear atypia in H&E stained patches of five patients labeled by two

senior pathologists and three junior pathologists (ROUX et al., 2014).



Table 7 — Public data sets of histopathological images of breast cancer identified in the review.

Dataset Field of Study Image type Number of Magnifications Patients Image size Annotations Image format
i (pixels)
BREAKHIS adenosis, fibroadenoma, phyllodes tumor, Patches extracted from WSI 7,909 40, 100, 200, 400 82 700X460 Patch-level notes PNG
tubular adenona, carcinoma, lobular
carcinoma, mucinous carcinoma and
papillary carcinoma.
BIOIMAGING 2015 normal, benign,in situ carcinoma and Sections of slides 269 200 - 2040X1536 Image-level notes TIFF
invasive carcinoma
CAMELYON16 Normal and metastases WSI of lymph node sections 399 1, 10,40 399 - Pixel level annotation ~TIFF
MITOS-ATYPIA-14 Nuclear Atypias and Mitosis Sections of slides 1420 20, 40 - 1539X1376 and Mitosis annotation or TIFF
1663X1485 atypia at image level
ICIAR 2018 normal, benign, in situ carcinoma, invasive WSI of breast cancer and 400 - - - Pixel level and image SVS
carcinoma patches extracted from WSI level annotations
CAMELYON17 Normal and metastases WSI of lymph node sections 1000 - - - Pixel level annotation ~TIFF
TCGA ductal and lobular neoplasms, epithelial Various - - 3.816 - Genomic, Various
neoplasms, complex epithelial neoplasms, epigenomic, formats
adenomas and adenocarcinomas, cystic transcriptomic,
and mucinous neoplasms, squamous cell and proteomic data
neoplasms,  fibroepithelial — neoplasms,
adnexal and skin appendage, basal cell
neoplasms,mature b-cell lymphomas
UCSB Breast Cancer Cell normal and malignant No 58 - - 896X768 Cell segmentation TIFF
768X512
TUPACI16 Mitosis WSI of breast cancer 821 - - a2 Proliferation ~ score SVS
50000X50000 based on mitosis

counting, molecular
proliferation  score,
regions of interest
for  mitosis, and
annotation of some
regions of mitosis

Source: Elaborated by the author.

S9
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ICIAR 2018 is an extension of the Bioimaging 2015 dataset, with the addition of WSI
providing the delimitation of lesions in each WSI in four classes: normal, benign, in situ
carcinoma, invasive carcinoma (ARESTA et al., 2019). The Cancer Genome Atlas Program
(TCGA) is a regularly updated project coordinated by the National Cancer Institute, currently
with information on 33 different types of tumors from over 11,000 patients. The TCGA
provides the patient-level diagnosis, and WSI of the biopsy performed and, in some cases, the
patient outcome (National Cancer Institute, 2019). Tumor Proliferation Assessment Challenge
16 (TUPACI16) is the result of WSI analysis from TCGA by a group of 15 pathologists. The
dataset provides information on mitotic and proliferation scores based on WSI gene expression
(VETA et al., 2019).

SQ2 What are the preprocessing techniques used?

Another result of SLR is the identification of the methods used for image preprocessing.

Supporting this issue, we discuss some challenges raised by selected articles related to the

objective of question SQ3, focusing on macro challenges presented on Table 8.

Table 8 — Main preprocessing techniques applied to intelligent analysis of breast cancer
histopathological images.

Technique Goal

Data Augmentation Technique for generating synthetic dataset-based images
to increase and balance dataset

Feature Extraction It aims to represent an image based on significant
characteristics for the problem

Feature Selection Techniques applied to get the most relevant information
in the learning process

Image Normalization Set of techniques applied to noise reduction, contrast and

reduce the difference between color of histopathological
image of breast cancer

Patch Selection Selection of sub-images of significant regions in images
to increase the number of training examples, or decrease
the computational cost during learning

Undersampling Deleting images from the learning process to balance the
dataset

Source: Elaborated by the author.

In histopathological images, the tissue sample does not completely cover the image, unlike
natural images, remaining a non-woven background in the image (KHAN;
SIRINUKUNWATTANA; RAJPOOT, 2015; ZHENG et al.,, 2017). Thus, removing these
regions from the image is done in some works to speed up the training process or improve the
feature extraction process (GUO et al., 2019).

In addition, color variability because of the use of different scanners and cameras, and the
staining processing carried out at the different laboratories is a problem for feature extraction
and training of intelligent techniques (KHAN; SIRINUKUNWATTANA; RAJPOOT, 2015; LI;
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PLATANIOTIS, 2015; GANDOMKAR; BRENNAN; MELLO-THOMS, 2018b). Thus using
the geodetic Singular Value Decomposition (SVD) method (YAN et al., 2019; DAS; DUTTA,
2019), color deconvolution (WAN et al., 2017a; Sabeena Beevi; NAIR; BINDU, 2019), methods
based on color space transformation (LI; WU; WU, 2019), contrast enhancement (BAKER et
al., 2018) and mean normalization and standard deviation (PAN et al., 2018) help to standardize

images and facilitate the training of machine learning techniques.

The lack of labeled and reliable publicly available data is another challenging process for
using supervised learning techniques (KRAWCZYK et al., 2016; GUO et al., 2019; YAN et al.,
2019). Furthermore, (KRAWCZYK et al., 2016) also points to the problem of class imbalance
on public bases. The lack of data is challenging for supervised learning algorithms because for
homogeneous and unbiased learning, and there is a need for the set to have the same amount of
examples for each class. When artificial neural networks are used, this lack of data is usually

resolved by applying data augmentation or transfer learning.

For histopathological images, it is common to use data augmentation processes such as
mirror, flip, rotation, translation, color jittering, and cut (BEJNORDI et al., 2017b; PAN et
al., 2018; GHAZVINIAN ZANJANI et al., 2019; DAS; DUTTA, 2019; VO; NGUYEN; LEE,
2019; ALOM et al., 2019; YAN et al., 2019; GUO et al., 2019; ROY et al., 2019). By rotating
and flipping images, we can simulate a real lab environment because pathologists do not adopt
a fixed orientation to perform image analysis (YAN et al., 2019). However, it is essential to use
this technique only in the training set. This care, when applying data augmentation, is necessary
to avoid that the results obtained are not too optimistic considering the variability of the H&E
images.

Additionally, the subsampling technique can be used to reduce the intra-class difference of
sets. It is a less popular technique, which is to exclude specific images from higher sampled
classes (KRAWCZYK et al., 2016).

SQ3 What machine learning techniques are used for breast cancer detection?

We analyzed all articles in the corpus to identify machine learning techniques used within
the histopathological images of breast cancer. The techniques and their respective percentages
of use are shown in Figure 27. There were situations where the same article used more than one
technique; in these situations, we accounted for all the techniques used by the method proposed
in the article. Based on the classification presented in the taxonomy, we will discuss how
the techniques were employed in three topics: supervised, semi-supervised, and unsupervised
learning.

Supervised Learning:

Based on the work analyzed, we can highlight, especially in recent years, results obtained
with CNN. Adapted CNN models often arise from problems with classification, detection and
segmentation of natural images such as Res-Net-v2 (GANDOMKAR; BRENNAN;
MELLO-THOMS, 2018a), AlexNet (MURTAZA et al., 2019; SPANHOL et al., 2016a),
VGGNet (Sabeena Beevi; NAIR; BINDU, 2019) , Faster R-CNN (LI et al.,, 2018), and
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Figure 27 — Techniques used for the analysis of histopathological images and their percentages
of use in our corpus.
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GoogleNet (HAN et al., 2017). Already in (ALOM et al., 2019) is proposed the fusion of
several networks (Inception-v4, ResNet, and Recurrent Convolutional Neural Network
(RCNN)) for the classification of histopathological images. This technique has as its main

advantage of better performance and the use of the same number of parameters compared to an
RCNN or traditional Residual Network.

The classification of various magnifications of histopathological images is also studied in
the literature (BAYRAMOGLU; KANNALA; HEIKKILA, 2016). The proposed method is
based on a single CNN for all amplifications. As pointed out by the authors, the model proved
stable in the classification for any amplification available BreakHis. However, the size of the
WSI precludes direct use on CNN. Sampling methods of regions of interest are applied in the
literature to process image patches on CNN (BEJNORDI et al., 2017b; CRUZ-ROA et al., 2018;
GECER et al., 2018). Moreover, the use of CNN may face a problem of clinical acceptance, as
the technique is considered a black box in certain situations the pathologist may be resistant to
lack of evidence for the diagnosis (BALAZSI et al., 2016).

Due to the high variability of histopathological images, classification in the most diverse
histopathological types of breast cancer is a challenging process, as already pointed out in GQ3.
The use of stacked CNN (MURTAZA et al., 2019) is a proposed solution using the AlexNet
network for initial classification into benign and malignant. Then two CNN networks (one for

benign and one for malignant class) are used for classification into histopathological types.

The use of method sets has also been applied to intelligent methods for analyzing
histopathological images, such as using the pre-trained VGGNet feature extraction network
(MITTAL; SARASWAT, 2019). For this, the authors remove the softmax layer from the
network, obtaining a resource vector with 4096 characteristics. Finally, they make a
comparison between four classifiers: Support Vector Machines (SVM), Linear Discriminant
Analysis (LDA), Random Forest (RF) and k-Nearest Neighbors (kNN). In this paper, the
authors point to RF as the best classifier. In (YAN et al., 2019), the authors used the pre-trained
Inception-v3 network for feature extraction and a Long Short-Term Memory (LSTM) network
for classification into four classes (normal, benign, in situ carcinoma, and invasive carcinoma).
Similar works using CNN as feature extractors are also proposed by (WAN et al., 2017b),
(GUPTA; BHAVSAR, 2018), (MURTAZA et al., 2019), (VO; NGUYEN; LEE, 2019), and
(SPANHOL et al., 2017).

In (BARDOU; ZHANG; AHMAD, 2018) and (CRUZ-ROA et al., 2014), a comparison is
made between CNN and feature extraction with traditional classifiers. In both studies, CNN

achieves the best results. However, handcrafted resources can also be used in conjunction with
CNN to improve classifier accuracy (WANG et al., 2014).

Feature extraction can also be done manually based on calculations such as region
covariance (KHAN; SIRINUKUNWATTANA; RAJPOOT, 2015), local binary pattern
(TASHK et al.,, 2015; BALAZSI et al.,, 2016; ALQUDAH; ALQUDAH, 2019), entropy
(TASHK et al., 2015; JELEN; FEVENS; KRZYZAK, 2009), stiffness matrix (TASHK et al.,
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2015), Log-Gabor Wavelet (ISSAC NIWAS et al., 2012; BALAZSI et al., 2016), fractal
dimension (CHAN; TUSZYNSKI, 2016), among others. In the analyzed corpus, the
classification of images based on descriptor representations is also performed by kNN
(KHAN; SIRINUKUNWATTANA; RAJPOOT, 2015; TASHK et al., 2015), SVM (TASHK et
al., 2015; LOUKAS et al, 2013; FONDON et al., 2018; SAHA; CHAKRABORTY;
RACOCEANU, 2018; ALQUDAH; ALQUDAH, 2019), PNN (LOUKAS et al., 2013), and
Decision Trees (BAKER et al., 2018). However, using feature extraction-based techniques
requires advanced knowledge of the problem to obtain essential features that fit a real
environment (SPANHOL et al., 2016a).

(LI; PLATANIOTIS, 2015) makes a comparison between selecting the appropriate color
space for image classification. The authors compare the classification results with an SVM
based on features extracted from the RGB, HSV, CIE L * a * b *, and stain-dependent H and E
decomposition model spaces. The results indicate that statistically, the utilization of the H and
E decomposition model is better.

Another similar line is the use of Content-Based Image Retrieval to indicate the probability
of malignancy in a region (ZHENG et al., 2018) or for the diagnosis of preinvasive cancer
(ZHANG et al., 2015). This technique consists of mapping significant descriptors based on the
histopathological images of breast cancer with the known diagnosis, for later classification of
unknown cases based on the comparison of the characteristics of the images (ZHENG et al.,
2018).

Semisupervised Learning:

In the pathological classification process, it is common to obtain several samples of the
tissues under study. However, labeling these is an expensive process. A way to solve this
problem, (OLIVEIRA et al., 2018) proposes the use of Multiple Instance Learning (MIL).
According to the author, this technique consists of grouping sets of images or patches and
assigning a unique label to each set. In the case of binary classification, a set of images is
considered positive when it has at least one positive instance. And, negative, only if all images
are negative in the collection.

In (DUNDAR et al., 2011), MIL is used for the classification of intraductal breast lesions
(usual ductal hyperplasia , atypical ductal hyperplasia and ductal carcinoma in situ ). In work,
the author performs the extraction of resources based on qualitative characteristics used by the
pathologists (Cell size, cell shape, and nucleoli) and morphological (perimeter and mean of
gray level intensity), with an accuracy of 87.9% in the cases analyzed in the set of tests.
Unsupervised Learning:

K-means is used to undersampled non-mitotic regions in breast cancer histopathological
images (WAHAB; KHAN; LEE, 2017). Principal Component Analysis (PCA) can be used as
a feature selection algorithm, reducing the computational load on processing less significant
instances (Sabeena Beevi; NAIR; BINDU, 2019). Meanwhile, Self-Organizing Map (SOM)

and PCA techniques are used in the process of classifying malignancy based on characteristics



71

extracted from segmented nuclei (JELEN; FEVENS; KRZYZAK, 2009).

In general, combining multiple features yields better results compared to jobs that use
unique features (ZHANG et al., 2016). Interesting approaches in this line are the use of
Stacked Sparse Autoencoder (SSA) as feature extractors for both WSI classification and core
detection (XU et al., 2016; ZHANG et al., 2016). A SSA is known as an encoder/decoder
neural network, using backpropagation to produce an output value as close to the input value
(XU et al., 2016). Thus, by using the information provided by the intermediate layers, we can,
in theory, obtain a set of resources that represent the information contained in the image
(ZHANG et al., 2015).

SQ4 What are the metrics for the validation of the work?

With the fourth specific question (SQ4), we intend to raise the work evaluation metrics.
When an intelligent analysis method is proposed, a test set is usually set aside to be classified
and benchmarked to study performance. For this purpose, different validation metrics are used.
In Figure 28 we present the metrics used in the corpus, a brief description of each, the task in
which it can be applied, and the frequency of use. The metrics are not exclusive, and more than

one may be used in the corpus.

Accuracy, the main and most widely used metric in the corpus, measures the percentage of
correctly classified samples (VO; NGUYEN; LEE, 2019). Nevertheless, using accuracy alone
can underestimate the efficiency of the method because in cases of unbalanced data (there are
more samples for one class than another), the approach can efficiently classify only one
category. Thus, metrics such as specificity and sensitivity, which measure the ability to classify
correctly, respectively, the normal and abnormal classes, are useful to complement the
evaluation of the model (XIE et al., 2019). Another way to check how the method behaves
with unbalanced classes is by using F1-Score. F1-Score evaluates the model with a
measurement between 0 and 1, with value 1 being the perfect model (FENG; ZHANG; Y1,
2018).

Meanwhile, with the precision, we can get the proportion of abnormal cases sorted correctly
in the test suite (FENG; ZHANG; Y1, 2018). With the Receiver Operating Characteristic (ROC)
curve, we can graphically evaluate the models by plotting sensitivity versus 1 - specificity on
various thresholds (BEJNORDI et al., 2017b; ALOM et al., 2019). And from the ROC curve,
we get another interesting metric, the Area Under the ROC curve (AUC), ranging from O to 1.
The AUC measures the area to the right of the ROC curve, the closer to 1, the better the model
(KRAWCZYK et al., 2016; YAN et al., 2019).

However, even with the use of metrics, it is not easy to make a direct comparison of the
studies. This problem is due to the lack of information present in the studies on how the
evaluations were made, the lack of public datasets and methods that are difficult to replicate.
Thus, competitions such as ICIAR 2018, Biolmaging2015, and CAMELYON can be used as
appropriate references, as it keeps model evaluation servers evaluating methods on a standard

data set.



Figure 28 — Performance evaluation methods applied in selected studies.
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3.3 Challenges and Research Opportunities

Based on the analysis of the selected studies, we identified several research challenges and
opportunities. In Figure 29, we group the main challenges encountered during the SLR. It is
essential to highlight that the gaps found are concentrated mainly around the pathologist. An
open gap is the need to study the clinical acceptability of CAD systems, and how they can
be adapted to the routine analysis of breast cancer histopathological slides (BALAZSI et al.,
2016). Providing some information that will lead the healthcare professional to understand how
the model has achieved the outcome can, at a minimum, help overcome distrust in the use of
machine learning applied to health. Another point that can increase clinical acceptability is

benchmarking platforms simulating real laboratory environments.

Figure 29 — Main challenges related to intelligent analysis of breast cancer histopathological
images.
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Source: Elaborated by the author.

Regarding opportunities at the computational level, there is a need for studies using
intelligent methods applied to a significant amount of data. The use of compiled data from
several institutions allows studies on color normalization, reduction of artifacts, and
differences in WSI resolution. In addition, we have identified research opportunities in the
detection of significant regions in breast cancer WSI. This step is of fundamental importance
for the processing of WSI in intelligent methods, such as CNN.

Studies that manage to reconcile a better interpretation, providing clear and understandable
information and, at the same time, achieve results comparable to state of the art may offer
less resistance for validation by regulatory bodies. Thus, the development of systems that can
simulate the workflow adopted by the pathologist can be an opportunity for research. The
adoption of an intelligent method similar to that of the pathologist may be favorable concerning

the challenges and discussions on the ethical and moral issues of the use of intelligent methods.
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In the related work presented, there are several open research issues. To close the scope
of this Master Thesis, this work focuses on three opportunities found in the related work: (a)
provide the diagnosis in a clear and interpretable way, through demarcation of the regions at
high magnifications, refined segmentation at the cellular level and a diagnosis generated in
natural language; (b) use of a WSI compilation from different sources; (c) bringing the flow of
the intelligent method for the identification of breast cancer in WSI closer to the flow adopted
by the pathologist. Concerning these problems, we can observe several solutions proposed in
the literature (BALAZSI et al., 2016; SPANHOL et al., 2017, GANDOMKAR; BRENNAN;
MELLO-THOMS, 2018b; VO; NGUYEN; LEE, 2019; GUO et al., 2019). However, we note
that the use of a hybrid model using CNN is a promising approach. We can also highlight the
lack of studies that address the three problems together. In this way, our scientific contribution
aims to promote the use of CNN as a model that addresses the issues related to the identification
of breast cancer in WSI by providing an interpretable diagnosis. In the next chapter, we present
the technologies for the development of the model and detail the architecture of the DeepBatch

model.
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4 DEEPBATCH MODEL

As already noted, the patient’s prognosis depends on the correct classification of the
histopathological type and the stage of the disease (MAKKI, 2015). In this way, applications
that are capable of being integrated into the pathologist’s routine, and that can reduce the
restrictions in histopathological analysis can contribute to a more accurate and reliable
diagnosis. In summary, the standard methodology performed by the pathologist consists of
acquiring the biopsy, preparing and staining the tissue, microscopic analysis, and diagnosis.
The purpose of this Master Thesis is to add a step in parallel to the microscopic examination
(Figure 30), with the DeepBatch model serving as a support system for medical diagnosis. The
name DeepBatch was obtained by generating an acronym from the phrase "a DEEP learning

model for Breast cAncer deTeCtion in Histopathological image".

Figure 30 — Proposal to integrate the DeepBatch model into the pathologist’s routine.
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Source: Elaborated by the author.

However, even for the most modern computer systems, automatic WSI analysis is a
challenging task. There are four main reasons: (1) different analysis and staining protocols; (2)
scarcity of pixel-labeled WSI; (3) size of the WSI, and (4) complex and heterogeneous
biological structures. The DeepBatch model seeks to solve these restrictions with a
hierarchical structure. This chapter details all the parts that make up the DeepBatch model,
starting with an overview and explaining each of the architecture modules. Section 4.1
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presents the design decisions for the realization of the proposed model. Section 4.2 describes

an overview and the functionalities of each DeepBatch module.

4.1 Project Decisions

The modules that make up the DeepBatch were designed in a way that resembles the
workflow adopted by the pathologist. The model recognizes suspicious WSI regions at a
global level for further local analysis. The proposed strategy is modeled to provide information
on the areas that influenced the diagnosis and so that the model can be easily adapted to the
pathologist’s routine.

Based on these conceptual definitions, we define the organization of the model at a
technological level. The first decision is related to the size of the WSI, which has billions of
pixels. Thus, due to the limitation of computational resources, we defined the use of WSI in a
magnification of 2.5 for the global detection of suspicious regions. As a way to speed up the
training of the intelligent technique of the ROI Detection module, we apply image processing
techniques to remove background and noise present in WSI. Remove the background and
noise in images for processing on CNNs increases the likelihood of obtaining more accurate
results (RAJNOHA; BURGET; POVODA, 2018).

In DeepBatch, for the global screening of suspicious regions, we use a CNN. The CNN
architecture in this module will be responsible for producing a binary segmentation with the
location of suspicious areas based on the pre-processed low-resolution WSI (= 3000 x 3000).
As this is an intermediate stage, FN must not occur. Therefore, higher PF rates are acceptable
at this level.

Based on the segmentation produced by the global analysis, we defined a sample of Regions
of Interest (ROI) in WSI at a magnification of 40x. The size of the ROI will be fixed and
limited by the computational capacity available. Another CNN will process the sampled ROI.
This CNN will be responsible for producing a detailed multiclass segmentation for WSI. The
decision to use CNNs is based on the results obtained by state of the art identified in the SLR.

4.2 Architecture

One of the conceptual bases of the DeepBatch model is to transmit to the pathologist a
view of which regions and characteristics of the WSI influenced the diagnosis. The core of the
DeepBatch is composed of several CNN arranged in cascade. These CNNs work together to
optimize computing resources and provide refined segmentation of WSI. Segmentation provides
pathologists with a view of which regions have influenced diagnosis at global and local levels.
Thus, the DeepBatch seeks to allow a diagnosis that is understandable and interpretable by the
pathologist. The DeepBatch inference process (Figure 31) is divided into four main modules:

Preprocessing, ROI Detection, ROI Sampling, and Cell Segmentation. In Figure 31, we can see
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two main components Slide Processing and System Overview. In the next subsections, each

module of the DeepBatch will be presented, detailing its components and techniques involved.

Figure 31 — DeepBatch model. In Slide Processing, we show an example of WSI being analyzed
by the DeepBatch model. In the System Overview, we demonstrate, in a conceptual way, the
operation of the DeepBatch.
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Source: Elaborated by the author.

4.2.1 Preprocessing Module

As highlighted in the previous sections, WSI are images with billions of pixels, variations
in coloring, differences in tissue thickness, and a tissue composed of complex, heterogeneous
biological structures. In this way, the Preprocessing Module in the DeepBatch is responsible for
mitigating the problems faced in the automatic analysis of WSI. Figure 32 presents an overview
of the steps that make up the Preprocessing Module.

The colors present in the WSI transmit information that plays an essential role in the
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Figure 32 — Preprocessing Module steps. WSI goes through a process of preparation for use by
the DeepBatch model.
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Source: Elaborated by the author.

diagnosis. In computing, colors are represented by color spaces, which aim to represent the
colors visible by humans. However, there are significant differences in the number of colors in
the visible electromagnetic spectrum that each model is capable of representing (GONZALEZ;
WOODS, 2018). Thus, in this step, we will evaluate the quantitative and qualitative
performance of four-color spaces (RGB, HSV, YCbCr, and LAB) for the identification of
regions with malignant potential.

To minimize the interference of color variation, it is common in the literature to use color
normalization (KHAN; SIRINUKUNWATTANA; RAJPOOT, 2015; LI; PLATANIOTIS, 2015;
GANDOMKAR; BRENNAN; MELLO-THOMS, 2018b). In this step, we chose to use the
method proposed by Khan et al. (2014). Briefly, the algorithm consists of a non-linear mapping
of an image to a target image using a representation derived from color deconvolution.

Due to hardware limitations, it is not possible to process WSI directly on a CNN. In this
way, for this module, we use WSI in a magnification of 2.5 x, reducing the complexity in this
stage. In addition, as a way to speed up the WSI segmentation process, we have removed the
white borders present in the WSI using the adaptive segmentation of Otsu (OTSU, 1979) to
separate the bottom of the tissue.

4.2.2 ROI Detection Module

The main function of the ROI Detection Module is to classify each pixel of the preprocessed
WSI as an abnormal region or not. For this classification, DeepBatch proposes the use of CNN
in U-Net format, which will provide a probability associated with each pixel. In Figure 33, we
present the convolutional architecture used in this module.

Before CNN training, some steps can be used to assist in the training and inference of WSI
(Figure 34). The first is related to the computational capacity of image processing. Even with
magnification of 2.5x, WSI still has a relatively large resolution (= 3000 x 3000 pixels).
Thus, for processing at CNN, WSI can be divided into non-overlapping and computationally
processable patches. We also propose the use of data augmentation, with the generation of
synthetic data applying transformations such as rotations, zoom, horizontal and vertical

inversions.

Finally, this module must be efficient in detecting suspicious regions in WSI. Thus, the

occurrence of a low rate of False Negative (FN) at the expense of a high number of False
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Figure 33 — Convolutional architecture for ROI Detection Module. The gray part of the figure
represents the summarized flow of the network. On the left side, the detailed blocks of the
downsampling of the images are represented. In the right part, the detailed blocks of the
upsampling of the images are represented. Each convolutional layer is represented as follows:
kernel, feature maps and stride.
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Figure 34 — ROI Detection Module steps. Preprocessed WSI undergoes tile sampling and data

augmentation to be trained on a CNN.
ROI Detection Module
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Source: Elaborated by the author.

Positive (FP) is desirable. Therefore, a higher penalty will be applied to areas with the presence

of tumors in the WSI erroneously classified during training.

4.2.3 Sampling Module

Based on the suspicious regions identified in the ROI Detection Module, the Sampling
Module will select regions (called ROIs) of high pixel density at higher magnification of the
WSI. To decide the region to be sampled, the average of the probabilities of the pixels of the
current patch will be taken into account whether or not it is a neoplastic region. The mapping
will correspond to the multiplication of the WSI reduction factor by the coordinates of the

segmented region, obtaining the set of coordinates in high resolution. This set of coordinates
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will be used to generate the training set for the Cell Segmentation Module. An illustration of

this process can be seen in Figure 35.

Figure 35 — Sampling Module. Suspicious regions identified by the ROI Detection Module are
mapped to high magnification regions.
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4.2.4 Cell Segmentation Module

The ROIs sampled by the Sampling Module are used as input to the Cell Segmentation
Module (Figure 36). In this module, a higher capacity for cellular complexity is required. Thus,
to speed up the training of convolutional architecture, we made some modifications to the U-Net
architecture (Figure 37). In the downsampling stage, we use a pre-trained ResNet50 (HE et al.,
2016) for the ImageNet set. The small jumps between the convolutional layers of the ResNet50
architecture allow a faster convergence and less chance of gradient vanish (HE et al., 2016).
In this module, we also use data augmentation techniques to increase the variability of images

shown to the convolutional architecture.

Characteristics considered for the diagnosis of the patient, such as cell differentiation,
mitotic activity, growth pattern, and invasion of adjacent tissue, are visible and considered in
the inference for the diagnosis proposed by the DeepBatch model. The segmentation of
regions at the cellular level provides pathologists with a view of the areas that influenced WSI
analysis. This function aims to give the model greater credibility and increase the DeepBatch

clinical acceptability.
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Figure 36 — Cell Segmentation Module steps. High magnification images go through a tile
sampling process and data augmentation to be segmented by a CNN.
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Figure 37 — Convolutional architecture for the Cell Segmentation Module. The gray part of the
figure represents the summarized flow of the network. Next to each Dense Block, the number
of times it will be repeated in the architecture is specified. On the left side, the detailed blocks
of the downsampling of the images are represented. In the right part, the detailed blocks of the
upsampling of the images are represented. Each convolutional layer is represented as follows:
kernel, feature maps and stride.
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4.3 Final Remarks

Therefore, the DeepBatch model proposes a WSI analysis architecture in modules. The
modules work in cascade to optimize the computational resources. In a first step, WSI is
preprocessed by a set of techniques that will be detailed in Section 5.4.2. The ROI Detection
Module will use the images resulting from this module for global analysis and identification of
suspicious regions. The Sampling Module will map low magnification regions to high pixel
density regions. Finally, the Cell Segmentation Module will use a pre-trained convolutional
architecture to produce a refined multiclass segmentation and heat map for suspect regions.
Based on the experiments detailed in the next chapter and with the results obtained and

presented in Chapter 6, we can say that the DeepBatch model is capable of answering our
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research question. Therefore, in the next chapter, we present in detail the techniques,

procedures, and meta parameters used in the implementation of the DeepBatch model.
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S MATERIALS AND METHODS

This chapter is organized as follows. In the beginning, the data sets for evaluation, and the
evaluation criteria are described. After that, implementation strategies and details are defined

DeepBatch model.

5.1 Materials Description

Recently, pathology services in Europe initiated procedures for complete digitization of
the slides analyzed (DIMITRIOU; ARANDJELOVI¢; CAIE, 2019). This process meets the
proposals for automated analysis of slides (SAHA; CHAKRABORTY, 2018). However, as
demonstrated by the SLR, there is a shortage of publicly available WSI breast cancer datasets.

As a way to solve this gap, in this study, we use a compilation of datasets identified in the
literature and publicly available. The selected datasets and their main characteristics are listed in

Table 9. Details on obtaining and organizing the datasets are discussed in the next subsections.

5.1.1 BACH

The Grand Challenge on Breast Cancer Histology Images (BACH) consists of two sets
called A and B, the first consisting of 400 images of WSI sections with four classes: normal,
benign, carcinoma in situ, and invasive carcinoma. Set B consists of 40 high-resolution WSI
containing all of the sampled tissue. The 40 WSI in set B is divided into two subsets, 30 for
training and 10 for testing. Of the 30 WSI provided for training, only ten are labeled at the
pixel level in four classes: normal, benign, carcinoma in situ, and invasive carcinoma. Thus, in
this work, only 10 WSI are used, due to the need for labeling at the pixel level (ARESTA et al.,
2019). In Figure 38, we present an example of WSI from the BACH dataset.

The base WSIs were acquired between 2013 and 2015 in patients from Portugal using a
Leica SCN400 digital slide scanner and made available in SVS format. In addition, each SVS
file provides ten magnification levels for the samples, with a minimum of 0.04 x and a maximum
of 40x. As for the labels, an XML file was provided containing the coordinates for each region
labeled (ARESTA et al., 2019).



Table 9 — Public datasets of histopathological images of breast cancer.

Dataset WSI Number of images Lesions types Patients Annotation type

BACH (B) Yes 40 normal, benign, in situ carcinoma, invasive carcinoma 40 pixel-wise

BreCaHAD No 162 mitosis, apoptosis, tumor nuclei, non-tumor nuclei, tubule, - pixel-wise
and non-tubule

BREAKHIS No 7,909 adenosis, fibroadenoma, phyllodes tumor, tubular adenona, 40, 100, 200, 82
carcinoma, lobular carcinoma, mucinous carcinoma and 400
papillary carcinoma.

BIOIMAGING 2015 No 269 normal, benign,in situ carcinoma and invasive carcinoma 200 -

CAMELYON17 Yes 1000 Normal and metastases - -

HASHI Yes 596 invasive carcinoma 596 pixel-wise

TCGA Yes - ductal and lobular neoplasms, epithelial neoplasms, 3.816 patient  level, clinical
complex  epithelial neoplasms, adenomas  and data, outcomes, genetic
adenocarcinomas, cystic and mucinous neoplasms, expressions, and others
squamous cell neoplasms, fibroepithelial neoplasms,
adnexal and skin appendage, basal cell neoplasms,mature
b-cell lymphomas

UCSB Breast Cancer No 58 normal and malignant - pixel-wise

Cell

Source: Elaborated by the author.

78



85

Figure 38 — Example of a pixel-wise annotated WSI from the BACH dataset. Red is benign;
Green is in situ; Blue is invasive.

Source: Aresta et al. (2019)

5.1.2 BreCaHAD

BreCaHAD provides a set of 162 breast cancer histopathological images with pixel-level
markings of mitosis, apoptosis, tumor nuclei, non-tumoral nuclei, tubule, and non-tubule. The
images were obtained from several regions of histopathological slides. Thus, the dataset
contains images with clear boundaries to little differentiated structures, and with a lack of
typical features (AKSAC et al., 2019). In Figure 39, we present an example of a labeled image
from the BreCaHAD dataset. The images provided by the dataset have a dimension of
1360x1024 pixels.

Source: Aksac et al. (2019) »
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5.1.3 BREAKHIS

BreakHis is a set of images collected from histopathological slides of partial mastectomy or
excisional biopsy from 82 patients, with manual selection of significant regions by pathologists.
The result was also confirmed with complementary tests, such as immunohistochemical analysis
(SPANHOL et al., 2016a). In Figure 40, we present an example of the dataset.

Figure 40 — An example of a slide section of the BREAKHIS base seen in different
magnification factors: (a) 40X, (b) 100X, (c) 200X, and (d) 400X.
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Source: Spanhol et al. (2016b)

The dataset provided by the authors is divided into benign and malignant. With four
histopathological types for benign cases: adenosis, fibroadenoma, phyllodes tumor, and tubular
adenosine; and four malignant tumors: carcinoma , lobular carcinoma, mucinous carcinoma
and papillary carcinoma in dataset (SPANHOL et al., 2016a).

5.1.4 BIOIMAGING 2015

The set of Bioimaging images was made available as part of a challenge at the 4th
Internation Symposium in Applied Bioimaging in 2015. The dataset contains 269 images
(2048x1536 pixels) extracted from histopathological slides in a 200x magnification. The
images were labeled by two pathologists experienced in four histopathological types: normal,
benign, in situ carcinoma, and invasive carcinoma (ARAUJO et al., 2017). Figure 41 presents
an example of the images provided by the BIOIMAGING database.
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Figure 41 — Example of tissue sections from the BIOIMAGING 2015 dataset. A) normal tissue;
b) benign tissue; ¢) carcinoma in situ; or d) invasive carcinoma.
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Source: Araujo et al. (2017)

5.1.5 CAMELYON17

CAMELYON17 is the combination of images from the challenges of CAMELYON16 and
CAMELYONI17. It contains 1399 sentinel lymph node WSI collected in five medical centers:
the Radboud University Medical Center, the Utrecht University Medical Center, the Rijnstate
Hospital, the Canisius-Wilhelmina Hospital, and LabPON. Metastases are divided into three
categories in this dataset: Macro (metastases greater than 2.0 mm), Micro (metastases greater
than 0.2 mm and less than 2.0 mm), and ITC (single tumor or a cluster of tumors smaller than
0.2 mm or less than 200 cells) (LITJIENS et al., 2018).

Figure 42 — Example of a metastatic region of the CAMELYONI17 dataset. (a) WSI at 1x
magnification; (b) red rectangular region of part (a) seen in a 10x magnification; (c) red
rectangular region of part (b) seen at 40x magnification

Source: Litjens et al. (2018)
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Of the 1399 WSI, 449 are labeled at the pixel level, with 399 referring to the challenge for
the year 2016 and 50 for the year 2017. The WSI from CAMELYON16 was first analyzed by an
experienced laboratory technician and a clinical Ph.D. student. Two experienced pathologists
then inspected the notes. As for the CAMELYON17 WSI, an experienced pathologist labeled
the WSI at the slide level, and five experienced observers delimited the metastases. Finally, two
resident pathologists reviewed the demarcations (LITJENS et al., 2018).

5.1.6  HASHI

This dataset was made available in the work of Cruz-Roa et al. (2018). It consists of 596
WSI scanned by Aperio or Ventana scanners. All images have been reduced in size by a factor

of 32:1. In Table 10, the origins, and the number of cases for each source are shown.

The cases provided by this dataset were labeled at the pixel level by three experienced
pathologists. The annotation occurred in a 2x magnification using ImageScope v11.2 and Image
Viewer v3.1.4.

Table 10 — HASHI dataset.

Site Cases Scanner
Hospital of the Univ. of Pennsylvania 239 Aperio
Univ. Hospitals Case Medical Center/ Case Western Reserve Univ. 110 Ventana
Cancer Institute of New Jersey 52 Aperio
The Cancer Genome Atlas 195 Aperio

Source: Cruz-Roa et al. (2018)

5.1.7 TCGA

TCGA is a historic cancer genomics program overseen by the National Cancer Institute. It
has studies and samples of 33 types of cancer and some tools for data processing,
visualization, and other computational tools developed by researchers and collaborators of the
program (National Cancer Institute, 2020). In Figure 43, we present an example of breast
cancer WSI from the TCGA base.

In the case of breast cancer, the program provides 8,897 cases, providing demographic
information, medical history of the patient, WSI, with patient-level labels, histopathological
reports, among others (National Cancer Institute, 2020). However, as this dataset is a
compilation of cases from different institutions, it can suffer from technical variations, and in
the coloring process (NAYAK et al., 2013).
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Figure 43 — An example of WSI from the TCGA base in a magnification of 1x.

Source: National Cancer Institute (2020)

5.1.8 UCSB Breast Cancer Cell

The UCSB Breast Cancer Cell is a set of 58 images (896x768) with pixel-level annotations
extracted from slides stained with H&E. The dataset was built to allow cell segmentation for
benign and malignant classes (UCSB Center for Bio-Segmentation, 2020). In Figure 44, we
present examples of images of WSI sections of the UCSB dataset.

Figure 44 — Sample images of the UCBS dataset. Top row - benign tumor images, and bottom
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5.2 Metrics: Quantifying the Quality of Predictions

For the evaluation of the models, metrics were defined for the stages of the model at the
pixel, image, and case level. The use of these metrics is in agreement with the most used metrics
for each problem or learning objective identified in the SLR. The next subsections explore each

of the defined metrics.

5.2.1 Metrics Based on the Confusion Matrix

In a binary classification problem, instances are mapped to two classes, for example, positive
or negative. Formally, a classifier X will map the instances / to one of the two classes positive
or negative {p, n}. Thus, given any binary classifier, there are four possible results (FAWCETT,
2006). These results are shown in Table 11.

Table 11 — Confusion Matrix
Labeled

Positive Negative

Predicted Positive True Positive (TP) False Positive (FP)

Negative | False Negative (FN) | True Negative (TN)

Source: Adapted from Fawcett (2006)

From this matrix, we can calculate classification performance metrics that reflect the
performance of the classifier (RUUSKA et al., 2018). Based on the analyzed literature, the

most common metrics are:

e Sensitivity: model’s ability to detect the presence of the disease, and is defined by the

function:

TP

T TPYFN

5.1

e Specificity: the model’s ability to detect the absence of the disease, and is defined by the

function:

TN
o 2
BT TIN L FP (5-2)

e Accuracy: model’s ability to correctly classify each case, and is defined by the function:

B TP+ TN 53)
T TP Y TN+ FP+ FN ‘
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e F1-Score: it is a harmonic measure between precision and sensitivity, and is defined by

the function:

2xTP
Fl1— - 4
Seore = o TP L FN ¥ FP G4

In certain steps of the proposed model, the problem to be solved involves multi-classes.
Thus, it is necessary to generalize the confusion matrix to use these metrics for the evaluation
of the model. Formally, for a data set with C}; classes, an array of size k x k is defined. Each cell
4, j] represents the observation frequency of the real class C; and the inferred class C;. This
matrix can be represented in up to k binary confusion matrices, one for each class C; (RUUSKA

et al., 2018). A representation of this transformation can be seen in Figure 45.

Figure 45 — An example of a 3 x 3 confusion matrix for classes A—C (left) and the corresponding
binary confusion matrix for class A (right).

inferred class inferred class
A B C A not—A
A a b C a b+c

_ ) A
% 7 (TP) {FN)
S B | d]|e | f G
E - | - = d+g | e+f+h+i
= . =2 not-A

Source: Ruuska et al. (2018).

This transformation from a multi-class confusion matrix to the corresponding binary is an
excellent tool for visualizing the model’s behavior. However, in practice for model evaluation,

this transformation is not necessary, is performed automatically by libraries such as scikit-learn.
5.2.2 ROC graphs

A graphical way to evaluate classifiers is to use the ROC, a two-dimensional graph in which
the rate of true positives is plotted on the Y-axis, and the rate of false positives is plotted on the
X-axis (PEDRO; MACHADO-LIMA; NUNES, 2019) axis. Figure 46 shows a ROC chart with
five classifiers.

Some points on the graph of the ROC curve need special attention. For example, the (0, 0)
point indicates a strategy that always issues a negative rating; the (1, 1) point indicates that the
model always generates a positive rating; finally, the (0, 1) point represents the perfect strategy,
correctly classifying each instance (RUUSKA et al., 2018). In addition, when the classifier’s
performance is under the dotted line that divides the graph into two parts, as in Figure 46, its

performance can be considered random.
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Figure 46 — A basic ROC graph showing five discrete classifiers.
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Connected the points created using different decision limits, we can obtain the AUC
(CARTER et al., 2016). Which is used to gauge how well a model can differentiate classes
(PEDRO; MACHADO-LIMA; NUNES, 2019). Also, the higher the AUC value, the better the
model performance (RUUSKA et al., 2018).

5.2.3 Dice coefficient

Dice coefficient measures the similarity between two sets of data, based on the overlap of

the two sets. This metric can be defined as:

2|AN B

(5.5)

where A and B are any two sets. Also, the closer to 1.0 the value obtained by the metric, the

better the model is generalized.
5.3 Comparative Analysis of the Influence of Color Spaces on WSI Segmentation

The colors present in the WSI transmit a large amount of information and play an essential
role in the diagnosis. In computing, colors are represented by color spaces, which aim to
represent the colors visible to humans. However, there are significant differences in the amount
of colors in the visible electromagnetic spectrum that each model is capable of representing
(GONZALEZ; WOODS, 2018). In this section, we present the methodology used to analyze
the behavior of breast cancer WSI multi segmentation for four-color spaces (RGB, HSV,
YCbCr, and LAB) using a ResNet50/U-Net.

The methodology (Figure 47) is divided into four stages: pre-processing, data augmentation,

training, and testing. The pre-processing of the images consists of converting the color spaces
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and normalizing the images. The data augmentation step describes the methods used to create
synthetic images. In the training stage, CNN and the parameters used are defined. Finally, the

test step presents the results and behavior of CNN for each color space.

Figure 47 — Diagram of the proposed methodology, based on a U-Net and Resnet model for the
WSI segmentation of breast cancer.
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Source: Elaborated by the author.

5.3.1 WSI Acquisition and Preprocessing

In this evaluation, we used the BACH (B) dataset with 10 pixel-labeled WSI in four
classes: normal, benign, carcinoma in situ, and invasive carcinoma. Although the image base
is relatively small, it is essential to highlight the size of these images with billions of pixels
(ARESTA et al., 2019). In this way, transfer learning and data augmentation techniques are
useful to assist the process of learning models with datasets with few images.

For pre-processing, we use WSI in a 2.5x magnification. The use of WSI in this
magnification is due to the computational capacity available. As a way to speed up the WSI
segmentation process, we removed the white borders present in the WSI using the adaptive
segmentation of Otsu (1979) to separate the bottom of the tissue. After segmentation, the
images are normalized by the mean and standard deviation of the overall pixel intensity
(SPANHOL et al., 2016a).

The segmented images were divided into three sets, training (70%), validation (10%), and
testing (20%). CNNs need a significant amount of images in the training process to obtain a
generalization of the problem. Thus, each set went through the extraction of non-overlapping
patches of 256 <256 pixels.

5.3.2 Data augmentation
One technique that helps in the convergence and learning of CNN is the use of data

augmentation. At this stage, we use the ImageDataGenerator class of the framework Keras

applied to the training and validation sets. The class in question generates synthetic data in
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real-time based on the images extracted from the WSI. The transformations applied to the

patches in this step were: rotations, zoom, and horizontal and vertical inversions.
5.3.3 Convolutional Model

Figure 37 show the convolutional architecture used in this step. The encoder used for this
step was pre-trained for the ImageNet image set. The learning rate used in the training was
0.0001, a batch size of 16 images, padding same for the convolutional and maxpooling layers

and the Adam algorithm for optimization of the weights.
5.4 DeepBatch Experimental Setup

After analyzing the behavior of the color spaces in the WSI multi segmentation for breast
cancer, we concentrated our efforts on the details of the DeepBatch model.  The
implementation of each of the modules of the DeepBatch model architecture was developed in
the Python language. In the next subsections, we present this implementation in technical
detail.

5.4.1 Datasets Distribution and Analysis

A well-prepared data set is a crucial factor in defining a good generalization for DL
techniques. In this way, we use different sets of information from the dataset, following the
objectives of the modules. In Table 12, we present the datasets and what information is used in
each module. These datasets were joined into a single set of images and divided randomly into

sets of training, testing, and validation.

Table 12 — Public datasets used in DeepBatch modules.

Module Dataset WSI Number of Annotation type
images
HASHI No 195 pixel-wise
ROI Detection BACH (B) Yes 10 pixel-wise
TCGA Yes 195 -
Cell BACH (B) Yes 10 pixel-wise
Segmentation

Source: Elaborated by the author.

After choosing the datasets, we analyze quantitative measurements of the WSI of the
selected datasets. In Table 13, we present the maximum, minimum, and average values for
height, width, and the number of pixels present in the WSI.

In Figure 48, we present the distribution of the images concerning height and width. Based



95

Table 13 — Whole-slide imaging statistics used in DeepBatch modules.

Measure

Size in pixels

Max width
Max height
Max size
Min width
Min height
Min size
Avg width
Avg height
Avg size

196,111
110,336
14,733,475,680
40,704

34,700
1,861,134,657
105,334

75,386
8,073,512,637

Source: Elaborated by the author.

on this distribution, we can see that most WSI are concentrated in the range of 60,000 to 100,000
pixels in height and 80,000 to 140,000 pixels in width.

Figure 48 — Distribution of WSI according to height and width in pixels.
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5.4.2 Preprocessing Module

As already mentioned, this module is responsible for preparing WSI for the overall analysis

of cases. Thus,

the entry in this module is WSI in magnification of 40x. In these WSI, we

apply a 32:1 downsampling, as in works identified in the literature (CRUZ-ROA et al., 2018;

GUO et al., 2019). In some of these WSI, markings are found with pens in the colors: black,

blue, and green.

These demarcations sometimes cover regions noted as cancerous. This feature

can cause noise on CNN. In this way, we apply a set of thresholds in each RGB channel to
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remove the demarcations. In Figure 49, we present an example for each pen color. In Table
14, we present the thresholds used for each channel. The thresholds used were based on the
work of Dusenberry e Hu (2019). For this, intervals were obtained for the pixel values of the
demarcations in black, blue, and green. Based on these values, we defined a set of thresholds

that suited the task of removing the demarcations without affecting areas of tissue.

Figure 49 — Examples of removing pen markings in WSI. On the left, black, blue, and green
markings. On the right, the regions removed in black pixels.
Original WSI Without Black Pen

Original WSI Without Blue Pen

~
; k

Original WSI Without Green Pen

Source: Elaborated by the author.

The next step was to remove the bottom of the WSI using the adaptive segmentation of
Otsu (OTSU, 1979). Based on the coordinates found in the background removal, we cut the
white edges present in the WSI. As a result, the percentage of tissue in the WSI increased from
32.18% to 40.02%. In Figure 50, we can see an original WSI with background removal and
cutting the edges.

The masks generated during the pre-processing of the WSI were also applied to the base
annotation images. This process aims to avoid noise on the network, as the segments provided

are not perfectly delimited with the tissue. In Figure 51, we can see the difference between
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Table 14 — Set of thresholds used to remove pen demarcations in WSI. The columns R, G, and
B represent the operator and the threshold applied to each of the pixels in the RGB color space.

Filter for R G B
Black Pen <128 <128 <128
Blue Pen > 60 > 120 <190
> 120 > 170 <200
> 175 >210 <230
> 145 > 180 <210
> 37 > 95 < 160
> 30 > 65 < 130
> 130 > 155 < 180
>40 > 35 <85
> 30 > 20 <65
>90 >90 < 140
> 60 > 60 <120
>110 > 110 <175
Green Pen > 150 < 160 < 140
>70 <110 <110
>45 <115 < 100
> 30 <75 <60
> 195 <220 <210
> 225 <230 <225
> 170 <210 <200
> 20 <30 <20
> 50 <60 <40
> 30 <50 <35
> 65 <70 <60
> 100 <110 <105
> 165 <180 <180
> 140 < 140 <150
> 185 <195 <195

Source: Elaborated by the author.

Figure 50 — An example of WSI resized after going through the Preprocessing Module. In

brackets, the size of each WSI.
Resized WSI (2824 x 3927)  Preprocessed WSI (2481 x 3597)

Source: Elaborated by the author.
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using this step or not. In addition, it is essential to note that there are many non-tissue regions

removed from the original annotation in this process.

Figure 51 — An example of an annotation after going through the Preprocessing Module.
Original WSI Preprocessed WSI

Preprocessed Annotation

Original Annotation

Source: Elaborated by the author.

5.4.3 ROI Detection Module

The ROI Detection module is responsible for generating a global segmentation of the WSI.
In this module, the images produced by the Preprocessing Module were divided into three sets:
training (70%), validation (10%), and test (20%). However, even at low magnification, WSIs are
still considered high-resolution images for direct processing on a CNN. Also, WSI has a large
proportion of non-tissue information. So, as a way to solve these two problems for training and
validation sets, we extracted from the 256 x 256 pixels tiles images. In Figure 52, an example
of this sample of tiles is presented. Also, as a way to decrease the percentage of non-tissue
regions, we only use tiles with more than 10 % of the pixels representing tissue.

This processing resulted in 26,016 tiles. For the training of convolutional architecture, we
use the ImageDataGenerator class from the Keras framework. This class generates
synthetic images on-the-fly based on the tiles. The transformations applied to the tiles were
rotation, zoom, and inversions and vertical. For each training epoch, 40 thousand tiles were
produced. It is important to note that a new set is generated at each time, which makes training
more robust since a different collection of images is presented at each interaction.

The convolutional architecture used in this module was presented in Section 4.2.2 in Figure

33. The values for the meta parameters used for U-Net were:
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Figure 52 — Tile sampling process for the ROI Detection module. Each rectangular region is a
256 x 256 pixels image generated and used in the training and validation steps as a basis for
data augmentation.

Source: Elaborated by the author.

e Learning rate: 0.0001;

5.4.4 Sampling Module
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Loss function: Binary cross-entropy.

This module is responsible for mapping the regions identified as suspicious by the ROI

Detection Module from areas at low magnifications to high magnifications (= 60K x 40K).

This mapping occurs by collecting the major and minor coordinates of the region targeted for

the x and y axes. In Figure 53, we present an example of this mapping.

5.4.5 Cell Segmentation Module

In this module, the inputs are regions in high resolution and of different formats. These

regions were grouped by case into three sets of training (70%), validation (10%), and test (20%).

The regions that make up the sets are made up of images of different formats. Thus, we adopted

a process similar to that performed in the ROI Detection Module, extracting a set of 256 x 256
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Figure 53 — Sampling process from low to high magnification regions. (A) Region segmented
by the ROI Detection Module with points with greater and lesser coordinates for the y-axis
(X1, X3) and x-axis (X2, X4). (B) The rectangular region in high magnification obtained based
on the coordinates identified in step (A). (C) The rectangular region highlighted in WSI. (D)

Region sampled at 40x magnification that will be used as an input to the Cell Segmentation
Module.
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pixels from the segmented regions. In Figure 54, we present an example of generating tiles

based on an area of a WSI at a magnification of 40x.

Figure 54 — Tile sampling process for the Cell Segmentation module. (A) Tissue section at
40x magnification. (B) Segmentation produced by the ROI Detection Module. (C) Segmented
tissue with tiles of 256 x 256 pixels.
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As mentioned in Section 4.2.4, the purpose of this module is to generate a refined,
multiclass segmentation for breast cancer WSI. Thus, since multiclass segmentation requires a
more substantial data set to produce a significant result, we opted for the use of transfer
learning and adapted a ResNet50 network for semantic segmentation. ResNet50 was used as
an encoder, extracting resources that will be used by a decoder based on U-Net to produce a
multiclass segmentation. The convolutional architecture used in this module was presented in

Figure 37. The values for the meta parameters used for ResNet50/U-Net were:

e Learning rate: 0.00001;

Batch size: 8 images;

Padding: same;

Optimizer: Adam;

Loss function: (0.5 * Categorical cross-entropy) + 0.5 * (Dice-Index).
5.5 Final Remarks

This chapter presented the methodology for this Master Thesis. Potential datasets were
introduced that could be used together or separately for each module, in accordance with the
module’s objective. We presented the methodology adopted for the pre-processing of WSI. We
define the characteristics and meta parameters for implementing the ROI Detection module.
Finally, we present the methodology for mapping low-magnification regions to high
magnifications using the Sampling module, as well as defining the implementation of the Cell

Segmentation module.
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The proposed methodology aims to define the experiments for the validation of the
DeepBatch model. We can highlight two relevant points consistent with our scientific
contribution. The first is related to the analysis of WSI. We are allowing, through CNN, the
complete analysis of each case. The second point, on the other hand, is how the diagnostic aid
information is transmitted to the pathologist. We propose the use of semantic segmentation.
Semantic segmentation can offer the pathologist two important information in decision
making, the separation of tissue by classes and heat maps that can indicate border regions.
Finally, this work is limited to the analysis of WSI stained with H&E breast cancer. In the next

chapter, we present the results and discussions based on this methodology.
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6 RESULTS AND DISCUSSIONS

This chapter presents the results and discussions for the experiments carried out to validate
the DeepBatch. The methodology used to carry out these experiments is described in Chapter
5. The experiments described in this chapter were performed on a system that contains a 12
GB NVIDIA TITAN XP GPU, Intel Core i7-9700K CPU, and 32 GB of RAM. The chapter is
divided into four sections. Section 6.1 presents the results and discussions for analyzing the
influence of color spaces on WSI multi segmentation. In Section 6.2, we evaluate the
performance of the ROI Detection module. Then, in Section 6.3, experiments for the Cell
Segmentation Module are evaluated. Finally, in Section 6.4, we present a comparison of the
results obtained with the related works identified in the SLR.

6.1 Comparative Analysis of the Influence of Color Spaces on WSI Segmentation

The preparation, coloring, and digitization processes of tissue slides are susceptible to
inadequate fixations, which can generate changes in tissue morphology and induce incorrect
tissue morphometry through image analysis (ROY et al., 2019). Another difficulty encountered
are sections that have not been adequately stained (these may be over or under-stained) and
assembled, this may result in regions out of focus, or missing parts (LI et al., 2018). Also,
slight variations in coloring conditions can lead to changes in the appearance of the tissue
(YAN et al., 2019). In this way, colors and textures can directly influence the behavior of
classification, detection, or segmentation architectures. = Computationally, colors are
represented only by numbers.  However, there are several formats to perform this
representation, the most common being RGB, HSV, YCrCb, and LAB. In this section, we
present and evaluate the results obtained using the methodology proposed in Section 5.3 the
proposed convolutional architecture (Figure 37) for each of the selected color spaces (RGB,
HSYV, YCrCb, and LAB).

6.1.1 Training and Validation of CNN’s

During the training of the CNNs for each color space, the metric used to measure the loss
each epoch was the Dice Index. The convolutional architectures were trained for 50 epochs
based on the training set and validated at the end of each epoch in the validation set to obtain
the best set of weights. Figure 55 shows the indexes obtained for each epoch in the training and
validation set.

All CNNs showed statistically similar behaviors for the training and validation set. For the
four-color spaces tested, we can see relative stability in the growth of the Dice Index in the
training set and small variations in the validation set. This behavior indicates that there was no

overfitting during training.



Figure 55 — Loss graphs for training and validation data for each CNNs: (A) RGB; (B) HSV;

(C) YCrCb; (D) LAB.
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6.1.2 CNNs Evaluation

The results for the CNNss evaluation stage are based on the set of tests for each color space.
The choice of the best set of weights was made automatically based on the loss in each epoch
for the validation set. Table 15 shows the values obtained for the metrics at the pixel level and

the Dice Index in the test set.

Table 15 — Results for the test set for each color space: (A) RGB; (B) HSV; (C) YCrCb; (D)
LAB. In bold, the best results. (Accu. pixel is the accuracy at the pixel level. The columns
Benign, In situ, Invasive, and Background correspond to the percentage of pixels correctly
classified for each of these classes).

CNN Dice Index Pixel accu. Benign Insitu Invasive Background
A 0.6923 84.67%  78.22% 82.63% 76.64% 91.49%
B 0.7085 83.85%  80.95% 72.73% 89.83% 90.51%
C 0.6881 84.85%  71.56% T4.17% 81.84% 93.70%
D 0.6979 83.80%  73.45% 75.03% 80.81% 91.75%

Source: Elaborated by the author.
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With the results obtained for the Dice Index metric, we can see, again, the statistical
similarity between the indices. The largest variation between the Dice Index is 2.04%, between
the YCrCb and the HSV. This similarity is reflected in the percentages obtained for accuracy at
the pixel level, which presents a variation of at most 1.05% between color spaces.

However, when we analyze the percentages at the pixel level for each class, this similarity
does not occur. Where, for example, for the classification of benign regions, the percentage
variation is 9.39% between color spaces. As for the tissue affected by invasive carcinoma, there
is a better classification for the convolutional architecture of the HSV space with a percentage
of 89.83% accuracy. In the classification of areas with carcinoma in situ, the RGB space proved

to be more effective for detecting pixels belonging to diseased regions.

In general, the convolutional architecture for the HSV color space showed the best
quantitative results. However, it demonstrates some difficulty in detecting benign tissue.
Another conclusion that we can have is that even presenting the best accuracy at the pixel
level, the YCrCb convolutional architecture presented significantly lower results for the
regions with cancer. This is a reflection of the high precision for the classification of pixels as
background, which are proportionally larger areas in the images, reflecting a higher weight for

the overall accuracy.

6.1.3 Qualitative Evaluation

In this section, we present the qualitative results for the multi-segmentation of a WSI
(Figure 56) of the test set for each of the color spaces. In Figure 56, the black color indicates
the background or healthy tissue. The blue color indicates the presence of tissue with benign
characteristics. The green color indicates the presence of carcinoma in situ. The red color

indicates the presence of invasive carcinoma.

Analyzing the qualitative performance, the color space that presents the best result is the
convolutional architecture for the HSV color space (convolutional architecture (B)). The best
representation, whether quantitative or qualitative, can be associated with the way that colors are
represented in the HSV space, where one channel only represents the base color, and the other
two channels by brightness and color saturation (GONZALEZ; WOQODS, 2018). In this way,
the convolutional architecture can be more robust for small variations, since the Hue channel

presents color in its primary form, without alterations in brightness or saturation decreasing.

Specifically, for case AO1, it is possible to notice that convolutional architectures A, C, and
D detect regions with carcinoma in situ more efficiently. Meanwhile, convolutional architecture

B has significantly higher accuracy for detecting benign areas and invasive carcinoma.
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Figure 56 — BACH case AO1 with the segmentation provided by the base and the results for
the CNNs: (A) RGB; (B) HSV; (C) YCrCb; (D) LAB. In the annotations, the black color
indicates healthy tissue or background, blue benign tissue, green in-situ carcinoma, red invasive

carcinoma.
WSI Ground truth

(A) (B)

Source: Elaborated by the author.

6.2 ROI Detection Module

CNN-based architectures are considered, based on the SLR, the state of the art for
classification, detection, or segmentation. CNNs, in comparison with resource extraction
techniques, have as their main advantage the ability to learn the characteristics necessary for
inference. However, to perform the training and inference of CNNs, significant computational
processing is required. In this way, WSI processing, with billions of pixels, is not possible
directly on a CNN. As a way to reduce the consumption of computational resources, we

analyzed the performance of the convolutional architecture (Figure 33 in low-resolution WSI
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applying the methodology presented in Section 5.4.3 to identify suspicious regions. In the next
subsections, we present quantitatively and qualitatively the results obtained for the ROI
Detection Module.

6.2.1 Training and Validation

The convolutional architecture for the ROI Detection Module was trained for 100 epochs in
the selected datasets (Table 12). During the training, synthetic samples were generated based
on tiles extracted from WSI. For each epoch, a total of 78,048 synthetic tiles of 256 x 256
pixels were generated on-the-fly for architecture training. In the validation set, we do not apply
data augmentation techniques, thus totaling 6, 824 tiles in the set. At the end of each epoch, we
evaluate the performance of the architecture using the loss functions and a set of metrics. In

Figure 57, we present the indexes obtained for each of the 100 epochs.

Following the behavior of the convolutional architecture for the values of the loss function at
each time (Figure 57 (A)), we can see that CNN did not suffer from overfitting. For the metrics
in the validation set (Figure 57 (C)), we can see significant variations each epoch, with a slight
upward trend at the end of the 100 epochs. This behavior can reflect the learning process of

architecture, refining its weights at each interaction with the training set.

6.2.2 Evaluation

In addition to measuring the behavior of loss function and metrics each epoch to assess the
performance of a convolutional architecture, it is important to measure performance based on
assessment metrics on an unused dataset during training and validation. In this step, we use
a percentage of 20% of the selected WSI to evaluate the ROI Detection Module (Table 12).
The weights used for the evaluation of the convolutional architecture refer to the epoch with
the lowest loss for the validation set. It is important to note that the WSI used in the test stage
did not go through the tile sampling stage. Thus, the entrance to convolutional architecture
is a WSI with 32:1 downsampling. This is an interesting feature of networks composed only
of convolutional layers, which allow the use of images of any dimension without affecting the
inference. In Table 16, we present the percentages and indices obtained for the metrics in the

test set. In Figure 58, we present the ROC curve for the ROI Detection Module.

Table 16 — Results for the performance metrics in the test set for the ROI Detection Module.
IoU  Accuracy Sensitivity Specificity F1-Score AUC
93.43%  91.27% 90.77% 94.03% 84.17%  0.93

Source: Elaborated by the author.
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Figure 57 — Graphs for loss and metrics for each epoch. (A) Loss over epochs; (B) Metrics over
epochs for the training set; (C) Metrics over epochs for the validation set.
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Figure 58 — The performance of mass segmentation in terms of ROC curves in test set for the
ROI Detection Module.
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6.2.3 Qualitative Evaluation

In this section, we present results for the segmentation of suspicious regions in WSI. In
Figures 59 and 60, the input WSI of the DeepBatch, the annotation of the pathologist, and the
annotation inferred by the computational architecture are presented. In the annotations, the
color black indicates a healthy tissue or the background. In contrast, the white color indicates a
suspicious region, which deserves attention in the next stages.

In Figure 59, we can see a relative similarity between the regions labeled by the pathologist
and those inferred by the convolutional architecture. In comparison with the pathologist’s
annotations, we can see the ability of convolutional architecture to separate background pixels
within suspect regions. Figure 60, on the other hand, presents an example with suspicious
areas that can be considered FP compared to the pathologist’s label. However, as this module
aims to serve as a filter for the next phase, this behavior is desired and will be treated in Cell

Segmentation Module.

6.3 Cell Segmentation Module

The size of the WSI reflects the amount of information present in these images. The
interaction of H&E dyes makes it possible to identify and evaluate even cell functional issues
(CHAN, 2014; MITTAL; SARASWAT, 2019). Thus, for the identification of neoplasic regions
in a WSI, detailed analysis at high magnifications is necessary. Therefore, in this section, we

present the performance of the convolutional architecture (Figure 37) in suspicious regions in
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Figure 59 — BACH case A03. (A) WSI input for inference. (B) Pathologist annotation. (C)
WSI with pathologist annotation highlighted. (D) Annotation produced by the ROI Detection
Module. (E) WSI with inferred annotation highlighted. In the annotations, the black color
indicates a healthy tissue or background. The white color indicates suspicious tissue.
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Figure 60 — TCGA case TCGA-A2-AOCZ. (A) WSI input for inference. (B) Pathologist
annotation. (C) WSI with pathologist annotation highlighted. (D) Annotation produced by
the ROI Detection Module. (E) WSI with inferred annotation highlighted. In the annotations,
the black color indicates a healthy tissue or background. The white color indicates suspicious

tissue.
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an magnification of 40x applying the methodology presented in Section 5.4.5 for multi
segmentation of WSI. The classes analyzed in this experiment are grouped into four groups:
healthy tissue and background, benign tissue, carcinoma in situ, and invasive carcinoma. In the
next subsections, we present quantitatively and qualitatively the results obtained for the Cell

Segmentation Module.

6.3.1 Training and Validation

For the segmentation of regions in high magnification, the convolutional architecture (Figure
37) was trained for 50 epochs in the selected dataset (Table 12). The weights for this architecture
were pre-trained for ImageNet set. The WSI were divided into tiles of 256 x 256 for the training
and validation sets, according to the methodology detailed in Section 5.4.4. For the training set,
we generated images on-the-fly, totaling 62, 476 images for each epoch. The validation set was
made up of 27, 275 images. In Figure 61, the results for the loss function are presented, and the
performance metrics for each epoch during training and validation.

The learning, according to the values for the loss in Figure 61 (A), in the convolutional
architecture, occurred more accentuated up to epoch 10. After, there was a relative stabilization
of the network with less significant variations. Significant variation also occurs for performance
metrics, especially for the training set (Figure 61 (B)). As for the performance metrics in the
validation set (Figure 61 (C)), we can see a significantly greater variation when compared to the

training set.

6.3.2 Evaluation

The evaluation of the convolutional architecture for the Cell Segmentation Module
occurred for the best set of weights obtained in the training phase based on the loss obtained in
the validation set. At this stage, we use a 20% data set selected for the Cell Segmentation
Module (Table 12). The selection of suspicious regions occurred according to the methodology
presented in Section 5.4.4. The difference at this stage for the methodology was the way in
which the images were sampled. The tiles were sampled from the WSI in sizes of
2048 x 2028, increasing CNN'’s visual field by 8 times for each inference. In Table 17, we
present the performance metrics obtained for the test set. In Figure 62, we present the ROC

curve for the Cell Segmentation Module.

Table 17 — Results for the performance metrics in the test set for the Cell Segmentation Module.
IoU  Accuracy Sensitivity Specificity F1-Score AUC
88.23%  96.10% 71.83% 96.19% 82.94%  0.86

Source: Elaborated by the author.
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Figure 61 — Graphs for loss and metrics for each epoch. (A) Loss over epochs; (B) Metrics over
epochs for the training set; (C) Metrics over epochs for the validation set.
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Figure 62 — The performance of mass segmentation in terms of ROC curves in test set for the
Cell Segmentation Module.
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6.3.3 Qualitative Evaluation

In this section, we present qualitative results for the multi-segmentation of WSI produced
in the Cell Segmentation Module. Two examples for segmentation are presented in Figures 63
and 64. In the figures, the black color indicates the background or healthy tissue. The blue
color indicates tissue with benign characteristics. The green color indicates the presence of

carcinoma in situ. The red color indicates the presence of invasive carcinoma.

In Figure 63 and 64, we can observe a relative similarity with the labels considered gold
standard. We can also highlight the ability of convolutional architecture to identify microscopic
regions (if compared to the size of WSI), as is the case of regions with carcinoma-in-situ (green
color) in Figure 63. However, unwanted behavior is presented by the convolutional architecture,

especially in Figure 63, classifying background regions of the WSI as benign areas.

In Figure 63, in the center of the golden standard image, we can see a region with in-situ
carcinoma (green color). The convolutional architecture demarcates this same region as being
of benign characteristics. This misclassification can indicate two things: (a) the area may be
mislabeled, and (b) it may be necessary to use more regions in-situ in the dataset for better
generalization. A viable solution would be to pre-train the encoder as a patch classifier using

other datasets. Then, use the weights to perform the segmentation of breast cancer WSI.

Another way to analyze the inferences produced by the convolutional architecture for the
Cell Segmentation Module is through heat maps. In Figures 65 and 66, we present the respective

heat maps for cases AO1 and AO3 of the BACH dataset. Heat maps can be useful in cases of
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Figure 63 — BACH case AO1. (A) WSI input for inference. (B) Pathologist annotation. (C) WSI
with pathologist annotation highlighted. (D) Annotation produced by the Cell Segmentation
Module. (E) WSI with inferred annotation highlighted. In the annotations, the black color
indicates healthy tissue or background, blue benign tissue, green in-situ carcinoma, red invasive
carcinoma.
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Figure 64 — BACH case A03. (A) WSI input for inference. (B) Pathologist annotation. (C) WSI
with pathologist annotation highlighted. (D) Annotation produced by the Cell Segmentation
Module. (E) WSI with inferred annotation highlighted. In the annotations, the black color
indicates healthy tissue or background, blue benign tissue, green in-situ carcinoma, red invasive
carcinoma.
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uncertainty. For example, situations can occur where a pixel group has very close probabilities
for two or more classes. With separate heat maps for each class, a pathologist can analyze the

region and confirm the diagnosis.

Figure 65 — Heat map for case AO1 from BACH.
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An important finding in our research occurred during an analysis of the multi-class
segmentation produced by the Cell Segmentation Module by a senior pathologist. This finding
refers specifically to a region present in case A03 of the BACH dataset. At the time, it was
pointed out the existence of an area with neoplastic characteristics at WSI. In the dataset, this
region was labeled as healthy tissue. The same was repeated in the analysis provided by the
Cell Segmentation Module. However, from the analysis of the heat maps locally, it was
possible to observe a higher probability of the pixels in that region characterizing an invasive
carcinoma. The area and the respective heat maps are shown in Figure 67.

The behavior shown in Figure 67 may indicate an essential contribution to this work. Even
with the lack of annotation by the pathologist, the convolutional architecture was able to
generate an activation for the suspect region. In addition to indicating the generalization
capacity of CNN, it can serve as a tool to detect difficult regions or as support in border cases.

Here it is also important to highlight that the region of the heatmap that presented an
activation for an invasive carcinoma corresponds to ~ 100 x 100 pixels. That is a small region
compared to an entire WSI. This same region in Figure 67 is presented here in a magnification
of 20x. Meanwhile, Figures 64 and 66 are presented in 1x magnification. Thus, the same

region that in Figure 67 corresponds to &~ 100 x 100 pixels, in Figures 64 and 66 corresponds
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Figure 66 — Heat map for case AO3 from BACH.

o WSI in H&E Heat map for benign regions

500

-
o
IS)
S

1500

height (pixels)

2000

Heat map for in situ regions

Heat map for invasive regi

height (pixels)

0 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500
width (pixels) width (pixels)

Source: Elaborated by the author.

3000 3500

Figure 67 — Heat map for a suspected region in the BACH case A03.
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to a region with =~ 5 x 5 pixels. Finally, this region demonstrates, in a practical way, the
challenge that is the histopathological analysis for a CNN.
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6.4 Discussion

In this section, we discuss and compare the DeepBatch with representative works from the
literature. A detailed discussion of the state of the art in the analysis of histopathological images

of breast cancer is presented in Chapter 3.

The DeepBatch aims to serve as a tool to assist the pathologist during the analysis and
diagnosis of breast cancer in WSI. The use of CNNs to support the pathologist’s routine has
been widely explored in the literature. Some works in the literature are based on data sets
based on sections of the WSI (SPANHOL et al., 2016a; HAN et al., 2017, GANDOMKAR;
BRENNAN; MELLO-THOMS, 2018b; MURTAZA et al., 2019; ROY et al., 2019). However,
these approaches suffer from the loss of contextual information and make it challenging to
apply in real environments. Still, we can find works that are dependent on the knowledge of the
problem on the part of the researcher, as they need to extract resources manually (ZHENG et
al., 2018; BEJINORDI et al., 2017b).

Strategies based on full analysis of WSI focus on binary classification or segmentation. As
direct processing of WSI is not yet possible in CNNs, sampling methods are used to identify
representative regions. The tiles can be chosen employing adaptive statistical sampling, such
as by the quasi-Monte Carlo method and classified into invasive carcinoma or non-invasive
areas (CRUZ-ROA et al., 2018). CNN-based approaches to tile sampling are proposed in the
literature. Gecer et al. (2018) proposes a cascade of CNNs at different levels of magnification
to identify regions of interest. However, the areas are based on view-ports obtained during the
analysis of WSI by a group of pathologists. Thus, there is no guarantee that the regions
observed during the study are consistent with suspicious areas and reflect a classification
accuracy of 55%. In Guo et al. (2019), a classification of tiles is presented in an enlargement of
40x using an InceptionV3 and subsequent segmentation using an FCN in healthy tissue and
regions with the presence of metastases. This approach provides segmentation for WSI with a

1/8 downsampling rate. The inference time for a WSI is approximately 11.5 minutes.

In contrast, our research aims to allow an inference of WSI based on characteristics
automatically extracted by a cascade of CNNs, without the need for manual intervention. As
for highlights, compared to the methodologies based on WSI sections (SPANHOL et al.,
2016a; HAN et al, 2017; GANDOMKAR; BRENNAN; MELLO-THOMS, 2018b;
MURTAZA et al., 2019; ROY et al., 2019), is the DeepBatch ability to analyze, during the
inference process, contextual information from the entire WSI. The detection of suspicious
regions is based on labels provided by pathologists and ensures higher sensitivity in the
detection of areas for local analysis. The use of a CNN for global analysis of WSI significantly
reduces the computational cost. And, it allows providing segmentation at the pixel level in four
classes: background or healthy tissue, benign tissue, in-situ carcinoma, and invasive

carcinoma. The inference time for each WSI is ~ 2 minutes.

A direct quantitative comparison with related works is difficult. Due to the use of private
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datasets, methodologies with different image cuts, selecting specific aspects of the datasets,
removing some images, and with different classification or segmentation objectives. In this

way, we organized in Table 18 a quantitative comparison with similar works.

Table 18 — Comparison of the DeepBatch model with the related works. Acc is the Accuracy,
Sen is the Sensitivity, Spe is Specificity, F1 is the F1-Score, and AUC is the area under the ROC
curve.
Study Goal Dataset IoU Acc Sen Spe F1 AUC
Guo et al. (2019) Pixel-level segmentation in normal Camelyonl6  80.69 - - - - 0.96
and metastases in WSI with a 1:8
downsampling

Roy et al. (2019) Classification of  histopathology BACH (A) - 87.00 90.00 91.48 89.85 -
images into normal, benign, in situ
and invasive carcinoma

Gecer et al. (2018) Classification of WSI into non- Private - 55.00 - - - -
proliferative or proliferative changes,
atypical ductal hyperplasia, ductal
carcinoma in situ, and invasive
carcinoma

Cruz-Roaet al. (2018)  Pixel-level segmentation in normal HASHI 76.00 - 87.00 92.00 - 0.90
and invasive carcinoma in WSI with
a 1:32 downsampling

Han et al. (2017) Classification ~ of  histopathology BreakHis - 94.70 - - - -
images into adenosis, fibroadenoma,
phyllodes tumor, tubular adenoma,
ductal carcinoma, lobular carcinoma,
mucinous carcinoma, and papillary
carcinoma

Bejnordi et al. (2017b)  Classification of  WSIs into Private - 81.30 - - - -
normal/benign, ductal carcinoma
in-situ, and invasive ductal carcinoma

Spanhol et al. (2016a)  Classification  of  histopathology BreakHis - 90.00 - - - -
images into benign, and malignant

DeepBatch model Pixel-level segmentation of WSI in BACH (B), 88.23 96.10 71.83 96.19 82.94 0.86
four classes:  background/normal, HASHI, and
benign, carcinoma in situ, and TCGA
invasive carcinoma.

Source: Elaborated by the author.

In Table 18, we can observe the high heterogeneity of the datasets used. This behavior is
reflected in the objectives of each study. For example, in the work of (GUO et al., 2019), an
analysis of WSI obtained from the sentinel lymph node is made. These WSI have different
characteristics from those of breast cancer. For example, the regions affected by cancer present
themselves in a well-defined way and with less variability. This characteristic can be decisive
to obtain better performance metrics when compared to our work, as in AUC.

The work of Roy et al. (2019), for example, aims to identify the same classes of our research

using the BACH dataset. However, there is a point that deserves attention when comparing our
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model to the method proposed by Roy et al. (2019). We need to be careful when comparing
this method with the DeepBatch due to the used subset of the BACH. The authors use the set
(A), which is composed of patches extracted from WSI with labels per image. Thus, it is not
possible to perform segmentation at the pixel level. Therefore, better behavior is expected for
the classification task.

When analyzing an image at the pixel level, it is possible to have inferior results to image
classification tasks. This problem is linked to the characteristics of CNNs, and the way that
annotation occurs. CNNs learn characteristics such as textures, colors, and formats by analyzing
not only the current pixel to define which class this pixel belongs. However, when the annotation
is not provided properly, respecting the limits of the regions or objects, for example, labeling a
background region as invasive carcinoma, CNN can classify the pixel as background. In fact,
CNN proved to be efficient in learning and generalization, but due to the characteristics of data
annotation, performance metrics can point to inferior performances. Therefore, the statistically
lower sensitivity achieved by the DeepBatch when compared to the golden standard may be
related to the annotations of the BACH dataset. That as pointed out in Figures 51 and 67 have
some inconsistencies.

Another point that deserves attention is the finding presented in Figure 67, which represents
a significant contribution from our research and reinforces the need for pixel-level studies for
breast cancer WSI. For example, comparing our model with methods in the literature that aims
at classifying WSI or sections of WSI, it would not be possible to inform the pathologist about
the possibility of atypical behavior in that region. Finally, it is essential to note that a model
or methodology cannot be evaluated only by a performance metric. Thus, we can see in Table
18 that our model has indexes comparable to the state of the art and even statistically higher,
as for the IoU. Therefore, based on quantitative and qualitative assessments, and in comparison
with the state of the art, we can consider that the DeepBatch is capable of providing a refined

segmentation comparable to the golden standard.
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7 CONCLUSION

This study began by investigating the different aspects of intelligent analysis of
histopathological images of breast cancer. To support our analysis, we define research
questions by delimiting our analysis based on them. To determine the most advanced studies,
we rank them by the number of citations and average citations per year. We define taxonomy
as a way to categorize studies based on the techniques used and their objectives. Having
established the taxonomy, we were able to understand relationships that are important to
understanding intelligent analysis of breast cancer in histopathological images. We identify
aspects of the challenges and concerns surrounding this area. Another contribution of the study
is the identification of public data sets of histopathological breast cancer images used by the
corpus. Regarding intelligent methods: We list the main method evaluation metrics and their
definitions; and the preprocessing, training, and machine learning techniques applied. Finally,

we identify the problems and point out directions for the development of future work.

The study of state of the art enabled the identification of challenges and open opportunities
that guided the development of the research. In this Master Thesis, we present a hybrid model
for the diagnosis of breast cancer in WSI. The DeepBatch provides the pathologist with an
interpretable diagnostic suggestion with a refined segmentation of pixel-level regions in WSI
at magnifications of 40 x. Also, we provide a set of heat maps that can assist in diagnosis in
border cases. A cascade of CNNs analyzes WSI to provide segmentation and heat maps. In the
DeepBatch, a global WSI inference is used to identify ROI to be investigated locally. The local
analysis of the WSI is performed in an magnification of 40 x with tiles of 2048 x 2048.

The analysis of histopathological images is commonly performed in WSI sections or
providing classifications at high magnifications. The main objective of this Master Thesis is to
show the feasibility of using DL to provide an interpretable and comparable diagnosis to the
golden standard. In this regard, this Master Thesis contributes to the advancement of literature
in two main ways.

The first contribution of this work is the proposal of a set of CNNs for segmentation at the
pixel level of the WSI. The convolutional architectures have been trained with various datasets.
This approach guarantees a better generalization in the identification of suspicious regions.
The results obtained for the evaluation metrics in the test sets confirm the effectiveness of the
CNNs, both for detecting suspicious areas and for refined multiclass segmentation. Also, the

assessment metrics are comparable to state of the art identified in the SLR.

As a second contribution, we propose an interpretable WSI analysis model focused on the
pathologist’s workflow. The methodology used by DeepBatch for inferences allows us to
provide precise segmentations. In this way, our method can improve the accuracy and
consistency in the WSI evaluation of breast cancer. Consequently, impacting an improvement
in prognosis for patients. Thus, with the approach proposed by the DeepBatch model, we
believe that the pathologist can adopt a CAD system with higher acceptability in his routine.
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Finally, we believe that our method can generalize and identify complex tissue patterns for
other types of cancer. Thus, although this Master Thesis has considered the WSI analysis of

breast cancer using DL, the methodology can be extended to different types of cancer.

7.1 Publications

As partial contributions throughout the research, several articles were produced for
publication in journals and events. The following are published articles and articles that have

been submitted for evaluation:

e Published articles:

— Zeiser, F. A., da Costa, C. A., Zonta, T., Marques, N. M., Roehe, A. V., Moreno,
M., da Rosa Righi, R. (2020). Segmentation of Masses on Mammograms Using
Data Augmentation and Deep Learning. Journal of Digital Imaging, 1-11.
doi:10.1007/s10278-020-00330-4

— Zeiser, F. A., da Costa, C. A., Ramos, G. O., Roehe, A. V., Bohn, H. C., Santos, I.,
da Rosa Righi, R., (2020). Analise Comparativa da Influéncia dos Espacos de
Cores na Segmentaciao Multi-Classe de Whole Slide Imaging do Cancer de
Mama Utilizando Deep Learning. XX Simpoésio Brasileiro de Computacio
Aplicada a Sadde (SBCAS), 1-12.

e Published abstract:

— Zeiser, F. A., Zonta, T., Costa, C. A., Marques, N. M. C., Roehe, A. V., Moreno, M.
(2019). Auxilio no Rastreamento de Massas em Mamografias Digitalizadas
Utilizando a Rede Neural Convolucional U-Net. Semindrio De Iniciacio
Cientifica E Seminério Integrado De Ensino, Pesquisa E Extensao - UNOESC.

e Submitted article:

— Zeiser, F. A., da Costa, C. A., Roehe, A. V., da Rosa Righi, R., Marques, N. M.,
(2020). Breast Cancer Intelligent Analysis of Histopathological Data: A

Systematic Review. Computer Methods and Programs in Biomedicine, 1-41.

7.2 Future Work

The DeepBatch presents several opportunities for extension and future work. To improve
the generalization of convolutional architectures, we can carry out training on ResNet-50 as a
patch-classifier for WSI. With this pre-trained network, weights can be used in the coding part
of the U-Net network. The use of pre-trained coders for similar problems can help to increase

some performance metrics, such as for sensitivity in the Cell Segmentation module.
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Regarding color spaces, we intend to study their use in a single convolutional architecture.
This use can increase the samples submitted to CNN and help generalize the model. With this
approach, we also hope to combine the benefits presented by each color space for the multi-class
segmentation of WSI.

Multimodal architectures present an interesting study potential. Thus, we can concentrate
research efforts on studying the impact of using the patient’s clinical history, or genetic
information, such as those present in the TCGA dataset. Similarly, the combination of
histopathological analysis with immunohistochemical analysis can contribute significantly to
accelerating the review of cases.

In order to provide a more interpretable diagnosis, we can combine semantic segmentation
architectures with image descriptors using Recurrent Neural Networks. These descriptors can
describe changes that are present and are considered by the pathologist in the analysis of WSI,
such as mitosis or pleomorphism presence. We see potential in the integration of our
methodology with datasets that have the pathologist’s report for this task. Furthermore, the
BreCaHAD dataset can also be used, as it has pixel-level labels for mitosis, apoptosis, tumor
nuclei, and among others.

It is important to note that we believe that our model is capable of presenting similar results
in the detection of other types of cancer in WSI. Also, we intend to study methods applied to
images collected by satellites, which have similarities in size and present the need to identify
small objects in the images. Still, we believe it is necessary to study how this model can adapt
to the pathologist’s routine. And so, look for ways and methods that can be adjusted to provide
better acceptability. Finally, it is necessary to verify the impact of CAD systems, such as

DeepBatch, on legal, moral, and ethical issues for the use of these methods in health care.
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