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Resumo

Esta tese apresenta uma investigagdo geofisica regional voltada a caracterizagdo estrutural da
crosta continental e das principais bacias sedimentares do sul do Brasil e do Uruguai, com base
na aplica¢do integrada do método magnetotelirico (MT) em modelos bidimensionais (2-D) e
tridimensionais (3-D). Os dados analisados foram adquiridos ao longo de trés campanhas (2012,
2019 e 2021), abrangendo os projetos Parana-Sul e Pelotas, totalizando dez perfis que
atravessam terrenos do embasamento pré-cambriano e as bacias do Parana, Camaqua e Pelotas.
A abordagem integrou a aquisi¢do, processamento, modelagem e inversdo de dados MT, com
posterior calibracdo a partir de dados geologicos e geofisicos complementares, incluindo pogos
estratigraficos, gravimetria, perfis sismicos e mapas estruturais atualizados. Os modelos de
resistividade obtidos permitiram identificar fei¢des crustais profundas, como zonas de
cisalhamento ductil, zonas de sutura e descontinuidades tectdnicas, incluindo as zonas de Ibaré,
Dorsal de Cangugu, Arroio Grande e o Lineamento Chui, além de limites de terrenos como o
Terreno Punta del Este—Jaguardo e o Batolito de Pelotas. O MT mostrou-se capaz de definir
essas estruturas em profundidade até aproximadamente 30 km. Os resultados revelam
significativa variagao lateral e vertical da resistividade elétrica, refletindo contrastes litologicos
e estruturais que delimitam blocos crustais, terrenos distintos e unidades sedimentares. A
aplicagdo do método MT demonstrou alta eficicia na definicdo da geometria do embasamento,
da espessura das bacias fanerozoicas e da Bacia do Camaqua, bem como na interpretagdo da
evolugado tectdnica regional associada a colagem do Cinturdo Dom Feliciano ao Craton Rio de
la Plata. A integracdao dos dados geologicos e geofisicos resultou em um modelo crustal mais
refinado e contribuiu para o avango do conhecimento sobre a arquitetura crustal profunda da

regido.



Abstract

This thesis presents a regional geophysical investigation aimed at characterizing the structural
architecture of the continental crust and the main sedimentary basins of southern Brazil and
Uruguay, based on the integrated application of the magnetotelluric (MT) method in two-
dimensional (2-D) and three-dimensional (3-D) models. The analyzed dataset was acquired
during three field campaigns (2012, 2019, and 2021), covering the Parand-Sul and Pelotas
projects and comprising ten MT profiles that cross Precambrian basement terrains and the
Paranid, Camaqud, and Pelotas basins. The workflow integrated MT data acquisition,
processing, modeling, and inversion, followed by calibration using complementary geological
and geophysical information, including stratigraphic wells, gravity data, seismic profiles, and
updated structural maps. The resulting resistivity models allowed the identification of deep
crustal features such as ductile shear zones, suture zones, and major tectonic discontinuities,
including the Ibaré, Dorsal de Cangugu, and Arroio Grande zones, as well as the Chui
Lineament. Additional structural boundaries were resolved, such as the Punta del Este—Jaguarao
Terrane and the Pelotas Batholith. MT imaging proved capable of delineating these structures
to depths of approximately 30 km. The results reveal significant lateral and vertical variations
in electrical resistivity, reflecting lithological and structural contrasts that delineate crustal
blocks, distinct terranes, and sedimentary units. The application of MT demonstrated high
effectiveness in defining basement geometry, the thickness of the Phanerozoic basins and the
Camaquad Basin, and in interpreting the regional tectonic evolution associated with the
amalgamation of the Dom Feliciano Belt with the Rio de la Plata Craton. The integration of
geological and geophysical datasets resulted in a refined crustal model and contributed to

advancing the understanding of the deep crustal architecture of the regido.
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1. Introducio

A regido sul do Brasil e o nordeste do Uruguai constituem um dos setores mais
relevantes para o estudo da evolugdo crustal do Gondwana Ocidental. Nesse dominio, as
unidades do embasamento pré-cambriano, representadas principalmente pelo Cinturdo Dom
Feliciano (CDF) e pelo Craton Rio da Prata (CRP), registram uma longa e complexa historia
de acres¢do continental, colisdo, magmatismo e processos pds-orogénicos que moldaram a
arquitetura geotectonica regional. Sobre esse embasamento desenvolveram-se sistemas
sedimentares de diferentes idades e contextos tectdnicos, incluindo a Bacia do Camaqua
(Neoproterozoico—Eocambriano), a Bacia do Parand (Paleozoico—-Mesozoico) e as bacias
fanerozoicas de Pelotas e Laguna Merin, associadas a abertura do Atlantico Sul.

Apesar da ampla literatura geologica existente, diversos aspectos da estrutura crustal
profunda dessa regido permanecem pouco esclarecidos. Entre os desafios destacam-se a
identificagdo da continuidade em subsuperficie das principais estruturas tectonicas mapeadas
em superficie, a delimitacdo de fronteiras entre terrenos e a compreensdo da relagdo entre o
embasamento pré-cambriano e as sucessivas fases de sedimentagdo que originaram as bacias
sobrejacentes. Avangar nessas questdes requer o emprego de métodos geofisicos capazes de
imagear a crosta em profundidade, permitindo complementar e testar hipdteses estruturais
baseadas nas observacdes geoldgicas.

Nesse contexto, os métodos magnetotelirico (MT) e audio-magnetoteltirico (AMT)
destacam-se pela capacidade de investigar contrastes de resistividade elétrica em escalas
crustais e litosféricas. Como técnicas passivas baseadas em variagdes naturais dos campos
elétrico e magnético, os métodos MT/AMT possibilitam mapear estruturas profundas, tais como

zonas de sutura, zonas de cisalhamento, intrusdes maficas, limites entre terrenos e contatos
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bacia—embasamento. Sua aplicagdo no sul do Brasil e no Uruguay oferece uma oportunidade
singular para revelar a geometria interna das unidades tectonicas e sedimentares e para
compreender os processos geodindmicos que atuaram ao longo da evolugao regional.

Esta tese desenvolve uma investigagdo geofisica integrada fundamentada em dados
magnetoteluricos 2-D e 3-D adquiridos em trés campanhas de campo (2012, 2019 e 2021). Os
perfis levantados atravessam tanto o embasamento neoproterozoico quanto as principais bacias
sedimentares, permitindo uma andalise comparativa entre dominios com historias tectonicas
distintas. A modelagem e a inversdo dos dados, combinadas a informagdes geoldgicas e
geofisicas complementares, como pogos estratigraficos, dados gravimétricos, perfis sismicos e
mapas estruturais que possibilitam caracterizar a distribui¢do lateral e vertical da resistividade
e identificar fei¢des crustais que ndo sdo acessiveis apenas por observacdes de superficie.

Ao integrar dados geoldgicos e magnetoteluricos, esta pesquisa contribui para a
construcdo de um modelo crustal mais robusto para o sul do Brasil e o nordeste do Uruguai,
aprimorando o entendimento das relagdes entre os terrenos do embasamento, as estruturas
tectonicas profundas e a evolugdo das principais bacias sedimentares da regido. Os resultados
oferecem novas perspectivas sobre a arquitetura do Cinturdo Dom Feliciano, sobre os limites
do Craton Rio de la Plata e sobre a interagao entre a tectonica pré-cambriana e os processos que
moldaram as bacias paleozoicas, mesozoicas e fanerozoicas vinculadas a abertura do Atlantico

Sul.

2. Hipotese

A hipotese central desta pesquisa ¢ que as principais estruturas tectonicas do Cinturdo

Dom Feliciano e dominios adjacentes apresentam continuidade crustal até aproximadamente

Pg. 2
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30 km de profundidade, e que tal continuidade pode ser identificada e caracterizada por meio
das variacdes de resistividade reveladas pelos modelos magnetoteluricos 2-D e 3-D.
Postula-se que a distribuigdo geoelétrica da crosta na regido sul do Brasil e nordeste do
Uruguai reflita fielmente o arcabougo tectonico neoproterozoico, de modo que:
zonas de sutura, zonas de cisalhamento e descontinuidades crustais sejam reconheciveis como
condutores ou resistores de geometria coerente em profundidade;
os limites entre terrenos neoproterozoicos do Cinturdo Dom Feliciano e do Craton Rio de la
Plata manifestem contrastes geoelétricos suficientemente distintos para permitir sua
delimitagdo em subsuperficie;
as assinaturas elétricas das bacias do Camaqua, Parand e Pelotas possibilitem definir sua
espessura, geometrias internas e o contato bacia—embasamento.
Assim, considera-se que o imageamento elétrico da crosta, com resolugdo confiavel até
cerca de 30 km, permitira testar a hipotese de que a arquitetura profunda preserva a heranga
estrutural neoproterozoica que controla a distribui¢ao atual dos dominios crustais e a evolugao

das principais bacias sedimentares da regido.

3. Objetivos
Objetivo geral
Investigar a estrutura crustal do sul do Brasil e do nordeste do Uruguai por meio da
aplicacdo integrada do método magnetoteltirico (MT) em modelos 2-D e 3-D, visando
caracterizar a continuidade em profundidade das principais estruturas tectonicas e delimiter a

geometria do embasamento e das bacias sedimentares regionais.

Objetivos especificos

pg. 3
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Identificar e caracterizar fei¢des estruturais profundas da crosta continental, incluindo
zonas de sutura, zonas de cisalhamento, descontinuidades crustais e limites entre terrenos
neoproterozoicos.

Delimitar a espessura e a geometria interna das bacias do Camaqua, Parana e Pelotas,
reconhecendo contrastes de resistividade que permitam definir o contato bacia—embasamento e
variagoes laterais de facies ou de preenchimento sedimentar.

Integrar dados magnetoteluricos de diferentes campanhas (2012, 2019 e 2021) para
gerar modelos regionais 2-D e 3-D consistentes, utilizando inversdes que permitam avaliar a
distribuigdo lateral e vertical da resistividade até profundidades crustais.

Calibrar os modelos MT com informagdes geoldgicas e geofisicas complementares,
incluindo pocos estratigraficos, dados gravimétricos, perfis sismicos e mapas estruturais
atualizados.

Avaliar o comportamento reologico e a heterogeneidade dos terrenos do Escudo
Uruguaio—Sul-Rio-Grandense, relacionando zonas condutivas e resistivas a processos
tectonicos, metamorficos € magmaticos.

Estimar a profundidade do embasamento e dos limites de terrenos, bem como identificar

estruturas profundas que influenciam a evolugdo tectonica e sedimentar regional.

4. Estado da Arte

O estudo da evolucao tectonica do Cinturdo Dom Feliciano (CDF) e de suas bacias

associadas tem avancgado significativamente nas ultimas décadas, impulsionado pela integragao

de dados de geologia estrutural, geocronologia, geofisica e geoquimica. Os primeiros modelos

pg. 4



98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

regionais destacaram o papel de zonas de cisalhamento neoproterozoicas e de arcos magmaticos
na consolidacdo do Gondwana Ocidental (Fragoso-Cesar, 1991; Basei et al., 2000; Hasui et al.,
1975; De Almeida et al., 1981). A compartimentagdo em terrenos ¢ dominios, bem como a
redefinicdo de limites e suturas, foi estabelecida por estudos classicos de mapeamento e sintese
regional (Bossi; Campal, 1992; Preciozzi et al., 1985; Oyhantcabal et al., 2011; Hartmann et
al., 2007).

Investigacdes geofisicas pioneiras e estudos integrados subsequentes demonstraram o
forte controle exercido pelo embasamento pré-cambriano sobre a nucleagdo e reativacdo de
falhas, assim como sobre a formag¢do e a compartimentagdo das bacias sedimentares (Costa et
al.,2007; Dragone et al., 2017; Philipp et al., 2016; Teixeira et al., 2025). Aplicagdes do método
magnetotelurico na regido permitiram delinear condutores crustais profundos e limites entre
terrenos, relacionando anomalias condutivas a presenga de grafita, sulfetos e fluidos associados
as zonas de sutura e falhas crustais (Bologna et al., 2019; De Lugao et al., 2020; Menezes et al.,
2021).

Em contextos internacionais, estudos 3-D de MT tém desempenhado papel fundamental
na caracterizagdo de cinturdes moveis e margens continentais. Na Solonker Suture Zone, na
Mongolia Interior, foram identificados condutores crustais profundos associados a suturas
paleozoicas tardias (Ye et al, 2019). No foredeep proterozoico da Western Canadian
Sedimentary Basin, condutores subverticais foram interpretados como zonas de sutura
preservadas em profundidade (Boerner et al., 1995). Em cinturdes moveis analogos ao CDF,
como o Cinturdo Damara, na Namibia, inversdes MT 3-D revelaram condutores crustais que
marcam as principais suturas (Ritter et al., 2003). Em margens vulcanicas passivas, como na

Walvis Ridge, dados MT 3-D integrados a outros métodos geofisicos tém elucidado processos

Pg- 5



121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

de rifteamento, underplating e influéncia de estruturas herdadas (Jegen et al., 2016; Platz et al.,
2022).

Esses estudos internacionais fornecem referenciais importantes para a comparagao com
os resultados obtidos no sudoeste de Gondwana, destacando a relevancia de modelos
magnetoteluricos regionais para a compreensdo da arquitetura crustal, das suturas profundas,

dos limites entre terrenos ¢ da evolugao das bacias sedimentares.

5. Area de Estudo

A area de estudo situa-se no estado do Rio Grande do Sul e parte do Uruguai. Os perfis MT
cruzam o embasamento exposto do batdlito de Pelotas e o Terreno Tijucas e as bacias do
Camaqua, Parana e Pelotas que cobrem este embasamento (Figura 1). De oeste para leste, as
principais unidades tectonicas sdo o Terreno Tijucas e o Batdlito de Pelotas (CHEMALE Jr.,
2000) que sao separados pelas Zonas de Cisalhamento ductil Dorsal de Cangugu e Zonas de

cisalhamento raptil Passo do Marinheiro (HARTMANN et al., 2007).
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Figura 1: Contexto geoldgico e localizacdo dos perfis magnetoteluricos (MT) na regido sul do
Brasil e nordeste do Uruguai. O mapa apresenta os principais terrenos e unidades tectonicas do
Cinturdao Dom Feliciano e dominios adjacentes, incluindo o Terreno Punta del Este—Jaguarao,
o Batolito Aguia—Pelotas—Florian(’)polis, o Bloco Encruzilhada do Sul, o Terreno Juvenil Sdo
Gabriel, a Suprassequéncia Tijucas, além dos dominios retrabalhados e preservados do Craton
Rio da Prata. As unidades geoldgicas foram compiladas e simplificadas a partir de Bizzi et al.
(2003), Philipp et al. (2016), Basei et al. (2018), Borges et al. (2019), Morales et al. (2020) e
Menezes et al. (2021). Estruturas numeradas: (1) Cerro Amaro-Arroio Grande; (2) Major
Gercino—Dorsal de Cangucu; (3) Passo dos Marinheiros; (4) Cagapava do Sul; (5) Segredo; (6)
Ibaré; (7) Rivera; (8) Sarandi del Yi.
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6. Método magnetotelirico (MT)

O método magnetotelirico (MT) e sua vareiante audio-magnetotelurico (AMT) sdo
técnicas eletromagnéticas passiva utilizada para investigar a estrutura elétrica da subsuperficie
por meio das variagdes naturais dos campos elétrico e magnético, conceito originalmente
formulado por Tikhonov (1950) e posteriormente ampliado por Cagniard (1953). A
consolida¢do tedrica e aplicada do método foi desenvolvida em trabalhos cldssicos, como os de
Vozoff (1972), Simpson e Bahr (2005) e Chave e Jones (2012).

As fontes naturais que geram o sinal MT abrangem um amplo espectro de frequéncias.
Em altas frequéncias, entre cerca de 10.000 Hz e 1 Hz, predominam as descargas atmosféricas
(Schmucker, 1970; Vozoff, 1972). Em baixas frequéncias (abaixo de 1 Hz), o sinal é controlado
por variagdes do campo geomagnético induzidas por interacdes solares e magnetosféricas

(Campbell, 2003). Essa ampla faixa espectral possibilita investigar desde estruturas rasas até

niveis crustais de dezenas de quiléometros de profundidade.

Figura 2: A) Tempestades elétricas, fonte de sinal, para o AMT acima de 1 Hz. Fonte:

www.zonge.com B) Interagdo entre o vento solar e a ionosfera, fonte de sinal para o MT, abaixo

de 1Hz. Fonte: www.nasa.gov
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O método magnetotelurico € descrito pelas equagdes de Maxwell, que representam a
propaga¢do de ondas eletromagnéticas e foram unificadas por Maxwell em 1865. Essas

equacoes sdo:

0B

VxE=-2 (1.1)
VxH=]+2 (1.2)
V-D=p, (1.3)
V-B=0 (1.4)

Onde:

E ¢ o campo elétrico (V/m),

B ¢ o fluxo de inducdo magnética (tesla, T),
H ¢é o campo magnético (A/m),

D ¢ o deslocamento elétrico (C/m?),

J ¢ a densidade de corrente (A/m?),
pe ¢ a densidade de carga elétrica (C/m?).

A equagdo (1.1) diz respeito a Lei de Faraday, no qual se refere a variagdo temporal do
campo magnético que produz oscilagdes em campo elétrico através de um circuito fechado. A
equacao (1.2) mostra que um campo magnético através de um circuito fechado € produzido pela
soma vetorial de correntes elétricas e da variacdo temporal dos campos elétricos. A equagao
(1.3) corresponde a Lei de Gauss para o campo elétrico, que mostra que o fluxo de corrente
dentro de uma superficie fechada (superficie gaussiana) ¢ proporcional a carga contida dentro
dela. A equacdo (1.4) é a Lei de Gauss para o magnetismo, mostra que o fluxo de campo
magnético dentro de uma superficie fechada ¢ igual a zero, ou seja, ndo existe monopolos

magnéticos. (CHAVES et al., 2012, MENEZES, 2003).
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As seguintes equagdes constitutivas relacionam as equagdes de Maxwell aos parametros

fisicos das rochas:

D =¢E
B = pH
] = oE (1.5)

Onde:

€ ¢ a permissividade elétrica (Farad/m, F/m),

u ¢ a permeabilidade magnética (Henry/metro. H/m)

o ¢ a condutividade elétrica (siemens/metro, S/m). (Menezes, 2003).

O inverso da condutividade elétrica ¢ definido como resistividade elétrica p.

Para a crosta terrestre L = o € € = &g, onde o € a permeabilidade magnética em um
espago livre e possui o valor calculado de 1,2566 x 10°°H/m € &, € a permissividade elétrica em
um espago-livre e corresponde a 8,85 x 10712 F/m. Os elementos &, i € 6 $30 eXpressos como
tensores em meios anisotropicos e podem variar no tempo (Menezes, 2003).

Assumindo campos harménicos no tempo do tipo e’®%, tal que E = E,,,e"“'e H =

H,y, e'", onde o ¢ a frequéncia angular, as derivadas temporais podem ser expressas no

dominio da frequéncia como:

== o (1.6)

Substituindo a equagdo (1.6) nas equagdes de Maxwell (1.1) e (1.2) obtemos:

VXE=— iwH (1.7)

V XH = oE + iweE (1.8)
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Na equagao (1.8) o primeiro termo do lado direito representa as correntes de conducao
e o segundo termo representa as correntes de deslocamento. A razdo entre os dois tipos de

corrente ¢ dada por;

lwf _ fwe (1.9)

oE o

Para o intervalo de frequéncias do método MT de 1000 a 0,0001 Hz e as condutividades
encontradas nos meios estudados estdo de 0.1 a 10000 ohm.m as correntes de deslocamento
tornam despreziveis para o meio, pois,

liweE| = |oE| (1.10)

Desse modo a equagdo (1.8) reduz-se a:

V XH = oE. (1.11)

Para um meio condutor uniforme, a profundidade pode ser descrita pela relagao do “Skin
Depth”, que descreve o decaimento exponencial dos campos eletromagnéticos e sua difusdo em

um meio.

O Skin depth ¢ representado em metros pela equagdo (1.12).

5(F) = 500  Jpu/f (1.12)

Onde p. ¢ a resistividade aparente e f ¢ a frequéncia.
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Para o modelo de Terra unidimensional, ou seja, cuja variagdo ocorre apenas em uma
dire¢ao.

Considerando um campo E= (Ex, 0,0) e H (0, Hy,0), portanto:

OEy

2 = — iwpoH,, (1.13)

A razdo E/H ¢ denominada impedancia Z (expressa em ohm no SI). Para cada frequéncia

tem-se:

2
1 Ex 1
Pxy = = <_) == nyny (1.14)

Z ¢ um tensor que relaciona os campos elétricos e magnéticos (E = ZH ).
Para o0 modelo de Terra 1D um meio-espaco com n camadas dentro de cada n temos
uma equacao de difusdo contendo condutividade c,. A solugdo para as equagdes (1.7) e (1.8)

sdo descritas a seguir (Simpson, 2005).

Exn(Qnr a)) = Elneiw_qnz + EZneiw+an =

(G, w)e™ ™% + by (qy, w)e*in? (1.15)
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Onde q,, fun¢do transferéncia inversa para um modelo de meio espago homogéneo em
relacdo a condutividade, n ¢ a enésima camada. Da mesma forma a equagdo (1.16) descreve o

campo magnético dentro da enésima camada.

Byn(@n, @) = 21 a3 (qn, 0)e™ % = by (qp, w)e 7] (1.16)

Uma hipotética sondagem MT penetrando na enésima camada pode medir Exn e Byn.
Isso permitiria a seguinte funcao de transferéncia a ser calculada:
Exn (z)

= ——eq,= Vipgo,w (1.17)

n iwByn

Substituindo as equagdes (1.15) e (1.16) na equagdo (1.17) podemos expressar derivadas
para a funcao de transferéncia C,(Z,, — 1) e C,(Z,) no topo e na parte inferior de uma camada

n, respectivamente.

Para o topo de uma camada obtém-se:

anpe~In?n-14 p,etinZn-1

C,(Z,—1) = P PR ———— (1.18)
Para a parte inferior da camada n:
anpe~In?n4 ppetdnzn
CalZn) = oy an (1.19)
A resistividade aparente para uma terra 1D ¢ :
pa(@) = [C (0)Ptow (1.20)
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E a fase da impedancia ¢ definida por:
@,_p = tan 1 Ex/By (1.21)
Para que possamos fazer uma analise 2-D, os dados sdo rotacionados para um “strike”
escolhido para maximizar a bidimensionalidade do modelo (Figura 3):

Modo TE: Zxy (e) = Ex/Hy

Modo TM: Zyx (e) = Ey/Hx

X = local azimuth

>y

0, (<< 0oy)

Figura 3: Defini¢do vetorial do “strike” regional em relag@o ao sistema de coordenadas local,
LEZAETA e HAAK, (2003). O modelo esquemadtico ilustra um corpo anisotrépico com

condutividade o1, muito superior & condutividade transversal 2 (62 < o1). O angulo 6f
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representa a diferenca entre o azimute local (x”) e a dire¢@o de strike regional (x), enquanto os

eixos y’ e z’ correspondem, respectivamente, a dire¢do perpendicular ao strike e a profundidade.

Considerando lateralmente uma terra (2-D), os valores de resistividade ndo apenas
variam em profundidade como no caso de um modelo de Terra unidimensional 1-D, mas variam
em duas direcdes. Isto ocorre na maioria das estruturas geologicas em subperficie, SIMPSON,
(2005).

Uma estrutura pode ser considerada 2-D quando sua extensdo em uma determinada
direcdo ¢ maior que o “skin depth” do campo preferencial sendo esta direcdo chamada de
direcdo de “strike”. Considerando a dire¢do x a direcdo de “strike” (resistividade invariante),
entdo 6= o(y,z).

A solugdo para uma terra 2-D consiste em encontrar solu¢des nas equagdes de Maxwell
para a distribuicdo de condutividade invariante na direcao X.

Os campos eletromagnéticos se decompdem em dois modos diferentes de propagacao
de onda, denominados modos TE (transversal eléctrico) e TM (transversal magnético). No
modo TE o campo elétrico E possui componente somente na dire¢do x (Ex, 0, 0) e o campo
magnético H associado tenha as componentes na direcao y e z (Hy, 0, Hz).

Para o modo TM o campo elétrico E possui componentes na dire¢do y e z (0, Ey, Ez), e
o campo magnético H somente na dire¢do x (Hx, 0, 0). Como o ar ¢ um resistor perfeito, a
componente Ez ndo ¢ medida em projetos de aquisi¢do terrestre.

A equacdo (1.6) pode ser reescrita da seguinte forma:

VXE=—u Z—f (1.20)
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Substituindo a equagdo acima na reduzida com o rotacional, obtemos:

V2E — iwpcE =0 (1.21)

Supondo que a onda que incide na superficie terrestre ¢ uma onda plana ¢ possivel

desprezar as derivadas em relagdo a x e y, temos entdo:

0%Ey

2 —
52 TKEy=10 (1.22)
0%Ex 2 _
5 THEx=10 (1.23)

Onde a constante k? = iwy, das equagdes acima obtemos:

JEy

iwpHx = 2= (1.25)

A solucdo das equagdes acima para um campo harmonico com dependéncia temporal:

E(z) = Ae™ + Bek? (1.26)

No caso de um modelo 2-D formado por n camadas, cada camada possui uma
condutividade on\sigma non e uma espessura propria. Como consequéncia, a solucdo das
equagoes de Maxwell deve ser obtida camada por camada, resultando em expressdes especificas

para os campos elétrico e magnético dentro de cada intervalo estratigrafico.
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A solugdo geral para o campo elétrico Ex(z) em uma camada de condutividade g,,¢ dada por
uma combinag¢ao linear de duas ondas:

e uma onda que se atenua com a profundidade, e

e uma onda que cresce com a profundidade.

Matematicamente, essa solucdo & expressa por:

E” (z) = Aye™*n* + B,efn? (1.27)
Onde:
A, e B, sdo constantes determinadas pelas condi¢des de contorno entre as camadas,
k, = \/iwu, 0, € o numero de onda complexo associado a difusdo eletromagnética na enésima

camada.

A partir da relacdo entre os campos elétrico e magnético, obtida anteriormente nas

equacdes (1.24) e (1.25), podemos derivar a expressao para o campo magnético correspondente:

n _k_ﬂ. _ —kn kn
H™ (2) = & (—Ae™*n + Bekn?) (1.28)

Essa solucdo mostra que o campo magnético esta diretamente relacionado ao gradiente
vertical do campo elétrico. Assim como no caso de Ex o campo magnético também se expressa
como combina¢do de ondas ascendentes e descendentes.

Para determinar a impedancia da enésima camada, utiliza-se a razao entre os campos
elétrico e magnético (equacdo 1.17), avaliados nos limites superior e inferior da camada
(equacgdes 1.18 e 1.19). A divisdo dessas expressdes resulta na impedancia MT para o modo

T™M:
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iwo  (Ape~knZ 4B, eiknz)
kn (—Ape~iknZ 4B eiknz)

Z"y(2) = (1.29)

Essa impedancia descreve o comportamento elétrico da enésima camada e ¢ usada como
condi¢ao de contorno para calcular os valores das camadas adjacentes. A impedancia se propaga
recursivamente de baixo para cima, de forma semelhante ao método de Herglotz—Wiechert
usado na sismologia.

Assim, o modelo 2-D permite resolver o campo eletromagnético em cada camada a partir:
1. das solucdes gerais Ee H,
2. das condigdes de contorno entre as interfaces,
3. e daimpedancia calculada para cada camada.
Quando se passa de um modelo 2-D para um modelo 3-D, a situagdo se torna mais

complexa. Nesse caso, a resistividade pode variar em todas as diregdes:

p=pxyz)

Como consequéncia:
nenhum elemento do tensor de impedancia Z ¢ nulo;
os modos TE e TM deixam de existir separadamente;

os quatro elementos Z,,, Z

xy> Zyy Passam a ser independentes.

Isso significa que um modelo 3-D exige inversdo numérica completa e ndo admite solugdes

analiticas simples como as equacgdes (1.27), (1.29).

pg. 18



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

6.1.Aquisicao, Processamento e Modelagem 2-D e 3-D

A aquisi¢do dos dados magnetoteluricos (MT) e audio-magnetoteliricos (AMT) foi
realizada ao longo de trés campanhas de campo (2012, 2019 e 2021) abrangendo perfis que
cruzam unidades do embasamento pré-cambriano e as bacias do Parana, Camaqua e Pelotas.
As medigdes foram executadas com sensores eletromagnéticos de banda larga, capazes de
registrar variagdes naturais dos campos elétrico e magnético em um amplo espectro de
frequéncias.

O método MT utiliza como fonte de sinal as variagdes naturais do campo geomagnético
e descargas atmosféricas, permitindo investigar estruturas desde niveis rasos até profundidades
crustais significativas (Tikhonov, 1950; Cagniard, 1953; Vozoff, 1972). Para frequéncias mais
altas tipicamente entre 10 kHz e 1 Hz o sinal ¢ dominado por descargas elétricas atmosféricas,
enquanto as frequéncias mais baixas, entre 1 Hz e 0,00034 Hz, sdo geradas por variagdes
magnetosféricas controladas pela interacao do vento solar com o campo geomagnético terrestre
(Schmucker, 1970; Campbell, 2003).

Em cada estagdo MT/AMT foram instalados eletrodos ndo polarizaveis ao longo de duas
dire¢des ortogonais (Ex e Ey) e magnetometros de indugdo posicionados nas direcdes Hx, Hy
e Hz. O arranjo em cinco componentes permite estimar o tensor de impedancia e as func¢des de
transferéncia que relacionam os campos elétricos e magnéticos (Egbert; Booker, 1986; Chave;
Jones, 2012).

A duragdo das aquisi¢des variou conforme o perfil e o tipo de alvo geologico. Nas
estagdes AMT, priorizou-se a aquisi¢cdo em altas frequéncias para imageamento das por¢des

rasas e intermedidrias da crosta. Nas estagdes MT de banda larga, o registro prolongado das
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frequéncias baixas assegurou a amostragem adequada das contribuicdes geomagnéticas,
permitindo alcancar profundidades de investigag¢ao de até ~30 km.

Os dados adquiridos foram previamente avaliados por inspecdo de séries temporais, analise
espectral e verificagdo de coeréncia entre componentes, assegurando a eliminacgio de trechos
contaminados por ruido cultural (Egbert, 1997). Posteriormente, foi aplicado o processamento
robusto de estimativa do tensor de impedancia, garantindo maior estabilidade na presenca de
ruidos ndo gaussianos ou eventos transientes.

A distribuicao espacial das estacdes, adaptada as caracteristicas estruturais das areas estudadas,
possibilitou a imagem detalhada da geometria do embasamento, zonas de falhas profundas,
limites de terrenos e controle estrutural nas bacias sedimentares. Essa etapa de campo constitui

a base indispensavel para as inversdes 2-D e 3-D apresentadas nas se¢des seguintes.

I Q°
Hy | Hz true or

—— S ()° - magnetic

\ | / north
TU/MTU-A

A

3 — — — -90°

|
I 0°
|
\ |Hx
| \
\J

Figura 4: Arranjo padrdo de aquisicdo utilizado em levantamentos magnetoteltricos com o

sistema Phoenix MTU/MTU-A (PHOENIX GEOPHYSICS MANUAL, 2010). Os dipolos

Ey dipole

Ex dipole

elétricos Ex e Ey sdo instalados em dire¢des ortogonais, alinhados aos eixos norte—sul e leste—

oeste. As componentes do campo magnético sdo registradas por bobinas indutivas posicionadas
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432 ao longo dos eixos Hx (0°), Hy (90°) e Hz (vertical). A orientagdo do conjunto segue o norte
433  verdadeiro ou magnético, conforme o protocolo de aquisicao.

434

435

436  Figura 5: Etapas de instalacdo de uma estagdo magnetoteltirica (MT) em campo. a)
437  Nivelamento e alinhamento das bobinas indutivas horizontais responsaveis pelas componentes
438  Hx e Hy. b) Montagem e nivelamento da bobina vertical Hz. ¢) Preparacdo e instalacdo de
439  eletrodos ndo polarizaveis, utilizando solucdo salina para otimizar o acoplamento elétrico com
440  osolo. d) Esquema ilustrativo indicando a profundidade e o posicionamento recomendados para
441  os eletrodos em subsuperficie. €) Receptor MTU-5A com todos os canais configurados,
442  integrando sensores magnéticos e dipolos elétricos (adaptado de Lugao, P. P., 2019).

443
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A Figura 5 apresenta as principais etapas de montagem de uma estagdo magnetoteltrica
(MT) em campo. Inicialmente, realizam-se o nivelamento e o alinhamento das bobinas
indutivas horizontais, responsaveis pela medicdo das componentes Hx e Hy do campo
magnético. Em seguida, procede-se a instalagdo e ao nivelamento da bobina vertical, destinada
a medicdo da componente Hz. O posicionamento correto dos sensores magnéticos ¢
fundamental para minimizar ruidos, maximizar o acoplamento com o campo geomagnético
local e garantir que a orientacdo siga o norte verdadeiro ou norte magnético, conforme
especificado no protocolo operacional do equipamento.

Na etapa seguinte, sdo preparados os eletrodos ndo polarizaveis, que atuam na medigao
das componentes do campo elétrico (Ex e Ey). Esses eletrodos sdo enterrados apds serem
imersos em uma solucdo de dgua com sal, assegurando bom acoplamento elétrico com o solo e
reduzindo o efeito de polarizacdo. A figura também apresenta um esquema ilustrativo indicando
a profundidade ideal de enterramento e o espacamento recomendado entre os eletrodos, pontos
cruciais para evitar ruidos induzidos por heterogeneidades superficiais.

Por fim, a figura mostra o receptor MTU-5A, com todos os canais conectados: trés
canais magnéticos (Hx, Hy e Hz), dois canais elétricos (Ex e Ey) e o modulo GPS. O GPS
fornece sincroniza¢do temporal de alta precisdo, permitindo que a relagdo entre os campos
elétrico e magnético seja calculada adequadamente, como exigido pela estimativa do tensor de
impedancia.

Quatro sistemas completos de aquisicdo MT da empresa Phoenix Geophysics (Canada)
foram utilizados neste estudo, fornecidos pela Strataimage Consultoria LTDA. Cada sistema
inclui:
¢ bobinas indutoras para aquisicdio AMT/MT,

e cletrodos ndo polarizaveis,
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e um receptor MTU-5,
e cabos e acessorios de conexao,
e ¢ um GPS integrado, que atualiza a hora em tempo real, assegurando sincronizagdo com 0s
sinais do campo geomagnético e das descargas atmosféricas.
O conjunto completo permite registrar simultaneamente as cinco componentes do sinal
eletromagnético (Ex, E,, Hx, Hy, Hz), garantindo a obten¢do das fun¢des de transferéncia que

relacionam o campo elétrico ao campo magnético e que sdo posteriormente utilizadas para o

calculo da impedancia e para as inversodes 2-D e 3-D (Figuras 6 ¢ 7).

Figura 6: Conjunto de equipamentos magnetoteluricos (MT) da fabricante Phoenix Geophysics
utilizados nos levantamentos terrestres. A imagem mostra as principais partes do sistema:

bobinas indutivas (Hx, Hy e Hz) para aquisi¢ao das componentes do campo magnético, receptor
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MTU-5A, cabos magnéticos, eletrodos ndo polarizaveis para registro do campo elétrico, antena

GPS para sincronizag¢ao temporal.

AMTC-30 n
only 82.5 ¢
frequencie

MTC-50H n

MTC-50H r

Figura 7: Bobinas indutivas utilizadas na aquisicdo de dados magnetoteluricos terrestres. A
bobina superior corresponde ao sensor AMTC-30 (Audio-Magnetotelurico, AMT), com faixa
de resposta estendida a altas frequéncias. A bobina inferior corresponde ao sensor MTC-50H
(Magnetotelurico, MT), otimizado para baixas frequéncias e profundidades crustais. Ambos os

sensores sdo fabricados pela Phoenix Geophysics.

O equipamento MTU-5A utilizado na aquisicdo dos dados AMT e MT da Phoenix
Geophysics, trabalha com quatro bandas de frequéncia:
* 24000 Hz Banda TS2
* 2400 Hz Banda TS3
* 150 Hz Banda TS4

e 15 Hz Banda TS5

Os dados foram adquiridos no modo “single site”, ou seja, sem referéncia remota. Quando

necessario foi usada uma das estagdes mais distante com referéncia.

Quadro 1: Parametros de aquisi¢do utilizados.
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Parametros de Aquisi¢cao

Filtro (Rede elétrica) 60 Hz
Ganho Elétrico Baixo
Ganho Magnético Baixo
Filtro Passa Baixa 1 (Ilow)
Taxa de amostragem 60s

A qualidade dos dados foi monitorada em campo, sendo que quando necessario a aquisi¢cao
foi reiniciada alterando certos pardmetros, como, por exemplo, o dipolo elétrico, ou o tempo de

aquisicao, ampliando o mesmo (Figuras 8 € 9).

6.2.Processamento

O processamento dos dados magnetoteliricos (MT) e audio-magnetoteluricos (AMT) foi
realizado com os programas SSMT2000 e MTEditor, fornecidos pela Phoenix Geophysics.
Esses softwares sdo responsaveis pela conversdo, limpeza e estimativa das fungdes de
transferéncia, gerando as curvas de resistividade aparente, fase, tipper e demais parametros
utilizados nas etapas de modelagem e inversao 2-D e 3-D.

As séries temporais AMT foram processadas ainda em campo, logo apo6s a aquisi¢do,
permitindo verificar a qualidade dos cinco canais registrados (Ex, Ey, Hx, Hy, Hz) e identificar
possiveis erros de instalagdo ou falhas nos sensores. Esse controle imediato possibilitou
reiniciar a aquisi¢ao quando necessario, com ajustes no dipolo elétrico, no tempo de registro ou

nos parametros de ganho. (Figuras 8 e 9)
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Figura 8: Exemplo de dados brutos adquiridos em levantamento Audio-Magnetoteltrico
(AMT). A figura mostra as séries temporais das componentes dos campos elétricos (Ex, Ey) e
magnéticos (Hx, Hy, Hz), registradas em unidades digitais pelo sistema de aquisi¢do. Os sinais
apresentam variacdes naturais associadas a fontes eletromagnéticas, incluindo ruido cultural e

eventos impulsivos.
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Figura 9: Exemplo de dados brutos adquiridos em levantamento Magnetotelurico (MT). Sao
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apresentadas as séries temporais das componentes dos campos elétricos (Ex, Ey) e magnéticos
(Hx, Hy, Hz), registradas em periodos longos, evidenciando variagdes naturais de baixa
frequéncia associadas a processos ionosféricos e magnetosféricos, que posteriormente siao

processados para a estimagdo das fun¢des de impedancia MT.

Os dados MT, obtidos em periodos de aquisicdo mais longos, foram avaliados
diariamente para assegurar estabilidade nos sinais de baixa frequéncia associados a indugao
ionosférica e magnetosférica. A inspe¢do continua permitiu identificar ruido cultural e
eventuais flutuagdes instrumentais, garantindo consisténcia nas séries temporais utilizadas no
processamento.

Apoés a inspecdo visual, aplicou-se a Transformada Rapida de Fourier (FFT) para
converter os sinais para o dominio da frequéncia. Nessa etapa foram calculadas as poténcias
cruzadas (cross-powers), que expressam o grau de correlagdo entre os campos elétricos e
magnéticos, fornecendo informagdes essenciais para estimar o tensor de impedancia e avaliar a
qualidade dos dados.

Com os sinais transformados, foi realizada a estimativa do tensor de impedéancia para as
polarizagdes XY e YX, seguida do célculo das curvas de resistividade aparente e fase (Figura
10). Também foram obtidos parametros auxiliares, como tipper, coeréncia, skew e vetores de

indugdo, que permitem avaliar a dimensionalidade do meio (1-D, 2-D ou 3-D).
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dados processados, o painel superior apresenta as curvas de

resistividade aparente em fun¢do da frequéncia (Hz), enquanto o painel inferior mostra as

respectivas fases. As curvas correspondem as diferentes polarizagdes do tensor de impedancia

(XY e YX) e seus ajustes de modelo, evidenciando a coeréncia entre resistividade e fase ao

longo do espectro de frequéncias analisado.As séries temporais foram organizadas por dia de

aquisi¢do para que se pudesse utilizar varias opgdes de processamento.

Os dados processados de cada estacdo foram disponibilizados no formato EDI

(Electronic Data Interchange),(Figura 11). que contém resistividade aparente, fase, coeréncia,

impedancia, tipper e vetores de indugdo. As curvas de calibragdo de cada sensor e bobina

também sdo fornecidas pelo fabricante, assegurando rastreabilidade instrumental.
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Figura 11: Exemplo de janela de edi¢do no software MTEditor para a estagdo BR101-13. Os
graficos a esquerda apresentam as curvas de resistividade aparente (acima) e fase (abaixo) em
funcio da frequéncia, para as polarizacdes XY e YX do tensor de impedancia. A direita sdo
exibidos os cross-powers correspondentes (magnitude e fase), utilizados na avaliagdo da

qualidade dos dados e na remog¢ao de valores espurios durante o processamento.

Os arquivos processados possuem diferentes extensdes conforme o tipo de aquisi¢ao:
AMT: . EMT e MMT
MT: MTH ¢ MTL
Esses arquivos foram posteriormente editados no software MTEditor, utilizando as
coeréncias e as poténcias cruzadas para remover valores espurios, suavizar as curvas e refinar

os resultados finais (Figura 12).
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Figura 12: Exemplos de janelas de edicdo no software de processamento MT mostrando as
curvas de resistividade aparente (painéis superiores) e fase (painéis inferiores) em fun¢do da
frequéncia. Os pontos em vermelho e azul representam os dados observados para as
polarizagdes XY e YX do tensor de impedancia, enquanto as linhas continuas correspondem as
curvas suavizadas aplicadas durante o processamento. Esse procedimento de suavizagdo
permite reduzir a dispersdao dos dados e melhorar a consisténcia entre resistividade e fase antes

da inversdo.

Apoés a etapa de edicdo, os dados foram exportados novamente em formato EDI,

permitindo sua utilizacdo nos softwares de pds-processamento e inversdo, como WingLink e

ModEM, empregados nas etapas seguintes desta tese.

6.3.Modelagem e Inversao

A inversdo de dados magnetoteltiricos consiste em um procedimento matematico que

busca obter um modelo da subsuperficie capaz de reproduzir os dados observados. Nesse
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processo, determina-se uma distribuicdo de resistividade elétrica p tal que os dados sintéticos
gerados pelo operador de modelagem direta F'se aproximem dos dados medidos:
d = F[p]

onde d ¢ o conjunto de dados observados e F ¢ o operador de modelagem direta (forward),
responsavel por gerar dados sintéticos a partir de um modelo inicial. O modelo da subsuperficie
¢ discretizado em células, e cada célula recebe um valor de resistividade, que ¢ atualizado a
cada iteracdo para reduzir a diferenga entre os dados calculados e os dados medidos.

Os dados MT, por sua natureza vetorial, permitem avaliar a dimensionalidade da
subsuperficie (1-D, 2-D ou 3-D) por meio da anélise dos parametros derivados do tensor de

impedancia, incluindo coeréncia, skew e vetores de inducao (ver Figura 12).

6.3.1. Inversao 2-D

A inversdo 2-D foi realizada utilizando resistividade aparente e fase de todas as estagdes
ao longo de cada perfil, aplicando o algoritmo de Rodi e Mackie (2001), baseado em
regularizagdo de Tikhonov e solu¢do pelo método dos gradientes conjugados. O problema
direto (modelagem) ¢ resolvido por diferencas finitas em uma malha 2-D, andloga ao
comportamento das equacdes de Maxwell.

A malha inicial ¢ gerada automaticamente a partir das localiza¢des das estagdes, € 0s
valores de resistividade sdo ajustados conforme as iteragdes reduzem o erro do ajuste modelo—
dados. Todos os perfis utilizados apresentaram dados de boa qualidade, compativeis com a
geologia regional e validados por informagdes de pocos da ANP ao longo das linhas (Figura

13).
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615 Figura 13: Exemplo da malha utilizada para inversdo 2-D magnetotelurica, gerada
616  automaticamente pelo software de processamento a partir dos dados de cada estacdo. A se¢do
617 mostra a discretizagdo da malha ao longo do perfil, com células coloridas representando a
618  distribuicdo inicial de resistividade elétrica (2 m). As cores variam de dominios mais
619  condutivos (vermelho—verde) a mais resistivos (azul-roxo), conforme a escala a direita. Na
620  parte superior sdo apresentados os locais das estacdes MT e as curvas de resposta dos dados
621  observados.

622

623 6.3.2. Inversao 3-D

624

625  Asinversdes 3-D foram realizadas no software ModEM, desenvolvido na University of Alberta,
626  que implementa inversdo tridimensional por minimos quadrados com regularizagao espacial.
627  Esse tipo de inversdao ¢ fundamental quando a subsuperficie apresenta heterogeneidades
628  significativas, falhas, zonas de sutura ou estruturas que violam a premissa 2-D.

629 A definicdo da direcdo de strike levou em consideragao:

630 e ageologiaregional,
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e aorientagdo das principais falhas,
e ¢ 0 comportamento vetorial dos dados.
Foram testadas diversas dire¢des de strike, e selecionada aquela que resultou no menor erro

entre curvas observadas e modeladas, garantindo consisténcia geoldgica e matematica para a

inversdo (Figura 14).
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Figura 14: Exemplo do modelo de malha utilizado para a inversdo 3-D magnetoteltrica. O
modelo apresenta discretizacdo horizontal e vertical definida por células regulares (grid), com
dimensdes e parametros de malha indicados na interface do software (numero de células em X,
Y e Z, espessuras iniciais das camadas e fator de expansdo). Os pontos em azul representam a
localizagdo das estacdes MT utilizadas na inversdo. A escala de cores a direita indica a variagao
de resistividade elétrica (2 m) atribuida ao modelo inicial, variando de dominios condutivos
(vermelho) a resistivos (azul). A inversdao 2-D foi executada a partir de modelos preliminares
homogéneos. A inversdo sem vinculos e a partir dos modelos de meio-espago € importante para
que possamos acessar as informagdes que podem ser extraidas dos dados, sem qualquer
influéncia de ideias pré-concebidas, as quais podem induzir erros na interpretagdo se nao forem

confiaveis.

pg. 33



649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

6.3.3. Integracio Geofisica e Geoldgica

Os modelos 2-D e 3-D resultantes foram calibrados com informagdes geologicas
disponiveis na regido. Pocos fornecidos pela ANP e pela CPRM foram selecionados conforme
sua proximidade aos perfis, permitindo relacionar resistividades obtidas com litologias,
profundidades estratigraficas e contatos tectonicos. Essa integracdo garantiu maior robustez a
interpretacdo final e maior confiabilidade nos limites de bacia, contatos metamorficos e

estruturas profundas identificadas.

6.4.Modelos 2-D e 3-D — Parametros de Inversio

A defini¢do da diregdo de strike geologico para as inversdes 2-D seguiu a orientacdo das
principais estruturas regionais e a analise vetorial dos modos TE/TM, verificando-se diferentes
rotagdes a fim de maximizar a bidimensionalidade das se¢des. Os angulos testados e adotados
foram: —53° (BR-116), 303° (PSI), 28° (PSII), 309° (PSIII), —80° (NW-SE) e 46° (Ruta-19).
Todas as inversdes partiram de um meio-espago inicial de 100 Q-m (t=3\tau = 31=3), obtendo,
ao final de 200 iteragdes, valores minimos de RMS entre 2,8 e 4,9, dependendo do perfil: 3,6
(BR-101), 4,2 (BR-116), 3,6 (PSI), 2,8 (PSII), 2,9 (PSIII), 4,4 (NW-SE) ¢ 4,9 (Ruta-19).

Para a modelagem 3-D empregou-se o sistema ModEM, conforme Meqgbel (2009) e
Egbert e Kelbert (2012). Inicialmente, dois subconjuntos independentes de dados foram
processados separadamente; em seguida, selecionou-se o conjunto que apresentou maior
consisténcia e menor dispersdo dos residuos. No total, foram invertidas 156 estagdes, cobrindo
o intervalo de 0,001-1000 Hz. A malha tridimensional foi configurada com parametros

10/1,3/12 nas dire¢des x e y, mantendo um modelo inicial homogéneo de 100 Q-m. Apds 193
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iteracdes, atingiu-se RMS = 1,2, considerado satisfatorio para inversdo MT de grande extensao
areal.

As inversdes 2-D utilizaram o algoritmo de Rodi e Mackie (2001), baseado em
diferencas finitas e regularizagdo de Tikhonov. J& para as inversdes 3-D, as estacdes foram
agrupadas de forma a gerar malhas mais regulares e estaveis, resultando em menor RMS e
maior compatibilidade geoldgica. Esse procedimento atende ao principio de que a geometria da
malha influencia significativamente a estabilidade numérica e a distribui¢do dos residuos.

Do ponto de vista interpretativo, os modelos 2-D e 3-D revelam trés faixas principais de
resistividade crustal, compativeis com a classificacdo proposta por Palacky (1987):

e Alta Resistividade (>1000 Q m)

Associada a unidades metamorficas pouco fraturadas, corpos igneos intrusivos ou
segmentos estaveis do embasamento. Dominios dessa ordem ocorrem em porgdes mais
profundas do Cinturdo Dom Feliciano e em blocos preservados do Craton Rio de la Plata, onde
o retrabalhamento tectonico ¢ minimo.

e Resistividade Moderada (100-300 Qb m)
Indica embasamento transicional ou crustas parcialmente retrabalhadas. Esses valores sao
tipicos de rochas metamorficas de médio grau, zonas de falha restritas ou intrusdes menores em
terrenos pré-cambrianos. Essa faixa ¢ consistente com o observado em outros cinturdes moveis
(KLEIN, 1991; PALACKY, 1987).

e Baixa Resistividade (1-80 Q2 m)
Geralmente representa bacias sedimentares, dada a maior porosidade e o contetido de fluidos,
ou zonas de cisalhamento subverticais enriquecidas em grafita, sulfetos ou fluidos crustais

profundos com caracteristicas tipicas de zonas de sutura neoproterozoicas descritas em estudos
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anteriores (PALACKY, 1987). Também podem indicar condutores crustais profundos
relacionados a zonas de alta deformacao.

Essas trés classes de resistividade fornecem uma estrutura interpretativa robusta,
permitindo relacionar os contrastes elétricos aos principais limites tectonicos e litologicos
reconhecidos na regido investigada tanto no embasamento pré-cambriano quanto nas bacias

fanerozoicas sobrejacentes.

6.5.Modelo 3-D Preferencial - INV8A_2

O modelo INVSA 2 foi selecionado como a solugdo 3-D preferencial por apresentar a
melhor combinagdo entre baixo erro RMS (1,2), boa resolucdo de feigdes tectdnicas e
consisténcia com dados independentes, apds 193 iteragdes do algoritmo de inversdo. A
distribui¢do de resistividade obtida permite diferenciar claramente os principais dominios
crustais da area investigada.

Os dominios resistivos (> 1000 Q m) correspondem predominantemente ao
embasamento cristalino, incluindo terrenos metamorficos de alta competéncia e zonas onde nao
hé evidéncias de retrabalhamento crustal significativo. Também se destacam valores proximos
de 1000 Q m associados a Formacgdo Serra Geral, cujo pacote de basaltos apresenta alta
resistividade, com variagdes laterais interpretadas como falhas ou zonas de cisalhamento
previamente mapeadas. Em alguns setores, resistividades superiores a 2000 Q@ m sugerem a
presencga de corpos igneos mais preservados ou zonas de embasamento de maior estabilidade
tectonica.

As regides condutoras, com resistividades entre 1 e 80 Q m, mostram forte correlacio

com dados de pogos e sdo interpretadas como porgdes saturadas por fluidos sedimentares ou
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zonas de deformacado crustal profunda. Essas anomalias foram agrupadas em quatro regides
principais, destacadas nos mapas de resistividade:
C1 — Bacia de Pelotas
C2 — Bacia do Parana
C3 — Bacia do Camaqua
C4 — Bacia Laguna Mirim
Cada uma dessas regides condutoras apresenta assinatura geoelétrica coerente com sua
natureza geoldgica sedimentar ou tectonica, contribuindo para a delimitacdo de espessuras

sedimentares, zonas de falha e possiveis conexdes entre bacias e estruturas profundas.

6.6.Testes de Sensibilidade da Inversao 3-D

Foram realizados multiplos testes de sensibilidade ao longo de seis meses, variando-se
a discretizagcdo da malha, os filtros de suavizagdo e as restrigdes geologicas, com o objetivo de
refinar o modelo 3-D final e avaliar sua robustez. Testaram-se modelos de referéncia com
resistividades de 1, 10, 50, 100, 300, 500 e 1000 Q m, conforme apresentado e ilustrado no
grafico de sensibilidade (Figura 15).

Os testes incluiram diferentes estratégias, tais como:

checkerboard (perturbagdo sistematica alternada),
e perturbagdo local de anomalias,

e remocao sintética de condutores,

e variacdo dos parametros de regularizagdo,

e ¢ modifica¢des do meio de fundo.
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Esses procedimentos permitem avaliar a resolucdo espacial do modelo e identificar
quais fei¢des sdo realmente exigidas pelos dados observados.

Os resultados mostram que as principais anomalias condutoras (C1-C4) sdo robustas,
pois sua remog¢do aumenta significativamente o misfit (ARMS) e degrada o ajuste local das
curvas de resistividade aparente e fase. Isso indica que tais condutores ndo sdo artefatos de
regulariza¢do, mas sim estruturas necessarias para reproduzir os dados MT.

A profundidade de investigagdo do modelo foi estimada utilizando o conceito descrito
por Spies (1989), Oldenburg e Li (1999), Egbert e Kelbert (2012), Kelbert et al. (2014) e Tietze
e Ritter (2013), considerando a relacdo entre contetdo informativo dos dados e impacto da
regularizacao.

De modo geral, os testes demonstram que até ~30 km, as diferentes curvas de
sensibilidade divergem entre si, indicando que o modelo ainda ¢ controlado majoritariamente
pelos dados (resolucdo efetiva). a partir de ~30 km, os modelos convergem para valores
similares independentemente da resistividade de referéncia, evidenciando que, nesse intervalo,
o modelo torna-se insensivel a variacdo dos parametros e passa a ser dominado pela
regularizacao.

Portanto, 30 km foi adotado como limite confidvel de interpretagio e como
profundidade maxima para apresentagdo dos cortes geologicos. Abaixo desse valor, as

variagdes s30 minimas e ndo justificam inferéncias geologicas adicionais.
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Figura 15: Curvas de sensibilidade da inversdao 3-D. Variagdo do RMS para diferentes
resistividades de referéncia (1-1000 2 m), mostrando a convergéncia ao longo das iteracdes.
A curva referente ao modelo INV8A 2 apresenta o menor RMS e maior estabilidade entre os

cenarios testados.

6.7.Testemunhos de sondagem

Foram utilizados testemunhos de sondagem localizados proximos aos perfis MT para
auxiliar na calibracdo e interpretacdo dos modelos geoelétricos. Na Bacia do Parana, foram
selecionados 14 pogos: 2-LV-1-RS, 1-MC-1-RS, 2-RS-1-RS, 1-GO-1-SC, 2-IT-1-RS, 5-CA-
41-RS, 5-CA-30-RS, 5-CA-72-RS, 5-CA-60-RS, IB-74-RS, 5-CA-38-RS, IB-68-RS, 5-CA-35-
RS e 5-CA-48-RS.

Na Bacia de Pelotas, foram empregados 10 pogos, incluindo: TOST-1-RS, 5-AT-9-RS,
7-GT-5-RS, 2-TG-40-RS, 2-TG-47-RS, 2-MO-1-RS, 2-CA-1-RS, 2-GA-2-RS, 2-PJ-1-RS e

PG.
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Os dados MT foram adquiridos, processados e posteriormente modelados em funcdo da
resistividade aparente e calibrados com as informagdes geoldgicas obtidas nos testemunhos de
pogo disponiveis para a regido. A integracdo direta entre litologias conhecidas (via pogos) € 0s
contrastes de resistividade permitiu melhorar a defini¢do de contatos estratigraficos, limites
entre embasamento e bacia, e zonas de falhas profundas.

Como o método MT possui alta sensibilidade a variagdes laterais de resistividade,
especialmente em zonas de cisalhamento, fronteiras de terrenos e limites bacia—embasamento,
foi possivel mapear falhas crustais profundas e delimitar segmentos estruturais no Escudo Sul-
Rio-Grandense.

As principais zonas de falhas foram identificadas e refinadas a partir do mapa integrado
geologia—geofisica proposto por Takehara et al. (2019). Os resultados sdo apresentados em
modelos 2-D e na projecao 3-D dos perfis, utilizando o padrdo cromatico internacionalmente
adotado para dados MT: cores frias para altas resistividades e cores quentes para baixas
resistividades.

No total, os dados MT coletados ao longo de dez perfis no sul do Brasil e nordeste do
Uruguai permitiram caracterizar a estrutura crustal e a geometria das principais bacias
sedimentares, incluindo as bacias do Parani, do Camaqua, de Pelotas e Laguna Mirim. A
integracao entre inversdo 2-D e 3-D, pogos, sismica e gravimetria possibilitou reconhecer zonas
de sutura, limites de terrenos e estruturas crustais profundas que controlam a evolugao tectonica

regional.

7. Resultados

Este capitulo apresenta uma andlise abrangente dos resultados obtidos por meio de

inversodes 2-D e 3-D de dados MT, realizadas ao longo de diversos perfis na regido sul do Brasil
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e nordeste do Uruguai, tendo como énfase a caracterizagdo da crosta e do embasamento sob as
bacias fanerozoicas e os terrenos do Cinturdo Dom Feliciano. A abordagem metodologica
empregada permitiu identificar contrastes elétricos marcantes entre pacotes sedimentares,
intrusdes igneas, zonas de cisalhamento e dominios cristalinos, contribuindo significativamente
para o entendimento da arquitetura da crosta. Os perfis analisados incluem as transectas BR-
116, Ruta-19, PSI, PSII, PSIII, NW-SE, BR-101, TRS-BR392, além de um modelo

tridimensional que sintetiza as principais feigdes resistivas e condutivas da regido.

7.1.Perfil BR-116

O modelo de resistividade invertido para o perfil BR-116 (Figuras 16 e 17) fornece uma
visdo detalhada da Bacia de Pelotas e do embasamento subjacente ao longo da faixa amostrada.
Esse perfil ¢ especialmente importante para a defini¢do da geometria da bacia e das principais
zonas de falha que controlam o seu preenchimento sedimentar. A sequéncia sedimentar, com
espessura variando de poucos metros a alguns quilometros, apresenta resistividades entre ~1 e
80 Q m, indicando elevada condutividade elétrica, compativel com pacotes cldsticos pouco
compactados e saturados em fluidos.

A calibracdo dos modelos com dados de pogos mostra boa concordancia entre os baixos
valores de resistividade e as unidades sedimentares identificadas, sobretudo nas areas onde se
reconhecem descontinuidades estruturais mais marcantes. Essas descontinuidades sdo mais
evidentes na por¢ao nordeste do perfil, onde as descontinuidades laterais sugerem a presenca
de sistemas de falhas que afetam tanto a espessura quanto a continuidade lateral dos sedimentos.

Tais fei¢des indicam que a Bacia de Pelotas foi repetidamente influenciada por reativagdes
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tectonicas, que moldaram sua arquitetura interna e condicionaram os padrdes de deposicdo e
acomodacao.

No embasamento, predominam valores de resistividade mais elevados, entre 100 e
10.000 Q m, refletindo a transicdo entre zonas fraturadas e blocos mais compactos do
embasamento cristalino. A porcdo noroeste do perfil ¢ marcada por resistividades
intermediarias (100-1000 Q m), compativeis com a assinatura geoelétrica do Batolito de
Pelotas. Na porcdo sudeste, observa-se uma fronteira bem definida entre esse batdlito e o
Terreno Jaguardo, expressa por contraste lateral acentuado de resistividade. Essa fronteira ¢
interpretada como um limite tectonico de grande importancia regional e evidencia o papel dos
batolitos graniticos como blocos estruturais rigidos que controlam o relevo crustal profundo.

Em sintese, o perfil BR-116 demonstra que a Bacia de Pelotas ¢ fortemente controlada
por estruturas profundas, expressas por feicdes condutivas e resistivas que se estendem até o
embasamento. A compartimentacdo tectonica regional ¢ claramente observada nos contrastes
de resistividade, sugerindo que processos de rifteamento e subsidéncia foram condicionados

por heterogeneidades pré-existentes no embasamento do Cinturdo Dom Feliciano.
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841

842  Figura 16: a) Modelo de inversao magnetotelurica 2-D ao longo do perfil BR-116, cobrindo o
843  Terreno Punta del Este—Jaguardo, o Batolito de Pelotas e a Bacia de Pelotas. Os modelos de
844  resistividade sdo apresentados em escala logaritmica (p, 2 m) até¢ 6 km, variando de dominios
845  condutivos (azul-roxo) a resistivos (amarelo—vermelho). Observa-se a espessura crescente da
846  Bacia de Pelotas em dire¢do ao nordeste, sobre um embasamento précambriano resistivo.
847  Destacam-se as principais descontinuidades crustais, incluindo o limite do Terreno Punta del
848  Este—Jaguardo, a borda do Batolito de Pelotas e a Zona de Falhas de Alta Concentracdo. A linha
849 tracejada marca a interface interpretada entre embasamento e cobertura sedimentar. O mapa de

850 localizagdo (& baixo) mostra a posi¢do do perfil em relagdo as principais unidades tectonicas
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regionais, incluindo terrenos, batélitos e bacias sedimentares. (b Mapa geologico simplificado
mostrando a posi¢ao do perfil BR-116 em relagdo as principais unidades tectonicas regionais,
incluindo terrenos, batolitos e bacias sedimentares.c) Ampliagdo da area de detalhe com o
tragado do perfil sobre o mapa geoldgico, evidenciando a correlagdo entre as unidades do

embasamento e as anomalias de resistividade identificadas ao longo da secao.
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Figura 17: a) Perfil 2-D dos dados magnetoteluricos (MT) até 30 km de profundidade ao longo

do perfil BR-116, mostrando as principais estruturas identificadas a partir da integragdo entre
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dados geologicos e magnetoteluricos na por¢do sul do Cinturdo Dom Feliciano e na Bacia de
Pelotas. Os valores de resistividade variam entre 1 e 1000 Q-m (escala de cores logaritmica),
evidenciando zonas condutivas associadas a cisalhamentos crustais e blocos do embasamento
mais resistivos. b) Mapa geoldgico simplificado da regido sul do Brasil e Uruguai, destacando
os limites do Terreno Punta del Este—Jaguardo, o Batolito de Pelotas, a High Concentration
Fault Zone e principais contatos estruturais. ¢) Ampliacdo da area do perfil MT sobreposta ao
mapa geoldgico, ilustrando a correlagdo entre unidades do embasamento e as anomalias de

resistividade observadas em subsuperficie ao longo do perfil BR-116.

7.2.Perfil Ruta-19

O modelo de resistividade obtido para o perfil Ruta-19 (Figuras 18) revela uma espessa
sucessdo sedimentar na Bacia de Pelotas, com caracteristicas semelhantes as observadas no
perfil BR-116, porém apresentando variacdes estruturais que refletem a influéncia de
lineamentos crustais regionais. As resistividades dos sedimentos variam predominantemente
entre ~1 e 80  m, compativeis com pacotes clasticos porosos e saturados em fluidos. A
distribuicao lateral dessas unidades condutivas ¢ marcada por mudangas abruptas nos contornos
de isorresistividade, especialmente nas transigdes para rochas igneas mesozoicas, cuja
assinatura resistiva ¢ mais elevada.

A integracdo dos valores de resistividade com dados de pogos ao longo do perfil na
regides central onde ocorrem maiores perturbagdes estruturais permitiu delimitar com maior
precisdo o contato entre os sedimentos e os corpos intrusivos ou extrusivos associados ao
magmatismo da Provincia fgnea do Parand (LIP Parand). Nessas areas, a presenca de
falhamentos torna-se evidente pelas zonas de inclinagdo e interrupc¢ao dos horizontes resistivos,
controlando tanto a espessura quanto a geometria do pacote sedimentar. A consisténcia entre as

feicdes identificadas nos dados de pogo e os padrdes de resistividade refor¢a a robustez do
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modelo, em acordo com os limites de investigacdo apontados pelos testes de sensibilidade da
inversdo 3-D, que demonstraram estabilidade interpretativa até aproximadamente 30 km de
profundidade.

O embasamento ao longo do perfil Ruta-19 apresenta um padrdo de resistividade
sistematicamente variavel: valores intermediarios entre 100 e 1000 Q-m concentram-se na
regido central, sugerindo rochas parcialmente fraturadas ou moderadamente metamorfizadas;
enquanto nas extremidades predominam resistividades elevadas (1000-10 000 Q m),
caracteristicas de embasamento cristalino pouco fraturado e mais competente. Esse contraste
indica a presenca de blocos crustais distintos, separados por zonas de fraqueza profundas.

A interpretacdo integrada com os dados de pogos e mapas geologicos permitiu concluir
que o perfil Ruta-19 cruza importantes estruturas crustais regionais, como Lineamento
Cebollati-Merin (CML) e Lineamento Chui—Aigua—India Muerta, reconhecidas anteriormente
em estudos estruturais e geofisicos. Ambas se expressam como gradientes resistivos marcantes
no modelo 2-D, compativeis com zonas de sutura ou falhas reativadas durante fases pos-rifte,
influenciando a compartimenta¢do do embasamento e o controle tectonico sobre a deposi¢ao
da Bacia de Pelotas. Essas estruturas sdo coerentes com o padrdo de lineamentos identificados
em mapas geoldgicos e geofisicos regionais, reforgando sua relevancia na evolugdo crustal e

sedimentar do setor oriental do Cinturao Dom Feliciano.

pg. 46



Pelotas Basin

Punta del Este-Jaguardo Terrane
NW . SE

Depth (km)

!
B

i
=

2Depth (km)

Distance (Km) 80

Ruta-19 Profiles 10000 LO9 ||.|| :
k o
6 and 30 km in depth Rho (ohm.m)

9 Zoom of the Map

Legend of the well
D Pelotas Basin
. Mesozoic igneous rocks

. Basement

904

905 Figura 18: Modelo de inversdo magnetotelurica 2-D ao longo do perfil Ruta-19, no Uruguai.
906 O painel superior mostra a distribui¢ao de resistividade elétrica (p, 2-m), em escala logaritmica,
907 até 6 km, destacando a presenca de rochas igneas mesozoicas, o embasamento resistivo e as

908 principais estruturas regionais. Entre elas, a Lineamento Cebollati-Merin (CML) e a
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Lineamento Chui—Aiguéd—India Muerta, que segmentam o arcabouco crustal e controlam a
compartimentagdo da Bacia de Pelotas. O painel inferior apresenta a mesma se¢do em maior
detalhe, evidenciando condutores crustais associados a intrusdes mesozoicas € zonas de
fraqueza herdadas. O mapa de localizagao (a esquerda) indica a posi¢ao do perfil, com um zoom

do mapa a direita, em relagdo as principais unidades tectonicas regionais.

7.3.Perfil PSI

O perfil PSI (Figura 19) est4 inserido no contexto da Bacia do Parana e se estende por
profundidades que variam entre 6 ¢ 30 km. A inversdo magnetotelirica associada a esse
transecto revela um padrdo de resistividade caracteristico de bacias sedimentares profundas
sobrepostas a um embasamento estruturalmente complexo. Os valores de resistividade variam
entre 0 e 80 QQ-m nos pacotes sedimentares, refletindo o alto grau de condutividade elétrica
desses depositos. Essa assinatura ¢ compativel com a presenca de sedimentos paleozdicos
parcialmente compactados e com elevada saturacdo de fluidos, caracteristica marcante da Bacia
do Parana.

As variagoes laterais de resistividade, especialmente entre 80 e 100 Q m sdo indicativas
de interfaces geoldgicas importantes, como a transi¢do entre a cobertura sedimentar e o
embasamento cristalino, bem como entre os produtos do magmatismo da Provincia fgnea do
Parand (LIP) e os sedimentos pré-existentes. A calibragdo do modelo com dados de pogos
permitiu identificar essas transi¢des com maior precisdo, destacando zonas de falha na porgao
sudoeste do perfil como principais elementos estruturais.

A presenca da Bacia Camaqua, delimitada por sistemas de falhas derivados da Bacia do
Parana, ¢ um dos principais destaques estruturais do perfil PSI. Essas falhas atuam como
fronteiras tectonicas que compartimentam a crosta e influenciam a acomodacdo dos sedimentos.

Os depositos do pacote Bom Jardim, que integram a Bacia Camaqua, exibem comportamento
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935 resistivo diferenciado, com valores variando entre 80 e 100 QQ m em profundidade, indicando
936  maior grau de compactagdo e/ou composi¢ao litologica diferenciada, possivelmente com menor
937 porosidade ou presenga de rochas vulcanogénicas.

938 O embasamento subjacente apresenta variagdo lateral significativa em termos de resistividade.
939 Na porcdo nordeste do perfil predominam resistividades intermedidrias (1001000 Q m),
940  coerentes com rochas cristalinas retrabalhadas ou parcialmente fraturadas. No setor sudoeste,
941  resistividades mais elevadas (1000—-10.000 2 m) representam blocos estaveis do embasamento,
942  com menor grau de fraturamento e deformagao. Essa diferenca indica que o embasamento sob
943  a Bacia do Parand nao ¢ homogéneo, refletindo a evolugao tectonica diferenciada dos dominios

944  crustais djacentes.
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Figura 19: a) Modelo de inversdo magnetotelirica (MT) 2-D ao longo do perfil PSI até
aproximadamente 6 km de profundidade. A distribuicdo de resistividade elétrica (p, Q m),
apresentada em escala logaritmica de cores, evidencia a cobertura sedimentar condutiva da
Bacia do Parana sobreposta ao embasamento précambriano resistivo, além de zonas de falha
que afetam a porg¢do superior da crosta. b) Modelo MT 2-D do mesmo perfil até 30 km de
profundidade, destacando fei¢cdes condutivas e resistivas relacionadas a arquitetura crustal
profunda. Observam-se zonas verticais de baixa resistividade associadas a falhas crustais e o
posicionamento do Lineamento Jacui ao longo da se¢do. ¢) Mapa geologico regional mostrando
a localizacdo do perfil PSI em relacdo as principais unidades tectdnicas do sul do Brasil e
Uruguai, incluindo terrenos, batélitos e limites estruturais maiores. d) Ampliagdo da area de
aquisi¢do ao longo do perfil PSI, indicando a distribuicdo das estagdes MT e a relacio espacial

entre o tracado do perfil e as unidades geoldgicas aflorantes.

7.4.Perfil PSII

O perfil PSII (Figura 20) complementa a interpretacdo regional da Bacia do Parana,
abrangendo profundidades entre 6 ¢ 30 km e evidenciando assinaturas de resistividade que
auxiliam na delimitag@o entre os pacotes sedimentares e o embasamento. As resistividades nos
sedimentos variam entre 0 e 74 Q-m, com destaque para setores fortemente condutivos, que
correspondem a zonas intensamente fraturadas e potencialmente enriquecidas em fluidos
condutivos, minerais metalicos ou matéria organica.

A transicdo entre os sedimentos da Bacia do Parand e o embasamento fraturado ¢
marcada pelo valores de resistividade de 74 Q m, que também representa o limite basal do
pacote magmatico da LIP Parand. A calibragio com dados de pogos mostrou boa
correspondéncia nas regides menos influenciadas por estruturas tectonicas. Contudo, nas
porcdes noroeste do perfil, onde predominam falhas crustais, observam-se perturbagdes no sinal

magnetotelurico, dificultando a continuidade de algumas interfaces geofisicas.
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Mesmo com essas limitagdes, 0 modelo apresenta boa consisténcia com o pogo 2-RS-
I-RS. As discrepancias observadas em relagdo aos pocos 2-LV-1-RS e 1-MC-1-RS sdo
atribuidas a um setor fortemente falhado, cuja complexidade estrutural também ¢ evidenciada
nos dados sismicos. Essa zona de falhas atua como canal de deformagao e constitui uma fei¢ao
geotectonica relevante na por¢ao norte da Bacia do Parana.

No embasamento, a distribui¢ao dos dominios resistivos segue o padrao observado no
perfil PSI: resistividades intermediarias (100—1000 €2 m) ao noroeste e valores elevados (1000—
10 000 Q m) ao sudeste. A geometria dessas fei¢des indica a presenca de blocos crustais
distintos, separados por zonas de fraqueza que condicionam tanto a deformagdo quanto a
resposta eletromagnética da crosta inferior.

A analise visual conjunta da se¢@o sismica e dos modelos MT (Figura 20) indica que o
painel sismico imageia, aproximadamente, os primeiros 6 a 8§ km de profundidade. Essa
estimativa baseia-se na correspondéncia visual entre o limite inferior da refletividade sismica e
o topo do embasamento reconhecido no modelo MT, onde os refletores passam a perder

continuidade. Trata-se de uma observagao qualitativa, usada apenas para referéncia descritiva.
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Figura 20: Modelos magnetoteltrico 2-D e 3-D ao longo do perfil PSII, atravessando a Bacia
do Parana. a) Secdo sismica de referéncia utilizada para correlacdo estratigrafica e estrutural. b)
Modelo 2-D de resistividade elétrica (p, 2 m) em escala logaritmica, evidenciando o contraste
entre o pacote sedimentar condutivo e 0 embasamento resistivo, além de anomalias condutivas
associadas a intrusdes maficas até 6 km. ¢) Modelo 2-D até 30 km, ressaltando as principais
descontinuidades crustais e a geometria do embasamento. O mapa de localizagdo a baixo das

transectas mostra a posicao do perfil em relacdo as principais unidades tectonicas regionais.

7.5.Perfil PSIII

O perfil PSIII integra o conjunto de modelos magnetotelaricos aplicados a Bacia do
Parand, cobrindo profundidades de até 30 km (Figura 21). O padrao de resistividade ao longo
da secdo evidencia uma espessa sucessdo sedimentar, com valores entre 0 ¢ 80 Q m,
compativeis com sedimentos paleozoicos ricos em matéria organica e fluidos, assim como com
intercalagdes de derrames basalticos da Formacao Serra Geral. Esses valores, associados a
geometria condutiva observada na base do pacote sedimentar, auxiliam na compreensdo da
relacdo entre o magmatismo da LIP Parand e os sedimentos subjacentes.

Uma anomalia condutiva marcante, com resistividade em torno de 22 © m, delimita a
base condutiva da LIP Parand. Esse comportamento pode estar associado com zonas afetadas
por alteragdo hidrotermal ou com presenca de fluidos crustais profundos. A reducdo de
resistividade observada poderia refletir circulagdo hidrotermal, preenchimento secundério de
fraturas por minerais condutivos e aumento da permeabilidade estrutural. Essa anomalia
encontra suporte no pogo 2-IT-1-RS, localizado na por¢ao nordeste do perfil, onde também se
observam as maiores perturbagdes nas assinaturas resistivas, associadas a presenca de falhas

crustais profundas.
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O embasamento apresenta distribui¢ao assimétrica de resistividades. Na por¢ao nordeste
predominam valores intermediarios (100—1000 € m), coerentes com rochas metamorfizadas ou
parcialmente fraturadas, enquanto ao longo da maior extensdo do perfil ocorrem dominios de
alta resistividade (1000—10 000 Q m), compativeis com embasamento cristalino mais profundo
e menos deformado. Essa variag@o indica que o perfil PSIII cruza dominios crustais distintos,

refletindo sua evolugdo estrutural diferenciada.
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Figura 21: a) Modelo de inversdo magnetotelirica (MT) 2-D ao longo do perfil PSIII,
mostrando a distribui¢do de resistividade elétrica (p, QQ m) até aproximadamente 6 km de
profundidade (escala de cores logaritmica). Observa-se uma zona intermediaria de valores de
resistividade associado a base dos derrames basélticos da Formagao Serra Geral sobreposta a
ao pacote sedimentar condutiva da Bacia do Parana, bem como variagdes laterais que indicam
zonas afetadas por falhas crustais. b) Modelo MT 2-D do mesmo perfil at¢ 30 km de
profundidade, observa-se o contato entre a bacia de Parand e o embasamento resistivo
subjacente. Feicdes verticais de baixa resistividade marcam possiveis falhas crustais profundas.
c) Mapa geologico regional mostrando a localizagdo do perfil PSIII em relagdo aos principais
terrenos e unidades tectonicas do sul do Brasil e Uruguai, incluindo batodlitos, terrenos
neoproterozoicos e a area de influéncia da Bacia do Parana. d) Ampliagcdo da area de aquisi¢ao
do perfil PSIII, indicando a distribuicdo das estacdes MT ao longo do tracado do perfil e a

relacdo espacial com as unidades geoldgicas de superficie.

7.6.Modelagem 3-D

As inversdes magnetoteluricas (MT) 3-D revelam padrdes de resistividade compativeis
com rochas do embasamento cristalino ao longo do Cinturdo Dom Feliciano e das bacias
adjacentes, estendendo-se até profundidades de aproximadamente 30 km. Esse modelo fornece
uma visdo detalhada da arquitetura crustal, destacando variagdes laterais e verticais continuas
e geologicamente significativas na resistividade. Essas variagdes correlacionam-se bem com
dominios tectonicos conhecidos e delineiam estruturas-chave, como lineamentos e zonas de
falha ao longo dos perfis. De modo geral, a crosta nesta regido pode ser agrupada em trés
dominios de resistividade:

Alta resistividade (>1000 2-m): associada a unidades metamorficas pouco fraturadas, corpos

igneos intrusivos e blocos mais estaveis do embasamento;
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Resistividade moderada (100-300 Q-m): relacionada a embasamento transicional ou
segmentos crustais parcialmente retrabalhados, incluindo rochas moderadamente
metamorfizadas e intrusdes igneas de menor escala;

Baixa resistividade (1-80 Q-m): representando principalmente bacias sedimentares, zonas de
cisalhamento subverticais enriquecidas em minerais condutivos e/ou dominios com maior
conteudo de fluidos crustais.

Essas classes de resistividade fornecem base para a descricdo do modelo 3-D, que ¢ analisado
por profundidade em trés intervalos principais: por¢do rasa (0—5 km), crosta superior (5—15 km)

e crosta inferior (~15-30 km).

Porcao Rasa da Crosta (0—5 km)

A modelagem magnetoteltrica 3-D realizada na regido do Cinturdo Dom Feliciano e
bacias adjacentes revela feigdes complexas na crosta superior, compreendida entre 0 e 5 km de
profundidade (Figura 22). Essa faixa engloba as principais unidades sedimentares, além de
estruturas vulcanicas e expressoes rasas do embasamento cristalino. A analise integrada dos
dados de resistividade permitiu identificar diferentes padrdes geofisicos associados as
principais bacias do sul do Brasil, como Pelotas, Parana, Camaqua, cada uma com
caracteristicas especificas em termos de espessura, geometria e condutividade elétrica.

A Bacia de Pelotas apresenta uma assinatura condutiva bem definida ao longo de toda
a sua por¢ao emersa, tanto no litoral do Rio Grande do Sul quanto no setor onshore do Uruguai,
onde essa mesma bacia recebe localmente o nome de Bacia Laguna-Mirim. A espessura
sedimentar varia de menos de 2 km na regido de Laguna-Mirim até cerca de 2—3 km nas porgdes

costeira e emersa no Brasil, com resistividades tipicas entre 1 ¢ 80 Q m. O preenchimento ¢
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composto por sedimentos inconsolidados intercalados com camadas vulcanicas mesozoicas.
Observam-se contrastes resistivos laterais marcantes associados a dominios condutivos
alongados, interpretados como grabens ou semi-grabens delimitados por falhas crustais
menores. A geometria em cunha dos sedimentos esta relacionada a estruturas do embasamento
com mergulho em direcdo ao continente, € a transi¢do entre os altos resistivos do embasamento
(centenas a milhares de Q m) e os sedimentos condutivos ¢ abrupta, evidenciando o forte
controle estrutural sobre a espessura e a distribui¢do do preenchimento sedimentar em toda a
Bacia de Pelotas, incluindo sua continuidade onshore uruguaia.

Na Bacia do Parana, a camada superior ¢ marcada por um padrdo estratificado de
resistividade. As camadas basalticas rasas do Grupo Serra Geral, com resistividades de centenas
a milhares de Q m, sobrepdem-se as sequéncias sedimentares paleozoicas mais condutivas
(~10-80 © m). Em diversas areas, os fluxos basélticos superam 1 km de espessura, criando
barreiras resistivas que interrompem a continuidade lateral das unidades sedimentares
subjacentes. Falhas normais atuam como canais de acomodacdo de sedimentos mais profundos,
resultando em bolsdes condutivos localizados no interior da provincia basaltica.

A Bacia Camaqua exibe fei¢des condutivas assimétricas, com sub-bacias separadas por
altos resistivos do embasamento. Essas sub-bacias sdo interpretadas como riftes ou zonas de
transtensdes, preenchidas por sequéncias clésticas e vulcanicas. A assinatura resistiva dessas
unidades ¢ complexa, variando lateralmente conforme a litofacies, porosidade e conteudo
fluido. Os dados sugerem empilhamentos de depdsitos vulcano-sedimentares, com alternancia
de camadas resistivas e condutivas, formando um mosaico geofisico tipico de ambientes

tectonicamente ativos durante o Proterozoico final.

Crosta Superior (5-15 km)
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A zona da crosta superior, situada entre 5 e 15 km de profundidade, representa uma
transicdo critica entre as bacias sedimentares rasas ¢ os blocos profundos do embasamento
cristalino (Figura 22). As inversdes magnetoteltricas 3-D revelam uma estrutura complexa e
heterogénea, marcada por feicdes resistivas e condutivas que refletem a historia tectono-
metamorfica da regido. As resistividades nesta faixa variam predominantemente entre 100 e
5000 Qm, com zonas localizadas de baixa resistividade (1-80 2 m) que se estendem em dire¢ao
a crosta inferior, interpretadas como zonas de cisalhamento ou falhas crustais de grande escala.

As zonas condutivas identificadas apresentam forma alongada e continuidade vertical
expressiva, estendendo-se desde niveis crustais intermediarios até profundidades maiores.
Observa-se que essas estruturas possuem elevada condutividade ao longo de toda a sua
extensdo, configurando fei¢des lineares e persistentes na crosta. A manutenc¢ao dessa assinatura
condutiva ao longo do tempo geoldgico pode ser explicada pela presenca de minerais
condutivos que podem estar associados a condigdes de metamorfismo de facies xisto verde a
anfibolito.

Limites tectdonicos profundos, incluindo fronteiras entre diferentes terrenos do
embasamento, manifestam-se como contrastes resistivos abruptos e continuos, com forte
expressao geofisica. Esses limites coincidem com quebras pronunciadas nas curvas de fase e
resistividade aparente das estacdes MT, o que significa que essas descontinuidades representam
contatos geologicos de escala litosférica, isto €, superficies profundas que marcam a jungao
entre blocos crustais com historias evolutivas distintas. A concordancia entre essas feicoes ¢
outros métodos geofisicos reforca a interpretagdo de que os terrenos que compdem o Cinturdo
Dom Feliciano foram amalgamados por meio de suturas profundas, posteriormente reativadas

durante episodios fanerozoicos de rifteamento e subsidéncia.

pg. 60



1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

De modo geral, a crosta superior na regido ¢ constituida por segmentos retrabalhados,
caracterizados por alternancia de dominios de alta e média resistividade intercalados com zonas
condutivas conectadas a estruturas profundas. A presenca de zonas condutivas de geometria
ascendente indica possiveis trajetdrias preferenciais para migra¢do de fluidos ou canais

estruturais de deformac¢do em niveis intermediarios da crosta.

Crosta Inferior (15-30 km)

Embora o método magnetotelirico ndo defina limites estratigraficos formais, os
contrastes de resistividade permitem distinguir dominios crustais eletricamente diferenciados.
Nos modelos apresentados, essa diferenciagdo coincide com profundidades tipicas da crosta
superior (0—15 km) e crosta inferior (15-30 km), abordagem amplamente utilizada em estudos
MT regionais (Jones, 1992; Heise et al., 2007).

A crosta inferior, situada aproximadamente entre 15 e 30 km de profundidade, apresenta
um padrdo geofisico distinto das por¢des superiores da crosta (Figura 22). Os modelos 3-D de
resistividade indicam um dominio majoritariamente resistivo, com valores frequentemente
superiores a 5.000 Q-m. Esses altos valores sdo caracteristicos de regides profundamente
consolidadas, com baixa porosidade, reduzido teor de fluidos e minima presenca de fraturas
abertas. Essa assinatura ¢ compativel com as por¢des internas mais estaveis do Craton Rio de
la Plata e com segmentos profundos do Cinturdo Dom Feliciano, onde predominam rochas
maficas e ultramaficas de elevada coesao.

A alta resistividade observada nessa profundidade esta associada ao comportamento
mecanico rigido das unidades litosféricas, decorrente tanto de sua composi¢do mineraldgica

quanto de sua estabilidade térmica. Esse dominio mais rigido concentra menos deformagao, que
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tende a se localizar preferencialmente na crosta superior. Quanto a profundidade investigada
pelos dados MT, os menores periodos adquiridos (=10°~10~* Hz) permitem alcancar 30—40 km
de profundidade, conforme o skin depth e os testes de sensibilidade apresentados na Secdo 5.6.
Assim, as interpretagcdes estruturais realizadas até aproximadamente 30 km possuem boa
sustentacao geofisica.

Esse comportamento ¢ coerente com modelos geodindmicos para margens passivas do
Gondwana ocidental, que apontam a preservacao de raizes crustais cratdnicas e espessas mesmo
apos multiplos episodios tectonicos superpostos (Almeida et al., 1981; Tedeschi et al., 2016,
Hackspacher et al., 2019). Nesses cendrios, a crosta inferior permanece relativamente intacta e
rigida, enquanto a deformacgdo pos-colisional se concentra nos niveis crustais superiores.

Embora predomine um dominio de alta resistividade, pequenas feigdes condutivas
podem ser observadas entre 20 e 25 km de profundidade. Essas anomalias apresentam
continuidade vertical com zonas de cisalhamento previamente mapeadas na crosta média.

Apesar da menor sensibilidade do método para grandes profundidades, especialmente
devido a reducdo do niimero de estacdes e a diminuicdo da resposta em periodos longos as
zonas resistivas profundas sdo robustas, recorrentes ao longo das iteragdes e consistentes com
a geometria geral da crosta inferior. A profundidade de interpretagdo confiavel, conforme
mostrado nos testes de sensibilidade (Secdo 6.6), ¢ de aproximadamente 30 km, valor minimo
a partir do qual o modelo se torna menos responsivo as variagdes impostas na resistividade
inicial.

Assim, a crosta inferior delimitada pelos modelos 3-D apresenta um arcabougo
estrutural marcado por blocos resistivos continuos e estaveis, intercalados apenas por feigdes
condutivas discretas associadas a zonas de fratura profundas. Esse padrdo ¢ compativel com

observagdes sismicas e magnetoteluricas em outras regides cratonicas (Ritter et al., 2003; Jones,
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1168  2012) e reforca o entendimento de que a deformagao pds-colisional no sudoeste do Gondwana
1169  concentrou-se predominantemente na crosta superior e média, preservando os dominios
1170  profundos como elementos rigidos e resistentes ao longo do tempo geologico.

1171
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Figura 22: Modelos de resistividade 3-D resultantes da inversdo INV8A 2, ilustrando a
distribui¢do das principais bacias sedimentares e feicdes condutivas e resistivas da crosta em
diferentes profundidades. a) resposta extremamente por¢do rasa, evidenciando
heterogeneidades superficiais associadas a variacdes locais de condutividade e os derrames

basalticos do Grupo Serra Geral b) inicio da individualiza¢do das bacias sedimentares, com
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anomalias condutivas rasas distribuidas ao longo das principais unidades. ¢) desenvolvimento
de feicdes condutivas continuas relacionadas ao preenchimento sedimentar e a estruturas
crustais rasas. d) condutores bem definidos correspondendo ao aprofundamento das bacias e a
zonas estruturais internas. ¢) ampliacdo das zonas condutivas, compativel com a presenga de
lineamentos crustais regionais que se estendem em profundidade. f) condutores que se
prolongam verticalmente, indicando zonas de fraqueza crustal herdadas de eventos tectonicos
prévios. g) dominio predominantemente resistivo do embasamento, interrompido por
condutores crustais verticais. h) persisténcia das zonas condutivas profundas, associadas a
estruturas de cisalhamento crustal. 1) geometria crustal de maior escala, com fei¢des condutivas

de raiz profunda e blocos resistivos que caracterizam o embasamento em profundidade.

8. Discussoes

A Bacia de Pelotas, incluindo sua continuidade onshore no Uruguai, denominada
localmente Bacia de Laguna Mirim, apresenta expressivo espessamento sedimentar e
compartimentagdo interna controlada por falhas crustais profundas. A distribui¢do de dominios
condutivos (<80 Q m) reflete sedimentos saturados, zonas mineralizadas e areas de subsidéncia
influenciadas por estruturas herdadas. Entre as principais fei¢des condutoras destacam-se os
lineamentos Cebollati-Merin e Chui—Aigua—India Muerta, este ultimo correspondente ao
Lineamento Chui descrito no Brasil, ambos marcando zonas de enfraquecimento crustal que
delimitam dominios tectonicos distintos.

A Bacia do Parana apresenta forte controle tectonico, marcado pela influéncia direta da
Provincia {gnea do Parana (LIP), que condiciona a geometria do embasamento e os contatos
entre os derrames basalticos e as sequéncias sedimentares paleozoicas. Os modelos MT revelam
contrastes resistivos expressivos associados a sobreposicao entre rochas basalticas e unidades
sedimentares, além de condutores crustais profundos que podem refletir zonas fraturadas e a

presenca de fluidos.
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Na Bacia do Camaqua, os modelos MT revelam alternancia entre dominios condutivos
e resistivos compativel com a presenca de espessas sequéncias vulcano-sedimentares
depositadas em ambiente distensivo pos-colisional. As zonas condutivas continuas
identificadas sugerem forte influéncia de rifteamento pds-Brasiliano, associado a reativagao de
descontinuidades neoproterozoicas, embora a espessura exata desses pacotes ainda ndo possa
ser definida com precisdo.

As zonas de cisalhamento e os lineamentos profundos desempenham papel essencial na
segmentacao da crosta, delimitando terrenos do embasamento como o Terreno Tijucas, o Craton
Rio da Prata e o Batolito de Pelotas. A distribuicao dessas fei¢cdes estruturais reflete a complexa
historia de acrescdo e reativagdo crustal na borda do Craton Rio da Prata e ¢ coerente com a
compartimentag¢do observada nos modelos 2-D e 3-D.

A correlagdo entre os resultados de magnetotelurica e as interpretagdes independentes
de dados sismicos e gravimétricos reforga a consisténcia dos modelos, evidenciando boa
correspondéncia entre as principais descontinuidades crustais e as anomalias geofisicas
previamente mapeadas. Essa andlise multiescala demonstra a eficicia do método MT na
caracterizacgdo da crosta profunda e na definicao das unidades tectonicas regionais, contribuindo
de forma significativa para o entendimento da evolu¢do geodindmica do sul do Brasil e do

nordeste do Uruguai.

A Tabela 1 sintetiza a correspondéncia entre intervalos de resistividade e unidades

geologicas identificadas nos modelos 2-D e 3-D.

Intervalo de Resistividade | Interpretacio Geologica Unidade ou Estrutura

(Qm)
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1-80 Sedimentos saturados, | Bacias Pelotas, Camaqua,
zonas de falha condutoras Parana

100-300 Embasamento Terreno Tijucas, Camaqua
transicional/fraturado, Rift
zonas de cisalhamento

>1000 Blocos cristalinos | Craton del Rio la Prata,
preservados, batolitos Batolito Pelotas

A Tabela 2 apresenta as principais estruturas tectonicas discutidas nos Anexos 1 e 2 (artigos

submetidos) e suas caracteristicas resistivas observadas.

Tabela 2 - Estruturas tectonicas e faixas de resistividade

Estrutura Resistividade (€2 m) Interpretacao

Zona de Falha de Ibaré 80-300 Cisalhamento crustal entre o
Craton del Rio la Prata e o
Cinturdo Dom Feliciano

Dorsal de Cangugu 100-1000 Cisalhamento ductil
limitando terrenos do
embasamento

Lineamento Cebollati- | 1-80 Falha crustal profunda com

Merin condutores subverticais

Lineamento Chui-Aigua— | 1-100 Zona de fraqueza crustal

India Muerta delimitando terrenos
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1241

Terreno Tijucas 100-300 Terreno metamorfico com

fraturamento parcial

Batélito de Pelotas >1000 Intrusivo granitico profundo

e resistiv0

Craton Rio da Prata >1000 Bloco cristalino estavel

Bacia do Parana 1-80 Pacotes  sedimentares e

derrame basalticos (LIP)

Bacia do Camaqua 10-100 Depositos vulcano-
sedimentares em contexto

distensivo

Bacia de Pelotas 1-80 Sedimentos sedimentares rift

e drift

Na Figura 23 sintetiza a arquitetura crustal revelada pelos modelos 3-D ao longo dos
cinco perfis MT adquiridos na regido. As secdes mostram transi¢des nitidas entre dominios
condutivos e resistivos, destacando fei¢cdes estruturais como o Lineamento Camaqua, o limite
entre o Terreno Punta del Este—Jaguardo e o Batolito de Pelotas, o Lineamento Jacui e
condutores profundos associados a base dos pacotes sedimentares.

Zonas de cisalhamento crustal, como Ibaré e a Dorsal de Cangugu, desempenham papel
fundamental na compartimentagdo do embasamento, controlando tanto a deformag¢do quanto a
acomodagdo de pacotes sedimentares. O embasamento cristalino representado principalmente
pelo Craton del Rio la Plata e pelo Cinturdo Dom Feliciano manifesta resistividades elevadas

(>1000 Q m), caracterizando blocos mais rigidos da crosta inferior.
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A comparagdo entre os modelos MT e dados geoldgicos, gravimétricos e sismicos
disponiveis sustenta a coeréncia estrutural das interpretacdes: as variagdes de resistividade
refletem ndo apenas contrastes litologicos, mas também zonas mineralizadas, condutores
grafitosos, presenca de fluidos e possiveis zonas de fusdo parcial, aspectos amplamente
reconhecidos em estudos classicos de MT (Simpson, 2005; Chave & Jones, 2012).

As inversdes 2-D e 3-D revelam multiplas fases de deformagdo, magmatismo e
reativagdo crustal, sugerindo uma evolugdo policiclica para o setor sudoeste do Gondwana
(Chemale Jr., 2000; Hartmann et al., 2007). Condutores crustais profundos identificados no
modelo INVSA 2 permitem comparagdes com cinturdes moveis internacionais, como o
Damara Belt (Weckmann et al., 2007) e o Trans-Hudson Orogen (White et al.,2005)
demonstram que tais condutores podem representar zonas de cisalhamento grafitosas,
trajetorias profundas de fluidos, raizes litosféricas preservadas ou zonas de fusdo parcial,
interpretacdo compativel com os padrdes observados neste estudo.

Os testes de sensibilidade aplicados a inversdo 3-D reforcam a estabilidade das
anomalias profundas e a confiabilidade do modelo, confirmando a utilidade do método MT na
reconstru¢do do arcabougo crustal ¢ no entendimento da evolugdo tectdonica das bacias

sedimentares do sul do Brasil e do nordeste do Uruguai.
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Fgura 23: Modelos integrados de inversao magnetoteltirica (MT) 3-D ao longo de cinco perfis
na regido sul do Brasil e nordeste do Uruguai. Os perfis em conjunto revelam a arquitetura
crustal da Bacia de Pelotas, da Bacia do Parana e dos terrenos adjacentes. Cada se¢do apresenta
a distribuicdo de resistividade em escala logaritmica (p, Q-m), em que as cores quentes
correspondem a dominios condutores e as cores frias a blocos crustais resistivos. Destacam-se
feicdes tectonicas e estruturais relevantes, incluindo: o perfil BR-101, que evidencia a transi¢ao

entre as bacias de Pelotas e do Parana e o embasamento resistivo; o perfil BR-116, que mostra
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anomalias condutivas associadas ao Lineamento Camaqua, ao limite entre o Terreno Punta del
Este e o Batolito de Pelotas, além da Zona de Falha de Alta Concentracdo; o perfil PSI, que
ilustra a variacdo lateral de resistividade na Bacia do Parana e seu contato com o embasamento,
bem como a influéncia do Lineamento Jacui no contexto PSI e NW-SE; e o perfil PSIII, que
revela zonas condutoras profundas na base do pacote sedimentar, possivelmente relacionadas a

falhas crustais de grande porte.

Comparacio Estrutural e Integracio com Outros Métodos Geofisicos

A integracdo dos resultados de magnetotelirica (MT) com dados aeromagnéticos,
gravimétricos € gamaespectrométricos (Figuras 24 e 25) evidencia o papel de primeira ordem
desempenhado pelas zonas de cisalhamento neoproterozoicas na evolu¢ao tectonica das bacias
da regido. Estruturas como a Zona de Cisalhamento Dorsal de Cangugu (ZCDC), a Zona de
Falha de Ibaré, o Lineamento Cacapava do Sul e a Zona de Cisalhamento Sarandi del Yi
aparecem de forma consistente nos modelos MT como corredores condutivos de escala crustal,
atravessando bacias e terrenos do embasamento. Esses lineamentos atuaram como zonas de
fraqueza longamente reativadas, influenciando tanto a amalgamacgao neoproterozoica quanto a
deformagdo fanerozoica posterior.

O limite entre o Terreno Punta del Este—Jaguardo e o Batdlito de Pelotas ¢ igualmente
caracterizado como uma descontinuidade condutiva, refor¢ando sua interpretacdo como limite
de terreno. A ZCDC, orientada NE-SW, intercepta a Bacia do Parana e prolonga-se em direcao
a Bacia de Pelotas, coincidindo com anomalias gravimétricas e magnéticas regionais. De forma
semelhante, a Zona de Cisalhamento Sarandi del Yi se manifesta como um condutor profundo
que separa terrenos proterozoicos das coberturas fanerozoicas.

As demais bases de dados corroboram este arcaboucgo estrutural:a gamaespectrometria

destaca contrastes composicionais entre terrenos; mapas magnéticos evidenciam tendéncias
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crustais de longo comprimento de onda; anomalias Bouguer delineiam dominios controlados
por densidade, compativeis com raizes cratonicas resistivas.

Nas bacias sedimentares descontinuuidades laterais condutivas delimitam setores da
Bacia do Parana e da Bacia de Pelotas, associados a fases mesozoicas de reativacao estrutural
que condicionaram o magmatismo ¢ a formacdo de depocentros. Ja na Bacia do Camaqua,
anomalias condutoras limitadas por blocos resistivos inclinados sdo coerentes com grabens
tardi- a pds-orogénicos, relacionados a reativagdo de descontinuidades neoproterozoicas
durante os estagios finais de deformacao do Cinturdo Dom Feliciano.

Condutores subverticais atingindo 20-25 km de profundidade, especialmente ao longo
da Zona de Cisalhamento Dorsal de Cangucu (ZCDC) e os limites de terrenos, reforcam sua
interpretagdo como zonas de fraqueza crustal de longa duracao, capazes de canalizar fluidos ou
acomodar fusdo parcial, evidenciando sua influéncia persistente na evolucao geodinamica do

sul do Brasil e Uruguai.

pg. 72



e825 933 €712 2371 1133 €278 2125
—_——

Shear Zones
O T —
2} Wajor Gerene - Doal de

{a) Tocambse

Qo) Mewics Allines
47 Bomaco Sova
i4g) Sarand! del Yi

12031 81,68 7292 €331 4817 548 1415
- —

038 €955 €023 €926 0.603 £023 0361
sor
=y

6 54 K ot 58 ; 54 ) 50
1) Cerro Amaro - Arroio Grande Longitude e)
2) Major Gercino - Dorsal de Cangugu 54° -52¢ -50° Isocontours:
3) Passo dos Marinheiros [ 1 T ] TN 10 Qm
4) Cagapava do Sul « 30 Qm
5) Segredo 50 Qm
(7>) I{g:oré 3
) Rivera ’ / ) .

8) Sarandi del Vi 2/ = 7\

My -30°

ol

Latitude

320, \\ : -~ g o320

Atlantic Ocean

B
wl | ‘Uruguay e
o/ 4 Do 0° | |0
Depth 0 54 52 -50 [
(km) % Vertical exaggeration: 2 T
_— e
10 30 100 300 1000
Resistivity [Qm]

1307 pg. 73



1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Figura 24: Integracgao regional entre dados MT 3-D e produtos geofisicos (adaptado de Teixeira
et al., 2025). a) Secdes do modelo 3-D de resistividade ao longo dos perfis MT, destacando as
principais zonas de cisalhamento e lineamentos crustais (1 a 8), (1) Cerro Amaro—Arroio
Grande; (2) Major Gercino—Dorsal de Cangucu; (3) Passo dos Marinheiros; (4) Cagapava do
Sul; (5) Segredo; (6) Ibaré; (7) Rivera; (8) Sarandi del Yi. b) Distribui¢do dos terrenos tectono-
estratigraficos do Cinturdo Dom Feliciano e unidades adjacentes, com idades dos principais
eventos metamorficos. ¢) Mapa estrutural integrado de dados aeromagnéticos e gravimétricos,
mostrando estruturas de primeira e segunda ordem e intrusdes associadas. d) Imagem ternaria
de gamaespectrometria (K-Th—U), evidenciando contrastes composicionais do embasamento e
suas zonas de cisalhamento. e) Visao tridimensional do modelo MT 3-D, com isosuperficies

condutivas (10, 30 e 50 Q m) delineando as bacias sedimentares e principais estruturas crustais.
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Figura 25: Integracdo entre dados gamaespectrométricos, potenciais e magnetoteliricos
(adaptado de Teixeira et al., 2025). a) Imagem terndria gamaespectrométrica (K—Th-U) do
embasamento cristalino, evidenciando contrastes composicionais e principais zonas de
cisalhamento sobrepostas. b) Mapa regional de anomalia magnética (RTP TMI) do sul do Brasil
e Uruguai, destacando tendéncias crustais de grande escala e blocos estruturais. ¢) Derivada

vertical de primeira ordem (1VD) do campo magnético, realgando contatos e estruturas
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secunddrias interpretadas. d) Mapa de anomalia Bouguer, mostrando dominios controlados por
densidade e lineamentos estruturais utilizados no refinamento tectonico. ) Visdo integrada das
se¢des extraidas do modelo MT 3-D, com resistividade em escala logaritmica (10-1000 Q m) e
exagero vertical de 2x. Linhas cinza representam zonas de cisalhamento, pontos pretos indicam
estacdes MT e isosuperficies condutivas (10, 30 e 50 Q m) delineiam as bacias sedimentares.
Estruturas numeradas: (1) Cerro Amaro-Arroio Grande; (2) Major Gercino—Dorsal de Cangugu;
(3) Passo dos Marinheiros; (4) Cagapava do Sul; (5) Segredo; (6) Ibaré; (7) Rivera; (8) Sarandi
del Yi.
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9. Conclusao

A integracdo entre os modelos magnetoteluricos 2-D e 3-D permitiu resolver, com
consisténcia geologica e geofisica, a arquitetura crustal do Cinturdo Dom Feliciano e das
principais bacias fanerozoicas da regido sul do Brasil e nordeste do Uruguai. A combinagdo de
resistividades, calibrada por pocos, sismica, gravimetria e mapeamento estrutural, revelou
padrdes elétricos compativeis com a evolu¢do tectdnica neoproterozoica e fanerozoica,
ressaltando a influéncia da heranca estrutural na acomodagao das bacias sedimentares.

Os modelos 2-D mostraram variacdes laterais marcantes relacionadas a falhas crustais,
zonas de sutura e limites de terrenos previamente reconhecidos, além de detalhar a geometria
das bacias de Pelotas, Camaqua e Parana. A modelagem 3-D ampliou essa interpretacao,
evidenciando contrastes elétricos profundos que delimitam dominios crustais com diferentes
historias tectonicas.

A crosta superior revelou carater predominantemente rap til, manifestado pela presenga
de estruturas condutivas associadas as zonas de cisalhamento e falhas reativadas
comportamento compativel com regimes de baixa pressdo e temperatura, maior fraturamento e
circulacdo de fluidos. Em contraste, a crosta inferior apresentou valores elevados de
resistividade, coerentes com um regime ductil, onde pressdes e temperaturas mais elevadas,
além de minerais mais secos e menor porosidade, favorecem maior estabilidade mecanica.

Esse padrdo ¢ consistente com estudos crustais em outras regides cratonicas do mundo
(por exemplo, Ritter et al., 2003; Boerner et al., 1995; Ye et al., 2019), reforcando que o
embasamento profundo do sudoeste do Gondwana mantém caracteristicas litosféricas estaveis

desde eventos de amalgamacao proterozoicos.
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Mesmo considerando as limitagdes naturais do método MT como reducao de
sensibilidade em periodos longos, menor resolugcdo em grandes profundidades e dependéncia
da distribui¢@o das estacdes, as zonas resistivas profundas foram recuperadas com robustez. A
boa correspondéncia entre diferentes testes de sensibilidade, inversdes com parametros variados
e comparagdes com dados independentes indica que essas fei¢cdes representam blocos crustais
estaveis ou 0 manto superior imediato.

A profundidade efetiva de investigacdo, sustentada pelo espectro de periodos disponivel
e pela modelagem de sensitividade, permitiu interpretagdes confidveis até aproximadamente 30
km, abaixo do qual a resolugdo diminui e as respostas tornam-se fortemente condicionadas pela
regularizacdo. Até essa profundidade, entretanto, os modelos revelam de forma consistente a
continuidade em profundidade de estruturas reconhecidas em superficie, como zonas de sutura,
lineamentos crustais ¢ corredores de deformagao.

O conjunto de resultados demonstra o potencial do método magnetotelirico como
ferramenta de imageamento tectonico em larga escala, particularmente quando integrado a
outros métodos geofisicos. Os modelos obtidos contribuem para uma compreensdo mais
detalhada da litosfera do sul do Brasil e nordeste do Uruguai, oferecendo suporte a
interpretagdes sobre evolucdo crustal, estabilidade litosférica e controles estruturais sobre as
principais bacias sedimentares da regido.

A abordagem integrada adotada nesta tese combinando perfis 2-D, volume 3-D,
calibracdo geoldgica e andlise comparativa internacional estabelece uma base metodoldgica
robusta para futuros estudos tectdnicos e aplicacdes exploratorias, permitindo avancar na

caracterizagdo geodinamica da margem sudoeste do Gondwana.
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Anexo 1: Artigo cientifico 1 submetido para o periddico Journal South American.
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Abstract

This study presents two-dimensional magnetotelluric (MT) data along the BR-116 (Brazil) and
Ruta-19 (Uruguay) transects, integrated with potential-field data, ANP well control, and
regional geological mapping, to investigate the crustal architecture of the Punta del Este-
Jaguardo Terrane and its boundary with the Pelotas Batholith and adjacent basins. The results
reveal a conductive sedimentary wedge (p < 80 Q m) overlying a resistive Precambrian
basement (p = 10>-10* Q m), with sharp lateral resistivity gradients that coincide with mapped
terrane boundaries and NW—-SE lineaments. Along BR-116, the Pelotas Basin is imaged as a
steep, laterally variable conductive package bounded by the Punta del Este-Jaguardo buttress
and the Pelotas Batholith. Resistivity breaks correlate with the Camaqua Lineament and the
High-Concentration Fault Zone. Along Ruta-19, the sedimentary successions are segmented by
the Cebollati-Merin and Aigud—India Muerta—Chuy lineaments, where conductive anomalies
near the PG well suggest structure-controlled fluid circulation or alteration. The MT dip and
strike sections along the Neoproteorozoic terranes allow us to recognize the geometry of the
suture zones of the boundary from Punta del Este-Jaguardo Terrane and Pelotas Batholith, as
well as Pelotas Batholith and Tijucas Terrane. These features indicate a block-bounded
basement framework that has strongly influenced basin compartmentalization. Comparison
with previous MT imaging and potential-field studies demonstrates spatial concordance
between resistivity breaks and aeromagnetic—gravity lineaments into the South Atlantic crust.
This supports a rift model governed by structural inheritance, with Neoproterozoic anisotropies
reactivated during the Jurassic—Cretaceous opening of the South Atlantic. Collectively, the
results indicate that inherited Neoproterozoic structures played a fundamental role in basin
compartmentalization, alongside contacts that were locally filled by volcano-sedimentary

successions and influenced crustal accommodation. These findings underscore the significance
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of magnetotellurics (MT) in delineating terrane boundaries and the identification of structural

lineaments and fault zones.

Keywords: Dom Feliciano Belt, Pelotas Basin, Suture Zones, Geophysics, Mesozoic

Magmatism, Basement induced structures, South Atlantic
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1. Introduction

Uncertainty in basement geometry represents a significant challenge for geological
modelling based on the geological field mapping. This issue is particularly critical in rifted
margins, where basement configuration directly influences fault development, sedimentary
accommodation space, and the distribution of reservoirs and source rocks (Fazlikhani et al.,
2017; Lovecchio et al., 2020; Chauvet et al., 2021). The principle of studying deep structures
along the passive margin suggests that imaging the deep crustal and lithospheric architecture
beneath the passive margin offers essential insights for reconstructing the evolution and
interconnectivity of the associated basins. To minimize uncertainty in the basement
configuration, it is crucial to integrate multiple datasets, such as magnetotelluric (MT) surveys,
seismic reflection profiles, potential-field data, and well tie points, to improve the resolution of
crustal-scale models (Menezes et al., 2021; Bologna et al., 2018; Costa, 1997; Dragone et al.,
2018). A better understanding of basement geometry not only refines tectonic reconstructions
but also reduces exploration risk and guides more efficient resource management.

The Laguna Mirim and Pelotas Basin, located along the southern Brazil-Uruguay
margin, overlie the crystalline rocks of the Neoproterozoic Punta del Este- Jaguardo Terrane
from the Dom Feliciano Belt (Morales et al., 2022, Teixeira et al., 2025a). Their Jurassic—
Cretaceous evolution is linked to Gondwana’s breakup and the South Atlantic opening, making
basement characterization crucial for understanding regional tectonics and resources. Due to
limited data from subsurface information, uncertainties in basement geometry hinder crustal-
scale mapping and resource assessment. Uncertainty in basement geometry represents a major
challenge for geological modeling and resource exploration in the Pelotas Basin and Laguna

Mirim region. Poorly constrained basement depth and structure can lead to inaccurate
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interpretations of basin evolution, tectonic history, and hydrocarbon potential (Morales et al.,
2022).

This study aims to resolve the subsurface structure along the BR-116 (Brazil) and Ruta-19
(Uruguay) profiles, focusing on two main hypotheses: (i) the Pelotas Basin—Laguna Mirim system forms
a continuous conductive wedge over a more resistive basement, and (ii) terrane boundaries and NW-SE
lineaments control basin compartmentalization and accommodation. To address these questions, we
integrate 2-D and 3-D magnetotelluric (MT) modelling with regional geological and structural data from
CPRM (Cruz, 2019; Takehara & Laux, 2019), using ANP well data exclusively for local calibration
(Menezes et al., 2021). Our methodology includes cross-basin MT transects oriented NW—SE and N-S,
intersecting basin margins and major regional shear zones. The resulting data are inverted using 2-D
algorithms to resolve vertical and lateral resistivity contrasts. Geological and structural integration guides
our interpretation of key crustal features, including the contact between the Punta del Este-Jaguardo—
Pelotas Batholith, as suggested suture zone between two Brasiliano terranes, and the Cebollati-Merin and

Aigué-India Muerta—Chuy lineaments.

2. Geological Background

The Dom Feliciano Belt (DFB) consists of several terranes accreted between the
Neoproterozoic and Early Paleozoic (Chemale Jr., 2000; Philip et al., 2016; Teixeira et al.,
2025a) (Figure 1). The eastern portion of the DFB represents a magmatic arc that comprises
three distinct terranes, from east to west: (i) the Punta del Este—Jaguardo Terrane, with
magmatism dated between 580 and 540 Ma; (ii) the Pelotas—Aiguéd—Florianopolis Batholith,
with a magmatic peak between 640 and 600 Ma; and (iii) the Encruzilhada do Sul Block, with

its main magmatic activity between 680 and 640 Ma. The Jaguarao—Punta del Este Terrane
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(Teixeira et al., 2025a) includes the crustal segments of both the Punta del Este and Jaguarao

domains (Cruz et al., 2024).

2954 |3 ‘ 7 -

[ Jaguardo-Punta del Este Terrane
I Aigua-Pelotas-Florianopolis Batholith
B Encruzilhada do Sul Block

B Sio Gabriel Juvenile Terrane

B Tijucas Supraterrane

I Reworked Rio de la Plata N

B Rio de la Plata Craton @
O BR-101 transect
© BR-116 transect 50 100 km

0
@ Ruta-19 transect | | |

34°S

55°W 50°W

Figure 1: Geological map of southern Brazil and northeastern Uruguay showing the main
tectonic structures, terranes, and cratonic domains (from Teixeira et al., 2025a). The following
units are highlighted: Jaguardo—Punta del Este Terrane (brown), Aigud—Pelotas—Florianopolis
Batholith (red), Encruzilhada do Sul Block (orange), Sdo Gabriel Juvenile Terrane (green),
Tijucas Supraterrane (pink), Reworked Rio de la Plata (purple), and the Rio de la Plata Craton
(blue). The study transects are indicated: BR-101 (yellow), BR-116 (green), and Ruta-19 (red).
The inset locates the study area within South America. The faded colors correspond to the
terranes with Phanerozoic coverage that were identified after geophysical interpretation. Pale
brown in the Punta del Este-Jaguardo Terrane correspond to the Cenozoic sediments of the
Pelotas Basin.
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The Punta del Este Domain is bounded to the east by the Sierra Ballena Shear Zone and
records two main magmatic episodes: a Tonian phase between 800 and 760 Ma (Lenz et al.,
2011; Will et al., 2019; Silva Lara et al., 2022) and a younger Ediacaran phase, with granitic
intrusions dated between 580 and 550 Ma (Will et al., 2019, 2023). High-grade metamorphism
is registered in the Tonian units between 660 and 640 Ma (Lenz et al., 2011). Associated
metasedimentary successions reflect both syn-orogenic and late-orogenic basin development
linked to the final collisional stages of the DFB. The Passo del Dragon Complex is interpreted
as an arc-related orogenic basin that developed between 660 and 590 Ma (Peel et al., 2018),
whereas the late-orogenic basins are represented by the Rocha Formation, deposited after 569
+ 10 Ma. Detrital zircon data from this unit reveal a dominant Cryogenian provenance peak and
additional sources at 720-800 Ma, 1000-1200 Ma, and minor Paleoproterozoic to Archean
populations (Abre et al., 2020).

The Jaguardo Domain is considered the northern continuation of the Punta del Este
crustal segment and is bounded to the east by the Ayrosa Galvao Shear Zone (Cruz et al., 2019,
2024). It consists of supracrustal volcano-sedimentary and metamafic—ultramafic complexes
intruded by peraluminous leucogranites, forming a polyphasic structural framework developed
under low- to medium-grade metamorphic conditions (Ramos et al., 2018; Vieira et al., 2019;
Cruz et al., 2019, 2024). Two main magmatic episodes are recognized: a Cryogenian phase
between 680 and 650 Ma (Vieira et al., 2019) and late intrusive granites dated between 580 and
550 Ma, with a magmatic flare-up at 580—570 Ma (Vieira et al., 2016; Cruz et al., 2019, 2024).
Teixeira et al. (2025a) describe the Jaguardo Domain as displaying a low-amplitude magnetic
relief underlain by high-intensity, east-west-oriented magnetic anomalies. It is bounded to the

west by a marked contrast in potassium and thorium concentrations and intermediate uranium
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content, corresponding to the Ayrosa Galvao Shear Zone (Vieira et al., 2019; Cruz et al., 2019,
2024). This shear zone is particularly evident in the vertical derivative of magnetic data, where
regional structural trends shift to a northeast orientation. Narrow NE-oriented regions enriched
in radioelement minerals appear as white zones in ternary radiometric images and coincide with
intermediate magnetic intensities related to late intrusive granites.

In the southern Jaguardo Domain, Cretaceous dike swarms are identified by high-
amplitude linear magnetic anomalies, representing elongated, juxtaposed magnetized bodies.
These features extend offshore, where they connect with volcanic and magmatic additions along
the continental margin. Offshore, they are associated with seaward-dipping reflectors and
intrusive complexes that define the crustal architecture of the Pelotas passive volcanic margin
(Chauvetetal., 2021; Serratt et al., 2022; Teixeira et al., 2025b). Onshore, the basin architecture
is strongly influenced by NW-SE lineaments such as the Cebollati-Merin and Aigua—India
Muerta—Chuy fault systems, which experienced repeated reactivation during rifting and post-
rift stages. In the Laguna Mirim area, conductive sedimentary packages rest on a resistive
crystalline basement, reflecting the interaction between terrane-bounded crustal blocks and rift-

related depositional systems.

3 Methods and Materials

3.1Data acquisition

Land MT surveys with Phoenix MTU-5A were conducted along BR-116 (Brazil) and
Ruta-19 (Uruguay), with coastal control on BR-101. Five components (Ex, Ey, Hx, Hy, Hz)
were recorded using 100 m electric dipoles-oriented N—S/E—W and induction coils aligned to

true north. Four analog bands (TS2-TSS5, centred at ~24 kHz, 2.4 kHz, 150 Hz, 15 Hz) provide
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coverage from ~10 kHz down to 10™“-10"° Hz. The acquisition was performed in single-site
mode with remote reference applied where necessary. A 60 Hz notch, low gains, and a low
analog low-pass filter were used according to the field protocol. Field QC (periodic in-field
processing and time-series inspection) triggered re-runs and adjustments to dipole
length/orientation and recording time when required. Fundamentals and frequency content
follow standard MT/AMT practice in which the impedance tensor (Z) is estimated from electric

and magnetic fields in the frequency domain.

3.2. Processing

Windowed preprocessing with robust stacking was applied, including 60 Hz rejection
and five-component inspection. Time series were transformed to the frequency domain (FFT),
with cross-powers and coherence checks; the impedance tensor (Z) was estimated to derive
apparent resistivity (pa) and phase (¢). Editing used MTEditor (Phoenix), and products were
exported to EDI; raw files were archived (AMT: EMT/.MMT; MT: MTH/. MTL). Periodic in-
field processing was used for QC (quality control). Where the tipper was not acquired or was

unreliable, inversions were run on impedance-only data.

)

2101 ¢TE measured BR116-34 o TE measured BR116-10
= | «TM measured = [«TM measured
-TE calculated < " Z  |-TE calculated
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Figure 2: Example of MT response. Red: TE mode, Blue: TM mode. The axis direction is
defined in a coordinate system specific to each profile. Error bars represent the measured MT
data, and the solid lines represent the inversion model responses presented in the results. TE =
transverse electric; TM = transverse magnetic.
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3.1. Dimensionality, strike, rotation

The geological strike was determined by combining the orientation of regional
geological lineaments with TE/TM vector analyses, complemented by phase tensor and
induction vector diagnostics to ensure the validity of a two-dimensional assumption (Zhang et
al., 1987; Caldwell et al., 2004). Rotation angles of -53 © for the BR-116 profile and 46° for
Ruta-19 were applied. Band-wise dimensionality analyses (1-D, 2-D, and 3-D) were
further employed to guide the selection of suitable data for inversion (Goémez-Trevifio et al.,
2018; Arellano-Castro et al., 2021). A regional strike of approximately NW—SE, consistent with
first order mapped lineaments, was adopted, and the impedance tensor was rotated accordingly
prior to the 2-D inversion. Independent support for this choice came from induction vector
behaviour and skew/coherence diagnostics derived from the EDI products (Maswah et al.,

2021).

3.3. Inversion and parameterization

The 2-D inversions followed Rodi & Mackie (2001) with Tikhonov regularization and
finite-difference forward modelling, fitting pa/o jointly on strike-rotated data. Static shift was
handled via regularization and implicit site gains. Stopping criteria combined RMS stabilization

and model roughness control (Table 1).

Name Ns T (s) Distance dpa (%); Tau pinit (Qm) My x Mz  RMS
(km) 59 (°)
BR116 48 0.003-10000 340 10,5 3 102 732x35 4.2
Rutal9 9 0.003-10000 90 10,5 3 102 154x33 4.9

Table 1. 2-D inversion parameters for the BR-116 and Ruta-19 transects. Abbreviations: Ns =
number of sites; T = period range; Distance = profile length; dpa, %; d¢, © = error floors for
apparent resistivity and impedance phase, in percent and degrees, respectively; pinit =
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resistivity of the initial half-space model; My X Mz = model mesh size, where My and Mz are
the number of model parameters in the y and z directions, respectively; Tau = regularization
(smoothing) parameter; RMS = normalized root-mean-square data misfit.

3.4.

Geological ties and resistivity classes

ANP wells along/near the profiles were used only as local tie points to check sediment

tops/bases and first-order boundaries. Comparative Analysis of Conductive Damage Zones and

Shear-Zone Domains This essay could undertake a comparative study of conductive damage

zones and shear-zone domains, highlighting their resistivity characteristics and implications for

understanding geodynamic processes. It could also address how studying these zones

contributes to the knowledge of fault systems and their potential impacts on infrastructure and

natural hazards (Table 2).

Table 2 — Resistivity ranges and ANP well control

Unit / context  p range BR-116 — Notes Ruta-19 — ANP ties
(2m) Notes used in
inversion
Sediments — =~ (0-80 Laterally continuous Conductive Local ties
Pelotas Basin / conductive wedge; successions only along
Laguna Merin isoresistive beneath Laguna  the profiles
disturbances near faults Merin and
adjacent onshore
Pelotas Basin
Transition to >100 Discrete transitions Present in Local ties; no
Mesozoic (variable)  where intrusions/flows  intermediate extensive
igneous rocks occur portions of the stratigraphy
line
Fractured / ~100-1000 Intermediate-resistivity Intermediate- No direct
metamorphic basement blocks resistivity calibration
basement basement blocks
Competent >1000- Continuous resistive Resistive Consistent
crystalline 10,000 segments; Jaguarao— basement with nearby
basement Pelotas Batholith beneath wells
boundary conductive (indirect)
packages

pg. 93



1747
1748
1749
1750
1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

Shear zones /  Variable Anomalies/gradients Gradients at Indirect

lineaments (gradients) delineating steep Cebollati-Merin  calibration
structures and Aigud—India by spatial
Muerta—Chuy correlation
lineaments

Table 2: Resistivity ranges are approximate and reflect tendencies observed in the MT models.
ANP wells were used only as local ties along the lines during inversion; no detailed stratigraphy
was imposed (Takehara, L. et al., 2019; Menezes et al., 2021).

4. Results

The final 2-D resistivity models were developed for two profiles, each created through
magnetotelluric inversions and systematically integrated with well control and regional
potential-field constraints, which include both magnetic and gravity datasets. This multi-
method approach ensured that the resistivity models are not only internally consistent but also
aligned with independent geophysical and geological observations. Among the eight transects,
two profiles are presented in detail here as representative examples of the crustal architecture
of the Pelotas Basin and its adjacent Precambrian basement (Figures 3, 4, 5, and 6).

In all models, low-resistivity bodies (p < ~80 Q m) are interpreted to represent
sedimentary successions, which are expected to contain interconnected pore fluids and, as a
result, exhibit higher conductivities. In contrast, intermediate to high resistivities (p =~ 10>-10*
Q m) are associated with the crystalline basement, consistent with consolidated igneous and
metamorphic lithologies. The variations in resistivity are not randomly distributed; rather, they
spatially correlate with mapped structural discontinuities, terrane boundaries, and major crustal
lineaments, thereby confirming the influence of inherited tectonic fabrics on basin development

and crustal segmentation.

4.1. BR-116 Transect
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The BR-116 model (Figure 3a and 3b) illustrates a laterally variable, conductive wedge
(p = 0-80 Q m) interpreted as the sedimentary fill of the Pelotas Basin. This conductive wedge
exhibits internal segmentation and lateral thickness variations that coincide with mapped
structural features. Beneath this basin, the resistive crystalline basement is clearly imaged,
extending to depths of ~30 km, with resistivity values ranging between p = 10* and 10* Q m.

Several tectonic and structural elements are recognized along the transect:

(1) the High-Concentration Fault Zone, which is aligned with the Lower Mostardas segment
and appears as a major crustal-scale break in the resistivity model.

(i1) the Camaqua Lineament (E), a prominent NW—SE-trending fault zone that crosscuts both
basement and basin sequences.

(ii1) the boundary between the Punta del Este Terrane and the Pelotas Batholith (F), which is
expressed as a marked resistivity contrast; and

(iv) the division separating the Punta del Este-Jaguardo Terrane from the Tijucas Terrane (G),
also represented by a discontinuity in resistivity values.

The basement domains exhibit marked internal differences. Intermediate resistivity
values (~10°>-10° Q m) are spatially associated with the Pelotas Batholith, consistent with its
felsic composition. In contrast, adjacent crystalline basement blocks show significantly higher
resistivities (~10°~10* Q m), reflecting their more mafic and less altered lithologies. Within the
basin, variations in resistivity and layering correspond closely to borehole data from wells 2-
PJ-1-RS and 2-GA-2-RS, which intersect thick sedimentary packages overlying crystalline

basement.
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Figure 3a: 2-D resistivity inversion from magnetotelluric data along the BR-116 transect. The
surface section extends to a depth of approximately 6 km, with wells 2-PJ-1-RS and 2-GA-2-
RS projected onto the profile. Key interpreted features include the High-Concentration Fault
Zone, which aligns with the Lower Mostardas segment, the Camaqua Lineament (E), and the
boundary separating the Punta del Este-Jaguardo Terrane from the Pelotas Batholith (F). The
color scale represents resistivity (p, £ m). Additionally, a geological map of the study area
highlights the primary terranes, batholiths, and sedimentary basins, with a focus on the
structural framework and the locations of the MT profiles. A zoomed-in regional map illustrates
the distribution of the Punta del Este Terrane and Pelotas Batholith.
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1803

1804  Figure 3b: Magnetotelluric 2-D resistivity inversion along the BR-116 transect reveals depths
1805  of approximately 30 km, demonstrating the continuity of structures previously identified in MT
1806  model. This profile underscores significant tectonic features, including the High-Concentration
1807  Fault Zone associated with the Lower Mostardas segment, the Camaqua Lineament (E), and the
1808  boundary between the Punta del Este-Jaguardo Terrane and the Pelotas Batholith (F). The
1809  resistivity values (p, in Q m) are depicted using a color scale, where conductive zones (blue—
1810  green) are contrasted with resistive basement blocks (yellow—red). Additionally, the inset
1811  geological map illustrates the location of the BR-116 transect across the Pelotas Basin and its
1812  adjacent Precambrian basement, emphasizing the spatial relationship between the surface

1813  geology and the subsurface magnetotelluric profiles.
1814
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Notably, the northeastern part of the profile is characterized by sharper resistivity gradients,
indicating abrupt structural compartmentalization, consistent with the mapped distribution of

faults and terrane boundaries.

4.2. Ruta-19 Transect

The Ruta-19 model (Figure 4a and 4b) offers a complementary perspective of the
Pelotas Basin and its underlying basement, oriented in a NW—-SE direction. Similar to BR-116,
this profile reveals a conductive sedimentary succession (p = 0—80 Q m) that is overlaid by a
resistive crystalline basement. The thickening of this conductive layer toward the basin
indicates structural control and depositional accommodation. Notably, a shallow conductive
anomaly is observed near the PG well, which is located adjacent to the Cebollati-Merin
Lineament (CML; H). This anomaly likely indicates areas of enhanced porosity and fluid
circulation or localized hydrothermal alteration concentrated along this basement structure.

Additionally, the presence of Mesozoic igneous rocks is identified in the upper crust,
represented in the model as localized resistive zones embedded within the predominantly
conductive basin fill. At greater depths, the basement exhibits a heterogeneous resistivity
pattern. Intermediate resistivities (~10°—~10° QQ m) dominate the central region of the profile,
while higher values (~10°-10* Q m) are found toward both the northwestern and southeastern
edges. These variations suggest lithological contrasts among basement domains and underscore
the impact of crustal-scale structures in compartmentalizing resistive blocks.

In the southeastern part of the profile, the Aigud—India Muerta—Chuy Lineament (AICL;
I) is identified, marked by a notable resistivity break. This discontinuity likely signifies a major

crustal boundary between different Precambrian domains, aligning with findings from surface
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1839  geological mapping. Together with the CML, these structures define the internal architecture

1840  of the Pelotas Basin and its relationship with the underlying basement terranes.
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1842  Figure 4a: Magnetotelluric 2-D resistivity inversion for the Ruta-19 transect across the Pelotas
1843  Basin (NW-SE). a) The surface model extends to a depth of 6 km. The PG well is represented
1844  along the profile. In the vicinity of the well, a shallow conductive anomaly is evident, located
1845  adjacent to the Cebollati—-Merin Lineament (CML; H). Mesozoic igneous rocks are indicated in
1846  the upper crust. The colour scale represents resistivity (p,  m), with conductive zones (blue—
1847  green) contrasting against resistive basement blocks (yellow—red). The inset geological map
1848  shows the location of the transect across the Pelotas Basin and the adjacent Punta del Este-
1849  Jaguardo terrane.
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Figure 4b: Magnetotelluric 2-D resistivity inversion for the Ruta-19 transect across the
PelotasBasin (NW—SE). The deep model extends to a depth of 30 km, illustrating the continuity
of basement resistors and notable structures, including the Cebollati-Merin Lineament (CML;
H) and the Aiguéd—India Muerta—Chuy Lineament (AICL; I). The inset map provides context
for the transect across the terranes. Colour scale: resistivity p.(€2 m). The inset geological map
shows the location of the transect across the Pelotas Basin and the adjacent Punta del Este-
Jaguardo terrane.

5. Discussion

The combined analysis of the BR-116 and Ruta-19 MT transects (this work) and BR-

392 Transect (reinterpreted form Menezes et al., 2021) not only elucidates the internal
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architecture of the Pelotas Basin and its surrounding Precambrian blocks but also brings new
insights on the geometry of the terrane boundary, major internal structures and feeding of the
Mesozoic magmatism. This study establishes consistent resistivity-lithology associations, with
sedimentary successions exhibiting resistivity values of approximately p < 80 Q m and
crystalline basement/batholithic domains ranging from p = 10? to 10* Q m. Furthermore, it maps
significant resistivity discontinuities that correspond with identified terrane contacts and
lineaments. These findings suggest that the inheritance from Neoproterozoic structures plays a
crucial role in shaping Phanerozoic basin compartmentalization in the Punta del Este-Jaguarao
region.

The BR-116 section reveals a laterally variable conductive wedge (p =~ 0—80 Q m) that
characterizes the Pelotas Basin, situated above a resistive basement (p = 10>-10* Q m). The
margins of this basin are defined by sharp lateral gradients that align with mapped geological
structures, including the high-concentration fault zone near Lower Mostardas, the Camaqua
Lineament (E), the boundary of the Punta del Este-Jaguardo—Pelotas Batholith (F), and the
boundary between Punta del Este-Jaguardo and Tijucas Terrane(G). Intermediate basement
resistivities (p = 10>~10° Q m) are associated with Pelotas Batholith domains, while contiguous
crystalline blocks locally exceed resistivities of p = 10°~10* Q m. Correlations with wells 2-PJ-
I-RS and 2-GA-2-RS validate the depth of the conductive package and enhance our
understanding of the not deep. Collectively, these observations indicate a long-standing, steep,
and high-contrast terrane boundary that has undergone repeated reactivation.

The Ruta-19 transect across Laguna Merin, a substantial conductive sedimentary
package (p = 0-80 Q m) onlaps and is truncated by basement gradients where the profile
intersects the Cebollati-Merin Lineament (CML; H) and the Aigua—India Muerta—Chuy

Lineament (AICL; I). A surface conductive area near the PG well adjacent to the CML likely
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indicates increased fracture density and/or the presence of fluids along a reactivated zone. At
greater depths, the basement presents a heterogeneous resistive framework, exhibiting
intermediate resistivity values in the central sector and higher values at the margins, which

aligns with a block-bounded segmentation pattern.

5.1. Relation to prior MT imaging and regional frameworks

Our 2-D resistivity sections align with the primary patterns identified by Menezes et al.
(2021) in the Dom Feliciano Belt and Pelotas Basin. These patterns consist of a conductive
basin fill located above resistive batholithic and gneissic blocks, distinct resistivity contrasts at
the interface between the Punta del Este-Jaguardao Terrane and the Pelotas Batholith, and the
continuity of basement highs and saddles that extend from onshore to offshore, thus enabling
basin accommodation (Figure 5). Notably, within the Punta del Este-Jaguardo Terrane, the most
prominent conductive structure observed may correspond to a preserved volcano-sedimentary
sequence, which further underscores the complex internal architecture of this terrane. To
highlight the main structural features imaged in our models and their correlation with tectonic
boundaries, Table 3 summarizes the key lineaments and discontinuities identified across the
TRS-BR392 and BR-116 and profiles (Figures 5 and 6a). This synthesis emphasizes the
consistent imaging of first- and second-order crustal structures, including the Camaqua
Lineament, the Punta del Este—Jaguardao/Pelotas Batholith boundary, and the transtensional

faults of the Camaqua Basin.

Profile Structure Description

BR-116 E Camaqua Lineament
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1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

BR-116 F Punta del Este-Jaguarao
Terrane / Pelotas Batolith

boundary

TRS-BR392 N East edge of the Santa
Barbara—Guaritas

transtensive graben

TRS-BR392 O DCSZ (Tijucas/Pelotas
Batholith boundary)
TRS-BR392 P Faulting of the

transtensional Santa
Barbara-Guaritas Graben

(Camaqua Basin)

TRS-BR392 Q Punta del Este-Jaguarao
Terrane / Pelotas Batolith

boundary

Table 3: Summary of major structures identified in MT 2-D resistivity profiles. Structural
domains and boundaries are labeled according to their respective profiles and correlated with
mapped tectonic features in southern Brazil and northeastern Uruguay.

Along the BR-116 transect (Figure 6), the buttress structure and associated conductive
corridors correspond to first-order crustal anisotropies. Conversely, the steep resistivity
gradient observed near the Aigud—India Muerta—Chuy Lineament (AICL) along the Ruta-19
transect aligns with second-order discontinuities. Both features correspond to the lineaments

identified by Menezes et al. (2021) as significant basement anisotropies that influence basin

geometry. This interpretation is further corroborated by geological mapping conducted by
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CPRM and the regional magnetometric framework outlined by Takehara et al. (2019) and
Silveira et al. (2020).

Further integration with potential-field data reveals that these crustal anisotropies extend
eastward across the hyperextended crust (Teixiera et al., 2025b), correlating with regional
magnetic and gravity anomalies (Morales et al., 2022). This continuity implies that the major
lineaments observed onshore continue for approximately 150—300 km into the South Atlantic,
offering a coherent explanation for the long-term stability and persistence of high-contrast

terrane boundaries in the region.
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1956

Pelotas Batholith, extending to ~30 km depth. The section highlights the boundary between the
Punta del Este—Jaguardo Terrane and the Pelotas Batholith, like Tijucas The model reveals
conductive and resistive zones correlated with major crustal structures. Vertical black bars
indicate the main tectonic lineaments: N= Faulting of the transtencional Santa Barbara-Guaritas
Graben (Camaqua Basin), O = Dorg¢al de Cangugu Shear zone (DCSZ), P= Faulting of the
Pelotas Batolith, Q = Punta del Este-Jagurardo Terrane/Pelotas Batholith bourdary (modified
from Menezes et al., 2021).

The combined analysis of the BR-101 and BR-116 transects (Figure 6) offers a
comprehensive view of the crustal architecture of the Pelotas—Dom Feliciano system,
facilitating a more precise interpretation of the boundary between the Punta del Este—Jaguarao
Terrane and the Pelotas Batholith. Both profiles consistently reveal a conductive basin fill
situated above resistive crystalline blocks, with sharp gradients that delineate first-order
tectonic discontinuities. The contact zone between the Punta del Este—Jaguarao Terrane and the
Pelotas Batholith is characterized by a pronounced resistivity contrast, evident in a steep
transition from conductive to highly resistive domains. Additionally, within the Punta del Este—
Jaguardo Terrane, one of the most prominent conductive structures appears to correspond to a
preserved volcano-sedimentary sequence, indicating that this terrane retains internal
heterogeneity related to its accretionary history.

The BR-116 profile (Figure 6a) emphasizes the structural complexity of this boundary,
illustrating the “High-Concentration Fault Zone” as a crustal-scale conductor that aligns with
mapped tectonic fabrics. Similarly, the BR-101 profile (Figure 6b) uncovers conductive and
resistive corridors that coincide with crustal lineaments, such as the Chuy, Jaguarao, Camaqua,
and Jacui zones. Collectively, these features reinforce the interpretation that inherited crustal
anisotropies played a pivotal role in determining basin geometry and accommodation.

At a regional scale, integration with gamma-ray, magnetic, and gravity datasets

(Teixeira et al., 2025b) reveals that these terrane-bounding structures extend eastward for

approximately 150-300 km across a restored hyperextended crust. This geophysical continuity
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highlights the long-term stability of high-contrast terrane boundaries, suggesting their structural
and geodynamic significance extends well into the offshore domain of the South Atlantic.
Consequently, the synthesis of MT imaging with potential-field data provides a coherent
framework that connects onshore crustal architecture to offshore extension, firmly establishing
the Punta del Este—Jaguardo/Pelotas Batholith contact as a first-order tectonic boundary in the

amalgamation of southwestern Gondwana.
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Figure 6: Two-dimensional magnetotelluric (MT) resistivity inversion profiles from southern
Brazil and northeastern Uruguay. The resistivity models are displayed on a logarithmic scale
(p, Q m), with warmer colours indicating conductive domains (lower resistivity) and cooler
colours representing resistive domains (higher resistivity). a) Profile BR-116 (SW-NE) across
the Punta del Este—Jaguardo Terrane and the Pelotas Batholith, extending to ~30 km depth (this
work). The section highlights the boundary between the Punta del Este—Jaguardao Terrane and
the Pelotas Batholith, as well as the “High-Concentration Fault Zone.” The dashed line marks
the interpreted top of the Precambrian basement. b) Profile BR-101 (SW—NE) across the Pelotas
Basin (modified from Menezes et al., 2021), the Pelotas Batholith, and into the Parana Basin.
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The model reveals conductive and resistive corridors correlated with major crustal structures.
Vertical black bars indicate the main tectonic lineaments: A = Chuy, B = Jaguardo, C =
Camaqua, and D = Jacui. The dashed curve represents the interpreted basement surface. The
inset map shows the location of the MT transects (yellow = Pelotas Basin wells; red = basement
wells) relative to the main tectonic units.

5.2. Context from rift evolution and potential-field constraints

Independent offshore constraints indicate that the Pelotas margin is characterized by
volcanic activity and features extensive wedges of seaward-dipping reflectors (SDR) associated
with Early Cretaceous magmatism. Rifting occurred in a south-to-north progression over three
distinct stages, closely following regional magnetic anomalies (Stica et al., 2014). This tectono-
magmatic framework aligns with our MT image, which reveals a conductive basin wedge and
steep basement gradients, especially where the MT breaks coincide with magnetic and gravity
lineaments. On the onshore shield, Bouguer-gravity-guided mapping has successfully
delineated terranes and structural such as Punta del Este-Jaguardo and Tijucas that correspond
with significant MT breaks (Costa, 1997; Silveira et al., 2020; Takehara, et al., 2019; Teixeira

et al., 2025a).

5.3. Implications for the Punta del Este-Jaguariao Terrane

The MT evidence suggests that the Punta del Este-Jaguardo Terrane serves as a resistive
buttress against which the Pelotas Basin has accommodated, exhibiting significant resistivity
contrasts where the Punta del Este-Jaguardo Terrane contacts the Pelotas Batholith (F in Figure.
3). NW-SE corridors, particularly the CML and AICL, segment the crust into blocks with

unique resistivity signatures, which accounts for variations in thickness and localized
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conductive anomalies near the PG well. These anomalies are interpreted as zones rich in fluids

and alteration associated with reactivated structures.

5.4. Geophysical signature from MT

The comparable application of magnetotellurics (MT) to delineate terrane boundaries,
reactivated corridors, and fluidized fault systems is well-documented across the globe.
Noteworthy examples include crustal-scale conductivity contrasts observed in Fennoscandia
(Korja et al., 2002), 2-D and 3-D MT imaging of the south-central Chilean margin (Kapinos et
al., 2016), and studies of basalt-affected intracratonic basins in Brazil (Padilha et al., 2015).
Additionally, MT has been utilized in foreland and suture-zone transects in Argentina (Favetto
et al., 2008; Peri et al., 2013). These analogues bolster our inference that the MT-mapped
discontinuities beneath Pelotas signify long-lived anisotropies that have influenced strain, fluid

flow, and accommodation.

5.5. Comparison with analogous Neoproterozoic terranes.

In both Kaoko and Gariep segments of the Pan-African system often invoked as
analogues for the DFB, lithospheric-scale MT transects also reveal resistive arc/batholith blocks
(10°-10* Q m) juxtaposed with more conductive sutures and shear belts (10'-10% Q m); similar
pairings are documented in the Ribeira Belt and in Western Parana suture-scale studies (e.g.,
Dragone, 2018; regional syntheses cited in the seminar). The Punta del Este-Jaguardo case fits
this pattern: a resistive arc-like core (Pelotas Batholith) abutted by conductive corridors along

inherited shear zones, with a conductive sedimentary wedge that thickens toward the Atlantic.
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What distinguishes Punta del Este-Jaguardo is (i) the precise one-to-one spatial match between
MT lateral breaks and potential-field lineaments, (ii) the ability to track these breaks across
multiple MT lines (BR-116, Ruta-19, BR-101, TRS-BR392), and (iii) the link to an Ediacaran—
Cambrian basin history (Camaquad) that provides a process-scale template for repeated NW—SE
reactivation (Chemale Jr., 2000; Paim et al., 2000, 2014; Lehn et al., 2022).

Previous studies provide important context for interpreting Neoproterozoic terranes in
southern Brazil, Uruguay, and their African counterparts. Dragone (2018) demonstrated,
through magnetotelluric imaging, the recurrent pattern of resistive arc-related batholiths
juxtaposed with conductive shear zones and sutures, a configuration also recognized in the
Kaoko and Gariep segments of the Pan-African system. Regional syntheses by Chemale Jr.
(2000) and subsequent work on the Camaqua Basin (Paim et al., 2000, 2014) emphasized the
role of NW-SE reactivation during the Ediacaran—Cambrian in controlling basin subsidence,
deformation, and magmatism, with inherited shear belts acting as major tectono-stratigraphic
boundaries. More recent contributions (Teixeira et al., 2025a) reinforce the view that the Dom
Feliciano Belt preserves a transatlantic analogue to Kaoko—Gariep, integrating stratigraphic,
structural, and geophysical datasets that consistently link conductive-resistive crustal domains
with repeated episodes of basin development and tectonic reactivation. Collectively, these
studies underscore the strong connections between South America and Africa in Pan-
African/Brasiliano tectonics and provide a comparative framework for interpreting the Punta

del Este-Jaguardo—Pelotas Batolith sector within the broader Neoproterozoic orogenic system.

5.6. Implications
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The correlation between MT lateral resistivity breaks and magnetic-gravity lineaments
across BR-116 and Ruta-19 supported by additional data from coastal BR-101 crossline
reinforces an inherited-structure model (Figures 9). This model suggests that the Punta del Este-
Jaguardo Terrane—Pelotas Batholith, Dorsal de Cangug¢u Shear zone, and related NW—-SE
systems consistently functioned as zones of weakness, influencing Phanerozoic
accommodation and the connection between onshore and offshore areas (Menezes et al., 2021;
Teixeira et al., 2025b; Takehara & Laux, 2019; Silveira et al., 2020).

The crustal block boundaries marked by the large descontinuities of the DCSZ and
Ayrosa Galvao Shear Zone that clearly are recognized by the MT method Applied in this work.
They may therefore interpreted as suture zone since the Tijucas (to west), Flroiandpolis-Pelotas-
Aigud Batholith (central) and Punta del Este-Jaguardo Terrane (to the east) have distinct
geological history and provenance as already stated by Hartman et al., 2007, Philip pet al. 2016,
Cruz, 2019, Takehara & Laux, 2019, Cruz et al. 2024, Teixeira et al., 2025a, among others.
Specifically, PEJT and PB is defined by a SE-dipping structure as it can be observed in the
transversal section of BR-392 (Figure 9). Such information combined with the W-verging
tectonics of the earlier deformational stages of the studied terranes during the Ediacaran
characterized by Fernandes et al., 1992, Tommasi et al, 1994, Chemale et al., 1995, Battisti et
al., 2018 may suggest a towards west subduction for Ediacaran orogeny for the Dom Feliciano
Belt against the Rio de la Plata Craton (Upper Plate).

Also important, the deeper structure mapped in Ruta 19 suggest feeding channel of
Mesozoic basalts in the depth up to 25 km (Figure 4b) that feed the laccolith structure of basalt

magma in the Merin Lagoon region (Figure 4).

Conclusions
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The integration of eight 2-D MT transects with well control and regional potential-field
data establishes a consistent resistivity-lithology framework for the Pelotas Basin and the
surrounding Precambrian blocks. Conductive bodies with resistivities (p < 80 €2 m) define the
sedimentary wedge, while the crystalline basement is characterized by intermediate to high
resistivities (p = 10>-10* Q m). The two representative sections, BR-116 and Ruta-19, reveal
steep, laterally coherent resistivity breaks that align with mapped terrane contacts and first- and
second-order lineaments. The depth to the basement and the internal layering inferred from the
MT data are consistent with observations from wells 2-PJ-1-RS and 2-GA-2-RS, as well as with
the regional magnetic and gravity fabric, thereby providing cross-disciplinary validation of the
geological framework.

The data structurally suggest that the Punta del Este-Jaguardo Terrane serves as a
resistive buttress against which the Pelotas Basin accommodates. Along BR-116, the high-
contrast contact with the Pelotas Batholith is distinctly evident, characterized by corridors with
resistivity values of approximately 100-300 Q2 m that trace damage zones within shear and fault
belts. Meanwhile, along Ruta-19, the segmentation caused by the Cebollati-Merin (CML) and
Aigua—India Muerta—Chuy (AICL) lineaments divide the crust into blocks that exhibit unique
resistivity signatures. A shallow conductive anomaly near the PG well likely indicates structure-
controlled fluids or alteration. Collectively, these features suggest a history of repeated
reactivation of inherited Neoproterozoic anisotropies that facilitate strain localization, fluid
movement, and accommodation.

Regionally, MT breaks are spatially concordant with magnetic and Bouguer-gravity
lineaments and persist across multiple BR-101 profile, indicating onshore—offshore continuity

of basement highs, saddles, and steep boundaries. This structural grain projects eastward for
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~150-300 km into a restored hyperextended continental domain, consistent with an Early
Cretaceous, south-to-north rift evolution and with widespread SDR packages along the Pelotas
margin. The MT—potential-field congruence therefore supports a basin model governed by
structural inheritance: NW-SE corridors (e.g., CML, AICL, Dorsal de Cangucu) acted as long-
lived weakness zones modulating basin thickness, compartmentalization, and the coupling
between shield and margin.

These results highlight the significance of magnetotellurics (MT) for imaging crustal-
scale terrane boundaries and reactivated corridors in volcanic and magma-rich passive-margin
environments. However, some uncertainties persist due to 2-D assumptions, the non-uniqueness
in the relationships among resistivity, composition, temperature, and fluid, as well as limited
station density in critical areas. We recommend undertaking targeted 3-D/anisotropic
inversions, conducting joint or cooperative inversions alongside gravity/magnetics and
reflection seismics, and implementing focused petrophysical calibration at well sites (including
temperature and salinity estimates). These measures aim to refine our understanding of the role
of fluids and alteration within corridors of 100-300 Q m. Such initiatives will enhance
constraints on the timing and mechanisms of reactivation and improve predictive models
regarding reservoir distribution, fluid pathways, and crustal segmentation along the southern

Brazilian—Uruguayan margin.
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Abstract

The Dom Feliciano Belt and the adjacent intracratonic Parana Basin present a complex tectonic
evolution that links Neoproterozoic orogenesis to the formation of Paleozoic—Mesozoic basins
and magmatic activity in southern Brazil and Uruguay. In this study, we integrate two-
dimensional (2-D) and three-dimensional (3-D) magnetotelluric (MT) resistivity models with
structural, seismic, gravity, and magnetic data to image the crustal architecture across the
region. The 2-D MT transects (PSI, PSII, and PSIII) identify vertical resistivity stratification
within the Parana Basin and its interfaces with the crystalline basement, while the 3-D models
reveal laterally continuous conductive corridors and resistive terranes that align with major
shear zones of the Dom Feliciano Belt and the crustal blocks of the Rio de la Plata Craton.
Conductive anomalies correspond to sedimentary depocenters and reactivated shear zones,
whereas resistive domains delineate granitoid batholiths, stable cratonic roots, and the basalts
of the Parand Large Igneous Province. The results indicate that inherited Neoproterozoic
structures, such as the Dorsal de Cangucu, Ibaré, and Sarandi del Yi shear zones, extend to
depths of 20-30 km and represent long-lived crustal weakness zones reactivated during basin
evolution and Mesozoic magmatism. Integration with complementary geophysical datasets
confirms that conductive anomalies mark first-order crustal discontinuities, emphasizing the
role of structural inheritance in shaping the evolution of intracratonic basins and passive

margins in southern South America.
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Highlights

1. First 3-D MT model of crustal architecture in the Dom Feliciano Belt and nearby basins
2. Low-resistivity zones trace Neoproterozoic crustal weakness along major shear zones
3. Comparison of 2-D and 3-D inversions quantifies distortion in variable structural

4. NW-SE conductive corridors segment the Parand Basin and focus magmatism terrains
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3. Introduction

Southern Brazil and northeastern Uruguay provide an exceptional natural laboratory to
investigate lithospheric accretion and recycling from the Late Neoproterozoic to the Early
Mesozoic. In this region, the Archean—Paleoproterozoic Rio de la Plata Craton (RPC) is
juxtaposed with Neoproterozoic mobile belts that record the terminal collision of continental
fragments during the Brasiliano—Pan-African orogenic cycle (Rapela et al., 2007; Saalmann et
al., 2007; Teixeira et al., 2025).

In this context, the Dom Feliciano Belt (DFB) constitutes an orogenic system that stretches
approximately 1,200 kilometres along a line parallel to the current Atlantic margin. Extensive
calc-alkaline batholiths and a network of transpressional shear zones characterize it. While the
tectonothermal evolution of this region is well-documented at the surface, the electrical
structure at the lithospheric scale and consequently the depth continuity and connectivity of
these geological features remains inadequately characterized (Hartmann et al., 2007).

Overlapping this crystalline basement is a mosaic of Phanerozoic sedimentary basins, which
can be classified into two main styles. To the northwest of the craton-orogen contact zone, the
Parané Basin represents an intracratonic basin of rocks from the Upper Carboniferous to the
Cretaceous, covered by basalt flows. In contrast, the Camaqua Basin, positioned directly over
DFB shear zones, contains syn- and post-orogenic volcano-sedimentary sequences from the late
Ediacaran to the early Cambrian, deposited in pull-apart depressions. Further to the southeast,
the Pelotas Basin registers the transition from continental rift to the drift of the passive margin,
currently covered by a thick marine succession from the Aptian to the Recent.

Despite their stratigraphic differences, the Paran4, Camaqua, and Pelotas basins share a
common structural inheritance: their bounding faults align with Brasiliano—Pan-African shear

zones, marking long-lived crustal weaknesses reactivated under changing stress regimes.
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Onshore MT campaigns across the region (Philipp et al., 2014; Bologna et al., 2019; Lugao et
al., 2020; Menezes et al., 2021; Morales et al., 2022) initially relied on 2-D profile inversions,
which effectively imaged individual basins and major shear corridors (Menezes et al., 2021;
Morales et al., 2022; Bologna et al., 2019).

However, the oblique orientation of several structures relative to the regional geoelectric
strike violates the 2-D assumption, undermining lateral continuity and geometry. We therefore
adopt a full 3-D inversion strategy (Ledo, 2005; Ledo et al., 2002; Siripunvaraporn et al., 2005)
implemented with ModEM (Kelbert et al., 2014). This approach frames the central objective of
this study: to resolve the depth continuity and along-strike connectivity of inherited shear zones
that segment the Parand, Camaqua, and Pelotas basins.

Our integrated 3-D and 2-D magnetotelluric models image continuous crustal resistivity
patterns that track the architecture of fault systems and shear zones. We present the first regional
3-D MT resistivity model for southern Brazil and northeastern Uruguay, integrated with legacy
2-D sections. The models delineate low-resistivity corridors associated with the Ibaré Fault
Zone, the Dorsal do Cangugu Shear Zone, the Cebollati-Merin Lineament, and the Chui
Lineament, and trace their continuity into the middle—lower crust (=20-30 km). Compared with
2-D profiles, the 3-D inversion preserves along-strike connectivity and reduces dimensionality
bias where geoelectric strike varies. Together, these models demonstrate that inherited
Neoproterozoic shear zones constitute the primary network of crustal-scale weaknesses that

segment the Parana and Camaqua basins.
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4. Geological background

The study area encompasses the southernmost regions of Brazil and northeastern
Uruguay, where the sedimentary cover of the Parand, and Pelotas basins overlies the
Uruguayan-Sulriograndense Shield represented by Proterozoic—Archean basement associated
with the Rio de la Plata Craton and Neoproterozoic to Eopaleozoic rocks of the Dom Feliciano
Belt (Rapela et al., 2007; Oriolo et al., 2016a; Philipp et al., 2016, Teixeira et al., 2025).

The Craton Rio de la Plata RLPC records a long magmatic-metamorphic history
between Archean and Stenian divided into the Paleoporterozoic granite greenstone belts
exposed along the Uruguay and Argentina and Archean to Stenian reworked margin reworked
margin dominantly composed of ortho and paragneisses metamorphosed under granulite
facies as part of the Nico Perez Terrane (e.g., Hartmann et al., 2001; Santos et al., 2017, Girelli
et al., 2018).

The Neoproterozoic Dom Feliciano Belt surrounds Archean to Mesoproterozoic rocks
of the Uruguayan-Sul-Riograndense Shield, comprising four main terranes—the Sao Gabriel,
Tijucas, and Pelotas-Florianopolis-Aigua batholiths, and the Rocha-Punta del Este terranes
(Teixeira et al., 2025). These terranes evolved between 1.1 Ga and 500 Ma, initiating with rift-
related alkaline magmatism and progressing through stages of passive margin development,
ocean basin formation, arc magmatism, and continental collision, before concluding with post-
orogenic basin formation and volcano-plutonic magmatism associated (Gresse et al., 1996,
Chemale, 2000; Hartman et al., 2007; Guadagnin et al., 2010, Chemale et al., 2012; Oliveira et
al., 2014 Phillipp et al., 2016).

Southern Brazil and Uruguay are transected by several major shear zones and sutures,
such as the Sierra Ballena, Dorsal do Cangucu, Ibaré, Sarandi del Yi, and Ayrosa Galvao

lineaments. These structures record key events of crustal convergence and accretion during the
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Figure 1: a) The study area is located in South America map (indicated by the red box. b) The
geological map of southernmost Brazil and northeastern Uruguay is overlaid on shaded relief
and bathymetry, highlighting the primary structural elements, including structural highs and
shear zones such as the Torres Arch, the PAFZ, and the CTZ (modified from Teixeira et al.,
2025) . Circles mark the MT station locations utilized in this study: green represents the new
Pelotas array (this research), orange denotes the Parana Project, white indicates reprocessed
stations from Bologna et al. (2019), yellow corresponds to Menezes et al. (2021), red shows
Morales et al. (2021), while black filled circles represent wells and open circles indicate major
cities (e.g., Porto Alegre, Pelotas, Florianopolis, Montevideo). Colors signify different
geological units (refer to the legend): yellow for Quaternary deposits of the Pelotas Basin; dark
green for the Parand Large Igneous Province (LIP); light green for the Parand Basin sedimentary
cover; beige for Vendian—Cambrian basins; orange for the Jaguardo Terrane; red for
Neoproterozoic granites; blue for Tonian—Cryogenian terranes; bright green for Neoproterozoic
basins; pink for Archean—Paleoproterozoic granitic-gneiss terrane; and purple for
Paleoproterozoic granite—greenstone terrane.
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Precambrian to Eopaleozoic evolution of the Sul-Riograndense Shield (e.g., Fernandes et al.,
1992; Tommasi et al., 1994; Oyhantcabal et al., 2010; Oriolo et al., 2016b; Hueck et al., 2020).
Many of these structures were subsequently reactivated during Phanerozoic tectonic events,
including the Permo-Triassic Gondwanide orogeny, the Jurassic-Cretaceous opening of the
South Atlantic, and the Meso-Cenozoic to Cenozoic tectonism along the western margin of the
Andean Mountains (Oliveira et al., 2016; Cassel et al., 2022).

The Parana Basin, covers the units of the Uruguayan-Sulriograndense Shield andis one of
the largest intracratonic basins in the world, extending through southern Brazil, Uruguay and
Argentina. In the study area, the Parana Basin is represented by a thick sedimentary sequence
from the Upper Carboniferous to the Jurassic, covered by basaltic flows from the Lower
Cretaceous associated with the of Parana. Depositional environments range from shallow
marine to continental, with sandstones, shales, siltstones, and coal seams (Milani et al., 2007).

The Jurassic—Early Cretaceous rifting and subsequent breakup of Gondwana led to the
formation of the Parana—Etendeka flood basalts onshore (Gomes & Vasconcelos, 2021) and a
volcanic passive margin offshore, represented by the Pelotas Basin. This offshore margin is
characterized by seaward-dipping reflectors that reach depths of up to 17 km (Harkin et al.,
2020; Serrat et al., 2022, 2025). The Pelotas Basin is a passive margin basin of the South
Atlantic Ocean (Chauvet et al., 2021), located on the southern segment of the Atlantic margin.
It extends onshore, overlying units of the Parand Basin in southern Brazil and Uruguay,
covering a total area of approximately 250,000 km?. This includes about 40,000 km? on the
coastal plain (Bueno, 2007). The basin's drift phase is marked by continued thermal subsidence
and the deposition of Meso-Cenozoic sediments, with locally preserved Quaternary deposits on
the coastal plain. Geologically, the basin partially overlaps the Pelotas Batholith, the Parana

Magmatic Province, and the edge of the Parana Basin (Gordon & Mohriak, 2015; Conti et al.,
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2017, Stica et al. 2014). The margin's architecture has been significantly influenced by major
oceanic fracture zones, such as the Chui and Florianopolis Fracture Zones (Mohriak et al.,
2008).

5. Magnetotelluric (MT) dataset and EDI editing for inversion

The Magnetotelluric (MT) and its high frequency counterpart Audio-Magnetotelluric
(AMT) methods use the naturally occurring magnetic field of the Earth as source of signal. In
the subsurface, electromagnetic waves propagate in a diffusive way: high frequencies
investigate shallow depths, while low frequencies reach deeper levels (Vozoft, 1972). Five
components of the natural electromagnetic field are measured: two electrical (Ex and Ey) and
three magnetic (Hx, Hy and Hz). The electrical components record the potential difference
between pairs of electrodes spaced 100 m; the electrodes are non-polarizable of lead chloride;
Magnetic components are measured with induction coils.

In this study, we used AMT and MT data from following magnetotelluric surveys: (i) 165
stations acquired in 2012 in the Parana Sul Project (2015), (i1) 59 stations acquired in the project
along the BR-116 in the Rio Grande do Sul and Uruguay (Menezes et al., 2025), (iii) 47 stations
along the BR-101 published by Menezes et al., (2021), (iv) 35 stations in the central part of
Rio Grande Sul state and Uruguay published by Bologna et al. (2019). We emphasize that the
MT/AMT responses were revisited and reinterpreted, considering additional reflection-seismic
profiles and drill-core information, resulting in a more robust geological framework. Two-
dimensional resistivity sections were constructed used Rodi & Mackie (2001) nonlinear
conjugate-gradient algorithm with first-order Tikhonov (1950) regularization method and fully
3-D inversion models were obtained with ModEM (Egbert & Kelbert, 2012; Kelbert et al.,

2014).
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In the following section, we provide a summary of the EDI dataset used for inversion and
the minimal modifications made for modeling. We re-editing was conducted for inversion
purposes. Before of the inversion, we evaluated dimensionality and established a preferred
strike based on phase-tensor attributes and induction vectors. The rotations for the 2-D runs
aligned with the mapped geological strike, while depth-dependent 3-D behavior was noted for
interpretation. Figure 3 presents representative EDI response curves, and Figure 3 compiles the
diagnostics related to strike and dimensionality that informed tensor rotation, window selection,
and station weighting. The re-edited EDI responses were calibrated with nearby wells and
correlated with seismic, Bouguer gravity, and magnetic interpretations. Subsequently, we re-
ran the 2-D inversions using the Rodi & Mackie (2001) nonlinear conjugate-gradient algorithm
with first-order Tikhonov (1950) regularization method, and generated companion 3-D models

with ModEM, concentrating on the structural targets of interest.

)
)
)

PSII-41 £ PSII-46 PSII-48

oTE measured

«TM measured
-TE calculated
-TM calculated

oTE measured

10{*TM measured
-TE calculated
-TM calculated

oTE measured

sTM measured
-TE calculated
-TM calculated

App. Rho (ohm.m
App. Rho (ohm
App. Rho (ohm.m

2180 =180 2 180)

290 T —— S 290 et - | Z 90|
o S N 00 ; £15

10° 10 10 10 10 10° 10 10 10 10 10 10 10 10 10" 10 107 10°
Period (sec) Period (sec) Period (sec)

Figure 2: Representative EDI responses (XY/YX) for selected sites; identical axes/y-ranges
across panels facilitate comparison. Three example sites are highlighted in red (PSII41, PSII-
46, PSII-48).

3.1. Dimensionality and strike

Before conducting the 2-D and 3-Dinversion, we evaluated phase-tensor parameters (3
and ®min) to characterize depth-dependent 3-D behaviour and to guide tensor rotation and

window selection. We adopted the geological strike for 2-D modelling, while acknowledging
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sectors where || > 3° and high ®min indicate local 3-D effects that inform interpretation (see
Figure 3).

Phase-tensor dimensionality analysis was performed to evaluate the geoelectric
structure and identify potential three-dimensional effects prior to inversion. The phase tensor,
defined as ® = X 'Y (Caldwell et al., 2004), provides distortion-free parameters that describe
the orientation and magnitude of subsurface conductivity. The pseudo-sections of § skew angle
and minimum phase (®min) (Figure 3) reveal significant lateral and vertical variations along
the profiles, with  values exceeding £3° in several sectors, confirming local 3-D behavior
associated with major shear-zone corridors within the PSI profile. Regions showing high ®min
correspond to conductive sedimentary or fault-bounded domains, whereas lower ®min values
delineate the resistive basement and volcanic sequences of the Parand Large Igneous Province.
These observations guided the selection of inversion parameters and validated the presence of

complex geoelectric anisotropy throughout the study area.
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Figure 3: Phase tensor pseudo-sections for the PSI profile. (a) f skew-angle pseudo-section
showing the distribution of phase-tensor skew () along the profile; values |B| > 3° indicate
three-dimensional conductivity effects and structural complexity. (b) Minimum-phase (®min)
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pseudo-section illustrating lateral and vertical variations in apparent anisotropy and the
transition between resistive and conductive domains. The ellipses depict the principal axes of
the phase tensor, where orientation indicates the dominant current-flow direction. These
diagrams highlight zones of high ellipticity and increased P values corresponding to crustal
heterogeneities and shear-zone concentrations, consistent with features resolved in the MT
inversions of the Psi profile.

Candidate strikes were compared against mapped structural trends, such as central
NW-SE lineaments and shear zones. Only those windows and stations that met the stability and

geological compatibility criteria were retained. The tensors were then rotated to align with the

preferred strike before of the inversion.

3.2. 2-D and 3-D Profiles — Inversion Parameters

We reproduced the 2-D inversions of PSI, PSII and PSIII to better delineate the
structural targets of interest. The Rodi & Mackie (2001) nonlinear conjugate-gradient algorithm
with first-order Tikhonov (1950) regularization method. A 10> Q m (100 Q m) half-space (t = 3)
was used as the starting model; typical error floors (6pa =~ 10 %, d¢ =~ 5°) were adopted; meshes
followed station geometry; solutions converged to RMS 2.2-3.6. Tensors were rotated to the
geological strike (PSI 303°, PSII 28°, PSIII 309°) after phase-tensor checks (3, ®min). We now
present the new 2-D models and the integrated interpretation constrained by well, seismic,
gravity and magnetic.

To provide a comprehensive overview of the inversion settings performance. Table 1
summarizes the key parameters for the PSI, PSII, and PSIII profiles. Included information on
the number of stations, sampled period range, profile lengths, levels of uncertainty,

regularization parameters, initial resistivity, mesh dimensions, and final RMS misfits.
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Presenting these values underscores the reliability of the dataset and the robustness of the
inversion processes applied to each profile.

Table 1. 2-D inversion parameters for profiles PSI, PSII and PSIII.

Name Ns T(s) Distance 6pa (%); Tau pinit (Q My x Mz RMS
(km) 8¢ (%) m)
PSI 58 0.01-1000 600 10,5 3 102 70 x 47 3.6
PSlI 58 0.01-1000 270 10,5 3 10? 71 x49 2.6
PSIII 49 0.01-1000 340 10,5 3 10? 156x89 2.2

Table 1: Inversion parameters for the 2-D magnetotelluric profiles PSI, PSII, and PSIII. Listed
are: number of stations (Ns), sampled period range (T), profile length (Distance), average
uncertainties of apparent resistivity (0pa) and phase (6¢), regularization parameter (Tau), initial
resistivity (pinit), inversion mesh size (My x Mz), and final root mean square (RMS) misfit for
each model.

For the 3-D inversions we used the parallelized ModEM package (Megbel, 2009; Egbert
& Kelbert, 2012). To control mesh density given the irregular station layout, we tested two
spacing-based configurations, Group A and Group B, each run with the full dataset (156
stations) and using the same nominal core cell size (Ax=Ay). Both meshes employed 10
padding cells per side with a 1.3 geometric growth; the starting model was a homogeneous
100 Q m half-space and the 0.001-1,000 Hz band was used. Group A yielded the most stable
responses (lower weighted misfit and better geological coherence), so we adopted the Group-A
mesh for the production run with all 156 sites. The inversion converged after 193 iterations to
a weighted RMS of approximately 1.2.

The 2-D inversions use a cell-based (piecewise-constant) parameterization, so models
appear “blocky”. Lateral discretization reflects sampling geometry and numerical stability: PSI
M _y=70; Ax=8.6km), PSII (M_y=71; Ax=3.8km), PSIIl (M_y=156; Ax~=2.2km).
Features smaller than ~2—3 cell widths cannot be resolved in 2-D. For readability, we also show
an interpolated rendering; however, all interpretations rely on the discretized inversion model.

Skin-depth guide lines (p =100 Q m) indicate the depth of investigation. The PSI, PSII, and
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PSIII profiles, the data were re-modelled (re-inverted) with emphasis on basement structures.

Although 2-D responses predominate, 3-D components are essential near (a) craton-margin

shear-zone corridors, (b) basin-bounding steps/faults, and (c) cross-strike conductive wedges

that link structural blocks and accommodate basin subsidence. Following Palacky (1987), we

interpret the models within three resistivity domains, which relate electrical contrasts to key

tectono-lithologic boundaries and aid comparison between 2-D and 3-D results.

3.3.

High Resistivity (>1000 Q m): Typically associated with non-fractured metamorphic
units, intrusive igneous bodies, or stable basement blocks. These domains usually
coincide with recognized segments of the Rio de la Plata Craton or deeper portions of
the Don Feliciano Belt, where brittle deformation is minimal.

Moderate Resistivity Zones (100300 Q m): Indicative of transitional basement or
partially. These values may correspond to moderately rocks, restricted fault zones, or
smaller-scale igneous intrusions within ancient basement terrains (Klein, D. P., 1991,
Palacky, 1987).

Low Resistivity Values (1-80 Q m): These usually represent sedimentary basins, where
high porosity and fluid content increase electrical conductivity, or subvertical shear
zones enriched in conductive minerals such as graphite and sulfides or containing deep

crustal fluids (Palacky (1987).

Preferred 3-D Model — INVS8A_2

The INV8A 2 model was identified as the most representative solution, offering an

optimal balance between model fit, geological plausibility, and structural resolution. After 193

iterations, the model achieved a low root mean square (RMS) misfit of 1.2, effectively capturing
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first-order tectonic features and remaining consistent with independent geological and well
data.

The resistive domains are distinctly imaged, including the crystalline basement, which
exceeds 1000 Q m, and the Serra Geral Formation comprising basaltic units with resistivities
around ~1000 Q m. Additionally, there are highly resistive blocks that exceed 2000 2 m. The
lateral variation of these resistive zones spatially correlates with mapped crustal faults and shear
zones, highlighting structural controls on the distribution of resistive lithologies.

Conversely, the conductive domains, ranging from 1 to 80 Q m, exhibit a strong
correlation with stratigraphic data from wells and are spatially associated with the principal
sedimentary basins. These conductive regions are identified in the following areas: C1- Pelotas
Basin, C2 - Parané Basin, C3 - Camaqua Basin, and C4 - Laguna Mirim Basin. The alignment
of these low-resistivity anomalies with the mapped extent of the basins enhances the reliability

of the inversion and underscores the sensitivity of the MT method to sedimentary successions.

3.4. Comparison with Another 3-D MT Regions

The application of 3-D MT in complex tectonic contexts has gained prominence in recent
decades, solving limitations of 2-D surveys (Jegen et al., 2016; Platz et al., 2022). Southwestern
Gondwana shows parallels with well-studied belts, such as the Damara Belt (Namibia), where
conductive subvertical zones mark major sutures (Ritter et al., 2003) analogous to the Ibaré and
Cangugu Shear. On passive volcanic margins, marine studies near Walvis Ridge (Jegen et al.,
2016) demonstrate that MT 3-D, integrated with other data, reveals how ancient lineaments

control rifts and magmatic underplating a scenario like the Pelotas Basin.
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3.5. Integration with Geological and Seismic Data

Well data (ANP-BDEP, CPRM), in conjunction with seismic profiles and regional
gravimetric and magnetometric maps, were incorporated into the framework for interpretation
(Costa et al., 1997; Bologna et al., 2019; Morales et al., 2021). The calibration of resistivity
values was supported by wells situated near the MT transects, including one in the Camaqua
Basin, fourteen in the Paranéd Basin, and ten in the Pelotas Basin (refer to the distribution in
Figure 1). This calibration provided essential ground truth for the inversion results and
enhanced the reliability of the resistivity-lithology correlation. Additionally, the integration of
seismic profiles parallel to the PSII transect reinforced the consistency of the structures derived

from MT data, demonstrating a strong agreement between independent geophysical datasets.

4. Results

The MT results are first presented as two-dimensional (2-D) inversion sections along
selected regional transects. The 2-D models were computed used Rodi & Mackie (2001)
nonlinear conjugate-gradient algorithm with first-order Tikhonov (1950) regularization
method, using the smoothing (t = 3), applying the strike rotations reported above and the data
uncertainties listed in Table 1 ({(dpa) = 10 %, (d¢) = 5°). These sections resolve lateral resistivity
variations and allow direct correlation with mapped tectonic boundaries, basin fills, and
crystalline basement domains. Subsequently, three-dimensional (3-D) inversion models were
obtained with ModEM. Despite the coarser discretization in PSI/PSII, first-order features such
as the basement top, conductive corridors, and resistive blocks remain laterally coherent and

are consistent with well and seismic ties as well as with the 3-D checks (ModEM), supporting
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the main conclusions. The novelty of this work lies in the re-editing of the archived processed
responses and the development of new 2-D/3-D inversions integrated with independent datasets

to deliver a regional tectonic interpretation.

4.1. PSI Profile

The PSI profile is related to the Parana Basin (Figure 4), covering depths of 30 km for 2-D
and 3-D inversions. The observed resistivity values range from 0 to 80 ) m, associated with
the sedimentary package. It is noteworthy that the variation in the resistivity contours,
especially those of 80 Q m, marks the interfaces between the Parana Basin and the basement,
as well as between the magmatism of the Igneous Province of Parana (IPL) and the sediments
of the basin.

These resistivity values were calibrated with well data, particularly in regions with
pronounced discontinuities, located in the southwestern portion of the profile. The Camaqua
Basin is delimited by a fault system originating from the Parand Basin, both north and south of
the profile. In this region, the sediments of the Bom Jardim package exhibit more resistive
behavior, with values between 80 and 100 Q m in depth.

The basement presents lateral discontinuities in resistivity, with intermediate variations
(100-1000 © m) in the northeast sector and high resistivities (1000 to 10.000 Q2 m) in the

southwest sector.
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Figure 4: a) 2-D inversion section (0-30 km depth). Vertical resistivity image (logiop, Q m;
purple = more resistive, yellow—red = less resistive) across the Parana Basin. A low-resistivity
sedimentary package overlies a resistive crystalline basement; to the NE, a near-surface, high-
resistivity domain is attributed to Parana Large Igneous Province flows and dykes. Significant
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structures are labelled on the panel, including the Ibaré Shear Zone, an intermediate fault
lineament, and the Jacui Lineament, as well as fault-zone corridors at the basin margins. The 2-
LV-1-RS well is projected at the NE end for shallow calibration; tick marks along the top
indicate MT station positions. b) 3-D inversion transect along the exact alignment. This section
offers an excerpt from the three-dimensional resistivity model (0-30 km), emphasizing the
down-dip continuity and anchoring of the identified structures. The Ibaré Shear Zone intrudes
the middle to lower crust, the Jacui Lineament establishes a steep lineament within the crust,
and the central fault lineament marks less resistive depocenters within the basin. Vertical dashed
lines mark the intersections with companion profiles (PSI-TRS and PSI-PSII). The inset map
locates the transect, and the well-interval legend identifies Parana LIP, Parana Basin, Camaqua
Basin, and Basement. Note: the “blocky” look reflects the cell-based 2-D parameterization, not
a display artifact. Core cell widths are ~8.6 km (PSI). The interpolated panel is for readability
only; values derive from the inverted model.

4.2. PSII Profile

The PSII transect across the Parané Basin (Figure 5) elucidates the resistivity structure
from the shallow crust (approximately 6 km) down to a depth of around 30 km. Low-resistivity
values (p <74 Q m) characterize the sedimentary package of the basin, with highly conductive
anomalies indicating the transition to a fractured crystalline basement. The isovalue of 74 Q m
serves as a consistent threshold for delineating the Parana Large Igneous Province (LIP) and
the overlying sedimentary succession.

Calibration with well data reinforces the interpretation in areas marked by significant
resistivity contrasts, particularly in the northwestern sector. In this region, lateral
heterogeneities within the basement are apparent, characterized by intermediate resistivities
(100-1000 Q m) in the northwest and higher values (1000-10.000 Q m) in the southeastern
basement. The integration with the seismic profile, collected along the precise alignment, shows
strong consistency in both stratigraphic horizons and structural features, despite disruptions
caused by zones of intense faulting that directly impact the MT signal. The MT inversion
correlates closely with well 2-RS-1-RS, while discrepancies with wells 2-LV-1-RS and 1-MC-

1-RS can be attributed to a highly faulted domain, which is also evident in the Seismic Section.
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Figure 5: Integrated geophysical imaging of the PSII transect across the Parand Basin. a)
Qualitative seismic section along the MT alignment, imaging Parana LIP flows at the surface,
the sedimentary succession intruded by sills, and the top of the crystalline basement. Wells 2-
RS-1-RS, 2-LV-1-RS, and 1-MC-1-RS are projected for stratigraphic control. b) Shallow 2-D
MT resistivity inversion (to ~6 km), overlain with interpreted stratigraphic tops (Botucatu,
Palermo, Teresina/Serra Alta/Irati/Rio Bonito formations) and the basement surface. A
conductive conduit in the central sector correlates with sill-rich packages seen in (a), whereas
resistive zones delineate basement buttresses. Dashed vertical lines indicate intersections with
companion profiles (PSII-NW-SE and PSI-PSII). c) Deep 2-D MT resistivity inversion (to
~30 km), highlighting a fault-zone column that extends into the middle—lower crust and the
lateral continuity of the resistive basement beneath the basin. Note on color scale: Panels (b)
and (c) display logio(p, Q m). The dynamic range is intentionally stretched relative to other
figures to enhance contrasts between the surface LIP, sediments, and crystalline basement. In
this scale, yellow—red tones correspond to conductive zones (sedimentary sections and sill-
dominated intervals), while purple-blue tones correspond mark resistive domains (crystalline
basement and LIP. Note: the “blocky” look reflects the cell-based 2-D parameterization, not a
display artifact. Core cell widths are 3.8 km (PSII). The interpolated panel is for readability
only; values derive from the inverted model.

4.3. PSIII Profile

The PSIII profile also belongs to the Parand Basin (Figure 6) and covers the depth range
between 6 and 30 km. Along the profile, the resistivity values vary between 0 and 80 Q m,
representing the sedimentary package. A low resistivity anomaly, with a value of 22 Q m, which
delimits the IPL Parana in relation to the sediments of the basin, stands out. The calibration was
performed based on data from the 2-IT-1-RS well, especially in areas with greater resistive
discontinuity, notably in the northeast portion. The basement exhibits intermediate resistivities

(100-1000 © m), concentrated in the Northeast, and high values (1000 to 10.000 Q2 m) along

the entire profile.
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Figure 6: a) Surface section (0—6 km) along the SW—NE profile across the Parana Basin. The
colors represent logio(p,  m) (purple-blue indicating resistive regions; yellow-red indicating
conductive areas). A resistive cap, interpreted as the Parand Large Igneous Province (LIP),
overlies a conductive sedimentary package intruded by mafic sills. Two black polylines trace
the inferred tops of the sedimentary succession and the crystalline basement. The 2-IT-1-RS
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well is projected for stratigraphic correlation. Steep vertical features delineate fault-zone
columns that define the depocenters. The dashed vertical line at the far northeastern end
indicates the PSIII-PSII intersection, while short tick marks along the top denote the positions
of MT stations. b) Deep section (0-30 km) extracted along the same alignment. The conductive
basin wedge thins towards the basin interior and rests atop a high-resistivity basement that
forms broad buttresses at depth. The fault-zone columns observed in (a) extend into the middle—
lower crust, marking the structural segmentation of the basin. The 2-IT-1-RS well and the
PSIII-PSII intersection are indicated as in (a). The inset map locates the PSIII transect, while
the well legend identifies the Parana LIP, Parand Basin, and basement intervals. Note: the
“blocky” look reflects the cell-based 2-D parameterization, not a display artifact. Core cell
widths are 2.2 km (PSIII). The interpolated panel is for readability only; values derive from the
inverted model.

4.4. 3-D Inversions Models

The 3-D magnetotelluric inversion (MT) reveals resistivity patterns compatible with
crystalline basement rocks along the Dom Feliciano Belt and adjacent Phanerozoic basins,
extending to depths of approximately 30 km. These models provide insight into 3-D structures
that are little or no visible in 2-D models, highlighting continuous and geologically significant
lateral and vertical variations in resistivity. These variations correlate well with known tectonic
domains and delineate key structures such as lineaments and fault zones along the profiles. The
results are analyzed by depth, divided into three intervals: surface (0—4 km), middle crust (5—

15 km), and lower crust (~15-30 km).

4.4.1. Surface (0—4 km)

In the first 4 km of the crust (Figure 7), it is possible to notice the sedimentary packages up
to 3 km corresponding to the sedimentary basins of Pelotas, Parand, Laguna Mirim and
Camaqua with resistivity values ranging from (1 — 80 Q m), in the first 1 km the basalt of the

Serra Geral, with resistivity of 500-1000 QQ m and the crystalline basement of the Dom Feliciano
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Belt with resistivity values ranging from 1000-10.000 Q m. at 4 km, it is possible to notice the
interval between basin and basement more conductive due to the lateral movement of structures

and the often clastic or volcano-sedimentary.
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Figure 7: Horizontal resistivity slices derived from the 3-D MT inversion across southern
Brazil and Uruguay reveal the upper approximately 4 km of the crust. The maps are presented
at three different depths: (a) 0.025 km (~25 m), (b) 1 km, and (c) 4 km. The color scheme
represents resistivity on a logarithmic scale ranging from 1 to 10,000 Q m, with warmer colors
indicating conductive zones and cooler colors denoting resistive rocks. Black dots indicate the
locations of MT stations, while dotted lines outline the survey/profile trajectories. In the range
of depths of 0 to 1 km (panels a-b), narrow conductive corridors define the Pelotas and Camaqua
basins, as well as regions not covered by the Parana flood basalts. By the 4 km depth (panel c),
the conductive features become more laterally continuous beneath the basin depocenters, while
high-resistivity blocks labeled C1-C3 persist, corresponding to the crystalline basement and the
Parana Basin basalts.

4.4.2. Upper Crust (5-15 km)

Between depths of approximately 5 to 15 km (Figure 8), the 3-D resistivity model
illustrates a transitional zone connecting the shallow sedimentary basins to the underlying
crystalline basement. Within this range, resistivity values predominantly fall between 100 and
5.000 Q m, although they are interspersed with narrow corridors of low resistivity that mark

the presence of crustal-scale faults and shear zones. These conductive pathways underscore the
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structural segmentation of the crust and highlight the influence of inherited tectonic fabrics on

the geometry of the basins and the deeper crustal architecture.
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Figure 8: (a) At 5 km depth, discontinuous conductive corridors outline structural pathways
and superfices depocenters of the Pelotas and Camaqua basins, as well as a shear-zone. High-
resistivity blocks become prevalent inland, linked to the crystalline basement and Parané Basin
basalts. (b) At 7 km depth, near-surface conductivity diminishes, and conductors become more
concentrated along NE-SW and N-S alignments, suggesting the 3-D structures, as well as
thicker metasedimentary packages. The resistive highs expand, highlighting the underlying
basement framework. (c) At 12 km depth, a predominantly high-resistivity background
characterizes the middle to lower crust/basement, with residual segmented conductors
persisting beneath the basin roots and along deep crustal weakness zones. Collectively, these
three maps illustrate the transition from superfices, basin-controlled resistive to a more resistive
basement.

4.4.3. Lower Crust (21-31 km)

Between depths of 21 and 31 km, the 3-D resistivity model reveals the transition to the
lower crust, characterized by extensive high-resistivity domains (ranging from 100 to 5,000
Q-m), interspersed with localized conductive anomalies. Although the resolution at these depths
is limited due to the scarcity of long-period signals, the findings still provide valuable insights
into the deep crustal structure. The conductive anomalies are identified in distinct, segmented
patches rather than as continuous layers and are spatially associated with significant lineaments

and the roots of basin systems. In contrast, the resistive domains become broader and more
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coherent with increasing depth, indicative of the stable nature of the lower crust and the cratonic

influence beneath the Rio de la Plata Craton and its adjacent terranes (see Figure 9).
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Figure 9: The presents horizontal resistivity slices from the 3-D magnetotelluric (MT)
inversion for southern Brazil and Uruguay at depths of (a) 21 km, (b) 26 km, and (c) 30 km,
focusing on the lower crust. The color scale operates logarithmically (1-10,000 Q m), with
warm colors indicating conductive regions and cool colors representing resistive areas. Black
dots denote MT stations, while dotted lines outline the survey and profile trajectories, and
coastlines are depicted. Across the three maps, the lower crust is predominantly resistive, with
only localized conductive anomalies corresponding to major crustal lineaments and the roots of
basin systems. As depth increases from 21 km to 30 km, the resistive domains widen and
become more continuous. In contrast, the conductive patches remain sparse and segmented,
suggesting the presence of 3-D structures at depth rather than extensive laterally continuous
layers near the surface.

While the 2-D inversions conducted along profiles PSI, PSII, and PSIII provide valuable
insights into the distribution of crustal conductors and resistive domains, their limitations
become apparent when dealing with laterally complex tectonic structures. Features that appear
as elongated conductors in 2-D often extend beyond the boundaries of the profile, introducing
uncertainties regarding their geometry and continuity. To address these challenges, we
implemented 3-D inversion, which allows for the integration of the entire dataset and effectively
captures the segmentation of conductive and resistive zones in three dimensions. This approach

not only enhances the understanding of the crustal architecture beneath the Dom Feliciano Belt
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and its adjacent basins but also allows for a more comprehensive tectonic interpretation that

links inherited structures with the assembly of Gondwana and the rifting of the South Atlantic.

5. Discussion

5.1. Integration of MT Results

The combined 2-D and 3-D magnetotelluric (MT) inversions delineate a consistent
crustal architecture across southern Brazil and northeastern Uruguay. The 2-D sections (PSI,
PSII, PSIII) resolve vertical resistivity layering within the Paran4 Basin and across the basin—
basement interface, whereas the 3-D models recover the lateral continuity of conductive
corridors and resistive blocks that structure the region. These profiles were previously presented
by Lugao et al. (2020), Rolim et al. (2016), and Philipp et al. (2014). Here, we build on those
datasets using updated inversion workflows and additional geological constraints, providing
complementary 2-D and 3-D perspectives on crustal structure and its implications for the
geological interpretation.

Resistivity values cluster into three principal ranges: (i) low resistivity (<80 Q m), which
characterizes sedimentary packages and fault-bounded depocenters; (ii) intermediate resistivity
(100-1000 Q m), corresponding to heterogeneous crystalline basement and metasedimentary
belts; and (iii) high resistivity (>1000—10.000 Q m), which defines stable crustal blocks, granitic
batholiths, and the Parana Large Igneous Province basalts. Importantly, subvertical conductive

columns and NW-SE conductive corridors appear consistently in both 2-D and 3-D models,
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indicating their role as long-lived crustal-scale shear zones inherited from the Neoproterozoic
assembly of the Dom Feliciano Belt (DFB).

The models reveal crustal-scale conductors aligned with the main Neoproterozoic shear
zones of the Dom Feliciano Belt (DFB), including the Dorsal de Cangugu Shear Zone (DCSZ),
the Ibaré Fault, and the Sarandi del Yi Shear Zone. These subvertical conductors extend to
depths of 20-30 km, indicating long-lived zones of weakness that likely acted as fluid pathways
or partial melting domains. This interpretation aligns with earlier structural and isotopic studies,
which emphasize the role of these discontinuities in the amalgamation of West Gondwana
(Costa et al., 1997; Philipp et al., 2016; Teixeira et al., 2025).

On profiles PSII and PSIII, conductors coincide with depocenters in the Parana Basin,
suggesting tectonic reactivation during Mesozoic rifting and subsequent Parand—Etendeka LIP
magmatism. Similar crustal-scale conductive zones were previously identified in Brazilian
cratonic margins (Padilha et al., 2015; Bologna et al., 2019) and worldwide in other collisional

belts (Ritter et al., 2003, Jegen et al., 2016).

5.2. Regional Synthesis

The MT derived resistivity models (Figures 10, 11 and 12) demonstrate that basin
evolution in southern Brazil and Uruguay evolved under strong structural inheritance from the
Dom Feliciano Belt and the Rio de la Plata Craton. In the Parana Basin, NW-SE reactivations
controlled depocenter segmentation and localized mafic intrusions during Mesozoic rifting
(Milani & De Wit, 2008, Costa et al., 1997). In the Camaqua Basin, late- to post-orogenic
transtension exploited Neoproterozoic discontinuities, producing fault-bounded depressions
filled with mixed volcanic and sedimentary sequences (Paim et al., 2000, 2014; Teixeira et al.,

2025). In the Pelotas Basin, inherited shear zones and terrane boundaries guided early rifting
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and passive-margin sedimentation, reflecting the Neoproterozoic imprint on the South Atlantic
margin (Bologna et al., 2018; Teixeira et al., 2025).

Unlike the intracratonic Parnaiba Basin in northeastern Brazil, where conductive
signatures are linked to stable lithospheric contrasts and thermal sagging (Romero-Beltran et
al., 2025), the Dom Feliciano Belt records repeated crustal reactivation under transcurrent and
extensional regimes.

The consistency between MT models and complementary datasets (gravity, magnetics,
gamma-ray spectrometry) supports a 3-D tectonic framework in which conductive corridors
map long-lived crustal faults, while resistive blocks delineate cratonic domains. This integrated
perspective refines the understanding of crustal segmentation and basin evolution along the

South Atlantic margin.

5.2.1. Parana Basin

The Parana Basin displays a stratified structure, with resistive basalts from the Serra
Geral Formation (>1000 Q m) situated above more conductive Paleozoic sedimentary
sequences (10-80 Q m). Reactivations of faults disturb this stratification, creating vertical
conductive zones that extend into the basement. Three-dimensional magnetotelluric (MT)
models consistently reveal NW—SE conductive corridors, interpreted as Mesozoic reactivations
linked to magmatism and the control of depocenters. These features correlate well with gravity
and magnetic data and align with the structural interpretations presented by Philipp et al. (2014),

Padilha & Vitorello (2020), and Lugao et al. (2020).

5.2.2. Camaqua Basin
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Low-resistivity anomalies delineate sub-basins formed under transtensional or rifting
regimes, in contrast with resistive crystalline basement. Lateral heterogeneity suggests
deposition in tectonically active environments, with interlayered volcanic and clastic units.
Subvertical conductive faults coincide with reactivated basement structures, particularly the
Dorsal de Cangugu Shear Zone (DCSZ), promoting localized accommodation of sediments.
The BR-101, BR-116, PSI, PSII, NW-SE, and PSIII profiles consistently resolve high-
resistivity basement (>1000-10,000 Q m) interspersed with conductive zones linked to shear
zones subjected to high-pressure/temperature conditions.

Structures such as the Jacui Lineament and the Ibaré Fault Zone appear in multiple MT
profiles, corroborating earlier geological and geophysical interpretations (Philipp et al., 2014;
Lugdo et al., 2020). The Jaguarao Lineament is imaged as a key boundary separating the Punta
del Este—Jaguardo Terrane from the Pelotas Magmatic Arc, in line with evidence for crustal
amalgamation around 570 Ma (Cruz, 2019; Takehara & Laux, 2019). These features, also
mapped in aeromagnetic and gravity surveys (Teixeira et al., 2025), explain the spatial

distribution of depocenters and the emplacement of mafic intrusions.

5.2.3. Pelotas Basin

In the Pelotas Basin, 2-D MT inversions along BR-116 and BR-101 (Figure 10) reveal
conductive sedimentary packages (~3 km thick) underlain by high-resistivity basement. Strong
lateral contrasts in resistivity occur along major faults and terrain boundaries. A highly resistive
domain is observed in the Baixo de Mostardas, where fault activity complicates the basin—

basement interface.
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Along the passive margin of Rio Grande do Sul and Uruguay, MT results confirm strong
contrasts between sediments and crystalline basement, consistent with recent studies (Morales
et al., 2022; Menezes et al., 2021). The basement exhibits intermediate resistivities in preserved
rift zones and high values in stable crystalline blocks.

The observed resistivity contrasts, coupled with lateral discontinuities, allow robust
inferences on basin geometry and physical property variations. This pattern is consistent with
earlier MT—gravity comparisons (Boerner et al., 1995; Jegen et al., 2016). Resistivity,
gravimetry, and geological mapping data (Takehara & Laux, 2019). The main structures are
listed in Table 2.

Table 2. The main crustal-scale structures identified in the MT.

Profile Structure Description

BR101 A Chui Lineament

BR101 B Jaguardo Lineament
BR101 C Camaqua Lineament
BR101 D Jacui Lineament

BR116 E Camaqua Lineament
BR116 F Jaguardo-Punta del Este

Terrane / Pelotas Batholith

BR116 G Jaguardo-Punta del Este
PSI, NW-SE J Jacui Linecament

PSI L Ibar¢ Shear Zone
NW-SE M Sarandi Yi Shear Zone
NW-SE N Rivera Shear Zone
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NW-SE O Ibaré Fault Zone

Table 2: The profiles across southern Brazil and northeastern Uruguay are presented. The
lineaments and shear zones outlined here delineate the boundaries between sedimentary basins,
crystalline basement domains, and tectonostratigraphic terranes. Their manifestations as
variations in resistivity and lateral discontinuities align with findings from previous geophysical
and geological studies (adapted from Menezes et al., 2021).

5.3. Structural compartmentalization of terranes

The resistivity contrasts identified in the 3-D MT inversions (Figure 10) align with
primary tectonic domains. Highly resistive blocks (greater than 1000 2 m) are interpreted as
granitoid batholiths and fragments of the Archean—Paleoproterozoic Nico Pérez and Piedra Alta
terranes. In contrast, conductive anomalies (less than 100 Q m) correspond to Neoproterozoic
metasedimentary belts and shear corridors (Philipp et al., 2014; Teixeira et al., 2025).

Regional gravity and magnetic compilations (Teixeira et al., 2025) also delineate these
domains, highlighting their role in both Neoproterozoic amalgamation and later intracratonic
reactivation. Structural analyses (Fernandes et al., 1992; Tommasi et al., 1994; Oyhantcabal et
al., 2010; Oriolo et al., 2016b; Hueck et al., 2020) had already emphasized the importance of
these shear zones, and our MT models provide direct evidence of their persistence into the deep
crust. These correlations with seismic, gravimetric and magnetic data reinforce the
interpretation that the main conductors represent lithospheric-scale zones of weakness inherited
from the Neoproterozoic tectonic framework.

Similar conductive domains have been reported in other Pan-African belts, such as
Kaoko, Damara and Ribeira, where 3-D MT and seismic studies highlight the role of inherited
shear zones in guiding magmatism and fluid pathways.

The conductive anomalies mapped in the Dom Feliciano Belt show striking parallels

with other Neoproterozoic—Cambrian orogenic belts along the West Gondwana margin. In the
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Kaoko and Damara belts of Namibia, 3-D MT studies also identified crustal-scale conductors
associated with shear zones and zones of fluid accumulation, interpreted as reactivated
lithospheric weaknesses during the Pan-African orogeny and subsequent South Atlantic rifting
(Ritter et al., 2003). Similarly, in the Ribeira Belt of southeastern Brazil, magnetotelluric and
seismic studies highlight the role of deep crustal conductors as zones of magmatic focusing and
crustal reworking (Padilha et al., 2016; Bologna et al., 2019). These analogies strengthen the
interpretation that conductive domains in the Dom Feliciano Belt represent inherited tectonic
fabrics, which not only controlled Neoproterozoic deformation but also provided pathways for
magmatism and fluid circulation during Gondwana breakup and the emplacement of the
Parand—Etendeka Large Igneous Province. Thus, the Dom Feliciano Belt fits into a broader
pattern of Pan-African belts where inherited crustal anisotropies conditioned both orogenic

architecture and the localization of rift-related processes.
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Figure 10: 3-D MT resistivity sections extracted along five transects across southern Brazil
and NE Uruguay. All sections show logarithmic resistivity (logiop, Q m): warm colors =
conductive domains; cool colors = resistive blocks. Black triangles mark MT stations; solid
black lines indicate faults/lineaments; the gray trace marks the sediment—basement contact; bars
at the top denote tectono-stratigraphic domains along each line. (a) Interior Parand Basin (SW-
NE) a resistive cap attributed to the Parand LIP overlies a conductive sedimentary package; the
resistive basement is gently undulatory and pierced by subvertical conductive columns
interpreted as crustal-scale faults and local thickness variations in the sedimentary wedge.

pg. 152



3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

(b) Craton—basin transition: From the Rio de la Plata Craton/adjacent terranes into the Parana
Basin. Lateral heterogeneity within the resistive basement and conductive connectors that cut
the cover and root into the middle—lower crust are consistent with Neoproterozoic shear
corridors (e.g., Ibaré¢/Jacui) and NW-SE reactivations. (c) Parand—Camaqua-Tijucas Terranes:
Alternating resistive basement blocks and conductive wedges. A deep conductor at the base of
the sedimentary wedge and an eastern fault zone segment the basin and link basement
discontinuities to the cover. (d) BR-116 (onshore Pelotas): From the Punta del Este—Jaguarao
Terrane into the Pelotas Batholith. Predominantly resistive basement disrupted by conductive
columns aligned with first-order lineaments, including the High-Concentration Fault Zone. The
inset map (right) locates the profile and tectonic domains. (¢) BR-101 (coastal): Pelotas—Parana
transition with a shallow, laterally continuous conductive package over a resistive basement.
The Chui lineament, Jaguardo boundary, Camaqua boundary and Jacui lineament and appear
as subvertical conductors that segment the sedimentary wedge and the basement top, guiding
depocenters and along-margin electrical connectivity.

Note: Interpretations integrate 2-D profiles and slices from the regional 3-D model,
emphasizing the Neoproterozoic structural inheritance of the Dom Feliciano Belt and its control
on basin evolution.

5.4. Structural Comparison and Regional Analysis with other geophysical

methods

Integration of MT results with aeromagnetic, gravity, and gamma-ray spectrometry
(Figures 11 and 12) confirms the first-order role of inherited Neoproterozoic shear zones in
guiding basin evolution. The Dorsal de Cangucu Shear Zone (DCSZ), Ibaré¢ Fault Zone,
Cacapava do Sul Lineament, and Sarandi del Yi Shear Zone are consistently imaged as crustal-
scale, low-resistivity corridors cutting across basins and basement terranes (Bologna et al.,
2018; Teixeira et al.,, 2025). These structures acted as long-lived weakness zones that
accommodated both Neoproterozoic amalgamation and subsequent Phanerozoic reactivation
(Oliveira et al., 2016).

The Punta del Este-Jaguardo—Pelotas Batholith boundary is imaged as a conductive
discontinuity, confirming its nature as a terrane boundary suggested by Bologna et al. (2019).
The DCSZ, trending NW-SE, intersects the Parand Basin and extends southwards into the

Pelotas Basin, where it coincides with gravity and magnetic anomalies (Teixeira et al., 2025).
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Similarly, the Sarandi del Yi Shear Zone appears as a crustal-scale conductor separating
Proterozoic terranes from Phanerozoic cover (Bologna et al., 2019).

Complementary datasets reinforce this framework: gamma-ray spectrometry identifies
compositional variations between terranes, magnetic anomaly maps define long-wavelength
crustal domains (Costa et al., 1997), and Bouguer gravity anomalies delineate density-
controlled regions consistent with resistive cratonic roots (Costa et al., 1997, Kazmierczak et
al., 2007; Bettucci et al., 2021; Teixeira et al., 2025).

In sedimentary basins, NW—SE conductive corridors of the Parana and Pelotas basins
are attributed to Mesozoic reactivations that localized magmatism and controlled depocenter
evolution (Costa et al., 1997; Bologna et al., 2019). Conversely, in the Camaqua Basin,
conductive anomalies bounded by steep resistive blocks are interpreted as post-orogenic
transtensive grabens, reflecting the reactivation of Neoproterozoic basement discontinuities
during late- to post-collisional stages of the Dom Feliciano Belt. These structures exploited pre-
existing crustal weakness zones, such as the Dorsal de Cangucu Shear Zone and the Ibar¢ Fault,
and promoted localized subsidence and compartmentalization of depocenters (Teixeira et al.,
2025 and references therein).Subvertical conductors extending to 2025 km depth, particularly
along the Ibaré¢ Fault Zone and DCSZ, are interpreted as long-lived zones of crustal weakness
that acted as fluid pathways or partial melting zones, highlighting their enduring influence on

the tectonic evolution of southern Brazil and Uruguay.
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Figure 11: a) A panoramic view of cross-sections derived from the 3-D magnetotelluric (MT) inversion model.

These slices follow the survey profiles and intersect the primary regional structures. Color coding represents
electrical resistivity on a logarithmic scale (10-1000 Q m), with a vertical exaggeration of 2x. Black dots denote
MT stations, while gray lines highlight major shear zones and lineaments. Numbered labels indicate significant
structures: (1) Cerro Amaro—Arroio Grande; (2) Major Gercino—Dorsal de Cangugu; (3) Passo dos Marinheiros;

(4) Cacapava do Sul; (5) Segredo; (6) Ibaré; (7) Rivera; (8) Sarandi del Yi-adapted from Teixeira et al., 2025. b)

pg. 155



3079

3080

3081

3082

3083

3084

The distribution and behavior of tectono-stratigraphic terranes throughout the Dom Feliciano Belt and surrounding
areas, featuring the ages (Ma) of key deformational and metamorphic events. Different colors represent distinct
crustal domains and Phanerozoic cover. Source: Teixeira et al., 2025. c) A map illustrating first- and second-order
structures derived from integrated aeromagnetic and gravity data. Thick lines represent major shear zones, while
thin lines indicate secondary structures. Additional symbols denote intrusions, granite complexes, dike swarms,

and gravity lineaments. Compiled after Teixeira et al., 2025.
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Figure 12: a) Ternary gamma-ray spectrometric image (K—Th—U) of the crystalline basement, showing
compositional contrasts between terranes. The RGB triangle indicates the relative contributions of K, Th and U;
coastlines and a 100-km scale bar are shown for reference. Main shear zones/lincaments are overlain. After
Teixeira et al., 2025. b) Regional magnetic anomaly map (RTP TMI) for southern Brazil and Uruguay, highlighting
long-wavelength trends and crustal blocks. Interpreted shear zones and lineaments are indicated. After Teixeira et
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al., 2025. c) First vertical derivative (1VD) of the magnetic field, enhancing edges and contacts; secondary
structures and lineaments interpreted from the derivatives are traced. After Teixeira et al., 2025. d) Gravity
anomaly map (Bouguer), showing density-controlled domains and lineaments used to refine structural mapping.
Shear zones are labelled where appropriate. ¢) Panoramic view of cross-sections extracted from the 3-D
magnetotelluric (MT) inversion model. Resistivity is shown on a logarithmic scale (101000 Q m); vertical
exaggeration = 2X. Black dots mark MT stations, and gray lines show major shear zones. Semi-transparent
conductive isosurfaces at 10, 30 and 50 Q m delineate the sedimentary basins of southern Brazil and Uruguay.
Numbered structures: (1) Cerro Amaro—Arroio Grande, (2) Major Gercino—Dorsal de Cangugu, (3) Passo dos
Marinheiros, (4) Cagapava do Sul, (5) Segredo, (6) Ibare, (7) Rivera, (8) Sarandi del Yi. After Teixeira et al., 2025.

5.5. Comparison with Another 3-D MT Regions

Comparisons with global MT studies reinforce the tectonic significance of the results.
In the Damara Belt (Namibia), subvertical conductors delineate Neoproterozoic sutures
analogous to those of the DFB (Ritter et al., 2003). At volcanic passive margins, marine MT
along the Walvis Ridge demonstrates the role of inherited anisotropies in guiding rifting and
underplating (Jegen et al., 2016), a scenario comparable to the Pelotas Basin.

In contrast, the Solonker Suture Zone in China displays south-dipping conductors linked
to post-collisional subduction (Ye et al., 2019), while the Western Canada Sedimentary Basin
preserves shallow, narrow conductors attributed to graphite-rich metasedimentary rocks
(Boerner et al., 1995). These differences emphasize the distinctive nature of southern Brazil
and Uruguay, where vertically continuous conductors record Neoproterozoic inheritance later

reactivated during Mesozoic intracratonic magmatism (Table 3).

Table 3 summarizes the main parameters and tectonic interpretations of the three studies.

Region Main Conductor  Depth Tectonic Reference

structure geometry interpretation
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3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134

3135

Dom NE-SW Broad, sub- 10-25 Neoproterozoic This study

Feliciano— conductors horizontal km suture zones

Pelotas

Solonker South- Inclined, 045 Post-collisional Ye et al

Suture dipping anisotropic km subduction (2019)

(China) conductor

WCSB Red  Deer Narrow, 2-5 Proterozoic foredeep Boerner et

(Canada) High shallow (<5 km with al. (1995)
km) graphite/sulfides

Table 3: Comparison of the geometry, depth range, and tectonic interpretation of crustal
conductors imaged by magnetotellurics (MT) in three settings: Dom Feliciano and Parana
Basin(this study), the Solonker Suture (China; Ye et al., 2019), and the WCSB, Western Canada
Sedimentary Basin (Canada; Boerner etal., 1995). Depths indicate the vertical extent of the
principal conductor, and the geometry is described qualitatively from 2-D/3-D inversions.
Abbreviations: WCSB = Western Canada Sedimentary Basin; NE-SW = northeast—southwest.
This comparison situates the results from southern Brazil and northeastern Uruguay within a
global context, highlighting the structural complexity of the region and its parallels with major
crustal sutures of varying ages and geodynamic settings.

5.6. Implications for crustal evolution

The integration of MT with seismic, magnetic, and gravity data reveals a three-tier
crustal framework: (1) resistive volcanic caps and volcano—sedimentary infill in the superior
crust; (2) subvertical conductive corridors segmenting the mid-crust; and (3) resistive cratonic
roots interspersed with fault-related conductors in the lower crust.

This architecture demonstrates how Neoproterozoic structures of the DFB and Rio de la
Plata Craton were reactivated during Paleozoic—Mesozoic basin evolution and magmatism,

culminating in the Parand—Etendeka flood basalt emplacement. Lithospheric segmentation

pg. 159



3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

rooted in terrane amalgamation thus exerted a first-order control on intracratonic basin
development, magmatism, and deformation across southern Brazil and Uruguay.

These results emphasize that southern Brazil and Uruguay record the transition from
Neoproterozoic collisional architecture to Mesozoic extensional domains, illustrating how the
same lithospheric anisotropies governed both the assembly and breakup phases of West

Gondwana.

6. Conclusions

The combination of 2-D and 3-D MT inversions reveals a well defined crustal structure
as follow (i) resistive volcanic caps and sedimentary infill in the upper crust; (ii) subvertical
conductive corridors that traverse the mid-crust; and (iii) resistive cratonic roots featuring fault-
related conductors in the lower crust.

Prominent Neoproterozoic shear zones within the Dom Feliciano Belt, such as the
Dorsal de Cangucu, Ibaré, and Sarandi del Yi, function as crustal-scale conductors extending
to depths of 20-30 km. These features have served as long-standing zones of weakness,
reactivated during the evolution of Paleozoic—Mesozoic basins.

In the Parana Basin, NW—SE conductive corridors align with depocenters, and localized
magmatism associated with Mesozoic rifting and the formation of the Parand—Etendeka flood
basalt. This indicates that inherited Neoproterozoic anisotropies have had a significant impact
on the evolution of the basin.

The integration of seismic, magnetic, gravity, and structural data supports the notion
that conductive anomalies delineate crustal-scale discontinuities, whereas resistive domains

outline stable cratonic blocks. This comprehensive approach enhances the tectonic model for
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southern Brazil and Uruguay, offering parallels to other orogenic belts and passive margins
globally.

The resolution is constrained by the cell-based 2-D discretization in PSI/PSII, as features
smaller than approximately 2-3 cell widths cannot be resolved. Additionally, there is
diminished long-period sensitivity at depths of 21-31 km. However, key features such as the
basement top, conductive corridors, and resistive blocks exhibit lateral coherence and are
consistent with well and seismic ties, as well as with the 3-D assessments (ModEM), which
reinforces the primary conclusions. The 3-D inversion preserves along-strike connectivity and
reduces dimensionality bias where geoelectric strike varies, complementing the 2-D transects

and strengthening the regional interpretation.
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This study presents two-dimensional magnetotelluric (MT) data along the BR-116
(Brazil) and Ruta-19 (Uruguay) transects, integrated with potential-field data, ANP well
control, and regional geological mapping, to investigate the crustal architecture of the
Punta del Este-Jaguarao Terrane and its boundary with the Pelotas Batholith and
adjacent basins. The results reveal a conductive sedimentary wedge (p < 80 Q m)
overlying a resistive Precambrian basement (p = 102-104 Q m), with sharp lateral
resistivity gradients that coincide with mapped terrane boundaries and NW-SE
lineaments. Along BR-116, the Pelotas Basin is imaged as a steep, laterally variable
conductive package bounded by the Punta del Este-Jaguarao buttress and the Pelotas
Batholith. Resistivity breaks correlate with the Camaqua Lineament and the High-
Concentration Fault Zone. Along Ruta-19, the sedimentary successions are
segmented by the Cebollati-Merin and Aigua—-India Muerta-Chuy lineaments, where
conductive anomalies near the PG well suggest structure-controlled fluid circulation or
alteration. The MT dip and strike sections along the Neoproteorozoic terranes allow us
to recognize the geometry of the suture zones of the boundary from Punta del Este-
Jaguardo Terrane and Pelotas Batholith, as well as Pelotas Batholith and Tijucas
Terrane. These features indicate a block-bounded basement framework that has
strongly influenced basin compartmentalization. Comparison with previous MT imaging
and potential-field studies demonstrates spatial concordance between resistivity
breaks and aeromagnetic-gravity lineaments into the South Atlantic crust. This
supports a rift model governed by structural inheritance, with Neoproterozoic
anisotropies reactivated during the Jurassic-Cretaceous opening of the South Atlantic.
Collectively, the results indicate that inherited Neoproterozoic structures played a
fundamental role in basin compartmentalization, alongside contacts that were locally
filled by volcano-sedimentary successions and influenced crustal accommodation.
These findings underscore the significance of magnetotellurics (MT) in delineating
terrane boundaries and the identification of structural lineaments and fault zones.
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The Dom Feliciano Belt and the adjacent intracratonic Parana Basin present a complex
tectonic evolution that links Neoproterozoic orogenesis to the formation of
Paleozoic-Mesozoic basins and magmatic activity in southern Brazil and Uruguay. In
this study, we integrate two-dimensional (2-D) and three-dimensional (3-D)
magnetotelluric (MT) resistivity models with structural, seismic, gravity, and magnetic
data to image the crustal architecture across the region. The 2-D MT transects (PSI,
PSII, and PSIII) identify vertical resistivity stratification within the Parana Basin and its
interfaces with the crystalline basement, while the 3-D models reveal laterally
continuous conductive corridors and resistive terranes that align with major shear
zones of the Dom Feliciano Belt and the crustal blocks of the Rio de la Plata Craton.
Conductive anomalies correspond to sedimentary depocenters and reactivated shear
zones, whereas resistive domains delineate granitoid batholiths, stable cratonic roots,
and the basalts of the Parana Large Igneous Province. The results indicate that
inherited Neoproterozoic structures, such as the Dorsal de Cangugu, Ibaré, and
Sarandi del Yi shear zones, extend to depths of 20-30 km and represent long-lived
crustal weakness zones reactivated during basin evolution and Mesozoic magmatism.
Integration with complementary geophysical datasets confirms that conductive
anomalies mark first-order crustal discontinuities, emphasizing the role of structural
inheritance in shaping the evolution of intracratonic basins and passive margins in
southern South America.
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