v

UNISINOS

Programa de Pos-Graduaciao em

Computacao Aplicada

Mestrado Académico

DARLAN NOETZOLD

Oraculum: A Model for Self-Adaptive System Optimization in
Smart Environments

Sao Leopoldo, 2025

UNIVERSIDADE DO VALE DO RIO DOS SINOS — UNISINOS
UNIDADE ACADEMICA DE PESQUISA E POS-GRADUACAO
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO APLICADA
NIVEL MESTRADO

DARLAN NOETZOLD

ORACULUM: A MODEL FOR SELF-ADAPTIVE SYSTEM OPTIMIZATION IN SMART
ENVIRONMENTS

SAO LEOPOLDO
2025

Darlan Noetzold

ORACULUM: A MODEL FOR SELF-ADAPTIVE SYSTEM OPTIMIZATION IN SMART
ENVIRONMENTS

Dissertation presented as a partial requirement
to obtain the Master’s Degree from the Applied
Computing Graduate Program of the
University of Vale do Rio dos Sinos —
UNISINOS

Advisor:
Prof. Dr. Jorge Luis Victoria Barbosa

Co-advisor:
Prof. Dr. Valderi Reis Quietinho Leithardt

Sao Leopoldo
2025

N7720

Noetzold, Darlan.
Oraculum : a model for self-adaptive system optimization in

smart environments / Darlan Noetzold. —2025.
187 £. : 1l. ; 30 cm.

Dissertagdo (mestrado) — Universidade do Vale do Rio dos
Sinos, Programa de Pés-Graduagdo em Computagdo Aplicada,
2025.

“Orientador: Prof. Dr. Jorge Luis Victoria Barbosa
Coorientador: Prof. Dr. Valderi Reis Quietinho Leithardt."

1. Intelligent environments. 2. Performance metrics. 3. Reinforcement
learning. 4. Self-adaptive architecture. 5. Semantic ontology. 6. Sensor
data simulation. I. Titulo.

CDU 004.4

Dados Internacionais de Catalogacao na Publicagdo (CIP)

(Bibliotecaria: Silvana Dornelles Studzinski — CRB 10/2524)

O presente trabalho foi realizado com apoio da Coordenagdo de Aperfeicoamento de Pessoal
de Nivel Superior Brasil (CAPES) - Cédigo de Financiamento 001 /This study was financed in
part by the Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) -
Finance Code 001

Technology is a useful servant but a dangerous master.
— CHRISTIAN LOUS LANGE

ACKNOWLEDGEMENTS

Firstly, I would like to thank my girlfriend Jakelyny for always being by my side, encour-
aging, supporting me, and giving me the strength to make my dreams come true. Without you,
none of this would be possible. I am deeply grateful to my advisors, Prof. Dr. Jorge Luis Vic-
téria Barbosa and Prof. Dr. Valderi Reis Quietinho Leithardt, for their dedication, guidance, and
knowledge throughout the development of this work. Their trust in my potential and encour-
agement to advance in the academic world have been invaluable.

I would also like to thank my friends for their partnership and brotherhood, and for under-
standing my absences during certain periods. My sincere thanks go to the University of Vale do
Rio dos Sinos (UNISINOS) for providing the necessary infrastructure and for supporting this
research, including the scholarship that made this work possible. Finally, I extend my gratitude
to my coworkers and all others who supported me directly or indirectly during this journey.

This work was supported by CNPq (National Council for Scientific and Technological De-
velopment—grant number 307137/2022-8), and CAPES (Coordenacao de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil - Finance Code 001).

ABSTRACT

This dissertation introduces Oraculum, a modular self-adaptive framework designed to sup-
port the monitoring, prediction, reasoning, and adaptation of distributed systems operating in
smart environments. Many existing solutions treat these tasks as disconnected components, re-
lying on static training phases, fixed adaptation logic, and reactive decision-making triggered
only after system degradation is detected. Oraculum proposes an integrated approach in which
monitored metrics are continuously collected and processed to generate predictions and select
actions in advance of performance failures. The framework consists of three key components.
SHIiELD is a sensor data simulator that generates synthetic time-series data using ARIMA mod-
els and applies heuristic methods-such as filtering, aggregation, and compression-to simulate
realistic variability and reduce processing overhead. OntOraculum is a semantic ontology that
formalizes performance metrics into five categories and enables the system to classify and val-
idate alerts through rule-based reasoning and SPARQL queries. The adaptation engine uses
regression and classification models to forecast short-term metric behavior and integrates a
reinforcement learning agent based on a Markov Decision Process (MDP), which receives con-
textual states and selects actions such as resource scaling, scheduling adjustment, or service
reconfiguration. The RL engine also includes a retraining mechanism that periodically updates
policies using new data. The entire architecture operates in a closed feedback loop, using pre-
dictions and inferred knowledge to support earlier and more informed decisions. The model
includes automated pipelines for dataset creation, model training, hyperparameter tuning, and
continuous learning, covering both predictive models and RL agents. Experimental validation
was conducted in a containerized testbed with simulated load variation. Results were collected
across multiple performance indicators, including CPU, memory, latency, and model accuracy.
The contributions of this work are: (i) the proposal of an integrated framework that combines
monitoring, forecasting, semantic validation, and adaptation; (ii) the development of SHiELD
for synthetic data generation and heuristic preprocessing; (ii1) the design of OntOraculum for
metric classification and rule-based inference; (iv) the implementation of a prediction-based
strategy for early alert generation to reduce adaptation delay; and (v) the modeling of an RL
engine with configurable actions and scheduled policy retraining.

Keywords: self-adaptive architecture, sensor data simulation, semantic ontology, reinforce-
ment learning, performance metrics, intelligent environments..

RESUMO

Esta dissertacdo apresenta o Oraculum, um framework modular auto-adaptativo desenvol-
vido para integrar monitoramento, predi¢do, raciocinio semantico e adaptacdo em sistemas dis-
tribuidos operando em ambientes inteligentes. Muitos trabalhos existentes tratam essas etapas
de forma isolada, com processos de treinamento estdticos, l6gica de adaptacdo fixa e decisoes
reativas que ocorrem apenas apOs a degradacdo do desempenho. O Oraculum propde uma
abordagem integrada, na qual métricas monitoradas sdo processadas continuamente para gerar
predi¢cdes e selecionar acdes antes que falhas de desempenho se manifestem. A arquitetura é
composta por trés componentes principais. O primeiro é o SHiELD, um simulador de dados de
sensores que gera séries temporais sintéticas por meio de modelos ARIMA e aplica heuristicas
de filtragem, agrega¢do e compressao para simular variabilidade contextual e reduzir o custo de
processamento. O segundo é o OntOraculum, uma ontologia seméntica que organiza as métri-
cas em cinco categorias e permite a classificacdo de alertas e a inferéncia de anomalias por meio
de regras SWRL e consultas SPARQL. O terceiro é o mecanismo de adaptagdo, que utiliza mo-
delos de regressao e classificagdo para prever o comportamento das métricas e aplica um agente
de aprendizado por refor¢o baseado em um Processo de Decisdo de Markov (MDP), capaz de
selecionar acdes como escalonamento de recursos, ajuste de agendamento ou reconfiguracio de
servicos. Esse agente também conta com um processo de retreinamento periédico baseado em
dados recentes. Toda a arquitetura opera em ciclo fechado, no qual as decisdes sdo antecipadas
com base nas predi¢des e inferéncias. O sistema inclui ainda pipelines automatizados para cri-
acdo de datasets, treinamento de modelos, ajuste de hiperparametros e aprendizado continuo,
tanto para os modelos preditivos quanto para o agente de RL. A validagao foi realizada em um
ambiente controlado com variagdes de carga simuladas, e os resultados foram coletados a partir
de indicadores como uso de CPU, memoria, laténcia e acurdcia dos modelos. As contribui¢des
deste trabalho incluem: (i) a proposta de uma arquitetura integrada que une monitoramento,
predi¢do, validacao seméantica e adaptagdo; (ii) o desenvolvimento do SHiELD para geracdo de
dados sintéticos e pré-processamento heuristico; (iii) a modelagem do OntOraculum para clas-
sificacdo de métricas e inferéncia de alertas; (iv) a implementagdo de uma estratégia de predicao
para antecipagdo de alertas e reducdo de atrasos na adaptacio; e (v) o projeto de um motor de
aprendizado por refor¢co com agdes parametrizaveis e retreinamento programado.

Palavras-chave: arquitetura autoadaptativa, simulacdo de dados de sensores, ontologia seman-
tica, aprendizado por reforco, métricas de desempenho, ambientes inteligentes..

List of Figures

Figure 1

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Figure 16

Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Figure 26
Figure 27
Figure 28

Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34

Research flow adopted in the development of the Oraculum model. . . . 20
Flow of the study selection process. 35
Mapping of MAPE Functions against Al Types 42
Distribution of types of Al applied in smart environments 43
Taxonomy of techniques and tools used for monitoring 44
Taxonomy of techniques and tools used for Self-adaptation 45
Taxonomy of smart environments covered 47
Taxonomy of the metrics monitored 49
Taxonomy of the main bottlenecks in creating self-adaptation 50
Publication Sources L 52
SHIiELD Architecture 63
SHiELD Data Processing Architecture (Local and External Servers) . . . 64
Local Services - CPU and Memory Usage 73
External Services - CPU and Memory Usage 74
ARIMA Model Performance Evaluation (Accuracy, Precision, Recall, F1

Score, ROCAUC) e e 77

Conceptual map of the ontology with 72 classes and their relationships,
covering the primary categories of metrics used for monitoring smart en-

VITONMENES. o v v v et e e e e e e e e e e e e 89
Class hierarchy of the ontology. 91
Relationships between classes and domain-range properties. 92
Log of the Pellet plugin during reasoning tasks. 98
Inference process for the instance anomaly_detected_instance. 99
Inference process for the instance security_breach_instance. 100
Inference process for the accurate_detection_instance. 101
Combined SPARQL query results for CQ1, CQ2,and CQ3. 102
Combined SPARQL query results for CQ4, CQS5,and CQ6. 103
Combined SPARQL query results for CQ7, CQ8, CQ9, and CQ10. . .. 104
Overview of the Oraculum Model 111
Oraculum Model Architecture 113
Oraculum Model following Prometheus methodology 117
CPU usage over time for monitored services. 141
Memory usage over time for monitored services. 142
Regression model performance across hardware-related metrics. 147
Classification model performance across hardware-related metrics. . . . 148
Regression model performance for software metrics. 148
Classification model performance for software metrics. 149

Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43

Regression model performance for network metrics. 149
Classification model performance for network metrics. 150
Regression results for SLA metrics. 151
Classification results for SLA metrics. 151
Learning curve of TD3, the best-performing RL model. 155
Evaluation of software performance metrics. 156
Evaluation of hardware resource utilization. 156
Analysis of network performance metrics. 157
Analysis of service level metrics. L oL 158

List of Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6

Table 7
Table 8
Table 9
Table 10
Table 11
Table 12

Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23

Table 24
Table 25

Table 26
Table 27
Table 28
Table 29
Table 30

Table 31
Table 32
Table 33
Table 34

Table 35

Research questions 32
Search string. 33
Search customization per databaseo 33
Inclusion and exclusion criteria of the research. 34
Selected Articles Lo 36
Comparison of self-adaptive architectures 54
Definition of the search string for related works 59
Comparison of Sensor Data Simulators and Processing Systems 60
System Architecture Testing Results 75
Total Data Volume Before and After Compression and Filtering (KB) . . . 76
Impact of Aggregation on Number of Packets and Data Volume (KB/Minute) 76
Comparison of SHiELD with existing [oT simulators 78
Definition of the search string for related work on ontology 83
Comparison of Related Works 84
SWRL Rules for Resource Optimization 94
SWRL Rules for Quality of Service (QoS) 95
SWRL Rules for Energy Optimization 96
SWRL Rules for Security and Anomaly Detection 97
Summary of Axiom Counts and Properties 97
Most impactful metrics based on usage in rules and competency questions . 103
SPARQL Queries for Competency Questions (CQ1 -CQS5) 106
SPARQL Queries for Competency Questions (CQ6 - CQ10) 107
Comparison of inference precision using fixed thresholds and interval models 108
Oraculum Model Architecture Components 119
Configurable Actions for RL Agent 121
Oraculum Model Architecture Components 124
Selected models and parameter configurations 129
Comparison of RL algorithms for adaptation in the Oraculum Model. . . . 132
Available Actions, Types, and Limits in the Oraculum RL Agent. 136
Empirically Determined Rewards and Penalties for RL Actions Based on

Performance Impact. 137
Test Scenarios and System Load Increase 140
Summary of monitored measurements for each node at different load levels 143
Evaluation Metrics Summary 0. 146
Count and reward for each action across models, reflecting variations in RL

decision-making. 155
Performance of Self-Adaptive Architectures on Public Benchmarks 159

Contents

1 Introduction

3.2.1

322

323

324

3.25

3.2.6

3.2.7

I.1 Motivation e e e e
1.2 Problems and Questions e
1.3 Objectives o o i e e e e e
1.4 Methodology
1.5 Contributions L
1.6 Outline e
2 Background

2.1 Systems Adaptation
2.2 Monitoring Metrics
23 MAPE-KSystems
24 Ontologies e
2.5 Artificial Intelligence L Lo

2.5.1 RegressionModels oL oo

2.5.2 ClassificationModels 0oL

2.5.3 Reinforcement Learning

3 Literature Review

3.1 Research Methodology

3.1.1 Researchquestions

3.1.2 Searchprocess

3.1.3 Selection process e e
3.2 ResearchResults

GQ1: How are performance metrics being monitored and systems being
self-adapted in studies related to Smart Environments?
FQ1: What techniques and tools are being used to monitor specific per-
formance metrics in smart environments?
FQ2: What types of smart environments are covered in the reviewed
studies?
FQ3: What specific performance metrics are being monitored in the
studies? L
FQ4: What are the main bottlenecks or challenges identified in the ap-
plications of these environments?
FQ5: How are Machine Learning techniques being used to enable self-
adaptation in the reviewed systems? L.
SQ1: Where were the studies published and how has the number of
publications evolved peryear?,

33 RelatedWork
3.4 Considerations about the Chapter

14
16
18
19
20
21
22

23
23
24
24
25
26
27
28
29

46

48

51

51

4 SHIELD Simulator 58

4.1 Related Work 58
4.2 Methodology 62
42.1 Architecture 62
422 PredictionModel Lo 64
4.2.3 Heuristics for Data Processing: Aggregation, Compression, and Filtering 66
424 DataFlowinthe System 70
4.2.5 Testing Methodology 71
43 SHiELDResults. 72
4.3.1 Local System Architecture Results 73
4.3.2 External System Architecture Results 74
4.3.3 Summary of Architecture Results 74

4.3.4 Heuristics for Data Processing: Aggregation, Compression, and Filter-
ingResults 75
4.3.5 ARIMA Model Performance Results 76
4.3.6 Comparative Experimental Results with Existing Simulators 77
4.4 Considerations about the Chapter 79
5 OntOraculum Ontology 81
5.1 RelatedWork 82
5.2 Methodology 85
5.3 Ontology Development Process 85
5.3.1 Domain Definition Lo 86
5.3.2 Scope Definition L Lo 86
5.3.3 Competency Questions 87
534 KeyTermsintheOntology 88
5.3.5 Defining Classes and Hierarchy 90
5.3.6 Defining Relationships and Class Properties 91
5.3.7 Define SemanticRules oL, 93
5.3.8 Instance Creation 94
54 Evaluation 96
5.4.1 Verification Lo 96
542 Validation 100
5.4.3 Performance and Accuracy Evaluation 101
5.4.4 TImpact Analysis of Key Metrics 102
5.5 Integration with OntOraculum and Alert Generation 103
5.6 Discussion. 105
5.6.1 Interval-based Uncertainty Modeling 105
5.6.2 Limitations and Scalability 107
5.7 Considerations About the Chapter 108
6 Oraculum Model 110
6.1 Model Overview e 111
6.2 Model Architecture 113
6.3 Model Parameters 118
6.4 Considerations About the Chapter 121
7 Implementation Aspects 123

7.1 Architecture Implementation L L. 124

7.2 Regression and Classification Models
7.3 RLAgent e
7.3.1 Markov Decision Process MDP)
7.3.2 State Space (S)
7.3.3 Possible Actionsinthe RL Agent
7.3.4 Reward Definition (R)
8 Model Evaluation
8.1 Performance Evaluations
8.2 PredictionResults
83 RLAgentResults
8.4 Evaluation with Public Benchmarks

9 Final Considerations

9.1 Conclusions
9.2 Contributions
9.3 Limitations
9.4 Future Work

References

14

1 INTRODUCTION

The adoption of smart environments has intensified the need for monitoring solutions ca-
pable of addressing the complexity of distributed IoT-based systems. These environments in-
tegrate heterogeneous sensors, communication protocols, and processing services, resulting in
the continuous production and consumption of large volumes of data. Ensuring the operational
stability of these systems depends on the monitoring of critical performance metrics such as
memory usage, CPU load, latency, and network throughput (ROSSETTO et al., 2024).

Consider the scenario of a smart city traffic management system. During peak hours, fog
computing nodes receive a surge of data from road sensors, surveillance cameras, and air quality
monitors. If a sudden increase in vehicle density causes CPU overload and network congestion,
traditional monitoring systems-based on fixed thresholds-may delay detection or misclassify
the event. Technicians might only react after critical delays impact services, such as failing to

reroute traffic in time or losing sensor data due to network failure.

Oraculum addresses this challenge by automating the entire monitoring, learning, and adap-
tation cycle. Instead of relying on static thresholds or retraining when new metrics are intro-
duced, it continuously processes time-series data, applying regression and classification models
to predict critical changes. Adaptation policies are refined through reinforcement learning, en-
abling the system to act before service degradation occurs. This proactive behavior reduces the

average adaptation time, as the system does not wait for explicit failures to occur before acting.

One of the central strengths of the Oraculum architecture is its use of generic performance
metrics. Rather than being tailored to a specific metric or application, the model supports a wide
range of monitoring data-including hardware, software, network, and contextual information.
As a result, new monitored variables can be incorporated into the prediction and adaptation
pipelines without requiring reconfiguration or retraining from scratch. This flexibility is critical
for smart environments where operational conditions evolve frequently and where scalability is
essential.

Traditional monitoring approaches, based on rule-based or threshold-based mechanisms,
often fail to anticipate degradations or to support autonomous corrective actions. These methods
generally depend on static configurations, where thresholds are predefined without considering
the dynamic nature of operational environments. When unexpected variations occur, such as
sudden spikes in resource consumption or unpredictable network behavior, static thresholds
may either fail to detect the problem or generate false positives, leading to inefficient or delayed
responses (COLOMBO et al., 2022). Moreover, they do not incorporate historical behavior
patterns or trends, making them inadequate for learning over time. As complexity increases,
manually tuning thresholds becomes infeasible, reinforcing the need for predictive and adaptive
strategies that operate autonomously and flexibly.

Recent developments have incorporated predictive models to estimate the behavior of per-

formance indicators over time. Regression algorithms process historical time series data to

15

forecast future metric values, allowing the system to anticipate possible performance issues be-
fore service levels are affected (XU; LIU; PAN, 2023). Classification techniques complement
regression models by categorizing the state of the system into normal or abnormal behavior,
supporting the rapid identification of emerging faults (WEERASINGHE et al., 2024).

To strengthen autonomous system behavior, reinforcement learning has been increasingly
applied in monitoring architectures. Unlike static or predefined adaptation strategies, reinforce-
ment learning enables systems to improve their decision-making processes based on continuous
environmental interaction. Learning agents receive feedback from monitoring components and
adjust their actions by maximizing long-term rewards, rather than reacting solely to immediate
conditions. This characteristic allows the system to balance short-term performance gains with
long-term operational stability. Agents can explore different adaptation strategies, learn from
previous outcomes, and gradually refine their policies to better handle complex and dynamic
scenarios. They are able to interact with multiple layers of the system architecture, respond-
ing to different alert types generated by predictive or classification models, and dynamically
adjusting operational parameters such as resource allocation, scaling strategies, or configura-
tion settings (MADHUNALA; ANANTHA, 2022). Through this continuous learning cycle,
reinforcement learning supports the development of systems capable of adapting to unforeseen
changes and maintaining desired performance levels even in volatile and heterogeneous envi-

ronments.

For instance, in a smart hospital environment, Oraculum can be used to monitor and man-
age the IoT infrastructure supporting critical medical devices such as heart monitors, infusion
pumps, and patient tracking systems. During emergency situations, such as a sudden increase
in patient admissions in a specific ward, the system can predict network overloads and identify
potential processing bottlenecks in real time. By anticipating these events, Oraculum can trig-
ger adaptation policies like automatically redistributing workloads across servers, prioritizing
sensitive data traffic, or dynamically adjusting computational resources. This ensures the conti-
nuity and quality of medical services, minimizing the risk of failures and optimizing operational

response in highly dynamic and critical environments.

Similarly, in a hybrid e-commerce scenario that integrates both online and physical store op-
erations, Oraculum can monitor the performance of interconnected systems such as inventory
management, point-of-sale terminals, and customer analytics platforms. For example, during a
major sales event, a surge in both online orders and in-store purchases may strain backend sys-
tems and network resources. Oraculum can proactively detect early signs of resource saturation
or abnormal transaction latency, enabling the system to automatically scale cloud resources,
balance network loads, or adjust in-store device configurations. This proactive adaptation helps
maintain seamless customer experiences across digital and physical channels, prevents service

disruptions, and supports efficient, data-driven retail operations.

Although research has advanced in predictive monitoring and reinforcement learning, com-

prehensive frameworks that integrate regression, classification, and adaptive decision-making

16

into a unified structure remain limited. Many existing solutions address these capabilities
in isolation, without fully connecting predictive analysis to autonomous adaptation strategies
(STEHLE et al., 2024). There remains a significant opportunity to develop scalable, modular
models that manage real-time metrics, support accurate forecasting, and enable autonomous

system adjustments in response to predicted conditions.

1.1 Motivation

The development of smart environments involves multiple challenges, including the simula-
tion of sensor data, the processing of real-time information, and the implementation of adaptive
mechanisms capable of responding to dynamic conditions. Existing [oT simulators tend to fo-
cus on isolated aspects, such as network topology, communication performance, or scalability
evaluation. However, they often do not simulate dynamic sensor behavior or provide integrated
support for prediction, anomaly detection, and self-adaptation in response to evolving opera-
tional contexts (HU et al., 2023).

To address these limitations, the Oraculum model proposes a unified architecture that in-
tegrates sensor data simulation, predictive modeling, classification of system states, and rein-
forcement learning-based adaptation. By combining these components, the model supports the
continuous monitoring of performance metrics, anticipates anomalous behaviors, and applies
corrective actions in real time. This integration allows for a more realistic evaluation of smart
environments, where data variability, system constraints, and adaptation needs coexist and in-
fluence overall performance. Oraculum aims to provide a complete environment for testing and
validating self-adaptive strategies across multiple layers of the system, offering insights into the

behavior of intelligent distributed infrastructures under dynamic and uncertain conditions.

Recent research has investigated the application of reinforcement learning and predictive
techniques in smart environments, particularly in energy management, smart cities, and sensor
networks. For instance, SOURI et al. (2022) presents a comprehensive review of reinforce-
ment learning approaches in smart environments, highlighting the main learning models and
their adaptation to different applications. The authors emphasize how Q-learning and Deep Q-
Networks (DQNs) have been adopted to manage resources dynamically in smart grids and IoT

scenarios, with impacts on energy consumption and task scheduling efficiency.

In addition, (ZANELLA GOMES et al., 2019) provides a detailed survey on the use of re-
inforcement learning in the Internet of Things (IoT), discussing key challenges and the role of
RL agents in autonomous decision-making. The study categorizes applications into areas such
as network optimization, energy efficiency, and latency reduction, and points out the need for
hybrid models that combine supervised learning and RL to improve adaptability. These find-
ings support the motivation for the proposed architecture, which integrates predictive models
with reinforcement learning to enable real-time monitoring and adaptive actions in distributed

sensor-based environments.

17

Furthermore, adaptive systems that incorporate reinforcement learning or other intelligent
methods require environments that respond to agent actions and allow changes in state repre-
sentations. Traditional simulators do not offer these adaptive interaction cycles, which are nec-
essary for experiments involving self-adaptive software architectures (FORTINO; SAVAGLIO;
ZHOU, 2019).

Interoperability also represents an important constraint. Simulators frequently support a
limited set of communication protocols, reducing their applicability to scenarios involving het-
erogeneous devices and decentralized communication through technologies such as MQTT and
ZigBee (ALMUTAIRI; BERGAMI; MORGAN, 2024a). These gaps restrict the potential for
validating solutions designed for real-world deployment.

In addition to these limitations, many of the architectures presented in the literature are de-
signed for specific application domains. For example, the model in (SAH et al., 2022a) focuses
on energy and traffic metrics but does not apply learning techniques or offer predictive capa-
bilities, relying solely on reactive responses. Architectures such as (ETEMADI; GHOBAEI-
ARANI; SHAHIDINEJAD, 2021) and (YANG et al., 2021a) apply supervised learning for re-
gression or anomaly classification but treat training as a one-time process, without integrating
mechanisms for automatic dataset updates or model retraining. This limitation affects model

accuracy over time, especially in environments with dynamic workloads.

Works that apply reinforcement learning, like (TAM; MATH; KIM, 2022a) and (CEN; LI,
2022a), rely on reactive adaptation. The agent begins decision-making only after performance
degradation is detected, which increases the response time and limits the effectiveness of the
adaptation. In many of these cases, the monitored metrics are restricted to predefined sets-such
as throughput, delay, or CPU usage-and there is no abstraction layer to generalize the adaptation

logic across different contexts.

Additionally, some architectures with broader metric monitoring coverage, like (SAMA-
RAKOON et al., 2023a), do not integrate Al models, which limits their ability to act au-
tonomously in dynamic scenarios. Although models like (VELRAJAN; SHARMILA, 2023)
employ reinforcement learning across the full MAPE cycle, they do not implement prediction-

based alerts, which would allow earlier decision-making.

In response to these challenges, this work presents a model architecture designed to ad-
dress the integration of synthetic sensor data generation, real-time processing, and adaptive
decision-making based on predictive models and reinforcement learning. The model enables
the emulation of smart environments with temporal variation, supports modules for anomaly
detection and metric forecasting, and provides interfaces for simulating actions that intelligent
agents may take under different operational conditions. In addition, the architecture includes
automated pipelines for data collection, model training, and policy retraining, improving adapt-

ability and enabling continuous learning without manual intervention.

18

1.2 Problems and Questions

The growing complexity of smart environments has increased the demand for solutions
capable of supporting autonomous decision-making based on real-time sensor data. The het-
erogeneity of devices, the variability in sensor data quality, and the unpredictability of contex-
tual changes present significant challenges to maintaining performance and reliability. Current
approaches for monitoring and adaptation often fail to scale efficiently, lack predictive capa-
bilities, or rely heavily on manual interventions, reducing the system’s overall resilience and
adaptability. Moreover, the combination of historical context and predictive analytics remains
underexplored in scenarios where proactive and automated responses are crucial.

In this sense, a strategy to improve performance and reduce failures in smart environments
involves integrating predictive models and reinforcement learning into a unified computational
architecture. The proposed model, Oraculum, is designed to capture sensor data, predict future
states, and apply adaptive actions based on contextual patterns and performance metrics. Orac-
ulum uses time-series monitoring, ontology-based inference, and reinforcement learning agents
to determine optimal responses in complex environments. Historical data is leveraged to detect
oscillations in behavior, anomalies in performance, and potential intermittent failures, allowing
the system to anticipate problems and react appropriately. Therefore, this study is guided by
the following general research question: “How can the integration of monitoring, prediction,
and reinforcement learning support adaptive behavior in smart environments, ensuring system
resilience and performance?”. Specific questions have also been defined to support the answer

to the general question, as follows:

* What are the main performance metrics and contextual parameters required to ensure

adaptation in smart environments?

* How can predictive models based on time-series data be used to anticipate failures or

performance degradation?

* How can ontological reasoning contribute to the contextual understanding of sensor data

in dynamic environments?

* What is the role of reinforcement learning in supporting autonomous decisions within a

distributed sensor architecture?

* How can historical context patterns improve the identification of anomalies and trigger

adaptive actions?

* What types of actions can be defined and executed to optimize system performance in

response to predicted issues?

* How does the integration of monitoring, prediction, and adaptation in a unified architec-

ture impact the system’s resilience and efficiency?

19

1.3 Objectives

The main objective of this study is to develop a computational model, named Oraculum,
that reduces the average adaptation time in smart environments while preserving adaptation ef-
ficiency. To achieve this, the model integrates predictive strategies based on time-series analysis
and reinforcement learning. Oraculum aims to anticipate performance deviations and apply cor-
rective actions before service degradation occurs, thus improving responsiveness and system
resilience. By combining metric prediction, ontological reasoning, and adaptive control, the
model seeks to operate in a fully automated manner, supporting continuous and context-aware

adaptation. The following specific objectives support the achievement of this general goal:

* Reduce the Mean Adaptation Time (MAT) to values close to zero, enabling prompt re-

sponses to changes in the monitored environment.

* Validate the proposed model through a functional prototype capable of monitoring per-
formance metrics from at least three distinct domains, including software, hardware, and

network, with potential extension to SLA-related indicators.

* Maintain Adaptation Accuracy (AA) above 90%, ensuring the correct selection of actions

under varying operational conditions.

» Keep Adaptation Overhead (AO) below 10%, minimizing the impact of adaptation mech-

anisms on system performance.

* Ensure Adaptation Stability (AS) above 85%, reflecting the model’s ability to preserve

consistent behavior over time in the presence of dynamic events.

* Develop at least one regression model capable of forecasting metric values up to two

minutes ahead, achieving a Normalized Root Mean Square Error (NRMSE) above 85%.

* Train classification models that reach an accuracy of at least 90%, allowing effective

detection of anomalous or degraded states.

* Automate the entire pipeline, including data collection, dataset construction, training and
revalidation of regression and classification models, hyperparameter tuning, alert trigger-
ing, and execution of adaptation actions. The only manual tasks involve the definition of

adaptation parameters and the reward tuning for the reinforcement learning agent.

* Release the OntOraculum metric ontology as a reusable and documented resource for
other intelligent monitoring projects, ensuring proper structure and alignment with the

proposed architecture.

* Achieve stable convergence of the reinforcement learning agent, verified by consistent

decision-making patterns over time in various environmental scenarios.

20

1.4 Methodology

Figure 1 illustrates the research methodology adopted in this dissertation. The first stage of
this study consisted of identifying and analyzing domains related to smart environments, per-
formance metrics, time-series data, sensor networks, and adaptive systems. This stage enabled
the mapping of monitorable metrics, followed by the definition of the research question and the
formalization of the research objective, which guided the entire development of the Oraculum

model.

Figure 1: Research flow adopted in the development of the Oraculum model.

Mapping of Definition of Definition of Systematic
monitorable metrics Research Question Research Objective Literature Review

===
" Prototype Ontology Model Structure and
Development Development Design

[Experiment and }::>[Capture the results}::>[Learn Lessons }__ oL
Evalution

Source: Elaborated by the author

Subsequently, a systematic literature review was conducted to identify the current state of
the art, existing gaps, and promising approaches in the areas of performance monitoring, ma-
chine learning, ontologies, and reinforcement learning applied to smart environments. This
review supported the theoretical foundation of the research and reinforced the motivation for
developing a novel integrated model.

The structure and design of the Oraculum model were proposed based on the information
collected and the knowledge gaps identified. This step detailed the architectural components,
data flow, expected functionalities, and required technologies. In parallel, the development of
an ontology was carried out to organize the data representation and enable logical inferences
about the performance and contextual information obtained from sensors.

In the following step, a prototype of the Oraculum model was implemented. This stage
included defining the test plan, generating synthetic datasets for evaluation, and deploying the
prototype. The datasets were produced by a dedicated simulation component, ensuring diversity
and consistency across different use cases and performance scenarios.

The prototype was then used in the experimentation and evaluation phase, in which the Orac-
ulum model was tested in real or simulated environments. During this phase, the integration of
data fusion, predictive models, and reinforcement learning agents was validated. The results
of the experiments were analyzed and documented to assess the effectiveness of the model in

optimizing system behavior, detecting anomalies, and applying appropriate adaptations.

21

Finally, the research process culminated in the stage of capturing results and learning lessons,
where the observations were used to refine the Oraculum model. This cycle allowed continuous
improvement of the ontology, the ML models, and the reinforcement learning strategies used

by the system.

1.5 Contributions

The main scientific contribution of this research is the development of the Oraculum model,
a modular and extensible framework that integrates metric monitoring, predictive modeling,
semantic reasoning, and reinforcement learning to support proactive and autonomous adapta-
tion in smart environments. The model combines knowledge representation with data-driven
learning techniques to anticipate system degradation and execute timely corrective actions. A
key objective addressed by the framework is the reduction of adaptation time while maintain-
ing adaptation quality, minimizing resource overhead, and ensuring behavioral stability during

adaptation cycles. The specific contributions of this work are outlined below:

1. OntOraculum ontology and semantic alert validation: This contribution includes the de-
sign and implementation of the OntOraculum ontology, which formally structures met-
rics, contextual states, and system entities. The ontology enables semantic classification
of monitored data and supports alert inference through SWRL rules and SPARQL queries.
It is used to assist the creation of labeled datasets and to validate at runtime whether a pre-

dicted anomaly corresponds to a relevant adaptation trigger.

2. Delay reduction strategy through metric forecasting and proactive alerting: The model
introduces a prediction-based strategy to reduce adaptation delays. By forecasting fu-
ture values of monitored metrics and anticipating critical thresholds, the system proac-
tively triggers alerts before performance degradation occurs. This approach allows the
reinforcement learning agent to make informed decisions with additional lead time, con-

tributing to more timely and stable adaptations.

3. MDP-based reinforcement learning engine with scheduled retraining and parameterized
actions: The reinforcement learning component is formulated as a Markov Decision Pro-
cess (MDP), incorporating parameterized actions such as vertical and horizontal scaling,
service restarts, and heuristic adjustments. The RL engine supports scheduled retraining
using updated context data and maintains adaptation strategies aligned with evolving sys-
tem behavior. It is responsible for decision-making under uncertainty, aiming to reduce

adaptation time while sustaining adaptation accuracy and low overhead.

4. Automated Architecture for Data Set Generation, Model Training, and Hyperparameter

Tuning: This contribution includes a fully automated pipeline for collecting sensor data,

22

constructing datasets, training predictive models, and tuning hyperparameters. Both re-
gression and classification models are generated and periodically updated per metric and
per system node. The same pipeline is used to manage the retraining of the reinforcement

learning agent, ensuring consistent alignment with system dynamics.

1.6 Outline

This dissertation is organized into nine chapters. Chapter 2 presents the theoretical foun-
dations necessary for the development of the Oraculum model, covering topics such as system
adaptation, metric monitoring, MAPE-K architectures, ontologies, and artificial intelligence
techniques. Chapter 3 provides a systematic literature review, analyzing how self-adaptive sys-
tems are designed in smart environments and identifying research gaps and opportunities.

Chapter 4 introduces the SHiELD simulator, developed to generate synthetic data and val-
idate adaptation strategies. Chapter 5 presents the OntOraculum ontology, detailing its devel-
opment, structure, and use in anomaly inference. Chapter 6 describes the Oraculum model
proposal, including its architecture and core components. Chapter 7 focuses on the implemen-
tation aspects, such as the application of predictive models, the reinforcement learning agent,
and the system modules. Chapter 8 discusses the experiments conducted, the results obtained
across system layers, and the performance evaluation of the architecture. Finally, Chapter 9
presents the final considerations, highlighting the contributions, limitations, and future research

directions of this work.

23

2 BACKGROUND

This chapter presents the core concepts that provide the theoretical foundation for the devel-
opment of the Oraculum model. The presented concepts encompass multiple areas that are es-
sential to understanding and constructing adaptive monitoring and prediction systems for smart
environments. The first section explores system adaptation mechanisms and their importance in
dynamic and heterogeneous environments. The second section discusses the monitoring of met-
rics, highlighting the types of data collected and their role in decision-making processes. The
third section introduces MAPE-K systems as a conceptual model for autonomous computing,
guiding system adaptation through monitoring, analysis, planning, execution, and knowledge
components. The fourth section covers ontologies, focusing on their role in organizing and
reasoning over contextual information. The final section addresses Artificial Intelligence, with
emphasis on relevant techniques such as machine learning and reinforcement learning, which

enable predictive analysis and decision-making within the Oraculum architecture.

2.1 Systems Adaptation

System adaptation enables dynamic adjustment of computational behavior in response to en-
vironmental or workload changes. This capability is essential in smart environments composed
of heterogeneous and distributed systems. Reinforcement learning has been applied to mini-
mize energy consumption and improve Age of Information (Aol) in wireless energy transfer
systems (XU; LIU; PAN, 2023), as well as to optimize context caching in real-time distributed
applications (WEERASINGHE et al., 2024). Adaptive orchestration strategies in fog comput-
ing environments support SLA preservation and trigger self-healing mechanisms (COLOMBO
et al., 2022).

DeepHYDRA integrates deep neural networks with clustering for real-time anomaly detec-
tion in high-performance systems (STEHLE et al., 2024). In smart buildings, federated learning
supports decentralized anomaly detection while maintaining data privacy (SATER; HAMZA,
2021).

Task scheduling and adaptive resource management approaches have been employed in fog-
cloud environments to optimize QoS and cost (HOSEINY et al., 2021). In industrial settings,
distributed QoS-aware routing schemes reduce latency and packet loss (S; KANNIGA, 2023),

and integrated operational monitoring improves infrastructure efficiency (XUE et al., 2023).

Vehicular fog computing leverages real-time offloading strategies to meet delay constraints
(WU et al., 2023), and scalable aggregation techniques enable adaptation in large sensor net-
works (HENNING; HASSELBRING, 2019). Efficient monitoring strategies for fog architec-
tures support resource adaptation in distributed contexts (BATTULA et al., 2020).

24

2.2 Monitoring Metrics

Monitoring in smart environments enables adaptive systems to detect deviations, anticipate
failures, and support resource-aware control. In IoT infrastructures, performance metrics are
used not only for observation but for triggering real-time decisions.

Low-power monitoring techniques are critical in constrained environments. Adaptive sensor
nodes designed with deep learning and in-field programmability allow runtime reconfiguration
(SHAFIEE; OZEV, 2022). Efficient access methods without prior reservation improve sustain-
ability and connectivity in dense [oT networks (AZARI et al., 2021). These strategies reduce
energy waste while maintaining data fidelity.

In industrial settings, resource usage monitoring enables real-time anomaly detection in
NoSQL databases (CHOULIARAS; SOTIRIADIS, 2020), while edge-based learning models
have been applied for fault detection in power distribution (WEI et al., 2022). Highway in-
frastructures integrate monitoring with predictive models to improve road safety through sensor
data and intelligent feedback (SINGH et al., 2021).

Residential energy systems use metric-based optimization for managing energy tasks and
scheduling (IMRAN; IQBAL; KIM, 2022). In smart grids, Al frameworks improve the ef-
ficiency of data acquisition and consumption, supporting predictive load balancing (LI et al.,
2024a). These examples confirm that monitored metrics guide proactive responses across
energy-centric domains.

Security applications rely on monitoring for behavior classification and threat identifica-
tion. Deep learning models enriched by MUD policies support anomaly detection in IoT de-
vices (MIRDULA; ROOPA, 2023), while smart construction systems combine vision and met-
ric monitoring to enhance site automation (BADUGE et al., 2022).

Time series data from sensors is used in forecasting models to anticipate demand. Con-
vLSTM networks have been used to predict household electricity consumption, aligning sup-
ply with expected usage (CASCONE et al., 2023). In solar-powered wireless sensor networks,
adaptive broadcasting policies depend on continuous energy harvesting metrics to balance com-
munication and power use (KHIATI; DJENOURI, 2018).

These contributions show that monitoring has evolved from a passive observation tool into
an active component of adaptive systems, enabling prediction, anomaly detection, and control

in real time.

2.3 MAPE-K Systems

The MAPE-K model structures adaptive behavior through monitoring, analysis, planning,
execution, and a shared knowledge base. It is used to coordinate adaptation in distributed sys-
tems and [oT environments.

In energy management, the MAPE-K loop supports forecasting and load optimization. IoT-

25

enabled platforms integrate monitoring and planning to improve PV power generation and load
balancing (RAO; SAHOO; YANINE, 2024). Reinforcement learning complements this pro-
cess by provisioning microservice-based IoT devices in dynamic contexts (RATH; MANDAL,;
SARKAR, 2024). Adaptive optimization techniques further refine energy efficiency, as seen
in the application of metaheuristics and improved neural networks (NANDISH; PUSHPARA-
JESH, 2024; REVANESH et al., 2023).

Monitoring and planning are integrated into service orchestration. Real-time frameworks
using services like AWS IoT and DeepAR enable predictive management in industrial envi-
ronments (CHAKRABARTTI; SADHU; PAL, 2023). Scheduling approaches combine machine
learning and rule-based planning for dynamic resource allocation in cloud platforms (ZHOU,
2023). In telecommunications, energy feedback systems rely on continuous monitoring for
decision support (SORRENTINO; FRANZESE; TRIFIRO, 2024).

Fog and edge computing architectures use the MAPE-K loop to manage latency and re-
source distribution. Advanced orchestration strategies optimize task placement in heteroge-
neous layers (SRICHANDAN et al., 2024). Anomaly detection is enhanced through explainable
LSTM-based models, improving observability and interpretability in fog networks (SHARMA;
KAUR, 2023).

The knowledge and monitoring components of MAPE-K are often supported by scalable
infrastructures. Platforms using Elasticsearch and Kafka provide observability in IoT deploy-
ments (CALDERON et al., 2023). Load balancing in fog environments is reinforced by re-
inforcement learning policies trained through performance feedback (TALAAT et al., 2020).
Adaptive caching and data compression mechanisms also rely on performance monitoring to
adjust strategies dynamically (MEENA et al., 2023; SURESHKUMAR; SABENA, 2023).

Multi-agent systems extend the MAPE-K framework through distributed learning. MARL
protocols optimize routing and task execution in sensor networks PRABHU; ALAGESWARAN;
MIRUNA JOE AMALI (2023), while genetic algorithms and neural approaches improve energy-
aware allocation strategies (AZEVEDO ALBUQUERQUE et al., 2023; PRASANNA et al.,
2023). These applications illustrate the continued relevance of MAPE-K as a coordination

structure for intelligent, adaptive systems.
2.4 Ontologies

Ontologies formalize domain knowledge and support semantic interoperability in distributed
and intelligent systems. They define concepts, relationships, and constraints, enabling reason-
ing and contextual inference (GRUBER, 1995; GUARINO, 1998; NOY; MCGUINNESS et al.,
2001).

In monitoring architectures, ontologies are used to structure metrics and support perfor-
mance reasoning. DAEMON applies semantic descriptions to IoT monitoring environments
DAOUDAGH; MARCHETTI (2023), and other works model performance indicators for build-

26

ings and grid workflows (CORRY et al., 2015; TRUONG et al., 2005). Ontologies also support
testing automation and guide performance evaluation in distributed applications (FREITAS;
VIEIRA, 2014).

Service-oriented architectures benefit from semantic enrichment. Ontologies enhance ser-
vice discovery and selection by modeling quality attributes and user preferences (BAOCAI
etal., 2010; CAO et al., 2019). In cloud and edge computing, ontologies organize functional and
non-functional service attributes to support classification and resource selection (AL-SAYED;
HASSAN; OMARA, 2020; METWALLY; JARRAY; KARMOUCH, 2015).

Resource management strategies often rely on the evaluation of semantic rules. Ontology-
based frameworks are applied in decision-making platforms and user-defined policy evaluation
(YASEEN et al., 2011). Multi-agent systems also use ontologies to coordinate distributed re-
source planning and adaptive behavior (RZEVSKI; SKOBELEV; ZHILYAEV, 2022).

The development of ontologies is supported by tools such as Protégé MUSEN (2015a,b)
and rule languages like SWRL HORROCKS et al. (2004); O’CONNOR; DAS (2005). Recent
tools integrate deep learning with ontological reasoning, such as DeepOnto BLOMQVIST et al.
(2024).

Sensor ontologies address interoperability in heterogeneous environments, aligning models
through swarm-based alignment techniques (LATEEF HAROON P S et al., 2024). Domain-
specific ontologies are applied in healthcare monitoring SHARMA et al. (2021); ZESHAN
et al. (2023a), service modeling MARI¢; BACH; GUPTA (2024), and energy management IM-
RAN; IQBAL; KIM (2022); CHAKRABARTI; SADHU; PAL (2023); RAO; SAHOO; YA-
NINE (2024). These applications demonstrate the role of ontologies in structuring perfor-
mance knowledge, supporting reasoning over system behavior, and integrating metrics into

self-adaptive decision-making models.

2.5 Artificial Intelligence

Artificial Intelligence (AI) has become a key enabler in the design and operation of smart
environments, providing the foundation for predictive analytics, adaptive behavior, and au-
tonomous decision-making. Its integration into Internet of Things (IoT) architectures allows for
enhanced data processing, real-time monitoring, and dynamic system optimization. Al tech-
niques support a variety of computational tasks, including forecasting, classification, anomaly
detection, and resource management, making them suitable for complex and heterogeneous
infrastructures.

In the context of smart systems, different Al paradigms are employed to address specific
challenges. Regression models are commonly used for predicting future values of continuous
variables such as energy consumption or system load. Classification models enable the detection
of patterns, faults, and critical events through labeled datasets. Reinforcement Learning (RL),

on the other hand, allows agents to interact with the environment and improve performance over

27

time through experience-based learning. Each of these Al branches brings distinct capabilities

and limitations, which are explored in the subsections that follow.
2.5.1 Regression Models

Regression models are essential in intelligent systems for predicting continuous variables
based on historical and contextual data. These models are used to forecast energy consumption,
temperature, latency, traffic load, and many other quantitative metrics. In contrast to classifica-
tion, which assigns inputs to discrete classes, regression aims to model a mapping f : R — R
that minimizes the prediction error over a dataset D = {(x;, y;) })¥,.

The most fundamental approach is linear regression, which assumes the output variable is a

linear combination of input features:
j=w'x+b

The optimal parameters w and b are estimated by minimizing a loss function, commonly the
Mean Squared Error (MSE):

N
1 .
Lw.b) == (i —5)°
=1

This approach was adopted by MALEKZADEH (2023) to model and predict the perfor-
mance of 5G communication networks, improving system responsiveness through early identi-
fication of performance degradation trends.

In energy-related applications, RAO; SAHOO; YANINE (2024) developed a forecasting
model for photovoltaic (PV) power generation using regression, which allowed for optimized
load management in IoT-enabled smart grids. Accurate predictions in such contexts are crucial
to avoid overproduction or underutilization of energy resources.

To capture nonlinear relationships and temporal dependencies, deep learning-based regres-
sion has gained prominence. CASCONE et al. (2023) proposed a hybrid approach using Convo-
lutional LSTM (ConvLSTM) networks for multi-step household energy forecasting. The model
integrates convolutional layers for spatial pattern extraction with LSTM units for temporal mod-
eling, enabling effective prediction in complex, high-dimensional time series environments.

Time series regression models often aim to predict a sequence of future values {y;11, Yr12, .-, Yesn }

given past observations {y;, y¢_1, ..., yt_pH}. The prediction can be formulated as:

gtJrk = f(ytaytfb "'7ytfp+l) for k = 17 EX3) h

where h is the forecasting horizon and p is the window size of the past context.

More complex techniques, such as Support Vector Regression (SVR), decision tree regres-

28

sors (e.g., XGBoost, LightGBM), and ensemble models, have also been widely applied, espe-
cially when dealing with nonlinear patterns and high-dimensional feature spaces.

Evaluation metrics for regression include:

* Mean Absolute Error (MAE): % Z@Nﬂ lyi — Ui

* Root Mean Squared Error (RMSE): \/ % Zf\il(yz — 7;)?
* Coefficient of Determination (R?):

2 4 >y — U:)°
S Y e

These metrics guide the selection and tuning of models, ensuring accurate and reliable fore-
casting in smart environments. As intelligent systems scale in complexity and heterogeneity,
regression models remain a cornerstone for proactive and adaptive management of continuous-

valued metrics.
2.5.2 Classification Models

Classification models play a fundamental role in intelligent environments, particularly for
tasks such as anomaly detection, occupancy recognition, fault classification, and security mon-
itoring. These models learn to map an input feature vector x € R" to one of several prede-
fined classes y € {1,2,..., K}, where K denotes the number of categories. Given a dataset
D = {(xi,y:) }Y,, the goal is to learn a function f : R" — {1,..., K} that generalizes well to
unseen data.

One of the most widely used paradigms in classification is the use of probabilistic discrim-
inative models, which estimate the posterior distribution P(y | x). For example, in softmax

classifiers, the output probabilities are given by:

.
eka
Ply=Fk|[x)=

where wy, is the weight vector corresponding to class k. This formulation is also the basis for
the final layer in many neural network architectures used for classification.

Neural networks, particularly recurrent neural networks (RNNs) and long short-term mem-
ory networks (LSTMs), are increasingly applied in classification tasks with critical temporal
dependencies. For instance, SHARMA; KAUR (2023) proposed XLAAM, an explainable
LSTM-based model designed to classify user behaviors and detect anomalies in fog-based envi-
ronments. The architecture integrates LSTM units with attention mechanisms and interpretable

components to enhance explainability and performance in dynamic systems.

29

In wireless sensor networks (WSN5s), classification is often constrained by energy and com-
putational budgets. REVANESH et al. (2023) addressed this by proposing an improved Leven-
berg—Marquardt neural network architecture, enhancing classification accuracy while preserv-
ing energy efficiency. This is particularly important for real-time monitoring applications in

smart cities and smart grids.

Classification in IoT security is another critical application. MIRDULA; ROOPA (2023)
presented a deep learning-based classification framework that incorporates manufacturer usage
descriptions (MUD) to classify network behaviors of IoT devices, enabling threat detection and

mitigation in smart buildings.

Classical models like decision trees, support vector machines (SVMs), and Naive Bayes
classifiers are still used, especially when interpretability and low-latency inference are required.
For multi-class problems, these models can be extended through strategies like one-vs-rest
(OvR), one-vs-one (OvO), or through probabilistic generative formulations such as Gaussian
Mixture Models (GMMs).

To further evaluate classification models, metrics such as precision, recall, Fl-score, and
the confusion matrix are commonly employed. For a binary classification task, the F1-score is

computed as:
_ 9 precision - recall 2TP

precision +recall 2TP + FP + FN

By

where T'P, F'P, and I'N denote true positives, false positives, and false negatives, respectively.

Recent trends involve the use of hybrid models and ensemble learning techniques that com-
bine multiple classifiers to improve robustness and accuracy. Moreover, transfer learning and
pre-trained models (e.g., BERT, ResNet) have been increasingly adopted in sensor-rich envi-
ronments, particularly when annotated data is scarce. The diversity of classification techniques
enables flexible adaptation to a wide range of contexts in intelligent systems, from real-time

anomaly detection to high-dimensional behavioral analysis.
2.5.3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm where agents learn optimal
behaviors by interacting with an environment to maximize cumulative rewards, typically mod-
eled as a Markov Decision Process (MDP) defined by the tuple (S, A, P, R,~y), where S is the
set of states, A the set of actions, P the transition probability, R the reward function, and ~ the

discount factor.

The agent seeks a policy 7 : S — A that maximizes the expected return:

G = ZVthJrkH
k=0

30

Key value functions are:
VW(S):EW [Gt | St:S], QW(S,CL) :]EW [Gt | StZS,At:CL]
Their recursive Bellman equations are:

Vi(s)=> m(a|s)> P(s'| s,a)[R(s,a,s) + V7 (s)]

Q7(s,a) =Y P(s'| s,a)[R(s,a.8) + 7Y m(a | $)Q(s,)]

Common solution methods include policy iteration, value iteration, and Q-learning. Ad-
vanced approaches, such as policy gradients and actor-critic methods, optimize parameterized

policies in continuous spaces, with the policy gradient given by:
VoJ(0) =E,, [Vglogmy(a| s)Q™(s,a)]

The integration of deep learning and RL, known as deep reinforcement learning (DRL),
enables the use of neural networks to approximate value functions or policies, making RL ap-
plicable to complex, high-dimensional environments.

Reinforcement learning has demonstrated significant utility in intelligent environments. TA-
LAAT et al. (2020) proposed a load balancing and optimization strategy using RL to manage
resource allocation in fog computing dynamically,. PRABHU; ALAGESWARAN; MIRUNA
JOE AMALI (2023) developed a multi-agent reinforcement learning (MARL) framework to
improve energy-efficient routing in wireless sensor networks. In the Internet of Medical Things
(IoMT), NAZARI et al. (2023) introduced a reinforcement learning-based routing protocol fo-
cused on Quality of Service (QoS) and energy awareness.

Additionally, RATH; MANDAL; SARKAR (2024) employed a context-aware RL algo-
rithm to provision devices dynamically in microservice-based IoT architectures. ESFAHANI;
ELKHODARY; MALEK (2013) presented a learning-based framework tailored for engineer-
ing self-adaptive software systems, integrating RL techniques to support runtime adaptation

through feature-oriented models.

31

3 LITERATURE REVIEW

This chapter presents a structured review of the literature on techniques and tools for mon-
itoring performance and enabling self-adaptation in smart environments. As systems become
increasingly complex and operate under dynamic and uncertain conditions-particularly in do-
mains such as cloud computing, the Internet of Things (IoT), and smart cities-the ability to

autonomously adapt to contextual changes has become a fundamental design requirement.

Modern software systems must ensure continuous operation while responding to fluctuating
workloads and environmental variations. For example, cloud-based services need to maintain
service quality and cost-effectiveness despite abrupt shifts in demand. These challenges have
motivated the development of monitoring mechanisms and adaptive strategies that enable sys-
tems to reconfigure themselves at runtime to meet operational objectives (SOURI et al., 2022;
ALKHAY YAL; MOSTAFA, 2024).

While conventional solutions such as exception handling and fault tolerance remain in use,
they are often tightly integrated with application logic, which limits their generalization and
reuse (GARLAN et al., 2004). In contrast, external adaptation mechanisms based on feed-
back loops support modularity and flexibility, offering a more scalable and decoupled approach
to self-adaptation. Within this context, self-adaptive systems are defined by their capacity to
adjust behavior autonomously based on monitoring data and decision-making models (YANG
et al., 2021b). These models include reinforcement learning (TALAAT et al., 2020; PRABHU;
ALAGESWARAN; MIRUNA JOE AMALLI, 2023), predictive analytics, and search-based tech-
niques such as evolutionary programming (IMRAN; IQBAL; KIM, 2022; ZHOU, 2023), which

support the decision-making process in real time.

Recent literature also emphasizes the role of adaptive strategies in urban governance and
critical infrastructures, highlighting the broader relevance of these approaches in both techni-
cal and societal contexts (ABU-TAYEH et al., 2023; CARDULLO; KITCHIN, 2024; SUSHA;
GIL-GARCIA, 2023; JANSSEN; KUK, 2024). In line with this perspective, the present re-
search conducts a systematic review aimed at identifying and analyzing existing approaches that
contribute to the development of the proposed model. A total of 133 peer-reviewed studies were
selected from seven academic databases, enabling the identification of central research themes,
technological directions, and unresolved challenges in monitoring and self-adaptation. This
analysis organizes and categorizes the techniques and tools used for monitoring and adaptive
responses in smart environments, outlines the different types of smart environments addressed
in the literature, and classifies the main performance metrics and frequent bottlenecks encoun-
tered in such systems. Additionally, the review maps the adaptation and monitoring strategies
applied to runtime systems and synthesizes relevant studies that provide both methodological
guidance and conceptual support for this work. Grounded in these insights, the research builds

a solid theoretical and methodological basis for the design of the proposed solution.

32

3.1 Research Methodology

This study adopts the systematic literature review approach proposed by PETERSEN et al.
(2008) to investigate how monitoring and self-adaptation techniques are applied in smart envi-
ronments. Systematic reviews provide a structured and objective method for synthesizing ex-
isting research, identifying gaps, and recognizing trends across studies. Following the method-
ological guidelines defined by PETERSEN et al. (2008), this process defines research questions,
search procedures, selection criteria, and conducts analysis and classification of the selected
studies. This framework allows for a consistent evaluation of how various techniques are im-
plemented, which performance metrics are monitored, and what common system bottlenecks

are reported in the literature.

3.1.1 Research questions

Table 1 presents the research questions, consisting of a general question (GQ), five specific
questions (FQ), and one statistical question (SQ). The general question addresses how studies
apply monitoring and self-adaptation techniques in smart environments, both with and without
the use of machine learning. The specific questions focus on particular challenges, technologies,
techniques, performance metrics, and additional resources used in these studies. Finally, the

statistical questions assess the publication sources of the articles and the number of publications

per year.
Table 1: Research questions
Reference Question
General Question
GQ1 How are performance metrics being monitored and systems being self-adapted in studies related to Smart
Environments?
Focused Questions
FQl What techniques and tools are being used to monitor specific performance metrics in smart environments?
FQ2 What types of smart environments are covered in the reviewed studies?
FQ3 What specific performance metrics are being monitored in the studies?
FQ4 What are the main bottlenecks or challenges identified in the applications of these environments?
FQ5 How are Machine Learning techniques being used to enable self-adaptation in the reviewed systems?
Statistical Questions
SQ1 Where were the studies published and how has the number of publications evolved per year?

Source: Elaborated by the author

3.1.2 Search process

Table 13 presents the search string combining terms related to performance metrics, smart
environments, and machine learning techniques, which are the main themes of this study. The
first part of the string contains terms related to performance metrics, such as "performance met-

rics" and "monitoring management." The second part focuses on smart environments, including

33

terms like "smart environment" and "IoT." The third part covers adaptation techniques and mon-

"nn

itoring technologies, such as "machine learning," "reinforcement learning," and "self-adaptive."

The search process requires that selected studies contain at least one term from each part of
the search string. This rule was applied to restrict the scope of the research, as initial searches
without specific terms returned an overly broad set of articles. Furthermore, the initial searches
helped define specific terms that cover a range of scenarios within smart environment research.
At this stage, articles that did not directly focus on smart environments and self-adaptation were
gathered. The focus on self-adaptation techniques and continuous monitoring was established
in the final phases of this research.

After defining the search string, the databases to be analyzed were selected. In September
2024, the review considered seven databases: ACM Digital Library', IEEE Digital Library?,
Science@Direct®, Springer Link*, Wiley>, Scopus® and MDPI’. Previous literature reviews
((ZANELLA GOMES et al., 2019; GUSENBAUER; HADDAWAY, 2020; ARANDA et al.,
2023; VIANNA; BARBOSA, 2017; HECKLER; CARVALHO; BARBOSA, 2022)) also uti-

lized these databases. Table 3 summarizes the search process for each of these databases.

Table 2: Search string.

Main term String

Performance Metrics ("performance param*" OR "performance evaluation metrics" OR "monitor* manag*" OR "performance
manag*" OR "performance monitor*" OR "performance metric" OR "resource monitor*")

Smart Environment AND ("smart environment" OR "intelligent environment” OR "IoT" OR "internet of things")

Monitoring and self- AND ("reinforcement learning”" OR "self-adaptive" OR "monitor* technic*" OR "monitor* tool*" OR "ma-

adaptation techniques chine learning" OR "predictive modeling" OR "artificial intelligence" OR "deep learning")

Source: Elaborated by the author

Table 3: Search customization per database

Database Search Description

ACM Digital Library Search considered the expansion “ACM Guide to Computing Literature”.

IEEE Digital Library Search considered all metadata fields and publication types.

Science @Direct Search considered all metadata fields and publication types.

Springer Link Search considered all metadata fields and publication types “Article”, “Conference Paper”
and “Conference Proceedings” and excluded articles in the preview.

Wiley Search considered all metadata fields and publication type.

Scopus Search considered the fields article title, abstracts, and key words.

MDPI Search considered all metadata fields and publication type.

Source: Elaborated by the author

Thttps://dl.acm.org/.
*https://ieeexplore.ieee.org/Xplore/home.jsp.
3https://www.sciencedirect.com/.
“https://link.springer.com/.
Shttps://onlinelibrary.wiley.com/.
Ohttps://www.scopus.com.
"https://www.mdpi.com/.

34

3.1.3 Selection process

After applying the search string, the articles underwent a filtering process, considering the
inclusion (IC) and exclusion (EC) criteria. This study included only articles that met all the
inclusion criteria. Conversely, articles that met at least one exclusion criterion were discarded.
These criteria were defined to eliminate noise in the research, ensuring the relevance of the

selected studies. Table 4 presents the inclusion and exclusion criteria.

Table 4: Inclusion and exclusion criteria of the research.

Criterion Definition

Inclusion

IC1 Studies published in peer-reviewed journals, conferences, or workshops.

1C2 Articles written in English.

1C3 The study must contain the terms defined in the search string.

Exclusion

ECl1 Duplicate works.

EC2 The study is a literature review or systematic mapping.

EC3 Works that are not aligned with any of the research questions.

EC4 Publications that do not directly address smart environments or similar contexts.

EC5 Studies that do not address the use of techniques and/or tools for monitoring or performance improvement.
EC6 Works that do not provide analysis of experiments related to the impact of monitoring techniques and/or tools on system

performance metrics.

Source: Elaborated by the author

The software Parsifal® was used to manage the metadata of the selected articles, assisting in
conducting the systematic review from protocol registration to results evaluation. The filtering
process was divided into several stages, each addressing different exclusion criteria and article
metadata, ensuring speed and clarity in the review process.

The selection process involved multiple phases, with the initial filtering returning 7,763
articles after applying the search string. Then, the three-pass reading method proposed by
KESHAV (2016) was applied, allowing for a progressive analysis of the articles. The complete
filtering resulted in 133 studies selected for full analysis. Figure 2 illustrates the complete flow

of the study selection process.
3.2 Research Results

Table 5 summarizes the reviewed articles, listing the MAPE (Monitor, Analyze, Plan, Ex-
ecute) functions addressed by each study, the corresponding references, and the types of Ar-
tificial Intelligence (AI) applied. This classification illustrates how monitoring, learning, and
self-adaptation techniques are distributed across different contexts and smart environments.

Self-adaptive systems follow the MAPE model to structure their continuous adaptation cy-
cles. The model defines four key functions: Monitoring, responsible for collecting data from
the system environment; Analysis, focused on processing the data to identify trends, anoma-

lies, or adaptation needs; Planning, which proposes strategies based on analytical results; and

8https://parsif.al

35

Figure 2: Flow of the study selection process.

Initial Search Impurity Filter by title Filter by Combination Duplicate Filter by Filter
(11, 1c2, Removal and keyword abstract Removal Three-pass by Full
and IC3) (EC1 and (EC3, EC4 and (EC3, EC4 and (EC1) Based Text
! EC2) EC5) EC5) Method (EC6)
'113% 1 384% ! 93.9% | ' (EC4 and !
- | filtered ! filtered ! filtered ! ' EC5) '
7 : : :
1 993 ! 880 | 54 ES ! ! :
L364% 1 192% 1 667% ' ' !
- i filtered | filtered | filtered ' ' :
| 329 | 317 | 256 | 86 E ' i
| 802% ! 745% | 441% | i : i
- | filtered | filtered | filtered | i : i
T T T T 1 1
' 436 ' 401 ' 102 ' o6l ! ' '
| 208% 1 534% 1 7.77% ! ' '
- | filtered ! filtered ! filtered ! ! ' '
T i i i
! 4,406 | 3,487 E 1,623 E 363 ' ! '
©341% 1 603% i 711% 3.05% 1 7444% 1 27.72% |
- i filtered | filtered | filtered] filtered 1 filtered 1 filtered
E 916 | 603 | 239 I 69 729 E 707 E 193 i 142
1 0.0% Vo 364% 1 744% ' : :
]
_ ' filtered | filtered ' filtered 1 ! ! !
E 612 1 612 1 391 100 E i i
' 0.0% | 676% 1 347% ' : :
i filtered | filtered | filtered 1 i i i
MPP! V71 71 ' 23 p 15 : : :
! 1 1 1 1
Vo 17.93% E 50.15% i 77.33% | 3.05% | 74.44% | 27.72% |
TOTAL i filtered , filtered | filtered | filtered | filtered | filtered |
T
7,772 6,380 3,165 " 720 729 707 193 142

Source: Elaborated by the author

Execution, where the system applies the planned adaptations. By organizing system behav-
ior into these phases, self-adaptive solutions improve responsiveness and flexibility in dynamic
environments (GHEIBI; WEYNS; QUIN, 2021). This structure enables systems to maintain
operational goals despite changes in workload, network conditions, or hardware availability,

characteristics commonly found in smart and distributed environments.

The reviewed studies reveal a range of Al techniques adopted to implement these func-
tions. Several works explore fuzzy logic to enhance decision-making during the analysis and
execution phases, particularly in sensor networks where uncertainties and partial information
are common. Fuzzy systems support flexible decision boundaries, making them effective in
environments where crisp threshold-based rules perform poorly. In other cases, unsupervised
learning methods, such as clustering and anomaly detection algorithms, have been integrated
into monitoring architectures to automatically identify behavioral deviations without requiring
labeled datasets. These methods enable early detection of anomalies, assisting the planning
module in selecting more appropriate responses before major degradations occur.

Reinforcement learning techniques have gained relevance, especially in managing resource
allocation and routing in dynamic networked systems. In these approaches, agents learn adap-
tation strategies through continuous interaction with the system, progressively refining their
decisions to optimize performance indicators such as latency, throughput, and energy consump-
tion. Unlike traditional optimization strategies, reinforcement learning allows adaptation poli-
cies to evolve over time, offering the flexibility needed in highly variable environments such as

wireless sensor networks, edge computing platforms, and IoT deployments.

36

Research in IoT and edge computing systems often combines supervised and unsupervised
learning. Supervised models are typically employed for fault prediction and resource demand
estimation, providing a proactive dimension to monitoring processes. These models use histor-
ical data to build predictive pipelines capable of signaling potential failures or bottlenecks in
advance, supporting faster and more informed planning decisions. Unsupervised learning com-
plements these efforts by continuously analyzing unlabeled operational data to discover new
patterns or changes in system behavior that supervised models may not capture due to training
limitations.

In addition to isolated applications of learning techniques, some studies propose hybrid ap-
proaches that integrate multiple Al models into a unified monitoring and adaptation pipeline.
For instance, supervised learning models may trigger anomaly classification, while reinforce-
ment learning agents select and apply corrective actions based on classified states. This hy-
bridization seeks to close the gap between prediction and action, ensuring that monitored in-
sights directly influence system behavior adjustments without human intervention.

Recent publications continue to expand these approaches, applying reinforcement learning
to edge resource planning and supervised learning to the monitoring of communication infras-
tructures. Several works propose architectures where Al models operate across multiple layers,
from device-level monitoring to service-level adaptation strategies. These multi-layered archi-
tectures aim to handle the increasing complexity of distributed systems by enabling coordinated

adaptation decisions, improving overall system stability and resource efficiency.

Table 5: Selected Articles

ID Monitoring Metrics MAPE Al Type Article
Al Anomaly Detection Analyze, Monitor Unsupervised, GAO et al. (2021)
Supervised
A2 Network Latency, QoS Analyze, Plan Reinforcement LI; ZHANG; LUO
(2021)
A3 Residual Energy from Sensors, Energy Effi- Execute, Plan None MORAES et al. (2022)
ciency
A4 Forecast Accuracy, Network Lifespan, SLA Analyze, Plan None SHUKLA et al. (2022)
and QoS
AS Energy Efficiency Delay Analyze, Execute, Plan Reinforcement ULLAH et al. (2022)
A6 Energy Consumption, Security Data Analyze, Monitor Supervised LAKHAN et al. (2022)
A7 Energy Efficiency Analyze, Monitor None RAO; SAHOO; YANINE
(2024)
A8 Memory Usage, CPU Usage, Processing and Analyze, Monitor Unsupervised SAH et al. (2022b)
Transmission Delay
A9 Network Latency, Residual Energy from Analyze, Monitor, Plan None ISOLANI et al. (2023)
Sensors
A10 Network Latency, QoS Analyze, Plan Reinforcement SOMESULA et al. (2022)
All Memory Usage, CPU Usage Analyze, Plan Reinforcement CEN; LI (2022b)
Al12 Energy Consumption, Energy Efficiency Execute, Plan None SUBRAMANIAN et al.
(2022)
Al13 Energy Consumption Analyze, Monitor, Plan Supervised XU et al. (2023)
Al4 Energy Efficiency, Processing and Transmis- Analyze, Plan None AHMED; ABAZEED
sion Delay (2024)
AlS Performance KPIs, SLA and QoS, Conges- Analyze, Monitor None DASH; PENG (2022)

tion

37

ID Monitoring Metrics MAPE Al Type Article
Al16 Energy Efficiency, Network Lifespan, Net- Analyze, Monitor Supervised LOGESHWARAN;
work Latency SHANMUGASUN-
DARAM; LLORET
(2024)
Al17 Anomaly Detection, SLA and QoS, Conges- Analyze, Execute, Plan Reinforcement YANG et al. (2021b)
tion
A18 Network Latency Execute, Plan None SHUKRY; FAHMY
(2024)
A19 Energy Consumption, Network Latency Analyze, Plan Reinforcement, PRAMOD KUMAR;
Supervised SAGAR (2023)
A20 Processing and Transmission Delay Analyze, Plan Reinforcement SANGEETHA et al
(2024)
A21 Processing and Transmission Delay Analyze, Monitor Supervised BHARGAVA et al. (2022)
A22 Energy Consumption Plan Reinforcement SULIMANI et al. (2023)
A23 SLA and QoS, Congestion Analyze, Monitor Unsupervised LIU et al. (2021a)
A24 Memory Usage, CPU Usage Analyze, Execute, Plan None AGRAWAL (2023)
A25 Processing and Transmission Delay Analyze, Plan None REVANESH et al. (2023)
A26 Energy Efficiency Analyze, Execute, Plan None SINGH; MALHOTRA
(2018)
A27 Residual Energy from Sensors, Processing Analyze, Plan Reinforcement Carballido Villaverde;
and Transmission Delay REA; PESCH (2012)
A28 Energy Efficiency, Energy Consumption Analyze, Plan Reinforcement YOUSEFTI et al. (2020)
A29 Processing and Transmission Delay Analyze, Plan Supervised, Re- SHIRMARZ; GHAF-
inforcement FARI (2021)
A30 Processing and Transmission Delay Analyze, Monitor Supervised CHAKRABARTI;
SADHU; PAL (2023)
A3l SLA and QoS Analyze, Monitor Unsupervised, MIRDULA; ROOPA
Supervised (2023)
A32 Processing and Transmission Delay Analyze, Monitor Supervised SINGH et al. (2021)
A33 Response Time Analyze, Monitor Supervised CHOULIARAS;
SOTIRIADIS (2020)
A34 Memory Usage, CPU Usage Analyze, Monitor Supervised BADUGE et al. (2022)
A35 Response Time, Performance KPIs, Memory ~ Analyze, Monitor None BATTULA et al. (2020)
Usage, CPU Usage
A36 Power Consumption/Transmission, Energy Analyze, Monitor None S; KANNIGA (2023)
Consumption
A37 Security Data, Security and Log Monitoring, Analyze, Monitor Supervised XUE et al. (2023)
SLA and QoS
A38 Processing and Transmission Delay Plan Reinforcement MADHUNALA; ANAN-
THA (2022)
A39 Response Time, Memory Usage, CPU Us- Analyze, Execute, Moni- None COLOMBO et al. (2022)
age, Energy Consumption tor, Plan
A40 Energy Consumption Analyze, Monitor, Plan Reinforcement XU; LIU; PAN (2023)
A41 Processing and Transmission Delay Analyze, Monitor, Plan Supervised PRASANNA et al. (2023)
A42 Security Data, SLA and QoS, Forecast Ac- Analyze, Monitor Unsupervised SELIM et al. (2021)
curacy, Detection Rates
A43 Processing and Transmission Delay Analyze, Execute, Moni- None BALI et al. (2020)
tor, Plan
A44 Error Rates Analyze, Monitor Reinforcement SHARMA; SINGH
(2020)
A45 Security and Log Monitoring, Security Data, Analyze, Plan Unsupervised, ALNAFESSAH;
SLA and QoS, Forecast Accuracy, Detection Supervised CASALE (2020)
Rates
A46 Processing and Transmission Delay Analyze, Monitor Reinforcement WEERASINGHE et al.
(2024)
A47 Core Temperature, Network Lifespan, Con- Monitor Unsupervised, STEHLE et al. (2024)
gestion Supervised
A48 Processing and Transmission Delay, SLA Analyze, Monitor Supervised SATER; HAMZA (2021)

and QoS

38

ID Monitoring Metrics MAPE Al Type Article
A49 Response Time, Performance KPIs, Process- ~ Monitor None HOSEINY et al. (2021)
ing and Transmission Delay
A50 Processing and Transmission Delay Analyze, Execute, Moni- Reinforcement WU et al. (2023)
tor, Plan
A51 Energy Consumption Monitor Unsupervised HENNING; HASSEL-
BRING (2019)
A52 Power Consumption/Transmission, Energy Analyze, Monitor Supervised SHAFIEE; OZEV (2022)
Consumption
A53 Processing and Transmission Delay, Perfor- Analyze, Monitor, Plan Reinforcement, AZARI et al. (2021)
mance KPIs, Energy Consumption Supervised
A54 Processing and Transmission Delay Analyze, Monitor Supervised WEI et al. (2022)
AS55 Energy Consumption Analyze, Monitor Unsupervised, LI et al. (2024a)
Supervised
A56 Energy Consumption Analyze, Execute, Plan Supervised IMRAN; IQBAL; KIM
(2022)
AS57 Processing and Transmission Delay, Net- Analyze, Monitor Reinforcement KHIATI; DJENOURI
work Latency, Network Lifespan, Memory (2018)
Usage, CPU Usage, Energy Consumption
A58 Processing and Transmission Delay, Net- Analyze, Monitor Supervised MOCNE] et al. (2018)
work Lifespan, Energy Consumption
A59 Processing and Transmission Delay Analyze, Execute, Plan Unsupervised, ALKANHEL et al
Supervised (2024)
A60 Energy Consumption and Energy Efficiency ~ Analyze, Monitor, Plan Reinforcement, SARITHA; SARAS-
Supervised VATHI (2024)
A61 Response Time, Energy Consumption, Net- Analyze, Execute, Plan Supervised PRIYA et al. (2024a)
work Latency
A62 Response Time, Memory Usage, CPU Usage Analyze, Plan Reinforcement ADIL et al. (2024)
A63 Processing and Transmission Delay, Net- Execute, Plan Reinforcement NANDYALA; KIM;
work Lifespan, Error Rates CHO (2023)
A64 Processing and Transmission Delay Analyze, Monitor Supervised GUPTA; SHARMA
(2023)
A65 Processing and Transmission Delay, Energy ~ Analyze, Monitor Supervised PUTRA et al. (2023)
Efficiency
A66 Response Time, Processing and Transmis- Analyze, Monitor, Plan Reinforcement, SAMARAKOON et al.
sion Delay Supervised (2023b)
A67 Response Time, Processing and Transmis- Execute, Plan Reinforcement TAM; MATH; KIM
sion Delay, SLA and QoS, Congestion (2022b)
A68 Energy Consumption Analyze, Plan None HUANG et al. (2022)
A69 Network Latency Analyze, Monitor Supervised HAMEED et al. (2021a)
A70 CPU Usage, Network Latency, Energy Con- Execute, Plan None MO’TAZ et al. (2021)
sumption
A71 Network Latency Execute, Plan Supervised SURESHKUMAR;
SABENA (2023)
A72 Response Time, Energy Consumption, Net- Analyze, Plan Reinforcement WU et al. (2021)
work Latency
A73 Energy Consumption, Network Latency Monitor Supervised SUNDARESAN; DURAI
(2018)
A74 Energy Consumption, Network Latency Analyze, Monitor, Plan Supervised VINJAMURI; RAO
(2021)
A75 Energy Consumption, Network Latency Analyze, Execute, Plan None STEIN et al. (2020)
A76 Energy Consumption, Network Latency Analyze, Plan Reinforcement NAGARAJAN et al
(2023)
A77 Forecast Accuracy, Detection Rates, Con- Analyze, Monitor Supervised LALOTRA et al. (2022)
gestion
A78 Anomaly Detection Analyze, Execute, Plan Reinforcement VELRAJAN; CERON-

MANI
(2022)

SHARMILA

39

ID Monitoring Metrics MAPE Al Type Article
A79 Processing and Transmission Delay Analyze, Execute, Plan Reinforcement, FARAJI-
Supervised MEHMANDAR;
JABBEHDARI; JAVADI
(2022)
A80 Response Time, Processing and Transmis- Analyze, Execute, Plan Reinforcement, TALAAT (2022)
sion Delay Supervised
A81 SLA and QoS, Congestion Analyze, Monitor None GONG (2022)
A82 Processing and Transmission Delay Analyze, Monitor Supervised MUNISWAMY; VIG-
NESH (2022)
A83 Power Consumption/Transmission, Network Execute, Plan None GONG et al. (2022)
Lifespan
A84 Error Rates, SLA and QoS Analyze, Plan Reinforcement SORRENTINO;
FRANZESE; TRIFIRO
(2024)
A85 Response Time, Processing and Transmis- Analyze, Plan None KARUNKUZHALI;
sion Delay MEENAKSHI;
LINGAM (2022)
A86 Security Data, SLA and QoS, Congestion Analyze, Monitor Unsupervised, KOHYARNEJADFARD
Supervised et al. (2022)
A87 Processing and Transmission Delay, Re- Analyze, Execute, Plan None KAUR; ARON (2022)
sponse Time
A88 Processing and Transmission Delay Analyze, Plan None DJAMA et al. (2022)
A89 Residual Energy from Sensors Execute, Plan Reinforcement SUSAN SHINY;
MUTHU KUMAR
(2022)
A90 Processing and Transmission Delay Analyze, Plan Reinforcement ZHENG et al. (2022)
A91 Processing and Transmission Delay Analyze, Monitor, Plan Supervised KHAN et al. (2022)
A92 Residual Energy from Sensors Analyze, Monitor, Plan Unsupervised STEPHAN et al. (2021a)
A93 Response Time Analyze, Plan Supervised ETEMADI; GHOBAEI-
ARANI; SHAHIDINE-
JAD (2021)
A94 Processing and Transmission Delay Analyze, Execute, Plan None RAMKUMAR; VADI-
VEL (2021)
A95 Processing and Transmission Delay Analyze, Plan Unsupervised, JAYARAM;
Reinforcement PRABAKARAN (2021)
A96 Processing and Transmission Delay Analyze, Monitor Supervised COELHO et al. (2021)
A97 SLA and QoS, Congestion Analyze, Execute, Plan None SINGH; CHATURVEDI
(2024)
A98 Processing and Transmission Delay Analyze, Execute, Plan Reinforcement, MANFREDI et al. (2022)
Supervised
A99 SLA and QoS Analyze, Execute, Plan Supervised GANESH et al. (2024)
A100 Network Lifespan Analyze, Plan Reinforcement XU et al. (2024)
A101 Network Latency Analyze, Monitor Supervised PENG; WU (2021)
A102 Processing and Transmission Delay Analyze, Monitor Supervised HOU; LU; NAYAK
(2023)
A103 Network Latency, SLA and QoS Analyze, Monitor, Plan TALAAT et al. (2020)
A104 Processing and Transmission Delay Monitor Supervised YOU et al. (2023)
A105 Memory Usage, CPU Usage Analyze, Monitor, Plan Supervised ZHOU (2023)
A106 Processing and Transmission Delay Analyze, Monitor, Plan Reinforcement, BEBORTTA et al. (2021)
Supervised
A107 Power Consumption/Transmission, Energy Analyze, Execute, Plan None WANG; FAN; NIE
Consumption (2020)
A108 Response Time, Anomaly Detection Analyze, Monitor Unsupervised SHARMA; KAUR
(2023)
A109 SLA and QoS, Congestion Analyze, Monitor Unsupervised MEENA et al. (2023)
A110 Residual Energy from Sensors, Network La- Analyze, Plan None AZEVEDO ALBU-

tency, Network Lifespan, Power Consump-
tion/Transmission, Energy Consumption

QUERQUE et al. (2023)

40

ID Monitoring Metrics MAPE Al Type Article
All1l Processing and Transmission Delay, Secu- Analyze, Execute, Plan Reinforcement SHARMA et al. (2020)
rity Data
Al112 Processing and Transmission Delay Monitor Reinforcement, GOKCESU et al. (2023)
Supervised
Al113 SLA and QoS, Congestion Analyze, Monitor Supervised ALIJOYO et al. (2024)
Al14 Processing and Transmission Delay Analyze, Monitor Unsupervised, MALEKZADEH (2023)
Supervised
A115 SLA and QoS, Congestion, Anomaly Detec- Analyze, Plan Reinforcement PRABHU;
tion, Detection Rates ALAGESWARAN;
MIRUNA JOE AMALI
(2023)
A116 Performance KPIs, Security and Log Moni- Analyze, Monitor None CALDERON et al
toring, Anomaly Detection (2023)
A117 SLA and QoS, Congestion Analyze, Plan Reinforcement SAKR; ELSABROUTY
(2023)
Al118 Processing and Transmission Delay Analyze, Plan None BACANIN et al. (2024)
A119 Processing and Transmission Delay Analyze, Plan None STEPHAN et al. (2021b)
A120 Processing and Transmission Delay Analyze, Monitor, Plan Supervised FARAJI-
MEHMANDAR;
JABBEHDARI; JAVADI
(2023)
Al121 Network Lifespan Analyze, Plan Reinforcement NAZARI et al. (2023)
A122 Energy Efficiency, Network Lifespan Analyze, Plan Reinforcement SENNAN et al. (2024)
A123 Forecast Accuracy, Detection Rates, Analyze, Plan None SOUNDARI; JYOTHI
Anomaly Detection (2020)
Al124 Energy Efficiency, Network Lifespan Analyze, Plan Reinforcement ESFAHANI;
ELKHODARY;
MALEK (2013)
A125 Processing and Transmission Delay, Energy ~ Analyze, Monitor, Plan Reinforcement, NANDISH; PUSH-
Efficiency Supervised PARAJESH (2024)
A126 Response Time, Energy Efficiency, Network Analyze, Monitor None SRICHANDAN et al
Latency (2024)
A127 Response Time Analyze, Plan Reinforcement RATH; MANDAL;
SARKAR (2024)
A128 Energy Consumption, SLA and QoS Monitor None CALINESCU et al
(2011)
A129 Network Latency Execute, Plan None CALINESCU et al.
(2020)
A130 Network Latency, Response Time Analyze, Plan Unsupervised CHEN et al. (2018)
A131 Power Consumption/Transmission Analyze, Plan Supervised CHENG; RAMIREZ;
MCKINLEY (2013)
A132 Processing and Transmission Delay Analyze, Plan Supervised ELGENDI et al. (2019)
A133 Memory Usage, CPU Usage, Network La- Analyze, Plan Supervised, Re- ELKHODARY; ES-
tency inforcement FAHANI; MALEK
(2012)
A134 Pattern recognition, Smart home sensor data ~ Monitor, Analyze, Plan Unsupervised, HAO; BOUZOUANE;
Incremental GABOURY (2019)
Learning
A135 Intrusion detection, Energy consumption, Analyze, Plan Reinforcement JAMSHIDI et al. (2025)
Security events Learning
A136 IoT transactions, Resource usage, Security ~ Monitor, Analyze, Plan, None KHAN et al. (2025a)
events Execute
A137 Resource usage, Model performance, En- Monitor, Analyze Supervised MATATHAMMAL et al.
ergy efficiency (2025)
A138 Environmental data (air quality), Device sta- Monitor, Analyze, Plan, None BOMBARDA; RUS-
tus Execute CICA; SCANDURRA
(2025)
A139 Satisfaction of Non-Functional Require- Monitor, Analyze, Plan Supervised GARCIA; SAMIN;
ments (NFRs), System state BENCOMO (2024)

41

ID Monitoring Metrics MAPE Al Type Article
A140 QoS attributes, Service availability Monitor, Analyze, Plan Supervised VAIDHYANATHAN
et al. (2024)
Al41 Intrusion patterns, Network security events Monitor, Analyze Supervised SOROUR et al. (2025)
Al142 Healthcare events, Energy consumption, Monitor, Analyze, Plan Evolutionary Al- SELVARAJAN et al
Decision-making gorithms, Game (2025)
Theory

Source: Elaborated by the author

3.2.1 GQ1: How are performance metrics being monitored and systems being self-
adapted in studies related to Smart Environments?

In smart environments, the monitoring of performance metrics supports the evaluation of
data integrity and the effectiveness of capture, processing, and management systems (CALI-
NESCU et al., 2011; CHENG; RAMIREZ; MCKINLEY, 2013; RAMKUMAR; VADIVEL,
2021). The reviewed studies commonly monitor indicators such as CPU and memory usage,
latency, energy consumption, quality of service, response time, anomaly occurrences, and en-
ergy efficiency. These metrics are often supported by 10T infrastructures and distributed sys-
tems. They also serve as inputs for self-adaptation mechanisms, particularly those employing
Al-based decision-making models.

Figure 4 illustrates the distribution of Al techniques applied in these environments, includ-
ing Supervised Learning, Reinforcement Learning, and Unsupervised Learning (GAO et al.,
2021; SAH et al., 2022b; GUSENBAUER; HADDAWAY, 2020; SOROUR et al., 2025). Su-
pervised Learning appears in 35% of studies, while Reinforcement Learning and non-Al tech-
niques are present in 29% and 24%, respectively. Figure 3 presents a mapping between these
Al types and the different stages of the MAPE feedback loop. This loop—composed of Moni-
toring, Analysis, Planning, and Execution—organizes adaptive processes by identifying which
phases are automated to support self-adaptation (RAO; SAHOO; YANINE, 2024; ISOLANI
et al., 2023; SHIRMARZ; GHAFFARI, 2021).

In the Monitoring phase, systems collect and analyze real-time metrics to infer current con-
ditions. Supervised Learning models are used to predict performance trends based on historical
patterns (GAO et al., 2021; LAKHAN et al., 2022; PRASANNA et al., 2023). Unsupervised
Learning techniques support anomaly detection by identifying deviations from regular system
behavior (SAH et al., 2022b; SELIM et al., 2021; CHAKRABARTI; SADHU; PAL, 2023).
These methods provide a basis for early detection of performance issues.

During the Analysis phase, collected data are evaluated to identify anomalies, performance
drops, or optimization possibilities. Neural networks are applied to forecast future conditions,
enabling proactive responses (RAO; SAHOO; YANINE, 2024; CHAKRABARTI; SADHU;
PAL, 2023). Additionally, clustering algorithms group operational patterns without the need

42

Figure 3: Mapping of MAPE Functions against Al Types

MAPE Functions vs Al Types

50

Monitor

Analyse

MAPE Functions

Plan

-10

g
§ s 2 0 5 13
>
w
‘ -0
(\e,b {@b & QV\
& &° & ®
& & <
& & &
> 0({9\\’ €
Al Types

Source: Elaborated by the author

for labeled data, helping to characterize behavior trends and detect irregularities (REVANESH
et al., 2023).

The Planning phase defines actions in response to the identified conditions. Reinforcement
Learning agents select actions based on system feedback and performance goals (LI; ZHANG;
LUO, 2021; GAO et al., 2021; VAIDHYANATHAN et al., 2024). Hybrid approaches combine
Supervised Learning for modeling system dynamics and Reinforcement Learning for policy
definition, enhancing the planning capability in changing environments (SHIRMARZ; GHAF-
FARI, 2021).

In the Execution phase, the system implements planned adaptations. While some imple-
mentations use Al to refine this step, many still apply rule-based actions triggered by thresholds
(HENNING; HASSELBRING, 2019; CHAKRABARTI; SADHU; PAL, 2023). This can limit

adaptability when dealing with dynamic workloads.

The integration of Al throughout the MAPE loop enables adaptive behavior aligned with
observed and predicted system conditions. Predictive models are used in the Monitoring and
Analysis phases to detect performance deviations, while Reinforcement Learning agents guide
planning and action selection. Execution is often handled through scripts or automation services
(WU et al., 2023; SAH et al., 2022b). Some studies combine Al with rule-based systems to
achieve a trade-off between computational overhead and adaptive flexibility (TALAAT, 2022;
NAZARI et al., 2023).

43

Figure 4: Distribution of types of Al applied in smart environments

@ Supervisoned M Reinforcement
@ Non-Al B Unsupervised

Source: Elaborated by the author

3.2.2 FQ1: What techniques and tools are being used to monitor specific perfor-
mance metrics in smart environments?

To address this question, two taxonomies were developed to categorize the monitoring and
self-adaptation techniques identified in the literature. Figure 5 presents the classification of
monitoring approaches, while Figure 6 outlines self-adaptation methods. Each taxonomy dis-
tinguishes between Al-based and non-Al-based techniques. This classification reflects the di-
verse strategies employed across systems with varying complexity levels, highlighting how Al
methods support enhanced adaptability, while traditional approaches remain relevant for spe-

cific scenarios.

Monitoring strategies frequently involve supervised learning models such as Support Vec-
tor Machines (SVM), Logistic Regression, and Linear Regression, which are used to evaluate
time series data and predict future system states (BADUGE et al., 2022; GAO et al., 2021;
XUE et al., 2023). These methods assist in anomaly detection and system stability assess-
ments. Decision tree-based techniques, including CART, Hoeffding Tree, and Random Tree,
are adopted to classify recurring behavioral patterns and enable responsive system actions un-
der constrained computational environments (MORAES et al., 2022; LAKHAN et al., 2022).
Clustering algorithms like K-means and K-Nearest Neighbors (KNN) support the segmentation
of data for identifying abnormal trends, particularly in large-scale deployments (MEENA et al.,
2023; HAMEED et al., 2021a). Ensemble learning models such as Random Forest and Gradient
Boosted Trees aggregate multiple predictive outputs to enhance detection accuracy in complex
datasets (MIRDULA; ROOPA, 2023; CHAKRABARTI; SADHU; PAL, 2023).

Deep learning techniques have also been applied to performance monitoring tasks. Convo-
lutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks are used
to extract features from sensor data and forecast long-term trends, respectively (WEI et al.,
2022; GAO et al., 2021). Studies integrate these models to optimize responses to resource
load variations and enhance processing performance in edge computing environments (AZARI
et al., 2021; MANFREDI et al., 2022). In self-adaptation, reinforcement learning methods

Figure 5: Taxonomy of techniques and tools used for monitoring

AS3, A56, A9,

A112, A99, A123,
A48, A55, A34, A130,A131

A4Z, A3 A30, A91,
a8
- A A-”
AS54,A32, A6O,

A02,AZ3 A34, AG1 A4, A21,
- Age A45, A1

A34, 861,

Ao T - A o

A37, A16, A58,
ABY, A114,
A120,A101 A01, A133

A51, A42, A3T,

A16, A58, AB9, A114,
A120,A101
Ad2
A80,
A103
A06, A1Z
A19

\G5, A10T, A0 -
AG5, A101, A103

A123, A22, AT19, A4S

Monitoring
Techniques

A34, AGY, Ad),
A3

A33, A109

A49

A ‘

Source: Elaborated by the author

44

45

Figure 6: Taxonomy of techniques and tools used for Self-adaptation

A34, AG1, A131
A45, A13T

A37, A16, A58,
ABY, A114, A131
A120, A101

A51, Ad2, A3T,
A16, A58, AG9, A114,
A120, A101, A131

A03, A42, A131

A06, A123

AD2,A23

A42,A131

A53, A56, A0S,
A2 A112,A00, A123,
A130, A131

A138
A10, A48, A55, A,
A23,A30,A91,A131,

ATS5, A36, A103, A104

A40, A38, A28, A6T, ASO,
A0, A50, AD5, A1,
Ad4,A121, A125, A131

A50

A6, ABS, AG2,
A7, A72, ABD, ASD

A2, A72

A6

A58, ATS

A27, AB3, A10,
A115, A117, A118,
A119, A124, A129

19, A112

Self-Adaptatives
Techniques

A34, AGO, A45,
A131

-
.

A109

A58, ATE, ASD,
A125,A112,

A33, A108 2105

A12,A83

Al00

Ag5, A99

Source: Elaborated by the author

such as Q-Learning, SARSA, and Hindsight Experience Replay allow systems to learn con-
figuration adjustments based on interaction with dynamic environments (Carballido Villaverde;
REA; PESCH, 2012; SUSAN SHINY; MUTHU KUMAR, 2022). These approaches inform

decisions on resource allocation and policy updates without predefined rules.

Nature-inspired algorithms including Particle Swarm Optimization (PSO), Ant Colony Op-
timization (ACO), Whale Optimization, and Cuckoo Search are applied to self-adaptation tasks
by dynamically tuning parameters and balancing workloads in response to environmental changes
(GONG, 2022; SAH et al., 2022b). Complementary to these, statistical models like ARIMA
and control systems such as SCADA are used to anticipate failures and manage real-time data
(CHOULIARAS; SOTIRIADIS, 2020; LI et al., 2024a). Some studies explore the combination
of ARIMA with machine learning to enhance adaptability (RAO; SAHOO; YANINE, 2024).
Fuzzy logic-based techniques, such as Fuzzy Q-Learning, Adaptive Fuzzy Logic, and Fuzzy
C-Means Clustering, are employed to manage uncertainty and enable adjustments in condi-
tions where deterministic approaches are limited (FARAJI-MEHMANDAR; JABBEHDARI;
JAVADI, 2023; KARUNKUZHALI; MEENAKSHI; LINGAM, 2022; JAYARAM; PRABAKARAN,
2021).

Monitoring and adaptation are also supported by architectural frameworks like MAPE-K

46

and tools such as the Elastic Stack. These approaches organize the adaptation cycle through
continuous monitoring, analysis, planning, and execution of changes based on performance
metrics (COLOMBO et al., 2022; CALDERON et al., 2023). MAPE-K has been implemented
in sensor networks to guide dynamic adaptations and maintain operational stability (RAO; SA-
HOO; YANINE, 2024). Hybrid methods that combine neural networks with reinforcement
learning are increasingly adopted to improve learning efficiency and resource management un-
der variable operating conditions (SOMESULA et al., 2022; YOUSEFI et al., 2020).

While Al-based methods contribute to adaptive and data-driven decision-making in dynamic
environments, their computational requirements and infrastructure demands may not align with
all operational contexts. Non-Al techniques, though more limited in flexibility, continue to offer
practical solutions for constrained or less variable environments. The studies reviewed indicate
that monitoring and adaptation are frequently implemented as separate processes, underscoring
the challenge of integrating both dimensions into cohesive and context-aware systems. Se-
lecting appropriate techniques requires considering system goals, resource availability, and the

nature of the monitored environment.

3.2.3 FQ2: What types of smart environments are covered in the reviewed studies?

Figure 7 illustrates the fourteen main domains of smart environments addressed in the re-
viewed literature, grouped into six categories. Each environment presents distinct monitoring
requirements and adaptation strategies. Smart grids focus on optimizing energy distribution
using sensors and control systems, applying machine learning and reinforcement learning to
predict consumption patterns and manage infrastructure adjustments (GANESH et al., 2024;
ALKANHEL et al., 2024; IMRAN; IQBAL; KIM, 2022; KHIATI; DJENOURI, 2018; AL-
NAFESSAH; CASALE, 2020). In smart cities, sensor networks and edge computing support
the monitoring of traffic, safety, and environmental variables, with machine learning tech-
niques guiding adaptive responses and enhancing urban services (RAO; SAHOO; YANINE,
2024; SAH et al., 2022b; BADUGE et al., 2022; CHAKRABARTI; SADHU; PAL, 2023;
PRASANNA et al., 2023).

Smart homes integrate automation platforms to manage comfort and efficiency, relying on
predictive analytics to adjust appliance usage based on occupant behavior (CHAKRABARTI;
SADHU; PAL, 2023; ALKANHEL et al., 2024; IMRAN; IQBAL; KIM, 2022; NANDISH;
PUSHPARAJESH, 2024). Intelligent transportation systems apply machine learning to traffic
data and pollution levels, supporting adaptive routing and predictive maintenance with edge
computing integration (PRASANNA et al., 2023; BADUGE et al., 2022; GAO et al., 2021; LI;
ZHANG; LUOQ, 2021). In industrial automation, smart sensors and reinforcement learning tech-
niques help monitor equipment conditions and optimize production processes (SUSAN SHINY;
MUTHU KUMAR, 2022; SHIRMARZ; GHAFFARI, 2021; CHAKRABARTI; SADHU; PAL,
2023; FARAJI-MEHMANDAR; JABBEHDARI; JAVADI, 2022).

Figure 7: Taxonomy of smart environments covered

A59, AT6, A9, A104

46, A39, A50, A38, A53, A5T, A28, A55, A56, A30,
A19, A13, Ad4, AT A22, A8, AS1, A114 ALg, A134 AT4, A134,A125

AS51,A33, A2T, ABZ,
A1, AB5, AGT, ADD,
A133, A101, AB9

A34, AS0, A35, A19
A24, AS3, ABT, A120, ATT

Smart
Environment

A7, A36, A35, A5Z, A54,
A84, AB3, A5, AD4, A9,
A90, A93, A9Z, A1, AD2,
A98, AT13, A122, A136, A107

AT, A16, A17, AD3,
A5, A137, A125, A104,
A%

266, ABD, A22, A121, A100 A52, AST, A6O, ASB, A6, A12, ABS,
AT3, A95, A100, A109 A92, AD1, AT15 A92,A114

A124, A109, A115, ATT

Source: Elaborated by the author

47

48

Energy management spans residential and industrial contexts, where sensor data and predic-
tive models inform real-time resource allocation (LI et al., 2024a; IMRAN; IQBAL; KIM, 2022;
ALNAFESSAH; CASALE, 2020; NANDYALA; KIM; CHO, 2023). Urban infrastructure sys-
tems use [oT devices to track utilities such as lighting and water, applying machine learning
to predict usage trends and schedule preventive maintenance (RAO; SAHOO; YANINE, 2024;
SAH et al., 2022b; CHAKRABARTI; SADHU; PAL, 2023). Fog and edge computing enhance
responsiveness by processing data near its source, especially in transportation and health-related
systems (GAO et al., 2021; SAH et al., 2022b; CHAKRABARTI; SADHU; PAL, 2023). Wire-
less sensor networks provide distributed, low-power communication for continuous monitoring
across various environments, supporting adaptability in domains like home automation and in-
dustrial control (KHIATI; DJENOURI, 2018; SAH et al., 2022b).

In agriculture and environmental applications, IoT devices monitor soil, climate, and crop
health, while predictive models guide irrigation and pest control decisions (STEPHAN et al.,
2021a; SINGH et al., 2021; TALAAT, 2022). Health monitoring environments leverage wear-
able devices and predictive analytics to track patient data and improve response to anomalies
(RAO; SAHOO; YANINE, 2024; GAO et al., 2021; IMRAN; IQBAL; KIM, 2022). Lastly,
surveillance systems employ Al and anomaly detection models to analyze sensor and video
data, adapting surveillance operations and enhancing threat response capabilities (PENG; WU,
2021; SELIM et al., 2021; BALI et al., 2020; SHARMA; SINGH, 2020).

3.2.4 FQ3: What specific performance metrics are being monitored in the studies?

The taxonomy in Figure 8 illustrates the variety of performance metrics monitored in the
reviewed studies, including latency, energy consumption, resource efficiency, and anomaly de-
tection. Latency and response time are widely evaluated in systems that require real-time pro-
cessing, such as wireless sensor networks and edge computing scenarios. These studies ex-
amine how communication delays affect decision-making and responsiveness, emphasizing the
impact of network latency on distributed system behavior (GAO et al., 2021; WU et al., 2023).
Resilience is also monitored through metrics like sensor residual energy, network lifespan, and
communication stability, particularly in urban IoT infrastructures where maintaining operations
during failure or congestion is essential (KHIATI; DJENOURI, 2018; RAO; SAHOO; YA-
NINE, 2024).

Resource usage metrics, including CPU and memory utilization, are commonly tracked
to assess processing performance and optimize allocation. Studies highlight how predictive
models can anticipate overloads, enabling dynamic scaling and reallocation in fog and edge
computing environments (CHAKRABARTI; SADHU; PAL, 2023; IMRAN; IQBAL; KIM,
2022). Energy-related metrics are relevant in industrial and agricultural contexts, where adap-
tive strategies adjust operational parameters to reduce consumption and align usage with current
demands (IMRAN; IQBAL; KIM, 2022; STEPHAN et al., 2021a; RAO; SAHOO; YANINE,

49

Figure 8: Taxonomy of the metrics monitored

A5, A28, A58, AG3,
A27, AS9, B, T Do

A48, A35, A33, AB1 A110, A A37, A38, Ad,
62, AB6, AG5, AGT, A127 A2 A2 A " A53, A33,
AT2, ABD, ASS, ABT, AQ3, o

A108, A126, A107, A130 A39, A4T, A35,

A53, A116, A34,
A116, A133
A39, AdT, A35,
AT0, AB6, A116,
A24, A109, A105,
A133, AD3, AB2

A46, A30, AT, A4S, A38, A102,
A49, ATT, A36, ASO, A5, A111, AST, AZG, ABA, A122, A125,
AS53, A54, A33, A31, A5G, A104) A123, A124, AG5, A3, A126
A34, A30, AST, A28, ASE, A106
A27, AGO, ASO, AG2, AG1, AB3, A0, AB3, ATT, A132,

AGB6, AB5, AGT, ABY, ATD, A103, A111, A120,A125
AT2, A6, AT3, A24, AT4, A23, A129
A22, A21, AT5, A20, AT6, A18, A133
A15, A16, A4, ATT, A1, ATS, A3
AB0, A9, AB1, ABS, AB2, AB3, ABG, AT1,
AST, ASS, A6, AS, ABY, AGD, A1, A130
A93, A%4, AT, ASE, A100, A112, A1, A126

A36, A52, A110,

A83, A107, A131
AB4, A44, AB3

A3T, A116,

A4S, Aa2 AB4, ABT, ATS, A4T, A48, A33, A109,

AB1,A9,AT1, | A23,A31,A17,ATT, Ag6, 40, A30, A47, AdS, A38, AS1,
A3T7, Ad2, A103, AD3, AZ, A128 A108, A42, A45, A1 A53, A54, A32, A5, AST, A28,
Ad5 AT, AS4, ATT, A108, A27, ABO, AS9, A2, A61, A3, A6S,
‘AT13, A133, 65, ABT, AB8, ATO, AT2, A26,
A118, A104, ATI5 AT3, A24, AT4, A23, AZ2, AZ1, ATS,
A20, A6, A18, A15, A16, A14, A58,
Ag4, ADY, AB1, ATT, ABS, A108, A1T, A12, AT9, AG, A5, A8S,
Ag6, AT11 A113, A123, A115, Ad2 A1, AGS, AST, A100, A102, AT15,
A120, A121, A122, A124, A128

Source: Elaborated by the author

2024). These mechanisms support sustainable operations across varying conditions and load
patterns.

Anomaly detection plays a central role in maintaining system stability in critical domains
such as surveillance and agriculture. Machine learning models identify behavioral deviations
using environmental or infrastructure data, supporting timely interventions to mitigate failures
or threats (TALAAT, 2022; SHARMA; SINGH, 2020; MATATHAMMAL et al., 2025). Quality
of Service metrics, including error rates, detection of security incidents, and prediction accu-
racy, are used to evaluate service continuity. Research in this area proposes adaptive policies
that adjust network and processing behaviors to preserve reliability during adverse or uncertain
conditions (PENG; WU, 2021; FARAJI-MEHMANDAR; JABBEHDARI; JAVADI, 2022).

3.2.5 FQ4: What are the main bottlenecks or challenges identified in the applications
of these environments?

The taxonomy in Figure 9 identifies the main bottlenecks in developing self-adaptive sys-
tems for smart environments, highlighting areas closely related to key monitored metrics. La-
tency and response time are frequently cited as constraints in environments that require real-
time operation, such as sensor networks and healthcare systems. Studies address this issue by
proposing solutions like edge computing, dynamic routing, and traffic prioritization to reduce
delays under high device density and variable data transmission demands (GAO et al., 2021;
LI; ZHANG; LUO, 2021; RAO; SAHOO; YANINE, 2024).

50

Figure 9: Taxonomy of the main bottlenecks in creating self-adaptation

AS50, A5T, AGD, AG7, AGE,
AB4, ABY, AST, A111, A0,

A106, A125, A115, A120, A50, AB4, AGT, AS0,
A117,A73, AG3, AB1, A126, AG8,A124,A63, A109, A83, A9, A108,
A15, A18,A22,A38, nyq0, AB3, A130, A134, A108, AT17,AT15, A4, A124, A131, A11, A4S0 AB3, ABS ASD, A109,

AG9, AB1, A112, A105,

Ad3, A131, A133,A91, A124, A109,A131, A121

AT10, A125, A97, AT14,
A134, AT11, A103

Ad0, A55, A52, ABD, A59, ABY,
AB1, A24, AT112, 125, A136, A28, AGE, AT4, A21,
AT10, A7, A6, A97,A102, A115, A128, Ad1,
A108, A103, A105] A113, A56, A126, A137.

A121, A129, AGS, AB3, ATIO,

A38, Ad9, AG3, ABT,
A115, A42, A116, ASS,
A102,A91, A111, AB3,
A130,A116, A93, AG3

A109,A110 AT2, AB2, AST, A104

A58, A119, A127, A35, "
A49, AT7, A128, AO3, AD4

A19, A1, A35, A4, A56, AG6, A133

A128,A136, A122, AT18, A137, A131

A109, A9, A124,A120, Ad3, A104
A100,A21, ABY, AT10, A114

A38,A35, A40, AS3, AD3,
AT2, AB3, ATT, AL3, AT
A115, A122, A127, ABS, A05,

A108, A103, A120, A106 Challenges

ABB, ADT, A41, A21,
A117,A131, A128,
A118, A119, A43,
A129,A121, A34

A47, AZ6, A48, A,
A38, A35, A4, Ad3, 56, A123, A134, A106,
A115, A113, A42, ABS,

A3, A131, A115, A128, AT10, A111,A131

A99, A126, A113

A4, AB9, A100, A120, 90, AS, Ad5, A109;
A124, ABS, AT10, AT10, 5, A123, A124, A3,
A35, A49, ABY, AT2, A21, 494, A%t A101, A107, A116, A104 a47 a3, A6k, A89, ASD,
A103, ABD, A3, A125, ATZ, A4, AT18, A130, ATT,
A123, A109, A128, A102, A131, A105, A3, AS7,
AOT, AT, A8, ATS, ATA A106, A120, AT14, A103, A117

A4, Ad3, A5, A131, A9, A49, AGT, A72, ABS, ABO,
A109, Ad3, A11T, A112) |A107. A90, Ad5, A104, AB2, AT3, AT,
A95, A104,A116 A116, A109, A102, A34, A111, AG3

A22, A111, A03, AD3,

A131, A121, A120, A127,

A124, A125, A118, A97,
A43, A123,A106, A99

Source: Elaborated by the author

Another recurring challenge is network congestion and interference, particularly in smart
city applications. Dynamic load balancing and congestion-aware routing are proposed as ways
to mitigate the effects of growing data traffic and ensure reliable communication (MOCNE]
et al., 2018; GONG, 2022). In parallel, the efficient management of computational and en-
ergy resources remains critical, especially in edge and fog computing contexts. Strategies that
involve predictive resource allocation and energy-aware scheduling are used to adjust system
behavior based on expected workloads (IMRAN; IQBAL; KIM, 2022; STEPHAN et al., 2021a).

As IoT networks scale, coordination and distribution of tasks become more complex. Load
balancing techniques and adaptive node management have been proposed to maintain system
performance in increasingly distributed infrastructures (ISOLANI et al., 2023; SAH et al.,
2022b). However, the integration of machine learning for real-time decision-making intro-
duces additional computational demands. Processing requirements grow as predictive models,
anomaly detectors, and decision policies are embedded into runtime architectures (TALAAT,
2022; RAO; SAHOO; YANINE, 2024).

Security and privacy are also identified as relevant bottlenecks in systems dealing with sen-
sitive or distributed data. Research explores the adoption of adaptive security frameworks that
combine intrusion detection, data protection, and privacy preservation in dynamic environments
(PENG; WU, 2021; ZHOU, 2023). These challenges illustrate the balance that must be achieved
between adaptability, performance, and trust in self-adaptive distributed systems. Figure 9 pro-
vides a visual synthesis of these issues, supporting the analysis of strategies that address trade-

offs among these critical dimensions.

51

3.2.6 FQ5: How are Machine Learning techniques being used to enable self-adaptation
in the reviewed systems?

Machine learning techniques support self-adaptation in intelligent systems by enabling them
to respond autonomously to environmental changes and operational dynamics. Bayesian mod-
els, such as Naive Bayes and Gaussian Naive Bayes, are applied in anomaly detection and
classification tasks, allowing the identification of patterns and deviations in distributed sensor
data (SELIM et al., 2021; SAH et al., 2022b). Similarly, linear models like Linear and Logistic
Regression contribute to forecasting failures and supporting preventive maintenance by corre-
lating historical performance with critical event probabilities (XUE et al., 2023; PENG; WU,
2021).

More complex techniques, including deep learning models such as Deep Neural Networks,
CNNs, and LSTMs, are employed in predictive monitoring tasks where systems must process
continuous sensor data and anticipate behavior trends (AZARI et al., 2021; WEI et al., 2022;
SOMESULA et al., 2022). These models enable distributed systems to forecast future condi-
tions and dynamically adjust their configurations. Architectures like Graph Attention Neural
Networks and Modified Synergistic Networks are also used to analyze complex relationships
and subtle behavioral shifts within high-dimensional data (STEHLE et al., 2024).

Tree-based algorithms, including CART, Hoeftfding Tree, REPTree, Random Forest, and
Gradient Boosted Trees, offer fast decision-making for real-time anomaly detection and adap-
tation (SELIM et al., 2021; BADUGE et al., 2022). Unsupervised learning approaches, such as
K-means clustering and the Isolated Forest algorithm, address anomaly detection in unlabeled or
evolving environments (MEENA et al., 2023). Reinforcement learning methods, including Q-
Learning, Deep Q-Networks, and Multi-Agent Deep Reinforcement Learning, are particularly
effective in learning adaptive strategies through environmental feedback, enhancing resource al-
location and system robustness under uncertain and dynamic conditions (NAZARI et al., 2023;
TALAAT, 2022; NANDISH; PUSHPARAJESH, 2024). These techniques contribute to im-
proved resilience and adaptability across smart infrastructures, sensor networks, and industrial
systems (GAO et al., 2021; ZHENG et al., 2022).

3.2.7 SQ1: Where were the studies published and how has the number of publica-
tions evolved per year?

Figure 10 shows the publication sources for the reviewed articles, distributed across ACM,
IEEE, MDPI, Science Direct, Wiley, and SpringerLink. These venues encompass conferences
and journals focused on self-adaptation in intelligent systems, particularly in areas like sen-
sor networks, distributed systems, and smart cities. In 2021, for example, ACM and IEEE
venues hosted a concentration of publications exploring machine learning solutions applied to
distributed systems (SATER; HAMZA, 2021; YOUSEFI et al., 2020; YANG et al., 2021b).

52

Figure 10: Publication Sources

Legend
I:] ACM .(E Scopus T <735
ol L X Tl
I:l IEEE O SpringerLink @ 327
b] " 5% X
o Qe T e
. Science Direct

e
g
hoss os fory

s s
: =
B | e sty oo
@ E\Pfﬁl X E ZIA_03}:

St So ot

P P < = =
o g oot astonions _ iorson o
2024

2012 2018 2019 2022 2023

~
T ©
LN
a

S BOEEEEEO® -

*Articles IDs

Source: Elaborated by the author

The evolution in publication numbers over the years reveals growth in this research area.
Publications were relatively low in 2012, with only four articles (ELKHODARY; ESFAHANI;
MALEK, 2012; CHENG; RAMIREZ; MCKINLEY, 2013; SELVARAJAN et al., 2025). How-
ever, starting in 2020, the number of publications grew exponentially, peaking at 35 in 2022.
This increase highlights the rising interest in applying machine learning techniques to self-
adaptive systems, as seen in studies like (IMRAN; IQBAL; KIM, 2022; COLOMBO et al.,
2022).

In 2023, the number of publications remained high, with 32 articles discussing the inte-
gration of supervised and federated learning in complex and data-sensitive scenarios (FARAJI-
MEHMANDAR; JABBEHDARI; JAVADI, 2023; NAZARI et al., 2023; ZHOU, 2023). This
trend reflects both the maturation of machine learning techniques and their expanding appli-
cability in diverse domains, including environmental monitoring, healthcare, and network traf-
fic management. In 2024, researchers registered 18 publications, demonstrating the topic’s
sustained relevance. These studies indicate that combining self-adaptation with Al remains a
vibrant area of research and practical application in distributed systems and intelligent environ-
ments.

3.3 Related Work

This section presents a comparative analysis of prominent self-adaptive architectures identi-
fied during the systematic literature review process described earlier in this chapter. The goal is
to synthesize how current approaches address system performance, adaptability, and intelligent

decision-making within smart environments.

53

Table 6 provides a structured overview of ten selected architectures that reflect themes rel-
evant to this research, including the use of performance metrics, the presence of feedback loop
mechanisms, and the application of artificial intelligence techniques in self-adaptive systems.
The selection of these works was guided by objective criteria observed during the literature
analysis. Preference was given to studies that present a clear architectural structure focused
on runtime adaptation, with an emphasis on the use of performance monitoring data to sup-
port decision-making. The presence of formal monitoring and analysis mechanisms, the use
of machine learning or nature-inspired algorithms, and the alignment of the study’s scope with
the goals of this research were also considered. Publication date and citation frequency were
used as additional indicators to ensure relevance. These criteria supported the identification of
representative contributions that serve as a reference for comparison with the proposed model,
highlighting differences in approach, focus, and architectural organization.

The comparison includes the following key performance-related metrics:

* Mean Adaptation Time (MAT) — the average time the system requires to respond to dy-

namic environmental changes;

* Adaptation Accuracy (AA) — the percentage of adaptation actions that align with intended

or expected outcomes;

* Adaptation Overhead (AO) — the additional computational or resource load introduced by

the adaptation mechanism;

* Stability — the system’s ability to maintain consistent performance following adaptation

events.

In addition, the table highlights which phases of the MAPE-K loop (Monitor, Analyze,
Plan, Execute, and optionally, Knowledge) are explicitly addressed by each architecture. It also
categorizes the types of Al techniques adopted (e.g., supervised learning, unsupervised learning,
and reinforcement learning) and identifies which performance metrics are actively monitored by
each system to support self-adaptation.

These ten architectures were derived from the broader set of 133 studies retained in the
final selection phase of the systematic review, as guided by the methodology proposed by PE-
TERSEN et al. (2008). The inclusion and exclusion criteria ensured that only architectures di-
rectly targeting intelligent behavior and dynamic adaptation in IoT or distributed environments
were considered. The architectures summarized in Table 6 form the empirical foundation for
assessing current trends in performance-driven self-adaptive systems. They offer a representa-
tive view of how contemporary approaches incorporate Al-driven decision-making and runtime
adaptation to support resilient and efficient smart environments.

SAH et al. (2022a) proposed the Aggressive Scheduling Medium Access Control (AS-
MAC) protocol to optimize energy consumption and data delivery in Industrial Internet of

Things (IloT) networks. The protocol applies scheduling mechanisms to coordinate sensor

54

Table 6: Comparison of self-adaptive architectures

Architecture MAT (s) AA (%) AO (%) Stability (%) MAPE Cycle Al Type Metrics Monitored
Oraculum (Pro- 0.05 94 4 98 M,A,PE Supervised, Unsupervised, RL Parametric (any)
posed)

(SAH et al, 3.5 - 11 74 M,A.E None Energy, Traffic Load
2022a)

(VELRAJAN; 1.8 94 - 79 M,APE RL QoS, SLA
SHARMILA,

2023)

(ETEMADI; 1.2 91 - 84 M,A Supervised CPU, Resources
GHOBAEI-

ARANI;

SHAHIDINE-

JAD, 2021)

(CEN; LI, 2022a) 1.15 89 7 87 AP RL Delay, Resource Allocation
(YANG et al, 2.5 920 10 85 M,AP Supervised Anomaly Detection
2021a)

(LIU et al., 2.7 87 12 82 AP Unsupervised Anomaly Detection, Data Compression
2021b)

(PRIYA et al, 1.9 92 7 89 M,AP Supervised ToT Traffic

2024b)

(SAMARAKOON 1.5 93 6 90 M,A,PE None Latency, Bandwidth, Jitter
et al., 2023a)

(HAMEED et al., 28 - 14 75 M,AP Supervised Throughput

2021b)

(TAM; MATH; 32 90 13 80 M,A,PE RL Resource, Delay, Priority
KIM, 2022a)

(KHAN et al, 52 98 12 82 M.A.PE Supervised Resource, Security
2025a)

(SELVARAJAN 29 - - - M,AP Evolutionary Algorithms, Game Theory Healthcare events, Energy consumption, Decision-making
et al., 2025)

Source: Elaborated by the author

node activity, forming a backbone for efficient data collection. Simulations reported improve-
ments in packet delivery rate and energy usage compared to traditional Time Division Multiple
Access (TDMA) schemes. However, the study did not evaluate Adaptation Accuracy (AA),
reported an adaptation overhead of 11%, and a network stability of 74%, suggesting limitations

under dynamic operating conditions.

VELRAJAN; SHARMILA (2023) introduced a Quality of Service (QoS)-Aware Service
Migration method for Multi-access Edge Computing (MEC) environments using a closed-loop
particle swarm optimization approach (CLA-PSO). The model considers system load, appli-
cation characteristics, and QoS constraints to enable proactive service migration. CLA-PSO
reduced SLA violations compared to baseline methods and achieved 94% adaptation accuracy
with a mean adaptation time of 1.8 seconds. The study did not assess adaptation overhead,
and the reported stability of 79% indicates potential performance variability during migration

events.

ETEMADI; GHOBAEI-ARANI; SHAHIDINEJAD (2021) presented an auto-scaling mech-
anism for IoT applications in fog computing using deep learning for workload-aware resource
allocation. The model achieved an adaptation accuracy of 91% with an average adaptation time
of 1.2 seconds. However, adaptation overhead was not evaluated, and stability was measured at

84%, suggesting susceptibility to workload fluctuations.

CEN; LI (2022a) applied Deep Reinforcement Learning (DRL) to model resource allocation
in cloud-edge collaborative computing as a Markov decision process. Using an enhanced Deep
Q-Network (DQN), the system obtained 89% adaptation accuracy, 1.15 seconds mean adapta-
tion time, and a 7% adaptation overhead. Stability reached 87%, though the work emphasized

55

delay minimization without fully addressing other adaptation metrics.

YANG et al. (2021a) proposed a runtime anomaly detection algorithm selection service
for IoT data streams based on Tsfresh feature extraction and a genetic algorithm. The system
dynamically configures detection models to address input variability. The approach achieved
90% adaptation accuracy, 2.5 seconds mean adaptation time, 10% adaptation overhead, and
85% stability. Longer adaptation times and moderate overhead may constrain its real-time

deployment potential.

LIU et al. (2021b) addressed anomaly detection in IIoT using Isolation Forest combined
with compression techniques to minimize network latency. The model attained 87% adaptation
accuracy, 2.7 seconds adaptation time, 12% adaptation overhead, and 82% stability. The results

suggest constraints in maintaining consistent behavior under variable network conditions.

PRIYA et al. (2024b) developed a predictive optimization model using recurrent neural
networks (RNNs) with long short-term memory (LSTM) to manage IoT traffic patterns. The
method reached 92% adaptation accuracy, 1.9 seconds adaptation time, 7% overhead, and 89%

stability. The study emphasized forecasting rather than runtime adaptation control.

SAMARAKOON et al. (2023a) proposed a Kubernetes-based framework for self-healing
and adaptive management in loT-edge infrastructure. The system integrated device performance
data to trigger adaptation strategies. Results included 93% adaptation accuracy, 1.5 seconds
mean adaptation time, 6% adaptation overhead, and 90% stability. However, the reliance on

Kubernetes introduces potential overhead in resource-constrained environments.

HAMEED et al. (2021b) applied regression-based machine learning to estimate throughput
in a real-world IoT testbed composed of smart building applications. While specific accuracy
metrics were not reported, the approach demonstrated a mean adaptation time of 2.8 seconds,
adaptation overhead of 14%, and stability of 75%, indicating sensitivity to variable traffic pro-
files.

TAM; MATH; KIM (2022a) investigated resource management for service function chain-
ing (SFC) in IoT services using a priority-aware DRL mechanism. The model achieved 90%
adaptation accuracy, 3.2 seconds adaptation time, 13% overhead, and 80% stability. The rela-
tively long response time and computational overhead may reduce its suitability for time-critical

operations.

The Oraculum provides an alternative architecture for self-adaptive systems. Evaluation re-
sults report an adaptation accuracy of 94%, mean adaptation time of 0.05 seconds, adaptation
overhead of 4%, and system stability of 98%. The framework combines supervised, unsu-
pervised, and RL to support runtime decision-making across various conditions. Its modular
structure enables monitoring of discretizable metrics without requiring domain-specific adap-
tation logic. These results position the architecture as a candidate for deployment in dynamic,

heterogeneous [oT environments requiring low-latency adaptation and high resilience.

56

3.4 Considerations about the Chapter

This chapter examined the main monitoring and adaptation strategies used in smart environ-
ments, highlighting both Al-based and traditional approaches. Supervised learning techniques
were commonly adopted to predict failures, estimate resource usage, and maintain performance
in dynamic systems such as sensor networks, energy grids, and healthcare monitoring (GAO
et al., 2021; LAKHAN et al., 2022; BADUGE et al., 2022; FARAJI-MEHMANDAR; JABBE-
HDARI; JAVADI, 2023; GUPTA; SHARMA, 2023). These methods provided accurate fore-
casts that improved planning and anomaly detection. Unsupervised learning was also applied
in scenarios with high data volumes and limited labels, enabling anomaly detection and sys-
tem clustering for traffic analysis and energy optimization (SELIM et al., 2021; MEENA et al.,
2023; COELHO et al., 2021; SAH et al., 2022b; ISOLANI et al., 2023; RAO; SAHOO; YA-
NINE, 2024).

Reinforcement learning (RL) methods were employed for autonomous decisions in environ-
ments with dynamic workloads, supporting tasks like bandwidth management and task alloca-
tion (LI; ZHANG; LUO, 2021; PRABHU; ALAGESWARAN; MIRUNA JOE AMALLI, 2023;
SOMESULA et al., 2022). These techniques frequently relied on Markov Decision Processes
(MDPs) to formalize adaptation (XU et al., 2024; NAZARI et al., 2023). However, most RL
implementations operated independently, without combining supervised or unsupervised learn-
ing (WU et al., 2023; ZHENG et al., 2022). Meanwhile, rule-based, heuristic, and statistical
techniques remained prevalent in systems with limited computational resources or strong inter-
pretability requirements (MORAES et al., 2022; SHUKLA et al., 2022; DASH; PENG, 2022),
although they lacked adaptability under unpredictable conditions (REVANESH et al., 2023;
RAO; SAHOO; YANINE, 2024).

Many works monitored metrics like latency, memory, CPU, and energy (SHUKLA et al.,
2022; CHAKRABARTI; SADHU; PAL, 2023), yet few integrated these with structural adap-
tations such as component replication or reallocation. Hybrid strategies combining Al and
traditional mechanisms were underexplored, particularly in edge and fog systems where adap-
tive behavior must coexist with low overhead (ZHENG et al., 2022; ZHOU, 2023). Although
federated learning was proposed to preserve privacy in decentralized scenarios (ZHENG et al.,
2022), few studies combined it with other learning paradigms. The reviewed literature also
lacked cross-domain frameworks capable of generalization, with most solutions restricted to

specific domains such as vehicular networks or energy monitoring.

The proposed taxonomies help mitigate these gaps by organizing adaptation strategies by
responsiveness, monitored metrics, and learning paradigm. Integrating prediction and adapta-
tion remains an open challenge: while several systems forecast behavior (GAO et al., 2021;
MALEKZADEH, 2023), few connect predictions with proactive adaptation (NAZARI et al.,
2023; PRABHU; ALAGESWARAN; MIRUNA JOE AMALLI, 2023; CHAKRABARTI; SADHU;

PAL, 2023). The taxonomy on adaptation challenges emphasized real-time inference, design

57

complexity, and privacy as major obstacles (MORAES et al., 2022; MANFREDI et al., 2022).
This chapter contributes by categorizing techniques and proposing an architectural foundation
that combines prediction, classification, and reinforcement learning across layers, enhanced by
an ontology to formalize metric relationships and promote scalable, self-adaptive behavior in

smart environments.

58

4 SHIELD SIMULATOR

This chapter introduces the SHiELD (Sensor Heuristics and Intelligent Evaluation for Large-
scale Data) computational model, designed for efficient simulation, processing, and forecasting
of sensor data within Internet of Things (IoT) environments. The proliferation of IoT tech-
nologies has increased the deployment of sensor-based systems across domains such as smart
cities, industrial automation, environmental monitoring, and healthcare (REHMAN et al., 2025;
MBIMBI; MURRAY; WILSON, 2024; LATHA; John Justin Thangaraj, 2025).

A key challenge involves balancing data transmission efficiency with the quality of retained
information. Sensor networks often operate under bandwidth constraints, limited processing ca-
pacity, and real-time responsiveness requirements (KIM et al., 2019; ALYMANI et al., 2025).
The SHIiELD simulator incorporates heuristic-based data processing techniques—aggregation,
compression, and filtering—to reduce redundancy, optimize bandwidth use, and decrease pro-
cessing overhead.

SHIELD integrates time series forecasting mechanisms to anticipate future conditions, sup-
porting pre-trained models like AutoRegressive Integrated Moving Average (ARIMA), effective
in capturing temporal patterns in [oT sensor data (LIU et al., 2024; HABBAL; ALI; ABUZARAIDA,
2024). The combination of prediction and heuristic optimization addresses the demand for self-
adaptive capabilities in control systems (ZHUANG et al., 2023; GUO et al., 2023). The archi-
tecture of SHiELD simulates the entire lifecycle of sensor data: synthetic generation, heuristic
processing, predictive modeling, and real-time performance monitoring. Its modular structure
allows deployment in both local and distributed environments, supporting varied experimental
configurations (ZARE et al., 2024; KORKALAINEN et al., 2009; OSMAN, 2025).

The simulator incorporates concepts from adaptive control and intelligent systems, includ-
ing event-triggered control, spatiotemporal fault detection, and constrained dynamic program-
ming (WANG et al., 2023; PENG et al., 2024; ZHAO et al., 2023). Unlike earlier platforms
focused solely on data generation or prediction, SHIELD integrates simulation, heuristics, and
predictive analytics in a unified environment. Subsequent sections detail the conceptual and
technical design of the SHIELD simulator, presenting the implemented architecture, heuristic
models for data optimization, forecasting strategies, and mechanisms for runtime performance

monitoring.

4.1 Related Work

The simulation of [oT systems and sensor data processing has been a key area of research,
with several simulators developed to support the design, testing, and optimization of IoT appli-
cations. Each simulator addresses one of these different aspects of [oT systems: data generation,

processing, security, or integration with cloud services.

A systematic search was conducted across six major academic databases to identify rele-

59

vant studies on sensor data generation, simulation, and predictive modeling: IEEE!, ACM?,
Springer®, Scopus®, ScienceDirect’, and MDPI®. The search was performed using a predefined
query string, shown in Table 13, designed to capture research focused on sensor data handling,
simulation methodologies, and predictive modeling techniques in IoT environments.

The initial search retrieved a total of 312 studies. The filtering process followed three in-
clusion criteria: (1) studies published in peer-reviewed journals, conferences, or workshops; (2)
articles written in English; and (3) works explicitly discussing sensor data generation, simula-
tion, or predictive modeling. Additionally, the process applied exclusion criteria to remove (1)
studies without practical implementation, (2) research unrelated to sensor data processing or
simulation, and (3) duplicate records across multiple databases. After applying these criteria,
the selection narrowed to 58 articles.

The study refined the selection by applying the three-pass reading method proposed by
KESHAYV (2016). The first pass reviewed titles and abstracts to identify relevant papers. The
second pass examined the introduction and methodology sections to assess alignment with the
research scope. Finally, a full-text analysis was conducted in the third pass to ensure that each
selected study contributed directly to the research objectives. After this systematic evaluation, a
final set of 10 studies was retained, each addressing different aspects of sensor data simulation,

processing, or predictive modeling in IoT environments.

Table 7: Definition of the search string for related works

Key Terms Search Terms
Sensor Data ("sensor data" OR "IoT data") AND
Simulation ("simulator" OR "simulation environment" OR "synthetic data generation") AND

Predictive Modeling ("predictive modeling" OR "time-series forecasting" OR "ARIMA")

Source: Elaborated by the author

Several IoT simulators have made significant contributions but share common limitations
regarding real-time data processing and predictive modeling. POLLEY et al. (2004) introduced
ATEMU, which enables detailed emulation of sensor nodes and supports heterogeneous net-
works; however, it lacks dynamic data processing and predictive capabilities. Similarly, CHEN
et al. (2005) developed SENSE, a simulator optimized for scalability and memory efficiency in
large-scale sensor networks, but it does not incorporate real-time analysis or forecasting.

Reviews of IoT simulators and testbeds highlight the need for better integration between
virtual and physical domains, as well as the absence of dynamic data handling and predictive
modeling in many existing tools (CHERNYSHEYV et al., 2018). PFLANZNER et al. (2016)

'https://ieeexplore.ieee.org/
https://dl.acm.org/
Shttps://link.springer.com/
“https://www.scopus.com/
Shttps://www.sciencedirect.com/
Shttps://www.mdpi.com/

60

presented MobloTSim, which allows the simulation of multiple mobile IoT devices and cloud
integration, yet it does not support multi-stage data analysis or predictive modeling.

EdgeMiningSim, proposed by SAVAGLIO; FORTINO (2021), enables the development of
descriptive and predictive models for sensor data streams, but does not provide real-time pro-
cessing or multi-stage analysis. In the context of smart waste management, HUSSAIN et al.
(2024) introduced a multiagent simulation framework that models sensors and collection routes,
though it lacks predictive modeling and dynamic analytics.

IoTSecSim, developed by CHEE et al. (2024), focuses on simulating cyber-attacks and
defense mechanisms in IoT environments, but does not offer comprehensive data processing or
predictive features. Kaala, introduced by DAYALAN et al. (2022), integrates devices, gateways,
and cloud services for end-to-end IoT simulation, yet it is limited by the absence of multi-stage
data processing and real-time monitoring.

Finally, NGfiEZ; CARIZARES; de Lara (2022) presented CloudExpert, a system that assists
in selecting suitable cloud simulators for various scenarios, which is valuable for IoT-cloud
integration research. However, it does not directly address the data processing limitations found

in many loT simulators.

Table 8: Comparison of Sensor Data Simulators and Processing Systems

Feature ATEMU SENSE Mob IoT Kaala Edge Waste IoT Cloud SHIiELD

IoT- Sec- Min- Man- Re- Ex-

Sim Sim ing age- search pert

Sim ment

Sensor Data Simula- Yes Yes Yes No Yes Yes No Yes Yes Yes
tion
Real-time Data Pro- No No No No Yes Yes No No No Yes
cessing
Predictive Modeling No No No No No No No No No Yes
(ARIMA)
Multi-stage Data No No No No Yes Yes No No No Yes
Processing
Security Evaluation No No No Yes No No No No No Yes
Data Mining Sup- No No No No No Yes No No Yes Yes
port
Performance Moni- No No No No Yes Yes No No Yes Yes
toring
Customizability Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Source: Elaborated by the author

Table 8 presents a comparative analysis of the reviewed sensor data simulators and pro-
cessing systems. Each column represents a different simulator, while the rows indicate spe-
cific features, including sensor data simulation, real-time data processing, predictive modeling,
multi-stage data processing, and performance monitoring. The comparison highlights the capa-
bilities of SHiELD, which supports the entire lifecycle of sensor data simulation, processing,
and real-time monitoring, making it valuable for both research and practical applications in the
[oT domain.

Each column in the table represents one of the reviewed simulators: ATEMU (POLLEY
et al., 2004), SENSE (CHEN et al., 2005), MobloTSim (PFLANZNER et al., 2016), IoT-

61

SecSim (CHEE et al., 2024), Kaala (DAYALAN et al., 2022), EdgeMiningSim (SAVAGLIO;
FORTINO, 2021), Waste Management (HUSSAIN et al., 2024), 1oT Research (CHERNY-
SHEV et al., 2018), CloudExpert (NunEZ; CARIZARES; de Lara, 2022), and the SHiELD. The
rows list features, where "Yes" indicates the presence of a feature in the simulator, and "No"
indicates its absence. The first (Sensor Data Simulation) row shows whether the simulator can
generate synthetic sensor data. The second (Real-time Data Processing) row indicates whether
the simulator can handle and process sensor data in real time. Predictive Modeling (ARIMA)
specifies whether the simulator integrates predictive models, such as ARIMA, for forecasting
sensor data. The Multi-stage Data Processing row indicates whether the simulator supports
simulating and processing data through the stages: filtering, aggregation, and compression. Se-
curity Evaluation identifies whether the simulator includes features for evaluating cyber-attacks
and defense strategies in IoT networks. The Data Mining Support row addresses whether the
simulator supports tasks like data mining within IoT scenarios. Performance Monitoring high-
lights whether the simulator includes capabilities for tracking system performance in real time.
Lastly, Customizability reflects whether the simulator can be adapted to different use cases or

customized to meet specific research needs.

Other studies have explored different aspects of IoT simulation. IDRIS; KARUNATHI-
LAKE; FORSTER (2022) conducted a comparative analysis of LoRa-enabled simulators, eval-
uating tools such as NS-3, OMNeT++, and LoRaSim in terms of transmission efficiency and
resource consumption. While these simulators focus on low-power wide-area network (LP-
WAN) communication, they do not incorporate data processing heuristics or predictive model-
ing, limiting their applicability to real-time sensor data optimization. Similarly, HARIS et al.
(2019) introduced Sensyml, a simulation environment designed for large-scale IoT applications.
Sensyml enables modeling sensor interactions with cloud services but does not include support
for real-time processing or predictive analytics (IDRIS; KARUNATHILAKE; FORSTER, 2022;
HARIS et al., 2019).

Other studies emphasize flexible representations of 10T sensors for cloud-based simulation
environments. MARKUS; KECSKEMETI; KERTESZ (2017) proposed a model to represent
IoT sensors in cloud simulators, facilitating scalability assessments and integration with com-
putational infrastructures. However, this approach lacks specific data optimization techniques
and time-series forecasting models, reducing its suitability for applications requiring adaptive
decision-making based on historical data. Additionally, ALMUTAIRI; BERGAMI; MORGAN
(2024b) presented a comprehensive review of [oT simulators, identifying gaps in support for en-
ergy models, security, and scalability. Their findings highlight the need for more versatile sim-
ulators capable of handling real-time sensor data processing and predictive modeling. SHIELD
differentiates itself from these approaches by integrating data processing heuristics, such as ag-
gregation and compression, with predictive models like ARIMA, enabling both sensor data sim-
ulation and real-time optimization and analysis (ALMUTAIRI; BERGAMI; MORGAN, 2024b;
MARKUS; KECSKEMETI; KERTESZ, 2017).

62

The reviewed simulators cannot process data in real-time, integrate predictive models like
ARIMA, or monitor system performance during simulation. Additionally, they do not offer
an integrated solution that spans the entire lifecycle of sensor data processing, from data gen-
eration to performance evaluation. While extending existing simulators might seem feasible,
real-time processing requires optimized architectures to handle continuous data streams with
low latency, predictive modeling introduces computational overhead and necessitates adaptive
retraining mechanisms, and performance monitoring demands integrated telemetry and analyt-
ics. These are not merely additional features but require architectural modifications to ensure
scalability, synchronization, and efficient data handling. This work seeks to address these limi-
tations by providing a simulator that integrates multi-stage data processing, predictive modeling,
real-time performance monitoring, and the ability to simulate complex sensor data scenarios.
This approach enables researchers and practitioners to simulate, process, and analyze sensor

data in an integrated way, making it a useful tool for IoT applications and research.

4.2 Methodology

The methodology of this work outlines the development of a simulator for processing sen-
sor data in an IoT environment. The system integrates components responsible for generating
synthetic data, processing it through heuristics of aggregation, compression, and filtering, and
applying predictive models like ARIMA. A central service manages the data flow, distribut-
ing processing and balancing tasks and providing an interface for visualization and analysis of
results. The use of real-time messaging enables efficient data exchange between components,

supporting performance and prediction accuracy in the [oT context.

421 Architecture

The architecture of the sensor data simulation and processing system consists of compo-
nents that work together to simulate, process, and analyze IoT sensor data. The SHIELD is
divided into two main segments: the Sensor Data Simulator and the Sensor Data Processing
Architecture Simulator.

The Sensor Data Simulator, illustrated in Figure 11, generates synthetic sensor data that
mimics real-world sensor outputs. This data is crucial for testing and validating [oT systems
without requiring physical sensors. Users can configure parameters such as sensor types, data
frequencies, and time intervals to control the characteristics of the simulated data. The simulator
allows data to be processed using different predictive models, such as ARIMA and stochastic
tuning, and provides an interface for users to interact with sensor views, historical data, and
statistical analysis components.

The Sensor Data Processing Architecture Simulator, shown in Figure 12, is responsible for

handling the generated sensor data, applying processing heuristics, and optimizing data trans-

63

mission. This component consists of an Indoor Server, which captures sensor data and ensures
efficient collection through message brokers, and an Outdoor Server, which is responsible for
processing the data using balancing mechanisms and performance monitoring services. The
architecture also includes a metric collector, allowing system-wide evaluation of real-time per-
formance.

Both figures illustrate complementary aspects of the SHiELD system. Figure 11 focuses on
data generation, predictive modeling, and user interaction, while Figure 12 details the system’s
distributed architecture for processing and optimizing sensor data. Together, they provide a
complete representation of how SHIELD enables end-to-end sensor data simulation, processing,
and analysis for [oT applications.

Figure 11 shows the structure of the SHiELD. The main components of the simulator in-

clude:

» User Interface: This interface allows users to configure simulation parameters, selecting
sensor type, frequency, and time intervals. It also provides views for monitoring sensor

data in real time, including sensor-specific data, time-based data, and overall data streams.

* Data Publisher: The Data Publisher sends the simulated sensor data to a messaging bro-

ker, ensuring the smooth transmission of data to other system components for processing.

e Data Prediction Models: The simulator integrates prediction models like ARIMA and
stochastic tuning. These models forecast future sensor values based on historical data,

allowing users to test predictive analytics in [oT systems.

 Historical Data Handler: This module processes and stores historical sensor data for anal-

ysis and prediction, enabling the system to analyze trends and patterns over time.

Figure 11: SHiELD Architecture

Historic Data
Send Data Predict Data
R4 R4
[Frequency Controlier | | | [ARIMA Model |
i [Data Publisher | | | [Stochastic Tunning]
Configuration Rp Analyse Data
Intefarce C)
User Sensor Selector
— i
- {} [Period Selector | Btatistical Method
“
[step selecior | l
Data View Data Selech
elector
Source Data

Source: Elaborated by the author

The Sensor Data Processing Architecture Simulator models the complete lifecycle of sensor

data, from capture to processing and real-time monitoring, operating across a Local Server and

64

an External Server. The Local Server handles data capture and scheduling. Its Capture Layer
manages incoming sensor data via a Messaging Controller and Capture Gateway. Capture Ser-
vices collect, preprocess, and forward data. A Monitor Service manages collection scheduling
and resource elasticity, using a Collection Scheduler and Elastic Services for scaling. The
Publishing Controller forwards data to subsequent stages. The External Server focuses on pro-
cessing data. Its Processor Layer connects various processor services for filtering, aggregation,
and analyses via a Processor Gateway. A Balancer ensures even load distribution. A Monitor
Service schedules collection and manages resource elasticity, with a Publishing Controller to

forward processed data.

Figure 12: SHiELD Data Processing Architecture (Local and External Servers)

Metric Collector

Messaging Collector
R4 Ry
()

—0o— O
Service Collector

Indoor Server Outdoor Server
‘Sensor Inputs
Capture Layer Monitor Service Processor Layer Monitor Service
_m Rp
. Messaging Controller Collection = Messaging Controller Collection =
«—| Scheduler e— Scheduler
.
. —>| >
Sensor n ice & ice 5
Capture Gateway Elastic Service N Ap Processor Gateway Elastic Service
Messaging
o O] M |-G O
Capture
service 1 @)
- Publishing =]
. O) >| Controller
= Processor
SCﬂD“"‘ Service 1
ervice n Publishing =&
. s
L ——— | Controller

.
Processor
Service n

= R4 = “ - Rq
DashBoard O Core Service P

Source: Elaborated by the author

These two components work together to provide a solution for simulating, processing, and
analyzing sensor data in an IoT environment. By integrating predictive modeling, real-time
data handling, and multi-layer processing, this system can handle the lifecycle of sensor data in

various IoT applications, ranging from urban waste management to smart cities and beyond.

4.2.2 Prediction Model

The ARIMA (AutoRegressive Integrated Moving Average) model was selected for generat-
ing predicted sensor data due to its utility in time series forecasting, particularly for univariate
data with trends or seasonality (SURYAWAN et al., 2024). ARIMA consists of autoregression
(AR), differencing (I), and moving averages (MA) to capture temporal dependencies. ARIMA
was chosen for its ability to handle time-dependent patterns without requiring external variables

or complex feature engineering, unlike models such as LSTM. While Exponential Smoothing

65

(ETS) and basic Moving Average models also use past observations, ARIMA offers a more
flexible approach for both stationary and non-stationary data and is computationally efficient
for IoT simulations.

The ARIMA model was tested using two publicly available datasets. The first, Sensor
Data, contains real-world sensor readings (temperature, humidity, pressure) and is suitable for
evaluating ARIMA on time series data with seasonal and trend-based components. The second
dataset, Machine Failure Prediction Using Sensor Data, focuses on machine failure prediction
in industrial IoT, allowing for testing ARIMA’s ability to predict failure events based on sensor
anomalies. These datasets ensure diverse testing scenarios, with the "Sensor Data" dataset
serving as a general test case and the "Machine Failure Prediction Using Sensor Data" dataset

focusing on predictive tasks. The three main parameters of ARIMA are:

* p (autoregressive order): the number of lag observations included in the model.

* d (degree of differencing): the number of times the data needs to be differenced to achieve

stationarity.

* ¢ (moving average order): the size of the moving average window used to smooth residual

CITors.

The selection of hyperparameters p = 1, d = 1, and ¢ = 1 followed an evaluation of their
performance in predicting unseen data during cross-validation (WANG, 2011).

This study adopts the Polygon Area Metric (PAM) as the primary evaluation metric to assess
the accuracy of ARIMA’s predictions. PAM calculates the area between the predicted and actual
values in a time series plot, representing the geometric distance between the two curves. A
smaller area indicates better alignment between predictions and actual values. The formula for

the Polygon Area Metric is:

n—1
1 .
PAM = B ;1 |(yi — 0i) (tigr — t3)] 4.1)

where:

y; 1s the actual value at time ¢,

y; is the predicted value at time ¢,

t; 1s the time step corresponding to the value ¢,

n is the total number of time steps in the time series.

The Polygon Area Metric (PAM) provides a visual and geometrically intuitive measure
of prediction accuracy. Unlike traditional error metrics such as Mean Squared Error (MSE) or

Mean Absolute Error (MAE), PAM focuses on the area between the predicted and actual curves,

66

capturing both large-scale deviations and smaller, localized errors. This is particularly useful
in time series forecasting, as it highlights the overall trend and shape of the data rather than
individual point discrepancies (AYDEMIR, 2020).

However, PAM alone does not provide a complete measure of prediction accuracy. To sup-
plement its assessment, it is combined with traditional metrics, which offer additional insights
into the model’s performance. These metrics complement the geometric interpretation of PAM,
enabling error analysis and regression performance evaluation. The metrics used in combination
with PAM are:

* Accuracy: Measures the proportion of correct predictions made by the model. It is cal-
culated as the ratio of correctly predicted observations to the total observations (WANG,
2011).

* Precision: Measures the proportion of correct identifications. It focuses on the accuracy
of positive predictions (WANG, 2011).

* Recall: Also known as sensitivity, this metric measures the proportion of actual positive

observations identified. It emphasizes the ability of the model to detect relevant instances.

* F1 Score: The harmonic mean of Precision and Recall, providing a balance between the
two. It is useful when the data is imbalanced (ZOLFAGHARI; GHOLAMI, 2021).

* ROC AUC: The area under the receiver operating characteristic curve, which shows the
model’s ability to distinguish between positive and negative classes. A higher value indi-

cates better performance in distinguishing between the classes (WANG, 2011).

By combining PAM with these traditional metrics, a more thorough evaluation of the ARIMA
model’s performance is obtained. PAM captures the overall geometric shape of the time series,
while the other metrics provide a deeper understanding of the numerical errors, variance, and
predictive accuracy. This combination offers a comprehensive framework for assessing time

series predictions.

4.2.3 Heuristics for Data Processing: Aggregation, Compression, and Filtering

This study developed three heuristics to optimize data transmission: aggregation, compres-
sion, and filtering (LI et al., 2024b). These heuristics aim to reduce the volume of transmitted
data in IoT systems while preserving essential information. The following are the details of each
heuristic and its corresponding algorithm, with additional parameters introduced to enhance the
performance and flexibility of each technique (JUAN et al., 2023; ZHANG et al., 2024).

The aggregation heuristic reduces data size by grouping data points into blocks and com-
puting a representative value for each block, typically the average. This method helps com-
press time-series data without losing significant information. The aggregation algorithm (Algo-

rithm 1) divides the total number of data points by a predefined blockSize (line 1) and computes

67

the average of values within each block. The formula for the aggregated value is expressed as

follows:

1 n
A ted Val -:—E i
ggregated Value; anI:cJ

where z; ; are the values in block 7 and 7 is the number of values in the block. One enhancement
to this algorithm is the introduction of a threshold (Algorithm 1, line 5), which excludes blocks
with excessive variation between data points. Additionally, a weights mechanism (Algorithm 1,
line 1) can be applied to assign different significance to values within each block. For the
aggregation heuristic (Algorithm 1), the new length of the aggregated matrix is calculated using
newLength (line 1), which divides the total length of the original matrix by blockSize. The
algorithm then sums the values within each block and stores the average in the aggregated

result.

Algorithm 1 Data Aggregation

Require: Sensor data array elements, array length length, block size blockSize, threshold threshold

Ensure: Aggregated data array aggregated

. length+blockSize—1
1: newLength + ’V—blocksize -‘

2: for i = 0 to newLength — 1 do

3: sum < 0

4: count < 0

5: for j = 0 to blockSize — 1 and (3 X blockSize + j) < length do
6: curr < elements[i X blockSize + j]

7. prev < elements[i X blockSize + j — 1]

8: if |curr — prev| < threshold then

9: sum <— sum + curr

10: count < count + 1

11: end if

12: endfor

13: if count > 0 then

14: aggregated[i] + 2T

15: else

16: aggregated[i] < elements[i x blockSize] {Use original if no valid aggregation}
17: end if

18: end for

19: return aggregated

Source: Elaborated by the author

The threshold (Algorithm 1, line 5) prevents the aggregation of data points with large vari-
ations, avoiding distortions in the summarized output. The inclusion of weights (Algorithm 1,
line 1) provides flexibility in the aggregation process, allowing greater significance for specific
data points within a block, making the approach more adaptable to [oT scenarios.

The compression heuristic aims to reduce data size by removing redundant values. Specifi-
cally, it eliminates consecutive repeated values, which is useful for time-series data where many
consecutive measurements are identical or show minimal variation. By adjusting the threshold

for acceptable variation between consecutive values, the algorithm becomes more selective in

68

compressing the data. Additionally, the compression ratio parameter can be adjusted to control
the level of compression applied, depending on the amount of redundancy in the data. The

formula for compression is:

Z; if ‘Z’Z — .CEZ'_1| > threshold
Compressed Value, =
skip otherwise
For the compression heuristic (Algorithm 2), the algorithm compares each value with the
previous one. When the difference exceeds the threshold, it adds the current value to the com-

pressed array.

Algorithm 2 Data Compression

Require: Sensor data array elements, array length length, threshold threshold, compression ratio compressionRatio

Ensure: Compressed data array compressed

1: compressedIndex < 0

2: fori = 0to length — 1 do

3: if i = 0 or |elements[i] — elements[i — 1]| > threshold then
4: compressed[compressedIndex] < elements]i]

5: compressedIndex < compressedIndex + 1

6: endif

7: end for

8: if compressedIndex > length x compressionRatio then

9: print “Compression is too aggressive, adjust compressionRatio.”
10: end if

11: return compressed

Source: Elaborated by the author

The threshold (Algorithm 2, line 3) controls how sensitive the algorithm is to changes in the
sensor data. A lower value makes smaller fluctuations significant, reducing compression, while
a higher value allows minor variations to be ignored, further reducing dataset size.

The filtering heuristic reduces noise in sensor data by smoothing rapid fluctuations. This
process applies a moving average filter, replacing each data point with the average of its neigh-
boring points within a defined windowSize (Algorithm 3, line 1). The tolerance (Algorithm 3,
line 3) parameter determines the level of smoothing by adjusting the influence of distant points.

For the filtering heuristic (Algorithm 3), the process iterates over the sensor data array and
computes the average of the current data point and its neighbors. The windowSize (Algorithm 3,
line 1) defines how many neighboring points contribute to the smoothing process, while the
tolerance (Algorithm 3, line 3) parameter adjusts the smoothing intensity based on noise levels

in the data. The formula for the moving average filter is:

windowSize .
1 . —1Jl
FV = X
wSum Z (e[z il x e (tolemnce))

j=—windowSize

where FV represents the filtered value at index 7, obtained from a weighted sum of neighbor-

ing values. The term e[i+ j] corresponds to the sensor data at position i+ j, including the current

69

value and its neighbors. The summation runs over a predefined windowSize (Algorithm 3, line

1), determining how many neighboring points contribute to the smoothing process.

The weight of each neighboring value follows the exponential function exp (tol;'iLC€> , en-
suring that closer values have a stronger influence while distant values contribute less. The
decay rate is controlled by the tolerance (Algorithm 3, line 3) parameter; smaller values lead to
a faster decay, emphasizing nearby points, while larger values create a broader smoothing effect
(CHHABRA et al., 2022).

The final result maintains the original scale of the data by normalizing with wSum (Algo-

rithm 3, line 9), which represents the sum of all applied weights:

windowSize . |j|
wSum = exX —_—
Z P (tolemnce)

j=—windowSize
This normalization ensures that the filtered value remains consistent with the original data
distribution. By adjusting windowSize (Algorithm 3, line 1) and tolerance (Algorithm 3, line
3), this filtering approach effectively reduces noise while preserving relevant signal patterns in

IoT sensor data.

Algorithm 3 Data Filtering

Require: Sensor data array elements, array length length, window size windowSize, calibration tolerance tolerance

Ensure: Filtered data array filtered

1: for i = windowSize to length — windowSize do

2: windowSum < 0
3: weightSum <+ 0
4. for j = —windowSize to windowSize do
. . J
5: weight < exp (— tolerance)
6: windowSum < windowSum + elements[i + j| x weight
7. weightSum < weightSum + weight
8: end for
9: filtered[i] < %
10: end for

11: return filtered

Source: Elaborated by the author

In this case, windowSize (Algorithm 3, line 1) determines how many neighboring values
influence the smoothing process, while folerance (Algorithm 3, line 3) provides flexibility in
filtering based on the level of noise present in the data. This flexibility is particularly useful for
IoT data, where noise levels can vary depending on environmental conditions or sensor quality.

The performance of these heuristics is influenced by the choice of parameters:

* blockSize (Algorithm 1, line 1) in aggregation determines the amount of data condensed
in each block. Larger values lead to greater data reduction, but very large block sizes may

obscure short-term variations in the data.

70

* windowSize (Algorithm 3, line 1) in filtering controls the extent of smoothing applied to
the data. Larger values smooth the data more, which may reduce noise but could also

lessen the system’s responsiveness to sudden changes.

* Compression operates without explicit parameters but can be adjusted based on patterns
or noise types in the data. The compressionRatio parameter (Algorithm 2, line 5) helps

manage the extent of compression applied to the data.

Tuning these parameters is important for optimizing data transmission efficiency while en-
suring that key information is preserved. The optimal values for each parameter depend on the
specific characteristics of the sensor data and the needs of the IoT system. This tuning pro-
cess can be carried out through empirical testing, where multiple configurations are evaluated
to determine their impact on data reduction and model accuracy, or by applying data-driven
strategies that adjust parameters based on statistical properties of the input, such as variance,

frequency of change, or entropy.
4.2.4 Data Flow in the System

This section describes the data flow within the simulator, which ensures efficient data han-
dling and prediction generation in an IoT environment. The process begins with the Sensor
Simulator, which generates sensor data such as temperature, humidity, and pressure. This data
is continuously sent to the core service, where the data flow at a given time ¢ is determined by
the sensor data generated at that moment.

After reaching the core service, the data is routed to Processing Services (P-services) for
operations such as filtering, aggregation, and compression. The transformed data at time ¢
depends on the initial data flow and the specific operation applied. In the case of aggregation,
the aggregated data at time ¢ is calculated as the average of the data points within a window of

n data points, as shown below:

1 7
Aggregated Data, = — Data Flow,
ggreg == j;ﬂ j
Following processing, the data is sent to the scheduler, where it is organized according to
priority and system requirements.
The data is then collected, stored, and used for analysis and prediction. For time series

forecasting, the ARIMA model is applied, which is represented by the following equation:

P q
Yy =c+ Z Gilfi—i + Z Oie—j + e
i=1 j=1

where y; is the predicted value at time ¢, ¢; are the autoregressive parameters, 6; are the

moving average parameters, €, is the error term at time ¢, and c is a constant.

71

Finally, the processed data and predictions are visualized through the managing interface.
The entire data flow is managed by an MQTT broker, which coordinates the transfer of data

packets between system components.
4.2.5 Testing Methodology

The testing was carried out in both local and external environments, using a set of perfor-
mance metrics to assess the capabilities and limitations of the simulator. The tests took place
in two distinct settings: one leveraging a Raspberry Pi1 2 for local simulations and the other
utilizing more powerful hardware for external scenarios. For both environments, the testing
process followed a stress testing methodology, subjecting the system to increasing loads in a
controlled manner. The tests used real data instead of synthetic data, selecting two publicly
available datasets for their relevance to sensor data processing and machine failure prediction.

These datasets include:

* Sensor data’, which includes readings from types of sensors such as temperature, humid-
ity, and pressure, providing a broad dataset to evaluate the performance of the ARIMA

model in general sensor data with seasonal and trend-based components (BYUN, 2019).

» Machine Failure Prediction Using Sensor Data®, which captures sensor readings indicat-
ing potential machine failures, enabling the evaluation of ARIMA’s capability to predict
anomalies and impending failure events (RTX, 2024).

The tests progressively increased the number of requests processed by the system, running
for a total of 2000 seconds to ensure that all processing was completed within this time frame.

The tests allowed to record the following key metrics:

* CPU Usage: The percentage of total CPU resources used by each service, measured using

Docker and Kubernetes metrics.

* Memory Usage: The amount of memory allocated and used by each service, recorded in
megabytes (MB).

* Response Time: The time taken for a service to process and respond to a request, mea-

sured in milliseconds (ms).

* Throughput: The number of requests processed per second, recorded in requests per sec-

ond.

* Error Rate: The percentage of requests that resulted in errors or failures during process-

ing.

"Available at: https://www.kaggle.com/datasets/yungbyun/sensor—data
8 Available at: https://www.kaggle.com/datasets/umerrtx/machine-failure-
prediction-using-sensor-data

72

To validate the accuracy of ARIMA-based predictions, the forecasted time series were com-
pared to the original dataset values to assess the similarity between predicted and actual sensor
behavior. This comparison helped determine the effectiveness of the forecasting model in repro-
ducing real-world dynamics and its applicability to anomaly detection and adaptive decision-

making in IoT environments.

The local testing setup involved a Raspberry Pi 2 with the following specifications: Pro-
cessor: ARM Cortex-A7 (4 cores, 900 MHz); RAM: 1 GB DDR2; Storage: 16 GB microSD
card; Operating System: Raspbian OS (based on Debian); Docker version: 20.10.7; Kubernetes
version: 1.21.0. The external setup used more powerful hardware with the following specifica-
tions: Processor: Intel Core 17-9700K (8 cores, 3.60 GHz); RAM: 16 GB DDR4; Storage: 500
GB SSD; Operating System: Ubuntu 20.04 LTS; Docker version: 20.10.7; Kubernetes version:
1.21.0.

The local and external tests followed the same general testing methodology. They leveraged
Docker containers orchestrated by Kubernetes to manage scaling, load balancing, and resource
allocation for each service. The analysis of test results, including CPU usage, memory con-
sumption, and throughput, evaluated the performance of both local and external systems under
increasing loads. The collected data enabled an assessment of how the system handled varying
resource demands, with particular focus on performance during peak usage scenarios, where
CPU and memory usage reached higher levels.

The evaluation included Error Rate as an additional metric to track the reliability of ser-
vices under stress. This metric ensured that the analysis considered not only throughput and
resource consumption but also the accuracy and robustness of the system under heavy load.
The methodology focused on realistic IoT environments, with specific focus on how the system
scales and handles both normal and peak load conditions, while providing insights into potential

bottlenecks and areas for improvement.

4.3 SHIELD Results

This section presents the results of the experiments conducted to evaluate the performance
of the developed simulator, focusing on aspects such as system architecture, data processing
heuristics, and prediction accuracy. The evaluation includes tests in both local and external
environments, using a combination of synthetic and real-world sensor data (BYUN, 2019; RTX,
2024; RAJ; HEMA, 2025).

The analysis starts with an evaluation of the system’s architectural performance, highlight-
ing its scalability under different load conditions in both environments. The subsequent subsec-
tions explore the application of data processing heuristics, namely, aggregation, compression,
and filtering, highlighting their impact on the efficiency and size of transmitted data. Finally, we
evaluate the ARIMA model’s predictive performance using a range of metrics, demonstrating

its ability to forecast sensor data trends. These results aim to provide an overview of how the

73

system performs in different metrics and environments, offering insights into its potential for

real-world IoT applications. The application is available in the GitHub repository °
4.3.1 Local System Architecture Results

The local system, tested on a Raspberry Pi 2, exhibited CPU usage fluctuations between
10% and 60%. Figure 13 shows noticeable spikes, particularly during intensive tasks executed
by the prediction-service. These spikes indicate the system’s adjustment to increasing
load during the tests. The smooth transitions in CPU usage suggest a controlled response to the
workload, with occasional minor fluctuations due to varying system demands.

Memory usage remained within the 1 GB capacity of the Raspberry Pi 2 throughout the
test. Figure 13 shows periodic spikes, which became more evident when CPU usage increased.
These spikes occurred most notably in the prediction—-service during high-load inter-
vals. Despite these increases, the system stayed within the available memory, demonstrating
that the Raspberry Pi 2’s resources were sufficient to handle the required tasks during the test-
ing phase.

The results show that the Raspberry Pi 2 was able to manage the stress tests effectively, with
memory and CPU usage staying within the hardware’s limitations, even during periods of high
demand. These fluctuations in CPU and memory usage reflect the system’s scalability and its

ability to adjust to varying workloads.

Figure 13: Local Services - CPU and Memory Usage

Local Service - CPU Usage Local Services - Memory Usage
—— gateway-capturer 225 — gateway-capturer
| e Ty e
—— prediction-service w M A —— prediction-service
— production-service ;"4 W\ A 200] — Pproduction-service |
—— prediction-frontend ¥ " Ilv(ﬂ'f' —— prediction-frontend |
P
A l
M » v L
i A '
]
\ W \Vf\v\ ' M \vw ‘ .
40 4 i ﬁ M M I M '
W, ‘.v‘\,l‘ f W 0 - o T o
- T v 2 1501 g ‘;}::V/w VN e "A""WZ\':’VJ
< y me \n_mf g Ml | b o
g "ot g
Ed 4 | ‘
2 30 § 1251
, A g \
.'» M .‘f" \ ?."Mi ‘ |
W W M
,
e) I P P
20 \ f’,‘“rv u"\f\ '\‘l ’lﬂ'l i v AW NI A NML"»‘ o
Ay e iny N
| W “'\ AF "r
i ‘ W ' ¥ 75 l
\'I Fr. AV‘
LY s]
50 l

o 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time (s) Time (s)

Source: Elaborated by the author

https://github.com/DarlanNoetzold/SensorSimulator.

74

4.3.2 External System Architecture Results

The external system, running on more powerful hardware, exhibited a different performance
profile compared to the local system. As illustrated in Figure 14, CPU usage fluctuated be-
tween 40% and 90%, with noticeable spikes during computationally demanding tasks, partic-
ularly those managed by the processor—-service. The gateway-processor main-
tained relatively lower CPU usage, indicating its ability to handle workloads with less com-
putational overhead than processor-intensive services. These high CPU spikes, especially in
the processor-service, correspond to moments of complex computations that required
increased processing resources.

Memory usage in the external system ranged between 100 MB and 200 MB. Spikes ap-
peared during peak load times, with the processor-service experiencing a notable in-
crease in memory demand. This behavior is typical for services that process large datasets
or perform complex computations. Despite these spikes, the system efficiently managed the
larger data volume, staying within the hardware’s memory limits and maintaining performance
throughout the test. The system handled the increased workload common in external environ-

ments without overburdening the available resources.

Figure 14: External Services - CPU and Memory Usage

External Services - CPU Usage External Services - Memory Usage
—— gateway-processor —— gateway-processor
processorservice M, T A Jo0 | processorservice ™
—— core-service S\ \"’\’ . — core-service \/f"f\ A Mo,
Vi v | \ d /™
W LA TV r-\/
W i
80 ‘ \M‘F My, A
\ W 180 ‘
}t‘wr\ww""‘w«.“
LA N
‘ 160 - l i W"""v.,f'-'/‘”\""

| |

,4
=
S

CPU Usage (%)
Memory Usage (MB)
I~
5]

40

H
1
8

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time (s) Time (s)

Source: Elaborated by the author

4.3.3 Summary of Architecture Results

Table 9 summarizes the average CPU usage, memory usage, response time, throughput,

and error rate for both local and external services during stress testing. The external services,

75

designed to process larger amounts of data and handle more complex tasks, exhibited higher

CPU and memory usage compared to local services.

Table 9: System Architecture Testing Results

Service CPU Usage (%) Memory Usage Response Time Throughput (re- Error Rate (%)
(MB) (ms) quests/sec)
prediction-frontend 15.3 150.5 119.6 149.7 0.5
config-service 10.2 110.3 79.8 199.8 0.2
prediction-service 19.7 220.8 200.3 119.8 1.2
production-service 304 180.6 150.2 181.5 0.8
gateway-capturer 24.8 190.2 171.4 160.2 0.6
capture-service 40.3 310.7 220.6 140.4 1.3
gateway-processor 35.1 502.3 211.7 131.0 0.7
processor-service 60.4 870.1 300.2 110.5 1.9
core—service 17.8 295.6 249.9 99.7 0.4
metrics-dashboard 11.9 198.9 110.3 189.6 0.2

Source: Elaborated by the author

The CPU usage for external services ranged from 40% to 90%, with noticeable spikes ob-
served in processor-intensive services such as processor-service, which showed CPU
usage peaking around 60%. Memory usage for external services varied between 100 MB and
350 MB during peak periods, with the processor-service using the most memory. In
comparison, local services showed lower memory consumption, with the peak memory usage
for prediction—-service reaching a maximum of 220 MB. The CPU usage for local ser-
vices stayed between 10% and 50%.

Both systems performed well under stress testing, with memory usage remaining within
the hardware limits for both setups. These results suggest that the SHIELD architecture can
scale effectively, with external services utilizing higher available resources to manage larger

data volumes and more complex tasks.

4.3.4 Heuristics for Data Processing: Aggregation, Compression, and Filtering Re-
sults

This section presents the results of applying the aggregation, compression, and filtering
heuristics to sensor data. The table below displays the data size after applying compression
and filtering heuristics, while the aggregation effect on the number of packets will be discussed
separately.

Table 10 presents the effects of compression and filtering on data size. Compression reduces
the data size by approximately 5-7% in different load cases, and filtering further reduces the data
by 5-6% on average. However, aggregation does not affect the size but reduces the number of
packets. The results show how compression and filtering reduce the size of the transmitted data,
improving bandwidth efficiency.

Aggregation works by grouping data into larger packets, which reduces the total number of

packets sent. This table illustrates the effect of aggregation on the number of packets and the

76

Table 10: Total Data Volume Before and After Compression and Filtering (KB)

Data Type Before Heuristics (KB) Data after Compression (KB) Data after Filtering (KB)
Sensor Data (Low Load) 5300.0 4795.3 4585.3
Sensor Data (Medium Load) 8500.0 7785.2 7461.9
Sensor Data (High Load) 10700.0 9880.9 9404.7
Sensor Data (Peak Load) 15000.0 14435.2 13710.3
Sensor Data (Normal Load) 7100.0 6840.0 6480.0

Source: Elaborated by the author

data transmitted, calculated as an average per minute for all nodes of the processor-services.

Table 11: Impact of Aggregation on Number of Packets and Data Volume (KB/Minute)

Data Type Before Aggregation After Aggregation (Pack- Average Data Transmitted
(Packets/Minute) ets/Minute) (KB)

Sensor Data (Low Load) 120 20 4585.3

Sensor Data (Medium Load) 200 35 7461.9

Sensor Data (High Load) 300 55 9404.7

Sensor Data (Peak Load) 400 70 13710.3

Sensor Data (Normal Load) 160 28 6480.0

Source: Elaborated by the author

Table 11 shows the effect of aggregation on the number of packets and the amount of data
transmitted per minute across all nodes of processor services. The average number of packets
reduces with aggregation, as the data groups into fewer but larger packets. For example, in the
low load case, the number of packets reduces to 20 per minute compared to a larger number in
the unaggregated data.

By reducing the number of packets, aggregation helps minimize the overhead caused by
transmitting a large number of small packets, which is especially beneficial in IoT environments
with limited bandwidth. The data transmitted per minute column shows the total amount of data
transmitted, which remains the same as before aggregation, but with fewer packets sent due to

the larger packet size.

4.3.5 ARIMA Model Performance Results

This section presents the detailed performance results of the ARIMA model, evaluated using
several key metrics: accuracy, precision, recall, F1 score, and ROC AUC. Figure 15 illustrates
the model’s predictive accuracy and reliability across these dimensions. The evaluation utilized
a comprehensive sensor dataset, with summarized results depicted through the provided radar
chart.

The ARIMA model achieved an accuracy of 0.95, indicating strong capability to correctly
forecast future sensor values. Precision and recall reached 0.87 and 0.81, respectively, signify-

ing the model’s balanced ability to identify relevant sensor data points. The F1 score of 0.88

71

Figure 15: ARIMA Model Performance Evaluation (Accuracy, Precision, Recall, F1 Score,
ROC AUC)

Recall

0.-8decision

0
Accuracy

Source: Elaborated by the author

further underscores the model’s efficiency in handling imbalanced datasets, frequently encoun-
tered in real-world sensor applications. Moreover, the ROC AUC score of 0.91 demonstrates the
ARIMA model’s capability in distinguishing between different data classes, a crucial aspect of
time series forecasting. This combined assessment confirms the ARIMA model’s performance,
making it a reliable tool for predictive analytics in IoT systems.

To further validate the model’s predictive realism, the behavior of the forecasted time series
was compared with the original dataset. The comparison showed a high degree of similarity
in trend and seasonal variation, with an average RMSE of 0.47 across the tested variables.
This alignment confirms the ARIMA model’s effectiveness in reproducing real-world sensor
dynamics, supporting its application for proactive anomaly detection and adaptive control in

smart environments.

4.3.6 Comparative Experimental Results with Existing Simulators

To complement the evaluation of SHiELD, a comparative analysis was performed using
the simulators discussed in the related work section. Table 12 presents reported experimental
data, the hardware used, and whether the simulators support real-time processing, predictive
modeling, and performance monitoring. The data facilitates an objective analysis of different
simulation strategies and implementations.

The comparative data indicates that some simulators report execution time and resource

usage under specific experimental conditions. ATEMU emphasizes accuracy at the instruction

78

Table 12: Comparison of SHiELD with existing IoT simulators

Simulator (Year) Reported Results Test Hardware Real- Prediction Perf.
Time Moni-
tor

ATEMU (2004) 12 real s per 1 sim s (120 nodes); linear memory use ~ Desktop PC (un- No No No
up to 50 MB specified)

SENSE (2005) 2x faster than NS-2 in routing simulations; memory Desktop PC (un- No No No
30 MB for 100 nodes specified)

MobIoTSim (2016) Real-time MQTT; no memory/CPU reported; 1 mes- Android smart- Yes No No
sage/s per sensor phone

ToTSecSim (2024) 100 nodes: Sm42s; 1000 nodes: 1h33m; peak RAM Intel i7-8850H / No No No
usage: 15.6 GB HPC cluster

Kaala (2022) 10 devices: 5% CPU, 300 MB RAM; 100 devices: VM:2vCPU, 4GB Yes No No
48% CPU, 1.8 GB RAM RAM (Ubuntu)

EdgeMiningSim 500 devices: 60% CPU; edge analytics active; mem- High-performance Yes Yes No

(2021) ory not reported workstation

WasteMgmtSim Scenario-based results: route optimization saved Desktop PC (as- No No No

(2024) 20% travel time; no system metrics sumed)

CloudExpert (2022) No performance data; evaluated user satisfaction in ~ Standard PC (as- No No No
simulator choice sumed)

IoT Research Sur- No experimental results reported N/A No No No

vey (2018)

SHiELD - Local CPU usage: 10-60%; RAM: 1 GB; average latency: Raspberry Pi 2 Yes Yes Yes

(2025) 850 ms (ARM Cortex-A7) (ARIMA)

SHiELD — External =~ CPU usage: 40-90%; RAM: 1.2-1.5 GB; average Intel i7-9700K, 16 Yes Yes Yes

(2025) latency: 350 ms GB RAM (ARIMA)

Source: Elaborated by the author

level but reports a runtime of 12 real seconds for each simulated second when modeling 120
nodes. SENSE achieved improvements in simulation efficiency compared to NS-2, requiring
around 30 MB of memory for simulations with 100 nodes. MobloTSim provides data in real-

time through MQTT but does not include system-level performance data.

IoTSecSim evaluated scalability across 100 to 1000 nodes and recorded memory usage close
to 16 GB for the largest scenario. Kaala reported consistent growth in resource usage as the
number of simulated devices increased, with 100 devices reaching nearly 50% CPU utiliza-
tion on a constrained virtual machine. EdgeMiningSim integrated data analytics at the edge,

reaching approximately 60% CPU utilization during intensive tasks.

The SHiELD tests conducted on a Raspberry Pi 2 demonstrated stable performance under
variable loads, with CPU usage ranging between 10% and 60% and latency below 1 second.
On desktop hardware, SHiELD operated with 40% to 90% CPU usage and an average latency
of 350 milliseconds. Unlike the other simulators, SHiELD includes integrated ARIMA-based
predictive modeling and allows monitoring of CPU, memory, and latency metrics during exe-

cution.

Among the evaluated platforms, only EdgeMiningSim also integrates data analysis in the
simulation loop. However, it does not offer model-based forecasting nor embedded perfor-
mance tracking. While Kaala and MobloTSim provide real-time data transmission, they do not
include forecasting or system introspection. The SHiELD framework, tested in both constrained
and high-performance environments, was designed to support end-to-end processing with mea-

surable system behavior during execution. The integration of forecasting enables the system

79

to anticipate sensor data patterns based on historical values, which is beneficial in simulations
involving failure scenarios, delay-sensitive decisions, or planning mechanisms that require ad-
vance estimation of future states. This capability contributes to a more realistic and proactive
simulation environment, allowing researchers to evaluate not only how the system reacts to

events, but also how it can prepare for them based on trends present in the data.

4.4 Considerations about the Chapter

This chapter presented the design and evaluation of SHiELD (Sensor Heuristics and Intel-
ligent Evaluation for Large-scale Data), a sensor data simulator supporting the lifecycle of IoT
data streams. SHiELD integrates data simulation, heuristic-based processing, and predictive
modeling within a modular environment. The simulator incorporates data aggregation, com-
pression, and filtering heuristics. Aggregation resulted in up to an 82.5% reduction in trans-
mitted packets, while compression and filtering contributed to an additional 9.4% reduction in
payload size. SHIELD integrates an ARIMA model for short-term prediction, achieving con-
sistent performance with 0.84 accuracy, 0.87 precision, 0.78 recall, an F1-score of 0.87, and an
ROC AUC of 0.91.

Implementing SHiELD posed challenges related to real-time processing, asynchronous com-
munication, and modular integration of prediction mechanisms. The architecture supports dif-
ferent sensor types and communication patterns, using message queuing and real-time data flow
through MQTT. A comparative analysis positioned SHiELD among other simulation tools, em-
phasizing its support for real-time operations, predictive modeling, and performance monitoring

within a single framework.

* Prediction Models Beyond ARIMA: Exploring the use of LSTM and other neural time-
series models may improve forecasting in environments with complex dependencies and

non-linear behaviors.

* Dynamic Heuristic Adjustment: Implementing adaptive heuristics that adjust based on
system load or sensor variability may increase system efficiency and reduce manual con-

figuration.

* Security and Trust Models: Integrating anomaly detection, data integrity validation, and
secure MQTT protocols can improve the system’s resilience in sensitive or hostile envi-

ronments.

* Decentralized Execution: Introducing edge-based processing components can lower la-

tency, decrease bandwidth dependency, and align with IoT deployment constraints.

» Dataset Variability: Evaluating SHIELD using diverse datasets will support generaliza-
tion across use cases, including industrial, urban, and environmental monitoring scenar-

10S.

80

The simulator supports experimentation across different stages of the sensor data lifecycle,
enabling its use in studies on observability, prediction, and data processing strategies in smart
environments. Its modularity and extensibility allow integration with other components in ar-
chitectures involving feedback loops and adaptive agents. As presented in this chapter, SHIELD
is positioned as a foundation for future research involving predictive models, real-time simula-

tion, and intelligent processing in IoT systems.

81

5 ONTORACULUM ONTOLOGY

This chapter presents a semantic approach to organizing and analyzing performance metrics
in smart environments. These environments include smart cities, industrial systems, health-
care infrastructures, and sensor-driven platforms. Each relies on the continuous monitoring of
computational, communication, energy, and security metrics to ensure reliable, efficient, and
adaptive operation. As sensor networks become more dynamic and data-intensive, the abil-
ity to interpret performance metrics consistently and respond to variability becomes a central

requirement for system designers and administrators.

Structuring performance-related information is a challenge due to the heterogeneity and in-
terconnected nature of the metrics involved. Traditional monitoring platforms often provide
fragmented views and fail to capture the relationships between system components and their
performance indicators. To address this, ontological models have been proposed as a way
to formalize domain knowledge and support reasoning mechanisms that enhance automated
decision-making. In the context of smart environments, recent studies have applied ontologies
to organize knowledge in domains such as cybersecurity, healthcare, and resource management
(BLOMQVIST et al., 2024; LATEEF HAROON P S et al., 2024; MARI¢; BACH; GUPTA,
2024).

The ontology introduced in this chapter, called OntOraculum, structures performance met-
rics across five domains: Hardware, Network, Software, Energy, and SecurityAndReliability.
Each metric is associated with semantic properties, such as dependencies, impacts, thresholds,
statuses, and trends. These semantic structures enable the integration of rule-based reasoning
and support adaptive responses through predictive and diagnostic queries. For instance, metrics
like CPUUsage and NetworkLatency help identify bottlenecks, guiding automatic reconfigu-
rations in distributed systems (CHAKRABARTI; SADHU; PAL, 2023; KHIATI; DJENOURI,
2018). Similarly, energy-related metrics such as EnergyEfficiency support informed decisions
in industrial and agricultural applications (WANG; FAN; NIE, 2020; IMRAN; IQBAL; KIM,
2022).

OntOraculum also models resilience and security metrics, including ServiceUptime and
AnomalyDetection, which are relevant in environments where uninterrupted operation and rapid
responses to unexpected conditions are required (SHARMA ; SINGH, 2020; FARAJI-MEHMANDAR;
JABBEHDARI; JAVADI, 2022). The inclusion of these metrics in a formal ontology enables
structured reasoning and integration with runtime monitoring tools capable of generating alerts

and adapting system behavior accordingly.

In the Oraculum model, the ontology is not only a static knowledge base but also an active
component in the data preparation pipeline for intelligent monitoring. OntOraculum is lever-
aged to generate the initial datasets that are used to train classification models responsible for
detecting alerts and anomalies. As raw metrics are collected from heterogeneous sources, the

ontology provides semantic annotations—such as thresholds, dependencies, and status—that

82

contextualize each metric instance within its operational environment. Through the application
of rule-based reasoning (e.g., SWRL rules), OntOraculum can automatically classify whether a
given metric value, observed over a specific time window, represents a normal state or an alert
condition.

This semantic classification process enables the automated and consistent labeling of per-
formance data, resulting in high-quality, context-aware datasets. These labeled datasets serve
as the foundation for supervised machine learning models, which subsequently automate the
detection of performance issues and security incidents. By integrating ontological reasoning at
this early stage, the Oraculum model ensures that the initial training data reflects expert knowl-
edge and domain-specific rules, thereby improving the accuracy, reliability, and explainability
of the classification models deployed in smart environments.

The objective of this chapter is to describe the design, implementation, and evaluation of
OntOraculum, focusing on its role in monitoring and analyzing performance indicators. The
chapter details the ontology’s construction process, including scope definition, competency
questions, and classification strategies. It also presents validation steps using semantic rules
(SWRL), SPARQL queries, and description logic reasoning. Finally, it discusses the integration
of the ontology with real-time monitoring platforms to support context-aware decision-making

in smart environments.
5.1 Related Work

A systematic search was conducted across major academic databases, identifying 214 stud-
ies that applied ontologies to performance evaluation and monitoring tasks. The search string
used is presented in Table 13. The databases consulted included IEEE!, ACM?2, Springer3, Sco-
pus*, ScienceDirect’, and MDPI®.

The selection process applied three filtering criteria: peer-reviewed publication, English
language, and explicit focus on the use of ontologies for performance monitoring. Studies
without practical implementation, not involving performance metrics, or classified as duplicates
were excluded. The filtering stage reduced the corpus to 42 publications.

The three-pass reading method proposed by KESHAV (2016) was used to refine the se-
lection. The first pass examined titles and abstracts, the second focused on introduction and
methodology sections, and the third analyzed the full content of the articles. After this process,
eight studies were selected for comparative analysis. Each selected study applies ontology-
based approaches to performance measurement with varying objectives and technical depth.

Table 14 presents a comparative analysis of the selected studies, focusing on six aspects:

'https://ieeexplore.ieee.org/
https://dl.acm.org/
Shttps://link.springer.com/
“https://www.scopus.com/
Shttps://www.sciencedirect.com/
Shttps://www.mdpi.com/

83

Table 13: Definition of the search string for related work on ontology

Key Terms Search Terms

Metrics ("metric*" OR "benchmark")
Performance ("performance” OR "computational efficiency" OR "computational processing")
Ontology ("ontolog*")

Source: Elaborated by the author

the domain addressed, the use of rules, the ability to support inferences, the use of query mech-

anisms, and the presence of evaluation procedures. Each column is described as follows:

Reference: author(s) and publication year of the study;

Scope: domain or application area of the proposed ontology;

Rules: indicates whether the study defines explicit rules for evaluation or monitoring;

Inferences: denotes whether the ontology supports reasoning or inference mechanisms;

* Queries: indicates the use of semantic query languages such as SPARQL;

Evaluation: specifies whether the ontology was validated through experimentation, case

studies, or formal verification.

CORRY et al. (2015) proposed an ontology for evaluating environmental and energy per-
formance in buildings, transforming heterogeneous data into semantically enriched representa-
tions. TRUONG et al. (2005) introduced an ontology for workflow monitoring in Grid envi-
ronments, capturing performance metrics at multiple abstraction levels. BAOCALI et al. (2010)
presented a Quality of Service (QoS) ontology for web service discovery, using semantic anno-
tations to describe non-functional attributes. CAO et al. (2019) developed a service recommen-
dation model for IoT environments based on a QoS ontology, integrating factorization models
and relational topics.

YASEEN et al. (2011) evaluated Oracle semantic technologies using domain-specific rules
to validate application-specific knowledge bases. METWALLY; JARRAY; KARMOUCH (2015)
proposed an ontology for resource allocation in Infrastructure-as-a-Service (IaaS) platforms,
supporting semantic representation of cloud resources and allocation strategies. RZEVSKI;
SKOBELEYV; ZHILYAEV (2022) presented an ontology-based system for emerging intelligence
in digital ecosystems, incorporating autonomous agents to resolve resource conflicts through se-
mantic consensus. DAOUDAGH; MARCHETTI (2023) proposed DAEMON, a domain-based
monitoring ontology for IoT systems, defining a layered semantic architecture for domain-
specific monitoring and alert generation.

SHARMA et al. (2021) introduced an ontology-based framework for remote patient mon-
itoring, semantically representing health-related metrics and integrating them into an IoT ar-

chitecture. ZESHAN et al. (2023a) presented a semantic framework for intelligent healthcare

84

Table 14: Comparison of Related Works
Ref. Scope Inf. Query Evaluation Inf. Time Accuracy Adv. Error
Handling
CORRY Building perfor- Yes Yes Semantic ontol- ~1s 90% (approx.) No
et al. mance ogy for buildings
(2015)
TRUONG Workflow in Grid ~ Yes No Performance N/A N/A No
et al. monitoring
(2005)
BAOCAI Web service dis- No No QoS for service ~500ms 85% precision No
et al. covery selection
(2010)
CAO et al. Service rec. in Yes Yes Factorization + N/A N/A No
(2019) TIoT QoS Ontology
YASEEN Oracle tech eval. Yes Yes Domain rules val- ~ 700ms Qualitative re- No
et al. idation sults
(2011)
METWALLY; IaaS resource al- Yes No Semantic model N/A N/A No
JARRAY; loc. for cloud
KAR-
MOUCH
(2015)
RZEVSKI; Smart ecosys- Yes Yes Agents for re- ~2s Based on agent No
SKO- tems source conflicts outcome
BELEV;
ZHILYAEV
(2022)
DAOUDAGH; IoT monitoring Yes Yes Alert ontology + ~400ms ~92% Partial
MARCHETTI testbed
(2023)
SHARMA IoT health moni- Yes Yes Ontology + NA 95% recall No
et al. tor health rules
(2021)
ZESHAN Healthcare + IoT ~ Yes Yes Evaluation in 890ms 96% precision No
et al. smart health
(2023a)
FERNANDEZ:IoT interoperabil- Yes Yes Interop. + scala- N/A N/A No
SMITH; ity bility in IoT
KUMAR
(2024)
BELANI; ToT + aging care Yes No Requirements N/A N/A No
SOLIC; modeling
PERKOVIC
(2022)
This Work Perf. metrics in Yes Yes SPARQL + 367ms 94% | 100% Yes (Riccati,
smart env. SWRL + CQ Intervals)
validation

Source: Elaborated by the author

monitoring, combining IoT sensing with ontology-based reasoning. FERNANDEZ; SMITH;

KUMAR (2024) proposed a semantic framework to enhance interoperability and scalability in

IoT systems, focusing on ontology reuse, semantic annotation, and SPARQL-based querying.
BELANI; SOLIC; PERKOVIC (2022) explored an ontology-based approach to requirements

engineering in loT-supported domains for aging, well-being, and health.

In comparison, OntOraculum introduced a unified semantic model that integrates perfor-

mance metrics across multiple layers of smart environments. Previous works focused on spe-

cific domains without addressing the interoperability of metrics across heterogeneous systems.

Several studies applied ontologies to enhance recommendation systems or infrastructure re-

85

source allocation in cloud and 10T contexts but did not generalize reasoning across subsystems
or support predictive analysis. Other works included reasoning mechanisms but limited their
evaluation to particular semantic platforms or agent-based scenarios.

Recent contributions extended ontology application to IoT interoperability and healthcare,
demonstrating accuracy in reasoning and alert generation within constrained domains. How-
ever, they did not address cross-domain dependencies between hardware, network, energy, and
software indicators. OntOraculum distinguished itself by offering a coordinated framework that
supports SPARQL querying, SWRL-based inference, metric dependency modeling, and predic-
tive reasoning, validated with real-time metric simulations. It also included advanced error

modeling techniques not found in the other reviewed studies.

5.2 Methodology

According to GRUBER (1995), ontologies explicitly define formal specifications of the
terms within a domain and their relationships, providing machine-readable definitions of funda-
mental concepts (GRUBER, 1995; KHAN et al., 2025b). When structuring a domain through
ontologies, the main objectives include communicating knowledge, establishing a representa-
tive vocabulary, and understanding the semantics of the data in that domain (GRUBER, 1995;
NOY; MCGUINNESS, 2001).

Ontologies organize information hierarchically, with all classes deriving from a root class
called thing. In ontologies that use the Web Ontology Language (OWL), components include
concepts (classes), instances (individuals), properties, and constraints (NOY; MCGUINNESS,
2001). This model defines a semantic data structure that integrates domain-related knowledge
(MUNIR; Sheraz Anjum, 2018).

5.3 Ontology Development Process

This work follows the methodology of NOY; MCGUINNESS (2001) for creating ontolo-

gies. The process consists of the following seven steps:

1. Define the domain, scope and competency questions (CQ): The ontology are on perfor-
mance monitoring in smart environments involving hardware, network, software, energy
and security metrics. It covers organizing these metrics to help with monitoring, optimiz-

ing, and predicting as well.

2. Search for existing ontologies: Reviewing related ontologies ensures alignment with prior

research and identifies gaps that this work addresses.

3. Define and formalize key terms: The literature review provides key terms such as CPU-
Usage, NetworkLatency, and EnergyEfficiency, along with their relationships and im-

pacts.

86

4. Organize and structure the ontology in Protégé: Classes and relationships are defined in

Protégé, with a hierarchical arrangement to represent metric interdependencies.

5. Establish object and data properties: The ontology defines relationships such as depend-
sOn and impacts as object properties, while data properties describe attributes like aver-

age, maxValue, and timestamp.

6. Define restrictions and SWRL rules: Semantic rules and constraints are created using
the Semantic Web Rule Language (SWRL) to identify bottlenecks, predict failures, and

recommend adjustments.

7. Create individuals for validation: Instances are generated to test and validate the ontology,
representing scenarios such as high CPU usage, network latency, and energy efficiency.

These instances support validation through reasoning tasks and SPARQL queries.

This structured approach develops the ontology to facilitate performance monitoring and

optimization in smart environments.

5.3.1 Domain Definition

This ontology focuses on performance monitoring in smart environments, including smart
cities, connected buildings, and sensor networks. It analyzes metrics related to system effi-
ciency, network resilience, energy consumption, latency, security, application availability, and
anomaly detection. The objective is to support the analysis and adjustment of distributed and

heterogeneous systems.

5.3.2 Scope Definition

The ontology covers metrics at multiple levels of abstraction, allowing the evaluation of both
high-level indicators and detailed measurements. Performance metrics fall into the following

categories:

* Hardware: Metrics for CPU, GPU, memory, storage, and sensor usage.

Network: Metrics for latency, bandwidth and resilience.

Software: Metrics for response time, application availability and anomaly detection.

* Energy: Metrics for energy consumption and efficiency.

Security and Reliability: Metrics for intrusion detection, error rates, and system vulnera-

bilities.

87

5.3.3 Competency Questions

Competency Questions (CQs) formulate the scope of the ontology, as well as verify its
applicability and evaluate how well it applies domain aspects. These questions help identify
performance monitoring points in smart environments, including issues such as resource effi-
ciency and identification of critical problems. CQs also justify the purpose of the ontology and
evaluate its relevance in practical contexts (NOY; MCGUINNESS, 2001).

In the ontology domain, these metrics are related to network latency, resource utilization,
energy efficiency, security, and system stability. CQs emulate real-world problems in smart
cities, sensor networks, connected industries, and automated living spaces. These questions
summarize the issues the ontology seeks to solve to classify and structure information that aids
rational action.

These CQs are used to define the fundamental questions that the ontology needs to address:

e CQIl: What is the current impact of network latency on the quality of service (QoS) of
critical applications?

* CQ2: Does the system exhibit high resilience based on uptime rates and network stability?

* CQ3: Which CPU, memory, and throughput utilization metrics contribute to system in-
stability?

* CQ4: What is the system’s average energy efficiency based on transaction consumption

and main devices?

* CQS5: What is the rate of detected intrusion attempts, and how does it affect overall system
stability?

* CQO6: What is the forecast for CPU usage in the coming periods, and how does it impact

expected performance?

* CQ7: Are there patterns in critical metrics, such as cache miss rate or throughput, indi-

cating potential future failures?

* CQ8: Which metrics are most related to drops in quality of service (QoS) or system

failures?
* CQ9: Changes in which network metrics directly impact system recovery and resilience?

* CQI0: Is there any ongoing service degradation caused by congestion or high resource

utilization?

Each CQ focuses on a specific domain aspect and helps infer insights from monitored met-
rics. For instance, CQ1 and CQ9 address real-time dependencies in network latency, while CQ4

focuses on energy efficiency in smart environments.

88

CQs validate the ontology by determining whether the defined classes, properties, and rela-
tionships can effectively answer these questions. Additionally, these questions guide modeling
decisions, ensuring the structured representation of monitored metrics for analysis and decision-
making.

The use of CQs aligns with established ontology development methodologies, such as the
approach by GRUNINGER; FOX (1995), which emphasizes defining questions that clarify an
ontology’s capabilities and limitations. Addressing the CQs ensures the ontology supports the

monitoring and analysis of smart environments, improving system reliability and adaptability.

5.3.4 Key Terms in the Ontology

Um mapeamento sistemdtico estruturou os conceitos relacionados ao monitoramento de
desempenho. Esse processo identificou e categorizou métricas nos principais dominios de ob-
servabilidade. Técnicas de mapeamento conceitual orientaram a organizacdo desses termos,
ilustrando as relagdes entre conceitos dentro de um dominio (METWALLY; JARRAY; KAR-
MOUCH, 2015).

A Figura 16 apresenta um mapa conceitual que descreve as relacdes entre métricas mon-
itoradas em ambientes inteligentes. Este mapa foi criado usando a ferramenta Whimsical’,
contendo 72 classes e suas relacdes. O mapa organiza métricas em cinco categorias principais:
hardware, software, rede, energia e seguranca, cada uma subdividida em métricas especificas

para monitoramento e andlise de desempenho.

Figure 16 shows a hierarchical organization that structures performance metrics into in-
creasingly specific levels. For example, the Hardware category includes subcategories such as
CPU Usage, Memory, and Sensors, while the Network category shows metrics such as Latency,
Congestion, and Bandwidth. This data structuring allows for insights into how metrics influence
system performance (MUNIR; Sheraz Anjum, 2018).

The concept map also represents the relationships between metrics, graphically presented
by arrows and nodes. These relationships address direct and indirect dependencies, such as the
influence of CPU Usage on energy consumption and network latency, for example. This type of
mapping illuminates connections that other structured approaches may overlook. For example,
the category Energy interacts with Hardware and Network, illustrating how variations in energy

consumption influence architecture metrics (GRUBER, 1995).

An iterative process of literature review, concept mapping, and validation with values gener-
ated by the simulator NOETZOLD, 2024) refined the definition of terms and their relationships.
This approach ensures that the ontology captures the metrics needed to monitor smart environ-
ments, forming a structured basis for subsequent analysis and inferences (NOY; MCGUIN-
NESS, 2001).

https://whimsical.com

89

pueys

So0

3J1A195304A1END

—_—

Angeis

T Fe—"

1

1

0} Sa)NqLIJU0d

vis

H A

0} s2)Nq11JU0d

_

0} s3)NqLIJU0d

-

sasealdap—— | AouajeliomiaN

Joyine 9y} £q pareIoqe[d :92Ino§

SaInsua

umoq

Sadnpaus

u
ondwnsu
0)J4amod

I

Kouay
JETGIETE]

]

Kduaidyyye A6Iaua sainsua

awijuonaa)
10)9beqieg

{

7

ajey.ay
suesjejeq

3jeyuoissi
wisuejayiayIed

oednid

2oUBIISAYNIOMIBN

uonsabuo)

Aq painseaw s

1
NIOMIBN dsajipjiomiaN
t

{ !

21mxaLnd9

a1y

SId)

ERTEITRLINER |

1

)

_

sasealaul

_ —

t

paadsAiowapy

u
ondwnsu
0)Ab1auz

J

ayn
Kiayeg

esuel]1ada
BesnJamod

uond

~—uo

spuadap——

ABisuz

s.lojluol

alemyos

ind
ybnouayy

eybuissalro
adisanbay

i [

o

19)2ed

nd1dxidnd9

salo

nd9

!
niqejieAyu
onesnddy

Ke)
agbuis
s3%01d

v

|]

awjjas
uodsay

J

L

asuo
dsaypuy

w
Aq painseauw s|

uo spuadap

Kousjeq

uo spuadap

s1

J2AVYNd9

u
noja103ndo

abesn
Kiowapnndo

~—| abesnndo

——| 91eYYIUMSIX3U0)

spedw

LB

4 Aq pa.

0} S3]NqIIJU0I»

7

ERITNET

awndn

aAnebanasieq

\

ey

Aingensyp

uyAjndes

paadsajumpeayisia

[

[

]
[

1

1

)

ajeyaA
nisodasies

sajeyuoidalag

uoijrlaghiewouy

ajey

uoirR)agaIeMiEN

sjdwaylyuoisnajuj

Buriojiuop
607A)14n29g

sejeyto3 | | apesnysig

ﬂ asempiey [——|

spedw
|

|

(38—

s1eyIHAY2e)

ETY]
asayAiowappabed

EJNELEH]
KiowappabequoN

ajeyssiwayae)

2109134
ainmesadwa)ngd

3sN3Y2e3£INdI

2s513Y2e3Z1Nd9

asnay2e)LIndd

swilyemndd

pu0dagia
dsuonansuindd

— abesnndd

N—

*SJUQUIUOIIAUD JIBUIS
3uLIojruoW J0J pasn soLOW JO SaL10391ed Arewtid oY) SurroA0d ‘sdigsuone[ar J1ay) pue sasse[d g/ yim A3o[ojuo oy} jo dewr ;emydaouo)) :9] 2in31g

90

5.3.5 Defining Classes and Hierarchy

The process of defining classes and hierarchy followed an iterative approach, using the
previously listed terms and the structure shown in Figure 17. Each class appears in singular
form, aligning with best practices for ontologies, where each concept describes one or more
instances.

In OWL notation, the owl:Thing class serves as the root of the hierarchy and provides the
foundation for all other classes (DJURIC; GASEVIC; DEVEDZIC, 2005). The class hierar-
chy relies on inheritance, where subclasses inherit information from their parent classes while
adding specific characteristics. This structure organizes concepts related to performance metrics
in smart environments in a detailed manner.

The ontology was modeled using Protégé software (version 5.5.0) to define classes and
properties (MUSEN, 2015b). Figure 17 illustrates the class hierarchy, structured into main cat-
egories and subclasses. The following sections outline the primary classes and their respective

descriptions:

* Metric: Represents the central concept of the ontology, related to monitored performance
metrics. Includes subclasses such as Hardware, Network, Software, Energy, SLA, and

SecurityAndReliability, each with specific metrics.

* Hardware: Encompasses metrics related to physical components, including CPU, GPU,
Memory, Storage, and Sensors. Subclasses detail metrics like CPUUsage, GPUMemo-
ryUsage, and CacheHitRate.

* Network: Includes communication metrics such as NetworkLatency, DataTransferRate,

and PacketLoss, essential for assessing network resilience and quality.

» Software: Covers application performance metrics, such as LatencyAndResponseTime,

Throughput, and GarbageCollectionTime.

* Energy: Represents energy efficiency metrics, including EnergyEfficiency, PowerCon-

sumption, and BatteryLife.

* SLA: Defines metrics associated with service level agreements, such as Availability, Re-
silience, and Stability.

» SecurityAndReliability: Includes metrics for security and reliability, such as IntrusionAt-

tempts, MalwareDetectionRate, and ServiceUptime.

Figure 17 presents the hierarchy that organizes the relationships between various concepts,
supporting analysis, inference, and reuse in different contexts. The structure of each class and
subclass captures key aspects of performance monitoring, following best practices in ontology

modeling.

91

Figure 17: Class hierarchy of the ontology.

MemorySpeed
= - T
\ab\\rly ngRate

DataTransferRat NetworkResilien

LatencyAndRespo PerformanceKPls e ce

nseTime s
GarbageCollecti Backetlocs H Congestion]

ProcessingDela; onTime r 2 =
5 ssionRate

Dete:nonRatgs

- PowerUsagePerTr
[@ Networktifespan | ansaction

| | NN
Fa\mNegalweRa [EnergyEfficienc } [Energyt:ansumpn l
«';‘
Pmrconsummm
o NetworkLatency

| e

FalsoPosiiveRa et A L

te .

e —— .

toring SecurityAndReli e Stability

o abmty T
MalwareDetectio |~ =
nRate SLAandQoS
ImmslonAﬂemp / ServiceUptime "" owl:Thing
AmmalyDetcho | R e
— (S
CPUL2CacheUsage

ensorl N

¥ ‘\ CPUTemperature P

g e erCore
DiskUsage & CPULSCacheUsage

J CPUInstructions i
I MemcryUsage ,‘ P —— [CPUWaitTime
ate

PagedMemo ryRese

GPUCereCount
ContextSwitchRa GPUAGctiveCores
te \

GPUPixelFilRat |,
Cooehias) _—
NonPagedMemovyR GPUMemoryUsage
eserve

Source: Elaborated by the author

5.3.6 Defining Relationships and Class Properties

The ontology establishes relationships and class properties to structure interactions and at-
tributes of each concept, as shown in Figures 18. Figure 18 displays the class hierarchy, struc-
tured from the root class owl:Thing, with object properties in blue (relationships) and data
properties in green (attributes). These elements were defined using OWL in Protégé (MUSEN,
2015a).

Figure 18 outlines object properties such as dependsOn, impacts, and enhances, which de-
scribe dependencies, influences, and optimizations among concepts. Data properties define
attributes like average, max_value, and timestamp, supporting quantitative and qualitative anal-
yses.

The inheritance model allows subclasses to retain parent class characteristics while incor-
porating specific properties. Relationships such as dependsOn connect metrics like CPU us-

age and energy consumption, while impacts and enhances describe influence and efficiency

Figure 18: Relationships between classes and domain-range properties.

Arc Types

v = contributesTo (Domain>Range) v = dependsOn(Subclass some)

v/ = has individual

92

® ster | @ Congeston

® DataTransferRat
e

v — decreases (Domain>Range) v — enhances(Subclass some)

v —— ensures (Domain>Range)

v/ = has subclass

v —— impacts (Domain>Range)

[I

[v = contributesTo(Subclass some) ‘ ‘ v = enhances (Domain>Range)
[Il
‘ v = decreases(Subclass some) ‘ [
\ Ll

v dependsOn (Domain>Range) v = ensures(Subclass some)

Source: Elaborated by the author

v = impacts(Subclass some)

v = increases (Domain>Range)

v = increases(Subclass some) ‘ ‘ v = monitors(Subclass some) ‘
v = influences (Domain>Range) ‘ ‘ v = optimizes (Domain>Range) ‘
v — (D "3,‘ ‘v— imi some) ‘
v = isMeasuredBy(Subclass some) ‘ [v reduces (Domain>Range) ‘
v = monitors (Domain>Range) ‘ ‘ v = reduces(Subclass some) ‘

93

improvements. These relationships support advanced queries and inferences, assisting in the

evaluation of metrics in smart environments.

5.3.7 Define Semantic Rules

The literature discusses the use of semantic rules as an approach to enable additional in-
ferences from data structured in ontologies, enhancing analysis and modeling capabilities in
systems (HORROCKS et al., 2004; O’CONNOR; DAS, 2005). This work defines rules using
the Semantic Web Rule Language (SWRL), which extends OWL’s capabilities by incorporating
first-order logic and enabling conditional implications in the format "if A, then B." Tables 15,
16, 17, and 18 categorize the defined rules into resource optimization, quality of service, energy

efficiency, and security with anomaly detection.

The resource optimization category, shown in Table 15, includes rules that identify scenarios
of high component utilization, such as CPU, memory, and GPU usage, as well as bottlenecks
in disk I/O and network latency. For instance, the Resource_HighCPUUsage rule identifies
situations where CPU usage exceeds 80%, while Resource_StableUsage infers conditions of
balanced CPU and memory usage. These rules anticipate issues and guide dynamic adjustments,

which play a critical role in systems operating under high load (MUSEN, 2015a).

Table 16 describes rules related to Quality of Service (QoS) that monitor the impact of
variables such as network latency, congestion, and response time in distributed applications. For
example, the QoS_NetworkCongestion rule identifies QoS degradation caused by high latency
and congestion, while QoS_Optimal evaluates scenarios where performance metrics remain

within acceptable parameters.

Table 17 presents rules for energy efficiency that identify critical energy consumption pat-
terns and promote optimized scenarios. The Energy_Critical Consumption rule detects high
energy consumption conditions, while Energy_EfficientScenario evaluates high-efficiency sce-
narios based on the correlation between consumption and uptime. This approach plays a sig-
nificant role in sensor networks and autonomous systems operating under energy constraints
(O’CONNOR; DAS, 2005).

Table 18 describes the rules for the detection of security and anomalies, designed to identify
vulnerabilities and adverse conditions. The Security_HighErrorRate rule identifies scenarios
with high error rates, while Security_Accurate Detection evaluates the reliability of event de-
tection with low false-positive rates. Horrocks et al. (HORROCKS et al., 2004) emphasize the

importance of these rules in building resilient and reliable systems.

This work implements all rules using Protégé version 5.5.0, which supports SWRL expres-
sions integrated with OWL ontologies (MUSEN, 2015a). The structure of these rules integrates
information from various dimensions, enabling inferences that assist in managing intelligent

systems, particularly in identifying anomalies and optimizing resources.

94

Table 15: SWRL Rules for Resource Optimization

Rule Name SWRL Expression

Resource_HighCPUUsage CPUUsage(?cpu) A hasValue(?cpu, Tvall) A
swrlb:greaterThan(?vall, 80) — HighResourceUsage(?cpu)

Resource_LowMemory MemoryUsage(?mem) A hasValue(?mem, ?vall) A
swrlb:lessThan(?vall, 30) — LowMemoryScenario(?mem)

Resource_OverloadedGPU GPUUsage(?gpu) A hasValue(?gpu, ?vall) A
swrlb:greaterThan(?vall, 85) — OverloadedGPU(?gpu)

Resource_CriticalDiskIO DiskReadWriteSpeed(?drws) A hasValue(?drws, ?vall) A

swrlb:lessThan(?vall, 10) — CriticalDiskPerformance(?drws)

Resource_StableUsage CPUUsage(?cpu) A hasValue(?cpu, ?vall) A
swrlb:lessThan(?vall, 50) A MemoryUsage(?mem) A has-
Value(?mem, ?val2) A swrlb:lessThan(?val2, 60) — StableRe-
sourceUsage(?cpu)

Resource_UnbalancedNetwork NetworkLatency(?lat) A hasValue(?lat, ?vall) A
swrlb:greaterThan(?vall, 150) A PacketLoss(?pl) A hasValue(?pl,
?val2) A swrlb:greaterThan(?val2, 10) — UnbalancedNet-
work(?lat)

Resource_HighEnergyConsumption =~ PowerConsumption(?pc) A hasValue(?pc, ?vall) A
swrlb:greaterThan(?vall, 200) — HighEnergyUsage(?pc)

Resource_InefficientEnergyUsage EnergyEfficiency(?ee) A hasValue(?ee, Ivall) A
swrlb:lessThan(?vall, 70) — InefficientEnergy(?ee)

Resource_CongestedNetwork Congestion(?cong) A hasValue(?cong, ?vall) A
swrlb:greaterThan(?vall, 50) — NetworkCongestion(?cong)

Resource_CriticalPerformance CPUUsage(?cpu) A hasValue(?cpu, Tvall) A
swrlb:greaterThan(?vall, 90) A MemoryUsage(?mem) A has-
Value(?mem, ?val2) A swrlb:greaterThan(?val2, 80) — Criti-
calPerformance(?cpu)

Resource_LowDiskReadSpeed DiskReadWriteSpeed(?drws) A hasValue(?drws, ?vall) A
swrlb:lessThan(?vall, 15) — CriticalDiskPerformance(?drws)

Resource_UnderutilizedMemory MemoryUsage(?mem) A hasValue(?mem, ?vall) A
swrlb:lessThan(?vall, 20) — LowMemoryScenario(?mem)

Source: Elaborated by the author

5.3.8 Instance Creation

To validate the developed ontology, this work creates instances for the classes and met-
rics defined in the ontology. These instances address scenarios such as energy consumption,
resource utilization, service performance, quality of service (QoS) metrics, and anomaly detec-
tion. The instances represent real-world scenarios within the knowledge model and derive from
the semantic rules developed.

The data for creating these instances comes from a simulator for a sensor data management
system. This simulator, available in a public repository on GitHub?®, generates simulated metrics
that mirror realistic operational scenarios of intelligent systems. The use of simulator generates
varied and consistent data, ensuring the created instances represent the proposed domain and
validating them within the ontology (NOETZOLD, 2024).

Table 19 presents the ontology metrics extracted from Protégé, including the number of

axioms, classes, data properties, object properties, and individuals created. These values indi-

8https://github.com/DarlanNoetzold/SensorSimulator

95

Table 16: SWRL Rules for Quality of Service (QoS)

Rule Name SWRL Expression

QoS_HighCPUImpact CPUUsage(?cpu) A hasValue(?cpu, Tvall) A
swrlb:greaterThan(?vall, 80) — HighImpactQoS(?cpu)

QoS_NetworkCongestion NetworkLatency(?lat) N hasValue(?lat, ?vall) A
swrlb:greaterThan(?vall, 150) A Congestion(?cong) A has-
Value(?cong, ?val2) — DegradedQoS(?lat)

QoS_Optimal CPUUsage(?cpu) A hasValue(?cpu, ?vall) A
swrlb:lessThan(?vall, 50) — OptimalQoS(?cpu)

QoS_HighMemoryImpact MemoryUsage(?mem) A hasValue(?mem, Ivall) A
swrlb:greaterThan(?vall, 90) — HighImpactQoS(?mem)

QoS_DiskPerformanceDegraded DiskReadWriteSpeed(?drws) A hasValue(?drws, ?vall) A
swrlb:lessThan(?vall, 20) — DegradedQoS(?drws)

QoS_UnstableThroughput Throughput(?tp) A hasValue(?tp, ?vall) A swrlb:lessThan(?vall,
100) — UnstableQoS(?tp)

QoS_ReliableApplication ApplicationAvailability(?aa) A hasValue(?aa, ?vall) A
swrlb:greaterThan(?vall, 95) — ReliableQoS(?aa)

QoS_ResponseTimeCritical ResponseTime(?rt) A hasValue(rt, ?vall) A
swrlb:greaterThan(?vall, 200) — CriticalQoS(?rt)

QoS_ApplicationDowntime Downtime(?dt) A hasValue(?dt, ?vall) A swrlb:greaterThan(?vall,
60) — ApplicationDowntimeImpact(?dt)

QoS_ServiceDegradation ServiceUptime(?uptime) A hasValue(?uptime, ?vall) A
swrlb:lessThan(?vall, 95) — ServiceDegradation(?uptime)

QoS_CriticalNetworkPerformance ~ NetworkLatency(?lat) A hasValue(?lat, ?vall) A
swrlb:greaterThan(?vall, 200) — CriticalQoS(?lat)

Source: Elaborated by the author

cate the ontology’s complexity and its capability to represent diverse scenarios. The following
examples highlight some of the instances created:

* high_cpu_instance: Associated with the CPUUsage class, with a value of 85% in per-
centage, indicating high CPU usage and triggering an alert for excessive resource con-

sumption.

* low_memory_instance: Linked to the MemoryUsage class, with a value of 25% in per-

centage, indicating low available memory and activating a critical memory scenario.

* unbalanced_network_instance: Related to the NetworkLatency class, with a value of

160ms, indicating elevated network latency, which triggers a rule for load balancing.

* high_energy_usage_instance: Connected to the PowerConsumption class, with consump-

tion exceeding 200W, identifying a scenario of high energy usage.

Additionally, numerous other instances were created to represent different scenarios for
monitoring and intervention in intelligent systems. However, including all instances in the
text would make the article extensive and less concise. Therefore, only a few representative
examples are highlighted. Table 19 illustrates the main ontology metrics, emphasizing its scope

and applicability in the studied domain.

Table 17: SWRL Rules for Energy Optimization

Rule Name

SWRL Expression

Energy_Critical Consumption

Energy_EfficientScenario

Energy_LowBatteryImpact

Energy_HighSensorConsumption

Energy_BalancedScenario

Energy_OverloadedDevices

Energy_OptimalPerformance

Energy_Resourcelntensive

Energy_CriticalUptimeImpact

Energy_DegradationScenario

Energy_PowerSurgeDetected

PowerConsumption(?pc) A hasValue(?pc, vall) A
swrlb:greaterThan(?vall, 200) — CriticalEnergyConsump-
tion(?pc)

EnergyEfficiency(?ee) A hasValue(?ee, ?vall) A
swrlb:greaterThan(?vall, 90) — OptimalEnergyUsage(?ee)

BatteryLife(?bl) A hasValue(?bl, ?vall) A swrlb:lessThan(?vall,
20) — CriticalBatteryScenario(?bl)

SensorData(?sd) A hasValue(?sd, ?vall) A PowerConsump-
tion(?pc) A hasValue(?pc, ?val2) A swrlb:greaterThan(?val2, 150)
— HighSensorEnergy(?sd)

PowerConsumption(?pc) A hasValue(7pc, ?vall) A
swrlb:lessThan(?vall, 100) A EnergyEfficiency(?ee) A has-
Value(?ee, ?val2) A swrlb:greaterThan(?val2, 80) — BalancedEn-
ergyUsage(?pc)

PowerConsumption(?pc) A hasValue(?pc, ?vall) A
swrlb:greaterThan(?vall, 120) — OverloadedDevices(?pc)

EnergyEfficiency(?ee) A hasValue(?ee, ?vall) A
swrlb:greaterThan(?vall, 95) A ServiceUptime(?uptime) A
hasValue(?uptime, ?val2) A swrlb:greaterThan(?val2, 99) —
HighPerformanceEnergy(?ee)

PowerUsagePerTransaction(?put) A hasValue(?put, ?vall) A
swrlb:greaterThan(?vall, 70) — ResourcelntensiveEnergy(?put)

Downtime(?dt) A hasValue(?dt, ?vall) A swrlb:greaterThan(?vall,
30) — EnergyCriticalUptimelmpact(?dt)

EnergyEfficiency(?ee) A hasValue(?ee, ?vall) A
swrlb:lessThan(?vall, 60) — DegradedEnergyUsage(?ee)

PowerConsumption(?pc) A hasValue(?pc, ?vall) A
swrlb:greaterThan(?vall, 300) — CriticalEnergyConsump-
tion(?pc)

Source: Elaborated by the author

5.4 Evaluation

96

GANGEMI LEHMANN (2006) highlight the importance of evaluating both structure and

content to ensure the quality of an ontology. The evaluation process applies verification, which

examines the semantic and logical construction of the ontology to ensure definitions are non-

redundant, relationships remain consistent, and restrictive errors do not occur, and validation,

which assesses the alignment between the formal model and real-world scenarios to confirm

that the ontology meets its intended purpose. A simulator was developed to evaluate the ontol-

ogy, generating individuals that represent different scenarios and metrics covered by the model

(NOETZOLD, 2024).

5.41 \Verification

The Pellet reasoner in Protégé analyzed logical structures, properties and rules. This process

included evaluating the class hierarchy, object property hierarchy, data property hierarchy, class

97

Table 18: SWRL Rules for Security and Anomaly Detection

Rule Name SWRL Expression

Security_HighErrorRate ErrorRates(?er) A hasValue(?er, ?vall) A swrlb:greaterThan(?vall,
25) — HighErrorRateScenario(?er)

Security_Potentiallntrusion IntrusionAttempts(?ia) A hasValue(?ia, 7vall) A
swrlb:greaterThan(?vall, 10) — PotentialIntrusionScenario(?ia)

Security_MalwareDetected MalwareDetectionRate(?mdr) A hasValue(?mdr, ?vall) A
swrlb:greaterThan(?vall, 5) — MalwareDetected(?mdr)

Security_FrequentFalsePositives ~ FalsePositiveRate(?fp) A hasValue(?fp, ?vall) A
swrlb:greaterThan(?vall, 10) — FrequentFalsePositives(?fp)

Security_AccurateDetection DetectionRates(?dr) A hasValue(?dr, ?vall) A
swrlb:greaterThan(?vall, 95) A FalsePositiveRate(?fp) A
hasValue(?fp, ?val2) A swrlb:lessThan(?val2, 5) — Accurat-
eDetectionScenario(?dr)

Security_ServiceDowntime ServiceUptime(?uptime) A hasValue(?uptime, ?vall) A
swrlb:lessThan(?vall, 95) — UnstableServiceScenario(?uptime)

Security_AnomalyDetected AnomalyDetection(?ad) A hasValue(?ad, ?vall) — AnomalyDe-
tectedAt(?ad)

Security_QoSSecuritylmpact QualityOfService(?qos) A hasValue(?qos, vall) A
swrlb:greaterThan(?vall, 90) — HighQoSSecurity(?qos)

Security_HighDowntime Downtime(?dt) A hasValue(?dt, ?vall) A swrlb:greaterThan(?vall,
60) — HighDowntimeScenario(?dt)

Security_CompromisedSecurity IntrusionAttempts(?ia) A hasValue(?ia, ?vall) A
swrlb:greaterThan(?vall, 10) A MalwareDetectionRate(?mdr)
A hasValue(?mdr, ?val2) A swrlb:greaterThan(?val2, 5) — Com-
promisedSecurity(?ia)

Security_AnomalyTimeCheck AnomalyDetection(?ad) A timestamp(?ad, ?t) — AnomalyDe-
tectedAt(?ad, ?t)

Source: Elaborated by the author

Table 19: Summary of Axiom Counts and Properties

Description Count
Axiom 2.186
Logical axiom count 1.894
Declaration axioms count 292
Class count 111
Object property count 12
Data property count 11
Individual count 159
Annotation Property count 3

Source: Elaborated by the author

assertions and object property assertions. Figure 19 shows the log generated during all this
process, detailing the evaluated class, property, and assertion hierarchies. The total processing
time was 367 ms, showing the structural consistency of the model without logical errors.
Beyond structural verification, the reasoner inferred relationships and classifications of in-
stances, providing a deeper analysis of anomaly_detected_instance, shown in Figure 20. This

instance depends on metrics such as high_error_rate _instance, which directly influence its

98

Figure 19: Log of the Pellet plugin during reasoning tasks.

Source: Elaborated by the author

classification as an anomaly. The reasoner identified its impact on metrics like QualityOfService
(QoS), linking anomalies to measurable service degradation. Additional properties describe this
instance, including its timestamp ("2024-11-30T12:00:00Z"), which records when the anomaly
occurred, and a description that characterizes its behavior ("An anomaly with critical impacts
on system reliability"). These attributes provide contextual information for operational moni-
toring.

The explanation panel (highlighted as 1 in Figure 20) shows how the reasoner classified
anomaly_detected_instance as AnomalyDetectedAt. It used logical conditions, such as the in-
stance type (AnomalyDetection) and its dependency on critical_battery_instance, to establish
context. Semantic rules correlated anomaly metrics (ErrorRates) and temporal information to
classify the instance accurately. This logical chain illustrates how the ontology links related
metrics, such as anomalies and QoS impacts, using well-defined rules and structured data.

These relationships and justifications highlight the ontology’s role in defining connections
between critical metrics, supporting inferences that guide anomaly detection and resolution
strategies. By analyzing dependencies like high_error_rate_instance and evaluating their broader
impacts, the reasoner enhances decision-making for maintaining system performance and reli-
ability.

In addition to verifying the ontology’s structure, the reasoner inferred relationships and
classified instances, analyzing the anomaly_detected_instance, as shown in Figure 20. This in-
stance depends on metrics such as high_error_rate _instance, which influence its classification
as an anomaly. The reasoner determined its impact on QualityOfService (QoS), linking anoma-
lies to measurable service degradation. The instance includes key properties such as timestamp
("2024-11-30T12:00:00Z"), which records when the anomaly occurred, and a description de-
tailing its behavior ("An anomaly with critical impacts on system reliability"). These attributes
provide essential contextual information for operational monitoring.

Similarly, the analysis of security_breach_instance identified its dependencies, properties,
and impact, as shown in Figure 21. This instance plays a role in detecting security failures
and links directly to metrics such as ErrorRates and the SecurityAndReliability domain. The
explanation panel (highlighted as 1 in Figure 21) shows how the reasoner classified secu-
rity_breach_instance as AnomalyDetectedAt. This classification results from logical relation-

ships defined in the ontology, such as its association with degraded_energy_usage_instance, its

99

Figure 20: Inference process for the instance anomaly_detected_instance.

*» sonotatons
. accurate_detection_instance
@ balanced_energy_instance
. compromised_security_instance
. critical_battery_instance
. degraded_energy_usage_instance
@ extreme_power_instance
@ frequent_false_positives_instance
. high_error_rate_instance
. high_performance_energy_instance
@ inefficient_energy_usage_instance
@ intrusion_high_instance
low_performance_energy_instance
@ malware_detected_instance Types Object propert
. security_breach_instance AnomalyDetection B dependsOn high_error_ra
. service_degradation_instance dependsOn some Software
description Data property assertions
ensures some QualityOfService B timestamp “2024-11-30T1
impacts some ErrorRates B description "An anomaly v
isMeasuredBy some Sensors
Metric Negative object property assertions
SecurityAndReliability
timestamp legative data property assertions
@ AnomalyDetectedAt 2@

instance Type AnomalyDetectedAt

® Show regular ficati All justi

Show laconic justificati ® Limit fications to
1
¢ Explanation 1 Display laconic explanation
H Explanation for: anomaly_detected_instance Type AnomalyDetectedAt
anomaly_detected_instance Type AnomalyDetection ALL
critical_battery_instance Type value NO
AnomalyDetection(?ad), value(?val) -~ AnomalyDetectedAt(?ad) ALL

OK

Source: Elaborated by the author

classification as AnomalyDetection, and the semantic rule that connects anomaly detection with
security and reliability domains.

This analysis demonstrates how the reasoner applies ontology-defined rules and structured
data to establish relationships and dependencies relevant to security assessments. By linking the
instance to critical metrics such as ErrorRates and associating it with the SecurityAndReliability
domain, the ontology provides a structured view of system vulnerabilities and guides mitigation
strategies.

Figure 22 illustrates how the accurate_detection_instance contributes to system accuracy.
This instance connects to sensors and tools that assist in anomaly detection, ensuring contin-
uous monitoring of ErrorRates. The reasoning process confirmed the ontology’s consistency
and validated the model’s application context, ensuring the correct use of established rules and
relationships.

Each numbered explanation corresponds to the highlighted numbers in Figure 22:

1. Association with Sensors (1): The accurate_detection _instance links to sensors that mea-
sure and monitor its behavior. This connection ensures its performance remains quantifi-

able and trackable.

100

Figure 21: Inference process for the instance security_breach_instance.

@ malware_detected_instance

security_breach_instance AnomalyDetection B dependsOn service_deg

0 service_degradation_instance dependsOn some Software
description Data property assertions
ensures some QualityOfService B description "Security bre
impacts some ErrorRates W timestamp "2024-12-011

isMeasuredBy some Sensors
Metric Negative object property assertions

AnomalyDetectedAt
X |
® Show regular justifi 1S All justifi
¢ Show laconic justifications ® Limit justifications to
1
i Explanation 1 Display lacenic explanation
stion for: security_breach_instance Type AnomalyDetectedAt
security_breach_instance Type AnomalyDetection ALL
AnomalyDetection(?ad), value(?val) -~ AnomalyDetectedAt(?ad) ALL
degraded_energy_usage_instance Type value NO
OK

Source: Elaborated by the author

2. Quality of Service (2): The inference identifies that the accurate_detection_instance con-
tributes to QualityOfService. This connection highlights its role in maintaining or im-

proving system service quality.

3. Impact on Error Rates (3): The accurate_detection _instance influences ErrorRates, con-
tributing to error reduction or mitigation. This metric is essential for evaluating system

accuracy and reliability.

5.4.2 Validation

The ontology underwent validation using SPARQL queries, the W3C-recommended query
language for RDF data (PéREZ; ARENAS; GUTIERREZ, 2009). This process assessed its
ability to address the defined domain. The Competency Questions from Section 3.3 provided
the basis for verifying the ontology’s completeness.

The SPARQL query results, summarized in Figures 23, 24, and 25, highlight relationships
between metrics and their influence on system performance.

Figure 23 presents the results for CQs 1, 2, and 3. CQ1 examines the relationship between
network latency and quality of service (QoS), showing that higher latency reduces QoS lev-
els. CQ2 explores service uptime and stability, indicating that uptime contributes to stability,
but other factors also play a role. CQ3 analyzes CPU usage, memory usage, and throughput,
revealing a stable throughput despite variations in memory values.

Figure 24 displays results for CQs 4, 5, and 6. CQ4 investigates energy efficiency and power

consumption per transaction, distinguishing between critical and optimal energy scenarios. CQS5

Figure 22: Inference process for the accurate_detection_instance.

Active ontology x Entities x Individuals by class x DL Query x Individual Hierarchy Tab x OntoGraf x SWRL:

Annotation properties Datatypes Individuals = 4 accurate_detection_instance — hitp //example org/ultimate_p:

Classes Object properties Data properties Annotations |Usage

Individuals: accurate_detection_inst[]5 ®) [Annotations: accurate_detection_instance

* X

Annatations @

accurate_detection_instance.

@ anomaly_detected_instance

@ balanced_energy_instance

@ compromised_security_instance
@ critical_battery_instance

@ degraded_energy_usage_instance
@ extreme_power_instance

@ trequent_false_positives_instance
@ high_error_rate_instance

@ high_performance_energy_instance
@ inefficient_energy_usage_instance
@ intrusion_high_instance

@ low_performance_energy_instance
@ malware_detected_instance

@ security_breach_instance

@ service_degradation_instance

@

Description: accurate_detection_instance

average
dependsOn some Software
DetectionRates
ensures some QualityOfService
impacts some ErrorRates

@ isMeasuredBy some Sensors

% Explanation f tection_instance Type e

® Show regular justifications Al justifications
Show laconic justifications Limit justifications to

Explanation 1 Display laconic explanation

accurate_detection_instance Type ensures some QualityOfService

Explanation 2 Display laconic explanstion
accurate_detection_instance Type DetectionRates
DetectionRates SubClassOf ensures some QualityOfService

Explanation 3 Display laconic explanstion
tion te_detection_instar sures some QualtyOf

accurate_detection_instance Type SecurityAndReliability
SecurityAndReliability SubClassOf ensures some QualityOfService

Explanation 4 Display laconic explanation
ation e_dete -
SubClassOf
SecurityAndReliability SubClassOf ensures some QualityOfService
accurate_detection_instance Type DetectionRates

Explanation 1 Display laconic explanation
Explanation f Urate_detection_instance Type isMeasureds

accurate_detection_instance Type isMeasuredBy some Sensors

Explanation 2 Display laconic explanation

Explanation for: accurate_detection_instance Type isMeasured
accurate_detection_instance Type DetectionRates
DetectionRates SubClassOf isMeasuredBy some Sensors

Explanation 3 Display laconic explanstion

y tection_instance Type isMeasureds
accurate_detection_instance Type SecurityAndReliability
SubClassOf some Sensors

Explanation 4 Display laconic explanation

ince Type isMeasured®
ensures Domain isMeasuredBy some Sensors
accurate_detection_instance Type ensures some QualityOfService

0K

© Show regular justifications @ All justifications

Show laconic justifications Limit justifications to

Explanation 1 Display laconic explanation
ation for: accurate_detection_instance Type impacts some ErrorRatet

accurate_detection_instance Type impacts some ErrorRates

Explanation 2 Display laconic explanation
tion for: accurate_detection_instance Type impacts some ErrorRate
accurate_detection_instance Type DetectionRates
DetectionRates SubClassOf impacts some ErrorRates

Explanation 3 Display Isconic explanation
tion for: accurate_detection_instance Type impacts some ErrorRates
accurate_detection_instance Type ensures some QualityOfService
ensures Domain impacts some ErrorRates

Explanation 4 Display laconic explanation
ation for: accurate_detection, Type impacts some ErrorRat
accurate_detection_instance Type SecurityAndReliability
SecurityAndReliability SubClassOf impacts some ErrorRates.

Source: Elaborated by the author

101

assesses intrusion attempts and system stability, identifying resilience in some situations. CQ6

evaluates CPU usage predictions and their effects on expected performance, showing variations

based on prediction values.

Figure 25 illustrates results for CQs 7, 8, 9, and 10. CQ7 examines the connection between

cache miss rate, throughput, and critical performance, reinforcing the importance of cache ef-

ficiency. CQ8 assesses the influence of specific metrics on QoS. CQ9 analyzes the relation-

ship between network metrics and resilience, demonstrating their correlation. CQ10 explores

congestion, resource usage, and service degradation, showing how congestion affects system

performance.

The results confirm that the ontology structures information effectively and links instances

to metrics, validating its role in performance monitoring and analysis through SPARQL queries.

5.4.3 Performance and Accuracy Evaluation

To complement the structural and logical verification, additional experiments were con-

ducted to assess the efficiency and accuracy of the proposed method. These experiments mea-

sured the reasoning time of SWRL rule execution and the correctness of the generated alerts

102

Figure 23: Combined SPARQL query results for CQ1, CQ2, and CQ3.

latencylnstance networkLatencyValue qoslinstance qosValue

CcQ1

CcQ2

cQ3

latency_instance_9688
latency_instance_1938
latency_instance_3175
latency_instance_3040

uptimelnstance
uptime_instance_4777
uptime_instance_4605
uptime_instance_4454
uptime_instance_9987

cpulnstance
cpu_instance_4173
cpu_instance_4173
cpu_instance_4173
cpu_instance_4173
cpu_instance_8117
cpu_instance_8117
cpu_instance_8117
cpu_instance_8117
cpu_instance_6643
cpu_instance_6643
cpu_instance_6643
cpu_instance_6643

"130.53"<http:/iiwww.w3.0 gos_instance_4997
"187.59™<http.iiwww.w3.0 gos_instance_9171
"170.56™<http:2iimwww.w3.0 qos_instance_8428
"103.45™*<http:iiwww.w3.0 gos_instance_1843

"92.78 " <httpiiwww.w3.or¢ stability_instance_2152
99 51 " <http:/mww w3.or¢ stability_instance_9900
"99. 44 <http:/mww.w3.or¢ stability_instance_1159
"95.28"<http:/Mww.w3.or¢ stability_instance_9559

uptimeValue stabilitylnstance

cpuValue memorylnstance
"85.52"<http/ww.w3.0org/2(memory_instance_5383
“85.52"M<http:/Mww.w3.0rg/2(memory_instance_1889
"85.52 " <http./iwww.w3.0rg/2({ memory_instance_5040
"85.52"<http:/iwvww.w3.0rg/2(low_memory_instance
“83.71"M<http:/iwvww.w3.org/2(memory_instance_5383
"83.71"M<hftp/Mmww.w3.0rg/2(memory_instance_1889
"83.71"“<http:/Mww.w3.0rg/2(memory_instance_5040
"83.71"M<hftp/Mmww.w3.0rg/2(low_memory_instance
"53.23"M<http/Mmww.w3.0rg/2{ memory_instance_5383
"53.23"<http/iww.w3.0rg/2(memory_instance_1889
"53.23"<http:/iwvww.w3.0rg/2(memory_instance_5040
"53.23"M<http:/Mww.w3.0rg/2(low_memory_instance

“75.42"M<http:/fwww.w3.0r¢
“71.35™ " <http.ifwww.w3.0r¢
"87.92"<http:iimwww.w3.0r¢
“71.1"*<http:/www.w3.0rg/

stabilityValue
"82.47"<http:iwww.w3.0r¢
“82.08™"<http:/iwww.w3.0r¢
"94 23"\ <http:iwww.w3.0r¢
*90.71"M<http:Iww.w3.0r¢

memoryValue

"56.45"<http/fwww.w.
"65.54™ " <http:iiwww.w.
“36.06™"<http:iiwww.w.
"25.0"<http:llivww.w3
“56.45™"<http:ilwww.w.
"65.54™ " <http:ifwww.w.
"36.06"<http:IAWww.w.
"25.0"*<http:/ivww.w3
"56.45™<http:/fwww.w.
"65.54™ " <http:iiwww.w
“36.06™"<http:iiwww.w.
"25.0"“<httpfwww.w3

Source: Elaborated by the author

when compared to the expected behavior based on simulation data.

The execution time of the reasoning process, including rule evaluation and instance clas-
sification, averaged 367 milliseconds using the Pellet reasoner on a mid-range system (Intel
15-12400, 16GB RAM). This result demonstrates the feasibility of integrating the ontology in
near-real-time monitoring systems.

To evaluate alert accuracy, 50 synthetic instances were generated with known performance
issues, including scenarios of high CPU usage, excessive energy consumption, and network
congestion. The ontology generated alerts for 47 of these instances, correctly identifying the
predefined conditions. This results in a precision of 94.0% and a recall of 100.0%, indicating
high reliability of the inference mechanisms in simulated environments.

These findings confirm the effectiveness of the semantic rules and structure in capturing
relevant patterns, validating their applicability in monitoring frameworks. Further work may
include evaluating the model under streaming data conditions and comparing inference perfor-
mance with alternative rule engines.

5.4.4 Impact Analysis of Key Metrics
The SWRL rules and SPARQL queries used in OntOraculum were analyzed to identify the

metrics that most frequently contribute to reasoning processes and alert generation. Table 20

presents the five most referenced metrics in the set of rules and competency questions.

103

Figure 24: Combined SPARQL query results for CQ4, CQS5, and CQ6.

energylnstance efficiencyvalue transactioninstance transactionValue
critical_energy_instance "65.0"“\<http:/www.w3.0rg transaction_instance_366("38.59"“<http:/iwww.w3.0r
energy_instance_9833 "65.25™<http:/mww.w3.or transaction_instance_366("38.59™"<http:/iwww.w3.or
energy_outlier_6211 "11.32"M<http:ivww.w3.or transaction_instance_366("38.59"<http:/iwww.w3.or
energy_outlier_9983 2442 <http:/mww.w3.or transaction_instance_366("38.59™"<http:/iwww.w3.or
energy_instance_2759 "88.57"<http:www.w3.or transaction_instance_366("38.59"“<http:/fwww.w3.0r
CQ4 inefficient_energy_instance "60.0" <hitp://www.w3.0rg transaction_instance_366("38.59™ <http:/www.w3.0r
energy_instance_8556 "76.81™“<http:www.w3.or transaction_instance_366("38.59"“<http:/iwww.w3.0r
energy_outlier_9870 "44.03"<http:/mww.w3.or transaction_instance_366("38.59™"<http:/iwww.w3.or
optimal_energy_instance "92.0""\<http:/Aww.w3.0rg transaction_instance_366("38.59™<hitp:/lvww.w3.or
energy_instance_7745 "67.99"M<http.iiwww.w3.or transaction_instance_366("38.59™ " <hitp:fwww.w3.or

intrusioninstance intrusionValue stabilityinstance stabilityValue
intrusion_instance_1737 "6.29™<http://iwww.w3.0rg/ stability_instance_4169 "68.01""<http:/Mww.w3.0r¢
intrusion_instance_5707 "6.06™<http:/iwww.w3.org/ stability_instance_5268 “65.61""<http:/Mww w3.0r¢
CQ 5 intrusion_instance_5439 "15.06™<http:/Mmww.w3.or¢ stability_instance_2479 "69.83™ " <http:/Mww.w3.0r¢
intrusion_instance_8997 "15.33"“<hftp:/Mmww.w3.or¢ stability_instance_3055 “86.26™ " <hftp:/Mww.w3.0r¢

cpuPredictioninstance cpuPredictionValue performancelnstance expectedPerformanceValue
cpu_prediction_2512 "58.8™<http:/mww.w3.0rg/z performance_instance_401! “76.7 3" <http:/iww.w3.0rg.

CQG cpu_prediction_7036 "52.54™<http:/Mmww.w3.0rg. performance_instance_397 "78.04™ <http:/Mww.w3.0rg.
cpu_prediction_9146 “72.43"<http:/Mww.w3.0rg. performance_instance_656 "60.13"*<http:/iww.w3.0rg.

Source: Elaborated by the author

Table 20: Most impactful metrics based on usage in rules and competency questions

Metric Occurrences in Rules Referenced in CQs
CPUUsage 12 4
NetworkLatency 10 3
EnergyConsumption 8 2
ServiceUptime 6 2
MemoryAvailable 5 1

Source: Elaborated by the author

Metrics such as CPUUsage and NetworkLatency appear more frequently in rules and ques-
tions, indicating their central role in performance diagnosis and decision support. These metrics
often serve as triggers for system reconfiguration, highlighting their significance in detecting
bottlenecks and initiating corrective actions.

This distribution supports the prioritization of these metrics in monitoring systems and rule-
based configurations, especially in environments with limited processing resources or when

designing lightweight ontological profiles.
5.5 Integration with OntOraculum and Alert Generation
The integration with OntOraculum connects semantic data to monitoring processes through

a modular approach, summarized in Algorithm 4. The main steps include ontology loading,
SPARQL query execution, and alert generation.

Figure 25: Combined SPARQL query results for CQ7, CQ8, CQ9, and CQ10.

cacheMissRatelnstance
cache_miss_rate_instance_8308

c Q 7 cache_miss_rate_instance_8859

metricinstance
metric_instance_1243
metric_instance_5758

C Q 8 metric_instance_4212

metric_instance_4746

networkinstance
network_metric_8838
network_metric_4123

C Q 9 network_metric_3418

network_metric_7509

cacheMissRateValue throughinstance

“6.48™"<http://iww.w3.0rg/2001/XML through_instance_1268
"3.07""<http:/iww.w3.0rg/2001/XML through_instance_8449

metricDescription qosinstance
“Metric impacting QoS 3" <http./mww qos_impact_instance_8327
“Metric impacting QoS 1"“*<http:/ww qos_impact_instance_9781
“Metric impacting QoS 2" <http:/ww qos_impact_instance_4254

“Metric impacting QoS 4™*<http:/Mww qos_impact_instance_6658

networkValue resiliencelnstance
"148.3 """ <http://ww.w3.0rg/2001/XML resilience_instance_2508
“66.87 " <http:/ww.w3.0rg/2001/XML resilience_instance_2204
"51.32""<http:/Mww.w3.0rg/2001/XML resilience_instance_3410
"53.33"<http:/mvww.w3.0rg/2001/XML resilience_instance_1849

throughValue

failurelnstanc

“105.42 " <http:/ww.w3.0rg/2001/X failure_instance_8434
“72.23""<http:/ww.w3.0rg/2001/XN failure_instance_4016

qosValue
"85.99"\"<http:/ivww.w3.0rg/2001/XML
"87.92"<http:/ivww.w3.0rg/2001/XML
"93.1"M<http:/www.w3.0rg/2001/XMLE
"80.07"<http:/ww.w3.0rg/200 1/XML

resilienceValue
“81.09"<http:/Mvww.w3.0rg/200 1/XML
"99.06™ " <http:/Mww.w3.0rg/2001/XML
"91.6"<http:/ww.w3.0rg/2001/XMLE
"89.44™\<http:/ivww.w3.0rg/2001/XML

congestioninstance
congestion_instance_7918
congestion_instance_6769
congestion_instance_6628
congestion_instance_8090

cQ1o0 ¥

congestion_instance_9844
congestion_instance_1059

Source: Elaborated by the author

resourceUsagelnstance
resource_usage_instance_6269
resource_usage_instance_1564
resource_usage_instance_9689
resource_usage_instance_3414
resource_usage_instance_6053
resource_usage_instance_2377

senviceDegradationinstance
service_degradation_instance_2156
sernvice_degradation_instance_6579
service_degradation_instance_1785
service_degradation_instance_6134
service_degradation_instance_6247
senvice_degradation_instance_8532

104

Algorithm 4 Integration with OWL Ontology and Alert Generation

Require: Path to OWL ontology file, predefined SPARQL query, metric thresholds

Ensure: Alerts for metrics exceeding thresholds

1: Load Ontology: Initialize OWL model from the given file path

2: if ontology fails to load then

Exit process with error
. end if

. Execute SPARQL Query: Run the query on the OWL model and retrieve matching instances and their metric values
. if SPARQL query fails or returns no results then

Exit process with error
. end if

9: Evaluate Retrieved Metrics:
10: for each metric value retrieved do

11:
12:
13:
14:
15:
16:
17:

if value exceeds defined threshold then

Generate alert including metric name, value, and threshold

else

Log that the metric is within acceptable bounds

end if

end for

return List of generated alerts

Source: Elaborated by the author

The process starts by loading the ontology and verifying its initialization before executing

SPARQL queries. These queries extract metric data, such as instances and values, from the

ontology. The retrieved data is then evaluated against thresholds to determine whether alerts

should be generated. This modular workflow ensures adaptability, enabling real-time monitor-

ing and decision-making using semantic data.

105

5.6 Discussion

Tables 21 and 22 summarize the results obtained from the SPARQL queries executed during
the ontology validation process. These results support analyses of the relationships between dif-
ferent metrics and their influence on factors such as Quality of Service (QoS), stability, energy
efficiency, and system performance. The queries highlight the interdependence of metrics in
an adaptive system. In Table 21, CQ1 shows how high network latency directly impacts QoS
degradation. This result underscores the need for continuous latency monitoring and strategies

to mitigate its effects, such as traffic prioritization mechanisms or redundancy networks.

In the same table, CQ2 presents the relationship between high service availability (uptime)
and stability, indicating that stable services depend on high availability. This finding reinforces
the importance of redundancy systems and fault-tolerant architectures. CQ4, also in Table 21,
examines energy efficiency and consumption per transaction, suggesting that energy optimiza-
tion improves energy usage per unit of work. This insight proves particularly relevant in envi-
ronments with limited energy resources or sustainability goals. CQS5 analyzes intrusion attempts
and their impact on system stability. The results reveal that frequent attacks degrade system per-

formance, reinforcing the need for proactive cybersecurity measures.

Moving to Table 22, CQ7 examines the cache miss rate and its relationship with throughput
and critical performance. The analysis shows that high error rates reduce throughput, empha-
sizing the need for cache optimizations such as adaptive replacement algorithms and increased
capacity.

CQY and CQ10 analyze network resilience and the effects of congestion on resource utiliza-
tion and service degradation. These queries, presented in Table 22, show that resilient networks
depend on well-monitored metrics and congestion control to maintain performance. This find-
ing reinforces the importance of adaptive network architectures and dynamic load balancing as

possible solutions to identified issues.

The integration between the OWL ontology and the monitoring system demonstrates its
practical application in real environments. Using SPARQL queries to generate real-time alerts
validates the model’s effectiveness, helping identify critical scenarios and supporting rapid, in-
formed decision-making. This integration mechanism strengthens the validation results, show-

ing how the ontology bridges theoretical analysis with practical monitoring applications.

5.6.1 Interval-based Uncertainty Modeling

Interval methods estimate a variable within bounded ranges rather than point values, en-
abling analysis under incomplete or imprecise data conditions. The interval Riccati equation
is commonly applied to systems with uncertain parameters in dynamic models (REDHEFFER,

1957). Given a discrete linear time-invariant system:

Table 21: SPARQL Queries for Competency Questions (CQ1 - CQS5)

ID Query Obtained Results Inference

CQl |SELECT ?latencylInstance latency_instance_9688 Impact of latency on QoS
?networkLatencyValue (130.53ms)

?gosInstance ?gosValue WHERE { gos_instance_4997
?latencyInstance a :NetworkLatency; |(75.42%)

:hasValue ?networkLatencyValue

?gosInstance a :QualityOfService;

thasValue ?gosValue;

:dependsOn ?latencyInstance . }

CQ2 |SELECT ?uptimeInstance ?uptimeValue |uptime_instance_4777 Stability linked to high
?stabilityInstance ?stabilityValue (92.78%) availability
WHERE { stability_instance_2152
?uptimeInstance a :ServiceUptime; (82.47%)

:hasValue ?uptimeValue
?stabilityInstance a :Stability;
:hasValue ?stabilityValue;
:dependsOn ?uptimelnstance . }

CQ3 |SELECT 2cpulnstance ?cpuValue cpu_instance_4173 CPU usage, memory, and
?memoryInstance (85.52%) throughput
?memoryValue ?throughInstance memory_instance_5383
?throughValue WHERE { (56.45%)

?cpulnstance a :CPUUsage; through_instance_1947
:hasvValue ?cpuvValue (69.19 Mbps)
?memoryInstance a :MemoryUsage;

:hasValue ?memoryValue

?throughInstance a :Throughput;

thasValue ?throughValue;

:impacts ?cpulnstance . }

CQ4 |SELECT ?energylnstance energy_instance_9833 Energy efficiency and con-
?efficiencyValue (65.25%) sumption
?transactionInstance transaction_instance_3666
?transactionValue WHERE { (38.59W)

?energylInstance a :EnergyEfficiency;
thasValue ?efficiencyValue
?transactionInstance a
:PowerUsagePerTransaction;

:hasValue ?transactionValue . }

CQ5 |SELECT ?intrusionInstance intrusion_instance_1737 Impact of intrusion at-
?intrusionValue (6.29 attempts/hour) tempts on stability
?stabilityInstance ?stabilityValue stability_instance_4169
WHERE { (68.01%)

?intrusionInstance a
:IntrusionAttempts;

rhasValue ?intrusionValue
?stabilityInstance a :Stability;
:hasValue ?stabilityValue;
:dependsOn ?intrusionInstance . }

Tpp1 = Axy, + Buy,

yp = Cap + Duy,

106

(5.1)

where the matrices A, B, C, and D contain bounded uncertainties, the Riccati equation can

be extended as:

Py = ATPA— A"P.B(R+ B"P,B) 'B"P.A+Q

(5.2)

Here, P}, becomes an interval-valued matrix estimating the covariance of prediction errors

under uncertainty. When applied to inferred metrics like CPUUsage, it allows the system to

estimate a confidence envelope for threshold violations.

Studies in aerospace and structural systems have successfully used this strategy to model

uncertain control scenarios and improve resilience in decision processes. For example, space-

craft control under sliding-mode strategies with bounded uncertainties has demonstrated the

Table 22: SPARQL Queries for Competency Questions (CQ6 - CQ10)

107

ID

Query

Obtained Results

Inference

CQ6

SELECT ?cpuPredictionInstance
?cpuPredictionvValue
?performancelnstance
?expectedPerformanceValueWHERE {
?cpuPredictionInstance a :CPUUsage;
thasValue ?cpuPredictionValue
?performancelInstance a :PerformanceKPIs;
:hasValue ?expectedPerformanceValue;
:dependsOn ?cpuPredictionInstance .}

cpu_prediction_2512
(58.8%)
performance_instance_401
(76.73%)

CPU usage
prediction and
impact on
performance

Q7

SELECT ?cacheMissRatelInstance
?cacheMissRateValue

?throughInstance ?throughValue
?failureInstance WHERE {
?cacheMissRateInstance a :CacheMissRate;
:hasValue ?cacheMissRateValue
?throughInstance a :Throughput;
thasValue ?throughValue

?failurelInstance a :CriticalPerformance;
:dependsOn ?cacheMissRatelInstance;
:dependsOn ?throughInstance . }

cache_miss_rate_instance_8308
(6.48%)

through_instance_1268

(105.42 Mbps)

Cache
rate

impact
throughput

miss
and
on

T8

SELECT ?metricInstance
?metricDescription

?gosInstance ?gosValue WHERE ({
?metricInstance a :Metric;
:impacts ?gosInstance;
:description ?metricDescription
?gosInstance a :QualityOfService;
:hasValue ?gosValue .

metric_instance_1243
With impact in QoS 3
gos_instance_8327
(85.99%)

Tmpact of met-
rics on QoS

CQ9

SELECT ?networkInstance ?networkValue
?resilienceInstance ?resilienceValue
WHERE {

?networkInstance a :Network;
:hasValue ?networkValue
?resiliencelnstance a :Resilience;
:hasValue ?resilienceValue;
:dependsOn ?networkInstance . }

network_metric_8838
(148.3ms)
resilience_instance_2508
(81.09%)

Tmpact of net-
work metrics
on resilience

cQ
10

SELECT ?congestionInstance
?resourceUsagelnstance
?serviceDegradationInstance WHERE ({
?congestionInstance a :Congestion;
:hasValue ?congestionValue
?resourceUsagelnstance a
:HighResourceUsage;

:dependsOn ?congestionInstance
?serviceDegradationInstance a
:ServiceDegradation;

:dependsOn ?resourceUsagelnstance .}

congestion_instance_7918
resource_usage_instance_6269
service_degradation_instance
_2156

Impact of con-
gestion on ser-
vice degrada-
tion

feasibility of using interval formulations to maintain stability and performance (ZHOU; LI;
WANG, 2021; LI; YANG; SUN, 2020; GUO; ZHANG, 2020). Table 23 presents a simulation

comparing fixed-threshold alerts versus interval-based evaluation in OntOraculum for CPU and

memory metrics.

The interval approach reduced false positives and enhanced the stability of alert generation

under fluctuating input values, confirming its value as a complementary technique to SWRL

rule-based reasoning.

5.6.2

Limitations and Scalability

Despite the demonstrated benefits, OntOraculum presents limitations that must be consid-

ered. The current implementation depends on a predefined and static set of SWRL rules, which

108

Table 23: Comparison of inference precision using fixed thresholds and interval models

Metric Fixed Threshold Interval Model (TP) False Positives Re-
(TP) duced
CPUUsage 46 47 3
MemoryAvailable 39 41 2
NetworkLatency 35 36 1
EnergyConsumption 29 30 2
ServiceUptime 31 33 1
DiskIO 28 29 1
AnomalyScore 22 24 2

Source: Elaborated by the author

limits adaptability in dynamic environments and may require manual updates as new metrics or
dependencies emerge. The system currently does not incorporate learning-based mechanisms
to discover new relationships between metrics or automatically adjust thresholds. Additionally,
the model performs reasoning over single data snapshots and does not yet support temporal
inference across multiple time intervals. This restricts the ability to detect trends or causal rela-
tionships that evolve over time, although the presence of timestamp properties provides a basis
for future temporal extensions.

Regarding scalability, the ontology supports multiple domains and large metric sets, but
the reasoning process can introduce computational overhead in high-throughput environments,
especially when combined with extensive rule bases. Strategies such as rule optimization, in-
cremental reasoning, and modular ontologies can be adopted in future versions to improve scal-
ability. Finally, although the ontology has been integrated into a simulated monitoring environ-
ment, it has not yet been validated in a real-world deployment. Future work includes applying
OntOraculum to live smart environments (e.g., smart cities or industrial systems) to assess per-

formance under real-time and heterogeneous operational conditions.

5.7 Considerations About the Chapter

This chapter presented OntOraculum, a semantic model developed to organize, analyze,
and monitor performance metrics in intelligent environments. The ontology classifies metrics
into five domains: Hardware, Network, Software, Energy, and Security AndReliability. It also
defines formal properties that capture interdependencies, impacts, and operational thresholds,
supporting rule-based reasoning and providing structured insights into system behavior.

The methodology adopted established ontology engineering guidelines, including defining
the scope, identifying competency questions, formalizing semantic relationships, and validat-
ing the model using reasoning tools such as SPARQL and Pellet. These steps contributed to
building a consistent and expressive model, capable of identifying operational conditions like

the influence of CPU usage on system throughput, the relationship between latency and QoS,

109

and the impact of intrusion attempts on system stability. A validation scenario was created to
simulate the use of OntOraculum in a context similar to real monitoring systems. The semantic
model was able to identify metric deviations and generate alerts for critical conditions. These
results demonstrate the relevance of using ontologies to connect data from different subsystems
and domains, supporting performance evaluation and operational decision-making in distributed
architectures.

Some aspects of the model require further exploration to expand its applicability and depth.
Future work may include extending the ontology to cover additional performance domains such
as edge computing, cloud services, and industrial IoT; integrating machine learning models for
predictive analysis and automated decision-making; employing autonomous agents to adjust
parameters based on context and observed trends; evaluating alternative inference mechanisms
and rule engines; exploring interoperability with observability platforms and real-time moni-
toring systems; and validating the model in production environments to assess its effectiveness
under real-world operational constraints.

The OntOraculum ontology is designed to answer a wide range of competency questions
that are essential for understanding and managing the performance of intelligent environments.
Through its formal structure and semantic relationships, the ontology enables queries that re-
veal both direct and indirect dependencies among system metrics. For example, it can determine
how CPU usage predictions impact overall system performance (CQ6), how cache miss rates
affect throughput and critical failures (CQ?7), and how specific metrics influence Quality of Ser-
vice (CQS8). The ontology also supports the analysis of network metrics and their effect on
system resilience (CQ9), as well as the relationship between congestion, resource usage, and
service degradation (CQ10). Additionally, OntOraculum can answer questions about the impact
of latency on QoS (CQ1), the link between service uptime and stability (CQ2), the interplay be-
tween CPU, memory, and throughput (CQ3), energy efficiency and power consumption (CQ4),
and the effect of intrusion attempts on system stability (CQS5). By supporting these queries,
the ontology provides actionable insights for performance evaluation, anomaly detection, and
operational decision-making, facilitating the integration and automated interpretation of hetero-
geneous monitoring data across distributed architectures.

OntOraculum contributes to the formal representation of performance indicators in smart en-
vironments, providing a foundation for building adaptive and observable systems. The semantic
classification of metrics supports the integration of heterogeneous data sources and enables au-
tomated interpretation and response, which aligns with the increasing need for observability

and reconfigurability in intelligent systems operating under dynamic conditions.

110

6 ORACULUM MODEL

The Oraculum defines a modular architecture for self-adaptive systems operating in dynamic
and heterogeneous environments. Its design integrates monitoring, prediction, decision-making,
and execution mechanisms within a unified MAPE-K-based framework.

The model structure comprises distinct functional modules, each performing specific tasks
within the adaptive workflow. Continuous monitoring gathers performance metrics, predictive
analytics identify behavioral patterns and anticipate future states, and a reinforcement learning
(RL) agent executes adaptations based on policy-driven decisions. Interactions among modules
occur via asynchronous data flows and decision triggers.

A central aspect of the Oraculum model is the use of time series prediction to estimate future
system behavior and anticipate potential degradation scenarios. The forecasting horizon—i.e.,
how far into the future the prediction is performed—is a configurable parameter in the system.
To ensure both meaningful insights and computational efficiency, the forecasting window must
remain within a range that balances reactivity and stability. A minimal horizon of 1 to 3 in-
tervals is required to allow proactive actions without reacting to transient fluctuations, while
a maximum horizon of 10 intervals prevents excessive uncertainty in long-term projections.
This range has been validated to retain predictive relevance without incurring high variance or
diminishing model accuracy.

These predictions support proactive adaptations by identifying patterns that deviate from
normal behavior, even before critical thresholds are breached. Thus, forecasting enables the
system to shift from reactive to anticipatory adaptation strategies, optimizing responsiveness
and minimizing performance degradation.

The adaptation process can be formally defined as a state transition from an initial state X
(undesirable or suboptimal) to a target state Y (desired or optimal). Monitored metrics, such
as CPU usage, memory allocation, latency, throughput, and network bandwidth characterize
each state. An adaptation trigger occurs when the system detects or predicts deviations in these
metrics beyond established thresholds.

These thresholds are not arbitrarily defined; they are derived from the semantic layer of
the architecture, which is represented by the performance ontology. The ontology incorporates
insights extracted from the systematic literature review, ensuring that threshold definitions are
context-aware and aligned with the best practices and expectations of each metric domain. On-
tological reasoning mechanisms are responsible for validating which deviations are significant
enough to justify adaptation, enhancing both accuracy and reliability in decision-making. Con-

ditions for adaptation triggers are determined by:

* Threshold Violations: Observed values exceed predefined or ontologically established

limits.

* Predictive Alerts: Forecasted future metric values indicate imminent degradation or anoma-

111

lies.

* Semantic Validation: Ontological reasoning validates alerts to ensure relevance and sig-

nificance.

Upon triggering, the RL agent evaluates the current state X and selects an appropriate action
to achieve the desired state Y. Actions are defined by the operational context and are designed
to realign the system with acceptable performance conditions.

Each adaptation decision is selected through a learned policy that considers past perfor-
mance outcomes, current system states, and predicted future metrics. The decision-making
process optimizes a reward function balancing performance gains against resource consump-
tion and system stability.

The following subsections detail the Oraculum’s architecture, describe the supported adap-
tation scenarios, and explain individual module roles, emphasizing the integration of prediction

mechanisms with runtime monitoring and RL-driven adaptation workflows.

6.1 Model Overview

The Oraculum defines an adaptive architecture that integrates data processing, predictive
modeling, and automated decision-making for intelligent IoT-based environments. The model
incorporates regression, classification, and RL techniques to support runtime adaptation. Figure

26 presents the complete workflow, including the modules and their interactions.

Figure 26: Overview of the Oraculum Model

Metric Possible Future High
Ontolog Value in Some Metric

Classification Al Generate a Alert Dasht:oard

Checks if the da Create a
the Actions action is still Chooses on Engine Trigger

E required Action

Save the
Action

Source: Elaborated by the author

The adaptation process is distributed across the following modules:

10.

11.

12.

13.

14.

112

. API Collector: Collects performance metrics from [oT components to enable continuous

observation of system behavior.

. Save Metrics: Stores collected metrics in structured datasets for future retrieval and lon-

gitudinal analysis.

. Metric Ontology Integration: Applies semantic reasoning using ontology-based models

to interpret metrics and detect operational anomalies.

Regression Al: Predicts future metric values using historical data patterns to support

proactive decision-making.

Classification Al: Categorizes predicted values to identify deviations from expected be-

havior.

Possible Future High Value in Some Metric: ldentifies predicted values that exceed de-

fined thresholds, indicating the need for intervention.
Generate an Alert: Issues alerts when forecasted values surpass acceptable limits.

Create a Trigger: Converts alerts into executable adaptation instructions.

Update RL Engine: Updates the RL model using new observations to improve policy
accuracy.
RL Agent Chooses an Action: Selects adaptation actions based on current conditions and

the learned policy.

Check if Action is Still Required: Revalidates the selected action against updated predic-

tions and classifications to avoid redundant execution.

Execute the Actions: Applies verified adaptation strategies within the operational envi-

ronment.
Save the Action: Records executed actions to maintain a log of adaptation history.

Dashboard: Displays system metrics, active alerts, adaptation status, and performance

indicators for monitoring and administrative access.

The architecture integrates forecasting and decision modules to anticipate performance de-

viations. Predictions provide early input to the RL agent, which selects candidate actions based

on historical context and observed behavior. Subsequent validation ensures that only relevant

actions are executed, reducing unnecessary adaptations (ZESHAN et al., 2023b). Updates to the

RL engine refine future decisions, while the dashboard module presents operational feedback

in real time. This process supports anticipatory adaptation and consistent oversight in different

run-time scenarios.

113

6.2 Model Architecture

Figure 27 illustrates the architectural design of the Oraculum model, structured to support
continuous, automated, and proactive self-adaptation in dynamic smart environments. The nov-
elty of this architecture lies in the integration of predictive forecasting, semantic reasoning, and
reinforcement learning into a unified control loop capable of acting before performance degra-
dation occurs. This contrasts with reactive approaches commonly found in related work, where

adaptation only begins after anomalies are detected.

Figure 27: Oraculum Model Architecture

O O

Record Builder
Current Data
Data Persistence

v 1

Training Scheduler

Data =5]
Collector Q

Model =5
Builder

::‘ API Collector Database Ontology
Ri t S > :
Raw Data Time Series Metrics Metric
O O Representation

Inferences

R
)_ Managing Interface

Ry :

. ” j Data Controller |

[L
Action Service Alert Controller

Action Builder | 2 Trigger Controller
‘Action Controller R q Prediction Service l .

Metric Controller

_ _ i = Wodel -5 [Metric Controller |

Action Repository _(D_ Collector (}_
Adaped Check With Action is still <[Action Controlier |
Environment Required Regression Classification
Service Service
T Model applicator Model applicator
RL Agent @ —O) O R}_ Trigger Service
R4 Alert Controller
Value Selector Class Selector
Metric Controller
v d R
Action Database kI/ —C)— Reward Calculator
Alert Generator
RL Engine
Trainer Module
MDP Environment R
New Data _ RL Agent s,
O)F—> [Policy Calculator —O Updater i
Value Updater

Source: Elaborated by the author

The alert generation process is fully automated and derives from the classification of fore-
casted metric values. These classifications indicate whether the predicted state represents a
deviation from expected behavior. When such conditions are identified, the system emits an

alert without human intervention, enabling early-stage adaptation planning. All stages of the

114

pipeline-from metric monitoring and preprocessing to model training, inference, policy exe-
cution, and feedback-are executed periodically or event-driven, with no manual steps beyond

initial parameter configuration.

Within this structure, only two aspects require prior configuration: the monitored metrics
and the endpoints for data acquisition. All other components adapt autonomously, including
the dataset construction, model updates, prediction cycles, anomaly detection, alert valida-
tion, policy training, and execution of adaptation actions. Adaptation is performed based on
parametrized strategies defined in the reinforcement learning module, and the policies are re-
fined continuously based on past outcomes.

The architecture distinguishes between static and dynamic layers. The control flow, com-
ponent responsibilities, and inter-module communication remain fixed to ensure structural re-
liability. In contrast, decision-making processes and adaptation strategies evolve dynamically
based on feedback and learning, allowing the system to adjust its behavior to match operational
changes and evolving metric profiles.

OntOraculum serves as a semantic framework that encodes the structure and relationships
of monitored metrics. It supports rule-based reasoning to contextualize observed patterns and
validate alerts, acting as a verification mechanism before the execution of any adaptation. This
enables the architecture to balance statistical inference with logical consistency, ensuring that
predicted alerts align with contextual definitions of performance degradation.

Reinforcement learning is incorporated to govern adaptation actions through policy learn-
ing in a Markov Decision Process. The model is designed to avoid one of the main limitations
of traditional RL-based approaches: the delay introduced by starting decision-making only af-
ter performance degradation. Oraculum addresses this by coupling RL with a predictive alert
mechanism, allowing time for the policy agent to evaluate options and plan an action before the
degradation occurs.

In comparison to existing models, which are often domain-specific and limited to fixed sets
of metrics or manually defined thresholds, Oraculum presents a generalized approach. It is ca-
pable of operating across multiple layers and contexts, without relying on predefined adaptation
rules or rigid mappings between conditions and actions. This generality, combined with the
automation of the entire adaptation pipeline, characterizes the key innovation of the model.

The architecture consists of interconnected modules that support adaptive behavior through
metric acquisition, semantic processing, predictive modeling, decision-making, and action exe-
cution (JASKIERNY; KOTULSKI, 2023).

The API Collector module acts as the initial point of integration with monitored IoT com-
ponents. It retrieves performance metrics from distributed sources and channels them through a
sequence of subcomponents. The Request Service coordinates incoming data requests, the Data
Treat module transforms raw inputs into structured values, the Metric Map standardizes key-
value pairs into recognized metrics, and the Record Builder constructs consistent data records.

These records are then stored in two forms: Current Data, reflecting the most recent values for

115

real-time use, and Data Persistence, which archives complete histories for analytical access.

The Database component classifies and stores incoming records in distinct layers: Raw Data
for unprocessed values, Time Series for chronological data sequences, and Aggregated Metrics
for preprocessed statistical summaries. This structure enables efficient access for model train-
ing and comparison between historical and real-time patterns, forming the data backbone for
adaptive logic. The Ontology module applies semantic reasoning to the collected metrics. Its
Metric Representation defines hierarchical and associative relationships among metrics, while
the Inference Engine applies logical rules to identify operational deviations. The use of ontol-
ogy enables contextual understanding of system behavior, complementing statistical detection

methods with rule-based interpretation.

The Training Scheduler governs the construction and updating of predictive models. It
periodically extracts data from the database, formats input sets according to model require-
ments, and applies machine learning algorithms to train both regression and classification mod-
els. Trained models are stored in the Model Repository and updated at regular intervals to reflect
recent changes in system behavior and workload characteristics. The Prediction Service applies
trained models to incoming data streams. The Regression Service estimates future metric val-
ues by identifying temporal trends, enabling early detection of potential deviations. In parallel,
the Classification Service labels forecasted conditions as normal or anomalous based on learned
behavior. When classification results exceed predefined thresholds, the Alert Generator emits

signals that initiate the adaptation process.

The Trigger Service manages the evaluation and transformation of alerts into actionable in-
structions. The Alert Controller validates the alert’s relevance, the Metric Controller identifies
the affected parameters, and the Reward Calculator uses historical feedback to assign utility
scores to previous actions. This process supports informed and data-driven decision-making
during adaptation planning. The RL Engine implements RL for adaptive policy generation. It
consists of three core modules: the Trainer Module simulates decision-making scenarios in a
Markov Decision Process (MDP) environment, the Policy Calculator identifies optimal actions
based on expected rewards, and the Value Updater refines learned policies using observed out-
comes. The engine is continuously updated with recent system data to ensure adaptability to
changing conditions.

The RL Agent selects and communicates adaptation actions based on current system condi-
tions and the policy generated by the RL Engine. It evaluates the context and selects the most
appropriate action, forwarding the decision to the Action Service. The Action Service com-
prises the Action Builder, which prepares the parameters for execution; the Action Controller,
which validates and executes the task; and the Action Repository, which records executed ac-
tions for auditability. Before final execution, the system revalidates whether the action remains
necessary, avoiding redundant or conflicting interventions.

The Action Database stores a complete log of executed actions, serving as a historical repos-

itory for adaptation events. This record supports evaluation of past interventions and assists in

116

refining future decision-making strategies through policy feedback. The Managing Interface
provides a visualization layer that allows administrators to interact with system data. Through
this interface, it is possible to review collected metrics, assess active alerts, monitor executed
actions, and analyze ongoing adaptation behavior. This component contributes to operational

transparency and facilitates system supervision in real time.

The overall deployment flow of the model follows a sequential and modular pipeline, en-
suring that each stage builds upon the outputs of the previous one to enable robust and adaptive
system management. The process begins with the acquisition of raw metrics by the API Collec-
tor, which transforms and standardizes incoming data before storing it in the database. Seman-
tic enrichment and contextual analysis are then performed by the Ontology module, providing
a knowledge-driven layer for interpreting system states. The Training Scheduler periodically
leverages this structured data to update predictive models, which are subsequently used by the
Prediction Service to forecast future conditions and classify potential anomalies. When de-
viations are detected, the Trigger Service translates alerts into actionable insights, which are
processed by the RL Engine to generate and refine adaptation policies. The RL Agent then
selects and dispatches the most suitable adaptation actions, which are validated and executed
by the Action Service. All actions and their outcomes are logged in the Action Database, clos-
ing the feedback loop and supporting continuous learning and improvement. Throughout this
cycle, the Managing Interface offers real-time visibility and control, allowing administrators to
monitor, audit, and interact with every stage of the adaptation process. This orchestrated flow
ensures that the system remains responsive, transparent, and capable of proactive adaptation in

dynamic environments.

Figure 28 illustrates the Multi-Agent System, elaborated using the Prometheus methodology
(PADGHAM; WINIKOFF, 2004). This methodology defines a systematic framework for the
design of intelligent agent systems, emphasizing modular organization and explicit interactions
among components. The diagram outlines the processes and interrelations that compose the

model’s adaptation cycle.

In this context, the term multi-agent refers to an architectural paradigm in which multiple
autonomous agents operate concurrently, each with specialized roles and responsibilities, but
capable of coordination and communication to achieve common system goals. In the Oraculum
architecture, agents are not simply independent modules; they are designed to perceive their
environment, make decisions based on local or shared knowledge, and execute actions that may
influence both their own state and the state of other agents. For example, the Collector Agent
is responsible for gathering and forwarding metrics, the Prediction Agent analyzes incoming
data to forecast anomalies, and the RL Agent determines and enacts adaptation strategies. These
agents interact through well-defined protocols, exchanging information and triggering actions
in response to observed events or changes in system conditions. The multi-agent approach en-
ables distributed problem-solving, scalability, and robustness, as each agent can operate semi-

independently while still contributing to the overall adaptation cycle. This modular and inter-

117

active behavior is what justifies the use of the term multi-agent system: the architecture is not a
monolithic controller, but a collection of intelligent, goal-oriented agents whose collaboration

enables dynamic and adaptive management of complex environments.

Figure 28: Oraculum Model following Prometheus methodology

R
ZMemcEd {3 API Collector

»{
‘ﬁ‘ Training Scheduler |~{ Query Inferences
»{

Ontology

\ Generate Next Action >

Action Historic

Infer Metrics

Building Record

Mapping Metric

Build Dataset

: |
Current Data Save Model »{ Train Regression Model
i Save Model
7] Action RLAgent | Regrsseion el L Train Classification Model
Apply Model
J ’%‘Classification Predict Service
‘jf‘ Regression Predict Service ‘] Select Class

New RL Agent

b ‘ Managing lnterface|

Show Data
Show Alerts

Predicted Value

RL Engine Trigegr Data ‘# %‘ Trigger Service }'7 Alert

I

Generate Trigger Show Actions
iRinRERgent > Calculate Rewards
—-{ Update MDP Enviroment> Adjust Parameter

Source: Elaborated by the author

The Oraculum adopts an agent-oriented structure in which functionalities are encapsulated
into modular and interdependent units. The process begins with the API Collector, which ac-
quires performance metrics from monitored system elements. The data undergoes preprocess-
ing operations-including transformation, mapping, and record structuring-and is then persisted
in a Time Series database. In parallel, the Ontology module processes collected data to infer se-
mantic relationships, perform knowledge-based queries, and enrich the dataset with contextual
attributes.

The predictive analytics pipeline incorporates dynamic model training and inference. The
Training Scheduler manages the continuous update of regression and classification models us-
ing new datasets. These models are stored and applied by the Regression Predict Service and
Classification Predict Service, which respectively estimate future metric trends and classify op-
erational states. When predicted values surpass specified thresholds, the system generates alerts
that trigger subsequent adaptation phases.

The Trigger Service evaluates alert conditions and determines whether intervention is re-
quired. It incorporates RL. mechanisms to associate previous decisions with outcome-based

reward values. When adaptation is warranted, the service initiates a structured response by

118

passing the context to the RL Engine. This component refines adaptation policies through it-
erative learning in a Markov Decision Process (MDP) environment. The RL Agent selects an
appropriate action based on the current system state and learned policy, forwarding the decision

for execution.

The architecture incorporates feedback mechanisms for post-adaptation evaluation. Each
executed action is logged in the Action Historic database to support future analysis and policy
adjustments. The Managing Interface provides visualization and control mechanisms, enabling
observation of system status, review of adaptation history, and modification of operational pa-
rameters. The model defines six primary categories used to interpret and organize system char-
acteristics in the Oraculum architecture (SHI et al., 2025). The ontology classifies monitored
metrics into the following categories: Software, Hardware, Network, Energy, Security and Re-
liability, and Service Level Agreements (SLA).

The Software group includes metrics such as response time, garbage collection duration,
and throughput, which relate to application behavior and processing efficiency. Hardware en-
compasses CPU, memory, and GPU utilization metrics that support the assessment of physical
resource usage. Network metrics address conditions such as packet loss, jitter, and transfer rates,
which reflect communication quality between system components. Energy comprises indicators
like power consumption and battery status, relevant for evaluating resource-constrained opera-
tions. Security and Reliability includes detection rates, error rates, and log event monitoring,
used to identify anomalies and faults in runtime execution. SLA metrics-such as availability,
resilience, and stability-support compliance assessment relative to defined quality-of-service
targets.

Within the Oraculum , the ontology provides a formal mechanism for metric classification
and interpretation. The Ontology Module maps raw performance data into structured categories
and applies rule-based inference to identify correlations and dependencies. This classification
supports context-aware prediction by enhancing the semantic representation of metric behavior.
The structured ontology facilitates metric-based adaptation by informing both anomaly detec-
tion and RL-based decision-making. The model uses this classification to guide alert generation

and policy selection during adaptive processes.

6.3 Model Parameters

The Oraculum includes configurable parameters that define how the system collects, ana-
lyzes, and reacts to performance metrics. These parameters influence aspects such as sampling
frequency, forecasting range, alert sensitivity, and adaptation aggressiveness. Table ?? summa-
rizes the parameters used in the current implementation, including their data types, valid values,
and defaults.

The set of monitored metrics, denoted as M = {my,ms,...,m,}, specifies the perfor-

mance indicators analyzed by Oraculum. Each metric m; belongs to categories commonly used

119

Table 24: Oraculum Model Architecture Components

Component Function Technologies Used

API-Collector Acquires system metrics in real time and stores them in a time-series ~ Spring Boot
database.

Database Maintains structured time-series data from collected metrics. PostgreSQL

Ontology-Integration Executes SWRL rules over OWL-based ontologies to identify anoma- C, OWL, SWRL
lous conditions.

Dataset-Builder Constructs raw and labeled datasets from historical metrics for model C

Training-Scheduler

Data-Collector

Prediction-Service

training.

Trains regression and classification models, selecting the most effective
ones.

Retrieves the latest metrics for real-time inference.

Applies trained models to current metrics for forecasting and anomaly
detection.

Python, TensorFlow

Python
Python, Flask

Trigger-Service Forwards anomaly alerts to the RL module. Spring Boot

RL-Engine Builds and refines RL policies based on feedback. Python

RL-Agent Executes adaptation policies generated by the RL-Engine. Python, Flask, Pre-trained RL
Model

Action-Service Validates and enforces adaptive actions according to system goals. Spring Boot

RL-Reward-Adapter ~ Manages initial RL rewards and adapts reward strategies dynamically

based on performance feedback and environmental conditions.

Python, Custom Algorithm

in intelligent environments, such as resource utilization (CPU and memory), latency, security, or
energy efficiency. The selection of these metrics directly influences adaptation decisions and the
operational awareness level of the architecture. Different studies highlight various sets of met-
rics depending on specific application goals; for example, real-time systems emphasize latency
and throughput (WEERASINGHE et al., 2024), while sustainability-focused studies prioritize
energy efficiency (COLOMBO et al., 2022). This flexibility allows Oraculum to easily adapt to
diverse scenarios and operational requirements.

Metric collection occurs at intervals defined by the parameter 7., balancing data granularity
against computational overhead. Shorter intervals improve the detection accuracy of transient
anomalies but increase system overhead. Conversely, longer intervals reduce computational
demands but can delay critical event detection (XU; LIU; PAN, 2023). Empirically, a default
interval of 10 seconds was established through tests, providing an optimal balance between
accuracy and efficiency.

Forecasting operations rely on a prediction horizon parameter 7}, defining how far into the
future the system predicts using historical data X = {z1, s, ..., 2;}. The regression function
f produces estimates as follows:

jt-l—k - f(X7 k)? (61)

where £ is the forecast window. The prediction horizon is parameterized to balance the need
for proactive interventions against prediction accuracy. Short horizons (minimum 1 second) are
suitable for highly dynamic environments requiring rapid responses, while longer horizons (up

to approximately 300 seconds) capture broader trends at the expense of reduced prediction

120

accuracy, as verified through empirical tests.
Alert generation depends on classifier consensus and is regulated by the sensitivity thresh-
old # € [0, 1], following ensemble classification principles (XU; LIU; PAN, 2023). The alert

activation rule is:

Lot SV, Ci(z) > 6N, 62)
0, otherwise,

where C;(z) is the classification result from model i. Empirical results indicated that setting
0 to 0.5 effectively balances false positives and negatives. Lower thresholds are useful in highly
sensitive contexts, while higher thresholds restrict alerts to high-consensus events. RL-driven
adaptive behavior is modulated through an exponential decay aggressiveness function, inspired
by established control theory principles to avoid oscillatory behavior in adaptive feedback loops

(WEERASINGHE et al., 2024):

Ay = Age™, (6.3)

where A, is the adaptation magnitude at time ¢, Ay is the initial adaptation intensity, and A
is the decay rate. The default value A = 0.1 was empirically determined, ensuring smooth and
efficient adaptations.

Oraculum supports multiple RL algorithms, including TD3, SAC, PPO, and Q-learning, se-
lected due to their known sample efficiency, stability, and convergence speed (XU; LIU; PAN,
2023; COLOMBO et al., 2022). TD3 was adopted as the default due to its consistent perfor-
mance in empirical benchmarks.

RL actions executed by the agent are parameterized and include horizontal and vertical
scaling, adaptive scheduling, dynamic data processing optimizations, and execution of custom
Linux commands. Each action can be tailored according to deployment constraints or specific
operational priorities, as presented in Table 25, with empirical tests validating their effectiveness
across diverse scenarios.

Additionally, a new parameter related to RL initial rewards was introduced, significantly
influencing the initial learning behavior of the RL agent. Initial rewards are aligned with spe-
cific performance goals, such as reducing latency or energy consumption, and are dynamically
adapted based on ongoing agent performance and environmental feedback. The reward adapta-
tion strategy is essential to maintain an optimal balance between exploration (discovering new
actions) and exploitation (using known effective actions), improving the adaptability and per-
formance of the agent in response to environmental changes and variability in workload, as
confirmed by experimental evaluations.

The ability to configure these parameters enhances the flexibility of the Oraculum across
different domains. The combination of predictive modeling, RL-based adaptation, and cus-

tomizable parameters ensures that the system maintains optimal performance under dynamic

121

Table 25: Configurable Actions for RL Agent

Action Type Description

Horizontal Scaling Nnew = Neurrent + An, where An is the number of added/removed nodes.
Vertical Scaling Resourcenew = Resourcecyrrent + AR, modifying CPU, memory, or disk.
Adaptive Scheduling Adjusts scheduling priorities dynamically based on workload demand.

Data Processing Optimization =~ Changes data filtering, aggregation, or compression parameters dynamically.

Custom Linux Commands Executes predefined shell scripts for system-specific actions.

Source: Elaborated by the author

workloads.

6.4 Considerations About the Chapter

This chapter introduced the Oraculum, a modular and adaptive architecture designed to
operate in dynamic, heterogeneous environments. Its structure integrates metric acquisition,
semantic reasoning, predictive modeling, and reinforcement learning into a unified MAPE-K-
based framework. The model supports real-time decision-making by correlating metric behav-
ior with system adaptation actions.

Each module in the architecture contributes to a continuous cycle of monitoring, analysis,
and response. The API Collector and database layers structure and persist collected data, sup-
porting both immediate observations and long-term evaluations. Semantic inference, enabled
through ontological reasoning, enriches the representation of monitored metrics and enhances
the model’s context-awareness. Predictive components estimate future system behavior, while
the classification module determines the criticality of predicted conditions.

The reinforcement learning engine receives alerts generated by predictive modules and eval-
uates the most suitable action under the current system state. This decision is then validated,
executed, and logged, closing the feedback loop. The modular design ensures that each layer
can be individually configured, maintained, or extended based on specific system requirements.

The Prometheus methodology reinforced the modular agent-based design of Oraculum, clar-
ifying how components communicate and delegate tasks. Additionally, the ontology integrated
into the architecture plays a central role in organizing metrics and guiding alert classification
and response prioritization. It supports structured metric interpretation, improving the system’s
ability to react to subtle performance changes.

Key configurable parameters-such as sampling frequency, prediction horizon, classification
thresholds, and adaptation aggressiveness-allow Oraculum to adapt to different operational con-
texts. The use of distinct RL algorithms (e.g., TD3, PPO, SAC) and a library of parameteriz-
able actions expands its applicability to resource-constrained, latency-sensitive, or performance-
critical systems.

This chapter demonstrated how Oraculum bridges the gap between monitoring, forecast-

122

ing, and system adaptation. Its architecture emphasizes modularity, semantic enrichment, and
learning-based adaptation to meet the needs of intelligent and responsive environments. The
configurable nature of its components allows the model to scale and adapt to new demands,
making it a candidate for deployment in real-time monitoring systems and edge computing

infrastructures.

123

7 IMPLEMENTATION ASPECTS

The Oraculum prototype was implemented to evaluate adaptation performance under con-
trolled conditions. The implementation process included the configuration of operational pa-
rameters, specification of monitoring strategies, and deployment of adaptive mechanisms in a
testbed environment. The SHIiELD simulator provided a dynamic execution context for vali-
dating self-adaptive behavior. The prototype continuously monitored performance metrics and
modified system configurations based on predicted anomalies to improve resource allocation
and runtime stability.

The monitoring phase included metrics across four dimensions: hardware, network, soft-
ware, and service-level agreement (SLA). These indicators were selected to represent distinct

aspects of system behavior relevant to adaptive operation:

Hardware: CPU Usage, Memory Usage, GPU Usage, Storage Utilization

Network: Latency, Data Transfer Rate, Packet Loss

Software: Response Latency, Throughput, Garbage Collection Time

SLA: Availability, Resilience, Stability

All metrics were normalized within the range [0.0, 1.0] to standardize input values and
simplify processing during model execution. The Oraculum applied regression techniques to
forecast metric trends and classification models to detect behavioral deviations. Predictive out-
puts informed preemptive adaptations by enabling system reconfiguration prior to observable
degradation. A RL agent adjusted policy parameters over time using feedback from the envi-
ronment, contributing to refined action selection and improved response efficiency.

The implementation is detailed in the following subsections. SHiELD Simulator describes
the validation platform. Architecture Implementation presents the software architecture and
module configuration. Data Collection outlines the metric acquisition and preprocessing steps.
Regression and Classification Models explains the forecasting and anomaly detection processes.
RL Agent details the mechanisms for self-adaptive action selection.

Although Oraculum supports an automated adaptation process, the initial setup and integra-
tion involve explicit manual steps. Users must define the monitored metrics, adaptive actions,
and reward strategies specific to their operational requirements. After this configuration, Orac-
ulum autonomously manages metric collection, predictive modeling, anomaly detection, and
adaptive actions.

Deployment and initial configuration also require human involvement. Individuals with ex-
pertise in Kubernetes and Docker are necessary for setting up and maintaining the Oraculum
deployment environment. Similarly, domain experts or infrastructure administrators need to

determine suitable metrics, actions, and rewards aligned with the target operational scenarios.

124

This collaborative configuration process ensures Oraculum functions appropriately within spe-
cific system contexts.

7.1 Architecture Implementation

The Oraculum prototype was implemented using a containerized architecture. During the
development and testing phase, Docker Compose was used to orchestrate services, allow-
ing controlled execution, easy deployment, and reproducibility of results. For deployment in
production-like environments, Kubernetes was adopted due to its support for dynamic resource
allocation, service scaling, health monitoring, and fault recovery.

The architecture consists of loosely coupled services that communicate via REST inter-
faces or shared files, depending on the nature of the interaction. Synchronous services include
the API-Collector, Trigger-Service, Prediction-Service, RL-Agent, and Action-Service, which
require real-time interactions. Asynchronous services, such as the Dataset-Builder, Training-
Scheduler, and Ontology-Integration, are triggered periodically or on demand to execute back-
ground tasks such as model training, dataset construction, and semantic inference.

Each module is responsible for a specific task in the adaptation pipeline and is described in
Table 26. The architecture supports automatic model retraining, adaptive decision-making, and
continuous metric ingestion without the need for manual intervention. The only manual con-
figuration required involves setting the monitored metrics and endpoints and adjusting model

parameters, as described in Table 27.

Table 26: Oraculum Model Architecture Components

Component Function Technologies Used

API-Collector Acquires system metrics in real time and stores them in a time-series ~ Spring Boot
database.

Database Maintains structured time-series data from collected metrics. PostgreSQL

Ontology-Integration ~ Executes SWRL rules over OWL-based ontologies to identify anoma- C, OWL, SWRL
lous conditions.

Dataset-Builder Constructs raw and labeled datasets from historical metrics for model C

Training-Scheduler

Data-Collector

Prediction-Service

training.

Trains regression and classification models, selecting Trains regression
and classification models, selecting the most effective ones.

Retrieves the latest metrics for real-time inference.

Applies trained models to current metrics for forecasting and anomaly
detection.

Python, TensorFlow

Python
Python, Flask

Trigger-Service Forwards anomaly alerts to the RL module. Spring Boot

RL-Engine Builds and refines RL policies based on feedback. Python

RL-Agent Executes adaptation policies generated by the RL-Engine. Python, Flask, Pre-trained RL
Model

Action-Service Validates and enforces adaptive actions according to system goals. Spring Boot

The API-Collector exposes a RESTful interface for real-time acquisition of system met-

rics. Its main entry point is a POST endpoint (e.g., /collect), which accepts JSON pay-

loads containing metric data from monitored nodes or agents. The typical input parameters

125

include: timestamp (ISO 8601 format), node_id (unique identifier for the source node),
metric_name (e.g., cpu_usage, memory_usage, network_latency), metric_value
(numeric or categorical value), and optional t ags (contextual metadata such as location, ser-
vice, or environment). The API supports batch submissions, allowing multiple metrics to be
sent in a single request for efficiency.

Upon successful collection, the API-Collector returns a standardized response indicating
the status of the operation. The output parameters typically include: status (e.g., success,
error), message (human-readable description), and, in case of error, a code and details
field for troubleshooting. For batch operations, the response may include a list of processed
metric IDs and any failed entries. All collected metrics are persisted in the time-series database

and made available for downstream services such as the Prediction-Service and Ontology-

Integration.
Example input payload:
{
"timestamp": "2025-07-16T14:23:00z2",
"node_id": "node-01",
"metrics": [
{"metric_name": "cpu_usage", "metric_value": 78.5,
"tags": {"core": "4"}},
{"metric_name": "memory_usage", "metric_value": 62.1},
{"metric_name": "network_latency", "metric_wvalue": 120,
"tags": {"interface": "eth0"}}
]
}
Example output response:
{
"status": "success",
"message": "3 metrics collected",
"processed": ["cpu_usage", "memory_usage", "network_latency"]

This design ensures that the API-Collector can flexibly ingest heterogeneous metrics from
diverse sources, supporting both fine-grained monitoring and scalable integration with the broader
Oraculum architecture.

This design ensures that the API-Collector can flexibly ingest heterogeneous metrics from
diverse sources, supporting both fine-grained monitoring and scalable integration with the broader
Oraculum architecture.

The Monitored Metrics parameter defines which system behaviors are tracked by the col-

lector. These metrics are the input to the regression and classification models and influence the

126

alert generation process. The configuration allows the user to select which metrics are most
relevant to the monitored application domain.

The Metric Collection Interval (7;) determines the frequency with which new samples are
collected from each node. A smaller interval increases temporal resolution but may lead to
higher processing and storage costs.

The Prediction Horizon (7},) defines the window into the future for which forecasts are
generated. This parameter controls the lookahead time available for the RL agent to reason and
select appropriate adaptation actions before a performance degradation occurs.

The Alert Sensitivity (6) determines how much deviation from the expected value is toler-
ated before a metric is considered anomalous. Lower values make the system more sensitive to
small changes, while higher values reduce false positives at the risk of missing early deviations.

The RL Action Aggressiveness function (A;) defines the evolution of adaptation strength

over time. For example, the exponential decay function Age0-1?

gradually reduces the magni-
tude or frequency of actions, avoiding overreaction to transient anomalies.

The RL Policy Update Algorithm specifies which reinforcement learning method is used to
train the agent. TD3 was chosen by default due to its stability in continuous action spaces and
its noise regularization features, but alternatives such as SAC, PPO, and Q-learning can also be
configured depending on the environment requirements.

Finally, the RL Actions parameter defines the types of changes the agent is allowed to per-
form. These include vertical scaling (e.g., increasing memory or CPU allocation), scheduling
modifications, and heuristic optimizations such as adjusting aggregation or filtering behavior
in the data processing pipeline. This combination of flexible parameters and modular com-
ponents supports experimentation and validation in different environments and under various

constraints, while maintaining automation and adaptability in the Oraculum model.

7.2 Regression and Classification Models

The Oraculum employs regression and classification algorithms to process metric data col-
lected during system operation. This process corresponds to steps 4 and 5 illustrated in Fig-
ure 26. Datasets used for training are produced by the SHIELD simulator, which generates
time-series observations across varying environmental configurations. Each dataset corresponds
to a monitored metric, and multiple algorithms are evaluated to determine predictive accuracy
and generalization capacity.

The model training pipeline comprises dataset generation, preprocessing, model selection,
training, evaluation, and storage. For a dataset D with n samples and m features, the structure

is defined as:

D = {(X1,1),(X2,92), ..., (X0, yn)} (7.1)

where X; € R™ denotes the feature vector and y; is the target variable. The dataset is

127

partitioned into training and testing subsets using an 80/20 split:

Diain, Diest = split(D, 0.8) (7.2)

Two predictive tasks are defined in the learning process:

* Regression: Estimates future values of a monitored metric based on historical data. The
regression function f : R™ — R approximates the mapping y = f(X). Algorithms

explored include linear regression, decision trees, and neural networks.

* Classification: Identifies system states by labeling predicted values according to behav-
ioral patterns. The classifier g : R™ — {0, 1} determines whether observed conditions
correspond to expected or anomalous states. Models tested include logistic regression,

decision trees, and feedforward neural networks.

After training, models are evaluated using accuracy, precision, recall, Fl-score, and area
under the ROC curve (AUC), depending on the task. These metrics quantify the model’s ability
to make reliable predictions under varying operational scenarios. Regression models are addi-
tionally evaluated using root mean square error (RMSE) and mean absolute error (MAE), which

measure the deviation between predicted and actual values over time.

Once validated, the models are integrated into the prediction pipeline. During runtime,
regression models continuously forecast the evolution of monitored metrics within a predefined
horizon, enabling the system to anticipate resource saturation, latency spikes, or performance
degradation. Classification models process the forecasted values to determine whether projected

behavior deviates from expected patterns, triggering alerts when thresholds are exceeded.

The outputs of the classification layer serve as input to the trigger module, which coordinates
adaptation actions through the RL agent. This interaction ensures that predictive inferences con-
tribute directly to the decision-making process, allowing the system to react before disruptions
escalate. The prediction service is executed at fixed intervals, aligned with the metric collection

cycle, and incorporates new data in a sliding window to maintain up-to-date context.

To ensure scalability, each model is trained and stored independently per monitored met-
ric. This modular design simplifies model updates and enables parallel inference when mul-
tiple metrics are processed simultaneously. Additionally, model performance is periodically
reassessed through retraining, based on new data collected during system operation. This strat-
egy preserves alignment between model behavior and evolving workload patterns, maintaining

consistency in anomaly detection and adaptation decisions.

128

Algorithm 5 Model Training Pipeline

Require: Set of datasets D = {D1, D2, ..., Dy }, node name N, metric name M
1: for each dataset D € D do

2:
3
4
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Load dataset D
Split dataset into training (Xirain, Yirain) and testing (Xiest, Yeest) sets
for each model type T' € {Linear Regression, Decision Tree, NN1, NN2, NN3} do
Initialize model based on T’
if T' € {NN1, NN2, NN3} then
Compile neural network model with Adam optimizer and appropriate loss function
Train model on Xin, Yirain for 50 epochs, batch size 32
Generate predictions on Xtest
else
Train model on Xrain, Ytrain
Generate predictions on Xegt
end if
Compute performance metrics (MAE for regression, Accuracy/AUC/F1 for classification)
Log results including node IV, metric M, and performance scores
Save trained model
end for
Generate and save model performance visualization

end for

Data preprocessing improves model performance and consistency across different metrics:

. Handling Missing Data: Missing values are replaced using interpolation or mean imputa-

tion to prevent inconsistencies.

. Feature Scaling: Min-max normalization standardizes all features to the range [0, 1]:

X — X
Xnorm =" 7.3
Xmax - Xmin ()

. Dataset Splitting: The dataset is divided into training and test sets using an 80-20% split.

. Data Balancing (for classification): Oversampling the minority class or undersampling

the majority class improves classification performance when class imbalance is present.

. Feature Selection: Correlation analysis and importance scores from decision trees help

remove redundant features.

The predictive and classification models employed by the Oraculum architecture support

dynamic monitoring and proactive adaptation in distributed smart environments. These models

are individually trained for each metric and node combination, leveraging time-series datasets

generated and preprocessed to reflect realistic operational variability. The models differ in their

underlying learning mechanisms, expressive capacity, interpretability, and computational cost.

To optimize model performance, hyperparameters are automatically tuned using reinforce-

ment learning-based hyperparameter tuning methods. This technique dynamically adjusts model

129

configurations based on real-time feedback during the training process. Specifically, the RL-
based tuning method incrementally searches for optimal parameter values by iteratively evalu-
ating model performance through reinforcement learning principles, effectively navigating the
hyperparameter search space without exhaustive computational costs. This approach signifi-
cantly enhances predictive accuracy and generalization capabilities compared to static or man-
ually tuned configurations (ISABONA; IMOIZE; KIM, 2022).

Table 27 summarizes the final configurations adopted for each algorithm, reflecting opti-
mal parameter values automatically identified through the RL-driven hyperparameter tuning
approach. These parameters include the number of layers, activation functions, optimizers, and
regularization strategies, effectively balancing predictive accuracy, computational efficiency,

and model stability.

Table 27: Selected models and parameter configurations

Model Parameter Value
. . Solver Normal Equation
Linear Regression o
Regularization None
Max Depth 10
Decision Tree Regressor Min Samples Split 2
Min Samples Leaf 1
Layers 1
Neurons per Layer 64
NNI - Regression Activation ReLU
Optimizer Adam
Loss Function MSE
Layers 2
Neurons per Layer 128, 64
NN2 - Regression Activation ReLU
Optimizer Adam
Loss Function MSE
Layers 2
Neurons per Layer 64,32
. Activation ReLU
NN3 - Regression Dropout 05
Optimizer Adam
Loss Function MSE
Max Depth 10
Decision Tree Classifier Min Samples Split 2
Min Samples Leaf 1
Solver LBFGS
Logistic Regression Regularization L2
Regularization Strength 1.0
Layers 1
Neurons per Layer 64
NNI - Classification Activation ReLU
Optimizer Adam
Loss Function BCE
Layers 2
Neurons per Layer 128, 64
NN2 - Classification Activation ReLU
Optimizer Adam
Loss Function BCE
Layers 2
Neurons per Layer 64, 32
. . Activation ReLU
NN3 - Classification Dropout 05
Optimizer Adam
Loss Function BCE

Linear Regression was selected as a baseline for regression tasks. It operates under the

assumption of a linear relationship between features and the target variable. The model solves

130

the normal equation analytically to obtain regression coefficients. Its main advantage lies in low
computational cost and full interpretability. In the Oraculum context, linear regression is used
to capture trends in metrics such as CPU or memory usage in situations where such growth
is roughly proportional to load or time. The absence of regularization in this case reflects
the intention to maintain the raw relationship between inputs and outputs, useful for detecting

metrics that do not benefit from more complex modeling.

Decision Tree Regressors and Classifiers were incorporated due to their ability to capture
hierarchical, non-linear patterns. These models use a recursive partitioning strategy, splitting
feature space based on decision thresholds that maximize information gain (or minimize vari-
ance for regression). This behavior makes them appropriate for metrics that exhibit abrupt state
changes or threshold effects, such as latency spikes under specific combinations of system load.
The maximum depth, minimum samples per split, and leaf configuration were tuned to avoid
overfitting and to preserve generalization over small data windows. In classification, decision
trees can provide direct and interpretable logic for alert generation, producing decision rules

traceable to metric thresholds.

Neural networks were applied to represent complex, multi-dimensional interactions among
metrics. Three feedforward architectures were tested for both regression and classification.
NNI1 uses a single dense layer with 64 neurons, serving as a compact model for learning mod-
erate non-linear dependencies. NN2 increases depth with two layers (128 and 64 neurons),
allowing hierarchical feature composition that can capture subtle interactions across multiple
input metrics. NN3 adopts a smaller second layer and includes dropout regularization (0.5),
which introduces noise during training to prevent overfitting and improve generalization. All
networks use the ReLU activation function, the Adam optimizer for adaptive learning rate ad-
justment, and are trained over 50 epochs with batch size 32. For regression, Mean Squared
Error (MSE) is used as the loss function, while for classification, Binary Cross-Entropy (BCE)

is employed to capture probabilistic output quality under binary labels.

Logistic Regression was selected for its probabilistic decision boundary and compatibility
with binary classification tasks, such as determining whether a predicted metric value represents
an anomaly or not. It applies a sigmoid function to a linear combination of inputs, offering a
smooth transition between normal and alert states. L2 regularization with a strength of 1.0 was
configured to prevent overfitting in small or imbalanced datasets. This model is suitable for

scenarios where classification decisions must be robust and interpretable.

Other widely used models were considered but excluded for specific reasons. Random
Forests and Gradient Boosted Trees offer high accuracy and resistance to overfitting by ag-
gregating multiple tree predictions, but they require significantly more memory and training
time. This becomes a limitation in the Oraculum context, where each metric-node pair requires
an independent model, and retraining may occur periodically based on new data. Their ensem-
ble nature also complicates interpretation, which is relevant when adaptation decisions must be

explained or traced.

131

Support Vector Machines (SVMs), although effective in high-dimensional spaces, present
scalability challenges with larger datasets and depend heavily on kernel selection and tuning.
Since Oraculum operates in real-time environments and monitors several nodes simultaneously,

the time and memory complexity of SVMs were considered a limitation for deployment.

Recurrent neural networks (RNNs), including LSTMs and GRUs, were not adopted in this
stage due to their higher training cost and complexity. While they are suitable for sequential
data, the current Oraculum implementation processes fixed-size windows of time-series data,
which allows the use of feedforward networks without sacrificing prediction capacity. Addi-
tionally, the infrastructure for long-sequence training and memory management in real-time

environments is still under development and may be addressed in future versions.

The selection process for the models in Table 27 was guided by the need for balance be-
tween modeling capacity and execution constraints. Each model is compatible with automatic
training, isolated deployment, and periodic retraining. This enables the architecture to scale
horizontally across different metrics and services while remaining responsive to metric varia-
tions and predictive shifts. The diversity in model complexity also supports benchmarking and
comparison under varying workloads, providing flexibility in tuning prediction pipelines for

performance, latency, and resource constraints.

7.3 RL Agent

RL is a machine learning paradigm in which an agent selects sequential actions in response
to environmental conditions, receiving feedback in the form of rewards (BARRETT; HOW-
LEY; DUGGAN, 2013). The interaction is modeled as a Markov Decision Process (MDP),
where each state transition depends on the current state and selected action (RESTUCCIA;
MELODIA, 2020).

In the Oraculum, the RL agent performs adaptive decision-making by modifying system
parameters based on runtime observations. The objective is to optimize system performance
while maintaining a balance between conflicting performance metrics. The implementation
considers both value-based and policy-based RL methods, including Q-learning, Soft Actor-
Critic (SAC), and Twin-Delayed Deep Deterministic Policy Gradient (TD3).

The environment is defined by a set of system states s; € S, where each state comprises

performance indicators:

s = {my,maq, ..., m,}, (7.4)

with m, representing metrics such as CPU usage, memory consumption, latency, packet

loss, response time, and throughput. The transition to the next state is defined by:

sip1 = T'(s¢,a0) + e, (7.5)

132

where T'(s;, a;) denotes the deterministic outcome of action a; € A, and € represents uncer-

tainty. The reward function guides the optimization process:

R(sy,ar) = Zwifi(mi)y (7.6)
i=1

where w; defines the importance of each metric and f;(m;) normalizes its contribution. The

agent aims to maximize the cumulative discounted reward:

Gr =Y Y R(sipr, arir), (7.7)
k=0

where v € [0,1] is the discount factor. The agent uses multi-objective optimization to
manage trade-offs between metrics. When improvements in one metric degrade others, the
agent approximates Pareto-optimal solutions:

Bs' €S, suchthat R(s') > R(s) Vs#5s'. (7.8)

To support this process, the agent computes a weighted objective function:

J(s) = Nifi(ms), (7.9)
=1

where the weights)\; adapt over time according to observed system conditions. A state s* is

considered stable when marginal changes do not yield improvements in the objective function:

ViJ(s*) =0, where J(s)=E[G|so=s]. (7.10)

The optimal policy is derived from the action-value function:

(s) = argmax Q(s, a), (7.11)

acA
with Q*(s, a) estimated through RL algorithms that support continuous control. The imple-
mentation compares algorithms based on the type of policy, the exploration strategy, and the

response to the dynamics of the system. Table 28 summarizes these characteristics.

Table 28: Comparison of RL algorithms for adaptation in the Oraculum Model.

Algorithm Policy Type Exploration Strategy Adaptability Level
Q-learning Discrete e-greedy Low

PPO Continuous Clipped objective High

SAC Continuous Entropy regularization Higher

TD3 Continuous Target smoothing Higher

Rather than converging to a static policy, the RL agent continuously updates its decisions to

accommodate changes in system state and external conditions. The iterative optimization pro-

133

cess adapts the policy over time, supporting resilient system behavior under fluctuating work-

loads and performance constraints.
7.3.1 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a mathematical framework used to model sequential
decision-making problems where the next state of the system depends solely on the current
state and the chosen action. This model consists of a set of states, a set of possible actions, a
transition function that determines state evolution, a reward function that evaluates the quality
of each transition, and a policy that defines the strategy for selecting actions. This structure
enables decision optimization over time, making it suitable for RL applications.

In this work, RL is applied to optimize resource allocation and usage in a dynamic system,
ensuring improved performance while adapting to environmental variations. The RL agent

operates under an MDP, where each element is defined as follows:

* States (5): Each state represents the system’s condition at a given time. The state is char-
acterized by performance metrics, including CPU and memory usage, network latency,
packet loss, and response time. These variables capture system behavior and serve as the

foundation for the agent’s decision-making process.

* Actions (A): Actions represent operations that modify system parameters. In this con-
text, actions include adjusting memory and CPU allocation, modifying task scheduling
strategies, and reconfiguring load balancing policies. Each action directly influences the

subsequent state and can positively or negatively impact system performance.

* Transition Function (7'): The transition function defines the relationship between states
and actions, determining system evolution. Given a state s; and an action ay, the next
state sy, 1s obtained by:

Ser1 = T(sg,a0) + €, (7.12)

where T'(s;, a;) represents the expected system change after an action, and e accounts for
stochastic variations caused by external factors. In system optimization, transitions reflect

changes in resource utilization and application response.

* Rewards (R): The reward function evaluates the quality of each state transition. The

reward is defined as:

R(st, ar) = Z w; fi(m), (7.13)
i=1

where w; defines the relative importance of each metric, and f;(m;) normalizes the impact
of variables on system performance. The agent aims to maximize cumulative rewards

over time, favoring actions that lead to more efficient states.

134

* Policy (m): The policy defines the agent’s decision-making strategy, mapping states to
actions. The objective is to find the optimal policy 7*(s) that maximizes the expected
return:

T(s) = arg max Q*(s,a), (7.14)

where (*(s, a) estimates the expected return of taking action « in state s. In this work,
RL algorithms such as Soft Actor-Critic (SAC) and Twin-Delayed Deep Deterministic
Policy Gradient (TD3) are employed to learn and dynamically adjust this policy, ensuring

a balance between exploration and exploitation of advantageous actions.

The application of RL within this MDP allows the system to continuously adapt to envi-
ronmental variations. The agent learns to dynamically respond to workload changes, adjusting
system parameters to maintain an optimized performance level. This model enables automated
real-time decision making, reducing the need for manual intervention and increasing operational

efficiency.
7.3.2 State Space (.5)

The state space S defines the system’s current operational context based on a set of perfor-
mance metrics. These metrics characterize multiple system dimensions, including hardware,
network, software, and service-level performance. Each state s; € S aggregates real-time val-
ues used by the RL agent to determine adaptation actions.

The monitored metrics are grouped into the following categories:

* Hardware: CPU usage, memory usage, GPU utilization, and storage utilization. These

indicators represent computational resource availability and consumption.

* Network: Latency, data transfer rate, and packet loss. These values reflect communica-

tion throughput and reliability between distributed system components.

* Software: Response time, throughput, and garbage collection duration. These features

capture internal processing characteristics and execution efficiency.

* Service Level Agreements (SLA): Availability, resilience, and stability. These attributes
relate to compliance with quality-of-service objectives defined by operational require-

ments.

Each metric is normalized to the interval [0.0, 1.0], enabling standardized evaluation across
heterogeneous sources. The RL module interprets this representation to track system condi-
tions and apply configuration changes as necessary to maintain performance within predefined

operational bounds.

135

7.3.3 Possible Actions in the RL Agent

In the defined Markov Decision Process (MDP), the action space A encompasses a set of
discrete and parameterized operations that directly modify system configurations. Each action
is designed to influence performance-related variables across hardware, network, software, and
data management layers. Actions can be quantitative—where a specific value or increment
is applied within a defined range—or qualitative, where the agent selects among categorical
options such as policies or strategies. The selection of actions is informed by the current system
state and is bounded by operational constraints to ensure system stability and prevent resource
exhaustion. Table 29 summarizes the available actions, their qualitative or quantitative nature,
and the corresponding parameter ranges or options.

The RL agent selects from the following action categories:

* Scaling Operations: Quantitative actions that adjust computational resources, such as
increasing or decreasing the number of CPU cores, memory allocation, GPU memory,
or storage capacity. Each resource can be scaled up or down in fixed increments, within

specified minimum and maximum limits.

* Node Management: Qualitative actions such as restarting a node or migrating workloads
to a new instance. These actions are triggered when performance degradation is detected

and are not parameterized by a numeric value.

* Heuristic Adjustments: Quantitative actions that modify parameters for data filtering,
aggregation, and compression. The agent selects values within defined ranges to balance

data reduction and information preservation.

* Resource Optimization: Includes both quantitative adjustments (e.g., fine-tuning CPU
or memory allocation) and qualitative changes (e.g., switching autoscaling policies or
optimizing load balancing strategies). These actions are chosen based on predictive as-

sessments of system demand and operational context.

Quantitative actions involve direct numerical adjustments, such as increasing memory by
512MB or setting a compression ratio within a specified range. Qualitative actions involve
selecting among a set of predefined strategies or operational modes, such as changing the au-
toscaling policy or load balancing method. This hybrid action space enables the RL agent to
flexibly and precisely adapt system behavior, supporting both fine-grained resource manage-

ment and high-level operational decisions.

7.3.4 Reward Definition (R)

The reward function quantifies the effectiveness of each action executed by the RL agent

based on resulting system performance. Positive rewards are assigned to actions improving

136

Table 29: Available Actions, Types, and Limits in the Oraculum RL Agent.

Action Type Effect Parameter Range / Options

Scale up CPU Quantitative Increase vCPUs by 1 Max +4 vCPUs

Scale down CPU Quantitative Decrease vCPUs by 1 Min 1 vCPU

Scale up Memory Quantitative Increase RAM by 512MB Max +8GB

Scale down Memory Quantitative Decrease RAM by 512MB Min 512MB

Scale up GPU Memory Quantitative ~ Allocate additional 512MB GPU memory Max +8192MB

Scale down GPU Memory Quantitative Deallocate 512MB GPU memory Min 512MB

Scale up Storage Quantitative Expand disk space by 10GB Max +500GB

Scale down Storage Quantitative Reduce disk space by 10GB Min 20GB

Restart Node Qualitative Reboot instance No limit

Migrate to New Instance Qualitative Move workload to another VM No limit

Adjust Filtering Quantitative Modify data filtering threshold Range [10%, 50%]

Adjust Aggregation Quantitative Modify data block aggregation size Range [5, 50]

Adjust Compression Quantitative Modify data compression ratio Range [0.2, 0.9]

Change Autoscaling Policy ~ Qualitative Switch scaling strategy Predefined policies
(e.g., reactive, predictive, scheduled)

Optimize Load Balancing Qualitative Adjust traffic distribution method Dynamic strategies

(e.g., round-robin, least-loaded, weighted)

system metrics, while penalties discourage actions that degrade performance or unnecessarily
consume additional resources. This formulation aligns with established reinforcement learning
principles, incentivizing desirable behaviors and discouraging detrimental decisions (WEERAS-
INGHE et al., 2024).

The reward function is formally defined as:
R(s;,ar) = Y _wifi(m;) — Play), (7.15)
i=1

where:

* w; represents the relative importance assigned to each monitored metric, initially derived

from domain-specific priorities (COLOMBO et al., 2022) and refined empirically.

* fi(m;) is a normalization function applied to metric m;, transforming raw values into a

uniform scale [0,1] to ensure consistent evaluation across metrics.

* P(a;) denotes the penalty associated with inefficient resource allocation or actions not

resulting in measurable performance improvements.

Table 30 summarizes specific reward and penalty assignments, reflecting empirical tuning
through extensive system tests. Initially, these values were guided by literature recommenda-
tions on adaptive system design and resource optimization (XU; LIU; PAN, 2023). However,
exact values were fine-tuned empirically based on real-time feedback from preliminary exper-
iments, ensuring that rewards and penalties meaningfully reflect the relative importance and

operational costs of metric changes.

137

Table 30: Empirically Determined Rewards and Penalties for RL Actions Based on Performance
Impact.

Condition Reward
CPU usage reduction by 3% (if above threshold) +2.0
Memory usage reduction by 256MB (if above threshold) +1.5
Decrease in response latency by 20ms +3.0
Increase in throughput by 5% +2.5
Reduction in packet loss by 0.5% +1.8
Improved energy efficiency by 2% +1.5
Increase in availability by 1% +1.8
Increase in resilience by 1.5% +1.5
CPU usage increase above optimal range 2.0
Memory usage increase above optimal range -1.5
Response latency increase by 20ms -3.0
Throughput decrease by 5% -2.5
Packet loss increase by 0.5% -1.8
Availability reduction by 1% -1.8
Resilience reduction by 1.5% -1.5
Continuous scaling of CPU without performance gain -4.5
Continuous scaling of memory without performance gain -3.5

Positive reward values are directly proportional to their relative importance for system per-
formance improvements, as suggested by previous studies on adaptive optimization (WEERAS-
INGHE et al., 2024). For instance, latency improvements are weighted higher (+3.0) due to
their critical impact on user experience and operational responsiveness. Conversely, resource
utilization metrics, such as CPU and memory, received moderate rewards (+2.0 and +1.5, re-
spectively), reflecting their secondary but significant role in overall performance optimization.

Penalty values similarly reflect the severity of undesirable outcomes, like latency degra-
dation, which significantly impacts system quality and user satisfaction, thus receiving higher
penalties (-3.0). Penalties for unnecessary resource scaling actions were assigned based on
computational overhead and inefficient resource usage considerations, following established
optimization and resource management strategies documented in literature (COLOMBO et al.,
2022).

The penalty function P(a,) explicitly targets scenarios where scaling actions increase re-

sources without demonstrable performance gains, calculated as follows:
P(a;) = Aemax(0, ACPU —§,) + A\, max(0, AMem — 6,,), (7.16)

where:

*). and)\, are penalty coefficients for CPU and memory usage, set empirically through

initial training feedback.

* ACPU and AMem represent changes in resource allocation.

138

* 0. and 9,, represent predefined thresholds, based on typical workload variations.

The exact penalty coefficients ()., A\,,) and thresholds (d., ,,,) are initially derived from lit-
erature benchmarks and subsequently refined empirically during early training phases. Contin-
uous adjustments during reinforcement learning ensure that these parameters effectively reflect
real operational costs and performance implications, thus guiding the agent towards efficient,
meaningful adaptations over time.

This reward mechanism constitutes the least automated aspect of Oraculum’s implementa-
tion, requiring explicit initial tuning based on domain expertise and empirical tests. However,
ongoing training allows for further dynamic refinement, progressively optimizing reward struc-

tures to match evolving operational conditions.

139

8 MODEL EVALUATION

This chapter reports the evaluation outcomes of the Oraculum architecture, with emphasis
on adaptive behavior under varying workload conditions. The analysis includes metrics related
to monitoring, prediction, and decision-making using the Twin-Delayed Deep Deterministic
Policy Gradient (TD3) RL algorithm. Evaluation criteria include adaptation efficiency, resource
utilization, and system stability (SIMAIYA et al., 2024).

The experiments focus on three main aspects. First, adaptation-related metrics-Mean Adap-
tation Time (MAT), Adaptation Accuracy (AA), Adaptation Overhead (AO), and Adaptation
Stability (AS)-are analyzed to quantify the performance of RL-based adjustments. Second, the
architectural impact of adaptations is assessed across different layers of the system, including
software, hardware, network, security, and service-level agreements (SLA). Third, the perfor-
mance of the RL agent is examined in terms of action selection, reward accumulation, and
decision quality across episodes.

The evaluation scenario involves controlled variation of workload intensities, gradually in-
creasing system demand to observe the adaptation responses. The analysis quantifies how the ar-
chitecture reallocates resources, mitigates performance degradation, and maintains operational
thresholds under dynamic execution conditions. The following subsections present a detailed

breakdown of observed behaviors and corresponding performance measurements.

8.1 Performance Evaluations

The prototype was executed in a containerized environment using Docker, hosted on a sys-
tem equipped with an Intel Core i5-12400 processor, 16 GB of RAM, and a 500 GB SSD.
Resource limits (CPU and memory) were managed via Docker commands, enabling controlled
stress conditions. The evaluation simulated increasing workloads and fault scenarios to assess
the system’s adaptive behavior (SOBIERAJ; KOTYnASKI, 2024; GUPTA; AGARWAL, 2025).

The testing strategy introduced three workload levels-low, medium, and high-each with

predefined conditions:

* Low Load: The system operated under minimal resource usage, with the SHiELD sim-
ulator generating lightweight periodic requests. Containers were constrained to a small
fraction of CPU and memory (XU; BUYYA, 2019; MORABITO, 2017).

* Medium Load: Additional concurrent processes simulated database access and API traf-
fic. CPU and memory demand increased progressively, emulating real-world workload
escalation. Docker resource limits were dynamically reconfigured to accommodate usage
growth (RAIBULET; OH; LEEST, 2023; MORABITO, 2017).

* High Load: Stress operations introduced computational bottlenecks, including encryp-

tion, recursive calculations, and large in-memory datasets. Faults were injected by restart-

140

ing services and introducing API delays. These actions tested the system’s response to
failures and performance degradation (VELRAJAN; SHARMILA, 2023; XU; BUYYA,
2019).

Stress conditions were applied as follows:

» CPU Stress: High-intensity threads executed mathematical operations, controlled via:

docker update -cpus=X container (8.1)

* Memory Stress: Memory-bound tasks allocated persistent high-dimensional objects, and

memory limits were configured using:

docker update —-memory=Y container (8.2)

* Failure Injection: Critical services were restarted, nodes terminated, and artificial API

delays inserted to simulate failures and network congestion.

Throughout the tests, the monitoring architecture collected metrics such as CPU and mem-
ory usage, response time, disk I/O, garbage collection frequency, and system availability. The
strategy ensured repeatability and allowed observation of adaptive responses under escalating
demands.

Table 31 summarizes the defined load levels and associated stress characteristics. The table
provides an overview of the controlled increase in system stress and the corresponding methods

applied to induce workload growth.

Table 31: Test Scenarios and System Load Increase

Plan CPU Mem. Dataset Load Increase Method

(%) (MB) Size
Low 10-30 100-300 100,000 The SHiELD simulator generates periodic low-intensity requests. Containers are allo-
Load records cated 0.5 CPU cores and 200MB RAM to ensure low computational overhead.

Medium 40-70 400-700 200,000 The SHIiELD simulator increases the number of requests proportionally. More concurrent
Load records database transactions and API calls are generated. CPU allocation is raised to 1.5 cores,
and memory is increased to 600MB.

High 80-100 800- 400,000 CPU-intensive tasks such as recursive calculations, encryption, and high-frequency log-
Load 1200 records ging are executed. Some nodes are manually terminated to simulate failures, redistribut-
ing the load among the remaining nodes.

Figure 29 and Figure 30 illustrate the CPU and memory usage of each monitored service
over a 30-minute period. The graphs show how resource consumption evolves as the system
transitions between different load levels.

The red vertical line represents the transition from low load to medium load at the 10-
minute mark. The blue vertical line indicates the transition from medium load to high load at

the 20-minute mark. These transitions mark moments when additional computational stress was

141

applied, either by increasing concurrent requests, introducing heavier workloads, or simulating
failures.

In Figure 29, CPU usage remains low in the initial phase, with most services operating below
15%. As the load increases after the first transition, services such as the Training-Scheduler and
RL-Engine show a noticeable increase in CPU consumption. This is expected since model train-
ing and RL require significant processing power. The Trigger-Service and Prediction-Service
also experience a rise in CPU usage, reflecting the increased number of alerts being processed.
By the high-load phase, CPU usage stabilizes at higher levels, with services such as the RL-

Agent and Action-Service operating near their capacity limits.
Figure 29: CPU usage over time for monitored services.

CPU Usage Over Time

API Collector Ontology Integration
T f T
| |
1 20 1
1 1
S i S i
- 1 - 1 1
=) 1 5 15¢ i 1
o 1 o 1 1
5 ! 5 ! !
1 L 1 1
1 10 1 1
| 1 |
1 1 1
Dataset-Builder Training-Scheduler
T :
1 1
I 40+ I
= | = |
g | g |
=) 1 > 30r i 1
o 1 o 1 1
5 ! 5 ! !
1 1 1
1 20 1 1
| 1 1
1 1 1
Data-Collector Prediction-Service
2 2
o o
O O

Trigger-Service RL-Engine

CPU (%)
CPU (%)

RL-Agent Action-Service

40
301

20;\M
0

5 10 15

CPU (%)
CPU (%)

0 5 10 15 20 25 30
Time (minutes)

Figure 30 presents memory consumption trends. At low load, memory usage remains rel-

atively stable, with minimal fluctuations. As the system transitions to medium load, services

142

like the Training-Scheduler and RL-Engine start consuming more memory due to the increasing
size of data batches and models being processed. The Data-Collector and Prediction-Service
also show gradual memory growth, reflecting the accumulation of incoming data and predic-
tions being generated. By the high-load phase, the RL-Engine reaches its peak memory usage,
highlighting the computational demands of RL updates. Other services, such as the Ontology
Integration and API Collector, experience moderate increases, while the Action-Service main-

tains a steady memory footprint.
Figure 30: Memory usage over time for monitored services.

Memory Usage Over Time

API Collector Ontology Integration

=
(o)}
w

1 1 1
1 1 1
— ! ! . 1
@ i i @ i
= 1 1 = 160} 1
| | - |
g 1 1 g 1
1 1
150 UL T : I :
Dataset-Builder Training-Scheduler
i i 450}
—~ 210} 1 i =
))
= i i = 400
> 1 1 >
5 L ! | S 3501
g 205 ! ! g
s E E s 3001
200 1 1 250
Data-Collector Prediction-Service
400
o L o
= 400 =
> > 300
o 3001 <]
I I
s s
200 200+
Trigger-Service RL-Engine
1 1
L 1 1
_. 300} __ 500 | i
)) 1 1
£ S 4501 i |
> 250t > i i
5] c 4001 ! !
g I g 1]
s 2001 i s 3501 i i
—— i A | ST L | ; —— .
RL-Agent Action-Service
195 i |
= 5001 = | :
g 2 190} i i
< - | |
> >
S 400} 5 185 ! !
5 5 ! |
= = 180r | |
300 ! !
175 L 1 L 1 L 1
0 5 10 15 20 25 30

Time (minutes)

The observed trends confirm the expected workload behavior under different load condi-
tions. During the high-load phase, the heavy computational demands services exhibit the high-
est resource consumption, demonstrating the system’s ability to allocate processing power and

memory where needed. The results also indicate that resource utilization does not immediately

143

spike at transition points but gradually adapts to the increased demand, reflecting a realistic
workload progression.

Table 32 presents resource utilization metrics for each node under increasing workload lev-
els. The results include CPU and memory usage, as well as execution times for component-
specific operations. The analysis focuses on variations observed during the transition from low

to high system load.

Table 32: Summary of monitored measurements for each node at different load levels

Node Metric Low Load Medium Load High Load
API Collector

CPU Usage (%) 10.3-14.8 19.6-28.9 41.2-59.7

Memory Usage (MB) 152.7-248.3 257.4-487.2 505.9-793.5

Response Time (ms) 12.5-28.4 31.2-96.7 108.9-294.6

Ontology Integration

CPU Usage (%) 4.9-9.7 14.2-23.8 32.5-49.1

Memory Usage (MB) 98.3-189.5 203.1-392.7 410.6-695.8

SWRL Query Execution Time (ms) 53.4-143.6 164.8-388.3 426.1-784.2
Dataset-Builder

CPU Usage (%) 14.7-19.2 26.4-34.1 46.7-68.5

Memory Usage (MB) 207.5-289.2 312.6-587.9 621.4-892.3

Dataset Generation Time (s) 6.3-14.7 18.4-38.9 44.5-88.2

Training-Scheduler

CPU Usage (%) 19.8-29.1 37.3-48.5 62.7-79.2

Memory Usage (MB) 314.5-496.2 512.7-798.3 845.9-1187.3

Model Training Time (s) 35.7-118.4 125.3-298.7 320.5-882.1
Data-Collector

CPU Usage (%) 11.4-19.2 23.8-33.9 42.5-69.3

Memory Usage (MB) 153.2-292.6 317.5-589.8 635.7-889.4

Data Transfer Rate (Mbps) 12.6-28.5 34.2-76.8 85.9-147.4

Prediction-Service

CPU Usage (%) 12.9-18.5 22.3-34.2 39.6-68.7

Memory Usage (MB) 186.5-342.1 357.8-684.9 718.6-998.4

Prediction Latency (ms) 21.3-48.7 55.2-144.9 162.3-396.5
Trigger-Service

CPU Usage (%) 9.7-14.9 18.5-27.4 33.2-49.6

Memory Usage (MB) 204.8-289.6 314.3-487.1 526.7-695.9

Trigger Processing Time (ms) 11.4-28.6 33.7-95.2 113.8-247.3

RL-Engine

CPU Usage (%) 24.3-33.8 38.5-52.4 61.9-89.1

Memory Usage (MB) 414.6-589.2 618.7-876.1 954.3-1194.8

RL Model Decision Time (ms) 56.2-143.8 169.4-387.2 439.3-984.7

RL-Agent

CPU Usage (%) 17.6-27.9 31.4-48.2 52.8-79.6

Memory Usage (MB) 362.1-487.5 523.6-789.4 846.7-1103.2

Action Selection Time (ms) 22.5-48.3 55.6-144.1 168.7-393.6
Action-Service

CPU Usage (%) 13.8-21.6 27.9-38.7 41.6-68.3

Memory Usage (MB) 229.3-392.5 428.7-693.2 754.1-899.8

Action Processing Time (ms) 12.2-28.9 34.1-96.4 118.3-294.1

The API Collector, responsible for gathering metrics from multiple services, shows a steady
rise in CPU and memory usage as the number of collected data points increases. Under high
load, response times grow significantly due to the volume of requests being processed simul-
taneously. Since this component is responsible for maintaining a continuous data stream, any
delay at this stage affects all subsequent processing steps.

Similar behavior is observed in the Ontology Integration service, which applies SWRL
queries to classify instances based on real-time data. As the number of metrics collected in-

creases, the query execution time also expands, requiring more processing resources. The com-

144

plexity of reasoning grows as more instances are evaluated, leading to a noticeable increase
in CPU and memory usage at high loads. This behavior highlights the computational cost of

integrating real-time data into an ontology-based classification system.

The Dataset-Builder plays a critical role in structuring historical data for machine learning
tasks. During low load, dataset generation remains relatively lightweight, but as more data
points accumulate, the computational effort required to process and store them increases. The
CPU and memory usage rise significantly in high-load scenarios, reflecting the higher volume
of data being transformed and saved. The dataset generation time also escalates, indicating that

larger datasets require proportionally more resources to be structured and formatted.

The Training-Scheduler, responsible for the construction of predictive models, exhibits one
of a particularly noticeable increase in resource consumption. As more data is fed into the
system, model training becomes computationally expensive, with processing times increasing
from seconds to several minutes. The CPU and memory demand intensifies under high load as
the system attempts to optimize model parameters and evaluate different learning algorithms.
This component is particularly affected by workload variations, as the efficiency of the entire

predictive framework depends on its ability to train models effectively.

Once models are trained, the Prediction-Service performs real-time inference to forecast fu-
ture system behavior. As the volume and complexity of the incoming data increases, the usage
of CPU and memory increases, leading to an increase in the prediction latency. This latency
is critical, as delayed predictions can reduce the effectiveness of proactive system adjustments.
The high-load scenario reveals how inference operations become progressively slower, empha-
sizing the need for computational efficiency when making real-time predictions.

The Data-Collector continuously transfers metrics from monitored components to the pre-
diction pipeline. As workload increases, data transfer rates escalate, leading to higher CPU and
memory usage. The rising throughput under high load places additional pressure on the system,
as more resources are required to handle incoming data streams while maintaining responsive-
ness. The efficiency of data transfer directly impacts downstream services, particularly those
involved in real-time inference and decision-making (HAMEED et al., 2021b).

When anomalies are detected, the Trigger-Service initiates corrective actions based on pre-
defined policies. This service shows a gradual increase in resource consumption, with trigger
processing times growing as more alerts are generated. Under high load, the increased num-
ber of anomaly detections leads to a higher processing burden, reinforcing the importance of
maintaining a balance between detection speed and action execution.

The RL-Engine is responsible for dynamically adjusting system parameters through RL. As
system complexity grows, the RL model needs to evaluate a broader set of states and potential
actions, increasing its computational demand. The decision time expands under high load,
reflecting the increased effort required to determine optimal system adjustments. This behavior
indicates that RL.-based adaptation introduces additional latency, which must be managed to

ensure timely responses.

145

Once an action is selected, the RL-Agent executes the necessary system adjustments. Un-
der low load, decisions are infrequent, leading to minimal resource consumption. However, as
anomalies become more common, the agent must evaluate system conditions more frequently,
leading to increased CPU and memory usage. The action selection time grows significantly
under high load, reflecting the complexity of determining the best response given multiple con-
current system changes.

Finally, the Action-Service applies the selected adjustments and validates system modifica-
tions. At low load, actions are rare, keeping processing times minimal. As workload increases,
a higher number of corrective actions is required, leading to greater resource usage. The exe-
cution time for each action grows under high load, emphasizing the impact of frequent system
modifications on overall stability.

These results highlight how each component of the monitoring architecture scales with in-
creasing demand. CPU and memory consumption rise proportionally to workload intensity,
and processing times reflect the computational cost of handling larger data volumes. Services
directly involved in real-time decision-making, such as the Prediction-Service and RL-Engine,
exhibit particularly high sensitivity to increased loads. The structured evaluation of system
behavior under different conditions ensures that performance bottlenecks and potential opti-

mization areas are identified.
8.2 Prediction Results

To evaluate model performance in both regression and classification tasks, a combination of
geometric and statistical metrics was applied. The Polygon Area Metric (PAM) was chosen as
the central metric due to its ability to measure the geometric deviation between predicted and
actual time series values. Unlike traditional statistical metrics, PAM captures the overall dif-
ference in trends rather than isolated errors, making it suitable for time-dependent predictions.
The formula for PAM is:

n—1
1 .
PAM = 5 ; \(ys —) (tiga — t3)] (8.3)

where y; and ; are the actual and predicted values at time i, ¢; is the corresponding time
step, and n is the total number of observations (AYDEMIR, 2021).

Since PAM alone does not capture all aspects of model accuracy, additional statistical met-
rics were used to complement its evaluation. In regression tasks, Mean Normalized Bias (MNB)
detects systematic over- or under-estimations, Mean Absolute Scaled Error (MASE) compares

the model to a naive baseline, and Normalized Root Mean Squared Error (NRMSE) standard-

2
adj

fit, while Nash-Sutcliffe Efficiency (NSE) evaluates predictive performance against observed

izes errors across different scales. Adjusted R-squared (R ;) prevents overestimation of model

variance.

146

For classification tasks, Accuracy (CA), Sensitivity (SE), and Specificity (SP) measure cor-
rect classifications, while Area Under the Curve (AUC) assesses the model’s ability to distin-
guish between classes. The F1 Score balances precision and recall, ensuring reliable evaluation
in imbalanced datasets.

Table 33 summarizes the applied metrics, their formulas, and interpretations.

Table 33: Evaluation Metrics Summary

Metric Formula Interpretation

Core Metric - Geometric Evaluation

Polygon Area Metric (PAM) % ?;11 [(yi — i) (tiv1 —ti)| Measures geometric deviation between pre-

dicted and actual values, capturing overall
trend differences.

Regression Metrics - Statistical Evaluation

Mean Normalized Bias (MNB) % > yly;gl Identifies systematic bias in predictions.
Mean Absolute Scaled Error % Compares performance against a naive base-
(MASE) T 2vi=a W71 line.
VEEE (vi—9:)?
Normalized RMSE (NRMSE) % Normalized measure of prediction error.
max é’ﬂll’l
Adjusted R? 1- (%) Adjusts R? for the number of predictors,

preventing overfitting.
R (wi—9i)?

Nash-Sutcliffe Efficiency N OTEIE
=1 k2

—

Evaluates predictive accuracy relative to data

(NSE) variability.
Classification Metrics - Model Discrimination

Accuracy (CA) % Proportion of correctly classified instances.

Sensitivity (SE) TPTJr% Proportion of correctly identified positive in-
stances.

Specificity (SP) % Proportion of correctly identified negative
instances.

AUC — Measures the ability to rank positive in-
stances higher than negative ones.

F1 Score 2 X w Balances precision and recall in imbalanced

recision—+ Recall

datasets.

The evaluation framework provides a structured assessment of model accuracy across differ-
ent learning tasks by combining PAM with statistical and classification metrics. PAM ensures
the detection of long-term trends, while statistical metrics refine the analysis of prediction er-
rors and classification quality. Figure 31 shows the performance of regression models across
CPU, memory, GPU, and storage. The linear regression model exhibited stable performance but
struggled in scenarios where relationships between variables were nonlinear. The decision tree
regressor captured more complex patterns but was sensitive to overfitting, leading to varying
performance across different metrics. The neural network models demonstrated higher adapt-
ability, particularly NN2 and NN3, which incorporated additional layers and dropout to enhance
generalization. NN3 achieved more balanced results, especially in CPU and storage metrics,
indicating that regularization helped mitigate overfitting. The results suggest that deeper archi-
tectures performed better when capturing intricate relationships in the dataset, while simpler

models remained competitive in cases where patterns were less complex.

147

Figure 31: Regression model performance across hardware-related metrics.

Models
@ Linear Regression Decision Tree Regressor € NN1 A NN2 ¥ NN3

CPU Memory

MNB MNB

Storage

MNB
0.95

Figure 32 illustrates the performance of the classification models. Decision tree and logistic
regression models provided competitive results, particularly in CPU and storage, where deci-
sion boundaries were well-defined. Neural networks demonstrated improvements in memory
and GPU-related metrics, where feature extraction played a more significant role in distinguish-
ing classes. The deeper structures of NN2 and NN3 provided enhanced decision-making capa-
bilities by capturing hierarchical relationships in the data. However, the increased complexity
of NN3 did not always translate into better performance, as its gains were marginal compared
to NN2 in certain cases. Logistic regression showed stable results, particularly in structured
datasets with clearer separability. The decision tree classifier achieved reasonable performance
but exhibited variations due to its sensitivity to small fluctuations in the dataset.

The results highlight how model complexity influences predictive accuracy. Neural net-
works captured deeper relationships in complex datasets, while simpler models such as decision
trees and logistic regression remained effective when patterns were well-defined. The selection
of an appropriate model depends on the dataset characteristics, balancing interpretability, com-
putational cost, and adaptability to varying conditions.

Figure 33 presents the evaluation of regression models using different metrics. Each model
was assessed in terms of MNB, MASE, NRMSE, R? Adjusted, and NSE. For latency response
time, the neural networks NN2 and NN3 exhibited outperformed the other models on all metrics,
particularly in NSE and NRMSE. Decision trees and linear regression had lower predictive
accuracy, with higher residual errors. NN1 had moderate performance but did not generalize as
well as deeper networks.

In throughput predictions, logistic regression achieved consistent accuracy, but NN2 and

148

Figure 32: Classification model performance across hardware-related metrics.

Models
® Decision Tree Logistic Regression 4 NN1 A NN2 ¥ NN3

Memory
CA

NN3 performed better in capturing nonlinear relationships, leading to lower NRMSE values.
The decision tree model provided an intermediate performance, benefiting from its flexibility
but suffering from overfitting in certain cases.

For garbage collection time, NN3 demonstrated high predictive capability, particularly in
NSE and NRMSE. Decision trees and linear regression models struggled to maintain accuracy,

while NN2 performed well in capturing complex interactions.

Figure 33: Regression model performance for software metrics.

Latency Response Time Throughput Garbage Collection Time
MASE MASE MASE

Models
@ Linear Regression W Decision Tree Regressor 4 NN1 A NN2 v NN3

Figure 34 displays the classification model performance for software metrics. The evalua-
tion includes CA, SE, SP, AUC, and F1 score. For latency response time classification, NN2
and NN3 had the highest values across most metrics, indicating robust classification capability.
Decision tree models struggled with sensitivity, leading to lower SE values. Logistic regression
maintained competitive results but was outperformed by deeper networks.

Throughput classification followed a similar pattern, with NN3 achieving the highest F1 and

149

AUC values among the models tested, reflecting improved classification reliability. Decision
trees maintained reasonable accuracy but had difficulties with recall, which affected their overall
F1 score.

For garbage collection time classification, NN3 and NN2 again showed strong results, par-
ticularly in AUC and specificity. Decision trees struggled with class imbalance, leading to lower
sensitivity. Logistic regression demonstrated consistent performance but was less flexible than

neural networks.

Figure 34: Classification model performance for software metrics.

Latency Response Time Throughput Garbage Collection Time
SE SE

F1

Models
® Decision Tree Logistic Regression @ NN1 A NN2 Vv NN3

These results indicate that deeper neural networks performed better in capturing the complex
relationships within software performance data. Decision trees and linear regression models ex-
hibited limitations in handling nonlinear patterns, leading to lower predictive accuracy. Logistic
regression performed adequately but was surpassed by neural networks in most cases.

Figure 35 and Figure 36 illustrate the performance of regression and classification models

applied to network performance metrics, including latency, data transfer rate, and packet loss.

Figure 35: Regression model performance for network metrics.

Latency Data Transfer Rate Packet Loss

Models
@ Linear Regression Decision Tree Regressor 4 NN1 A NN2 v NN3

The regression models’ performance, shown in Figure 35, reveals distinct patterns in pre-
dicting network-related metrics. Neural network models NN2 and NN3 demonstrate greater
adaptability in capturing complex dependencies between network parameters, particularly in
packet loss and data transfer rate predictions. NN2 achieves lower errors across most metrics,
indicating its effectiveness in modeling non-linear relationships. NN3 follows a similar trend

but exhibits slightly higher variability in certain cases. The decision tree regressor provides

150

Figure 36: Classification model performance for network metrics.

Latency Data Transfer Rate Packet Loss
SE SE SE

F1

Models
® Decision Tree Logistic Regression & NN1 A NN2 Vv NN3

moderate performance but struggles with packet loss prediction, where its error levels remain
higher than those of neural networks. Linear regression maintains stable predictions but lacks
the flexibility required to model fluctuations in network behavior, leading to higher errors in
latency predictions.

The classification results in Figure 36 further emphasize the advantages of deeper neural
networks. NN2 and NN3 consistently outperform other models in accuracy, sensitivity, and
specificity. Their ability to identify variations in network performance contributes to improved
classification, particularly for latency and packet loss categories. Logistic regression provides
consistent results but does not generalize as effectively as neural networks when dealing with
dynamic network changes. The decision tree classifier exhibits lower classification accuracy,
particularly in packet loss scenarios, where its predictions tend to be more variable.

The results indicate that network performance metrics exhibit non-linear relationships that
benefit from deep learning approaches. While simpler models such as decision trees and logis-
tic regression provide reasonable accuracy, they are outperformed by neural networks in both
regression and classification tasks. The improvements observed in NN2 and NN3 demonstrate
the impact of deeper architectures in enhancing predictive performance across dynamic network
conditions.

Figures 37 and 38 depict the evaluation of availability, resilience, and stability using regres-
sion and classification models. In the regression results, neural network models NN2 and NN3
demonstrated higher scores across most metrics, particularly in NSE and adjusted R?, indicating
their ability to capture nonlinear patterns in SLA metrics. Decision trees and logistic regression
achieved moderate results, showing stable performance but with some limitations in capturing
variations in resilience.

For classification, Figure 38 highlights that neural networks outperformed decision trees and
logistic regression in most cases, particularly for sensitivity (SE) and specificity (SP), which are
used in SLA monitoring. NN3, with dropout regularization, achieved a better balance between
overfitting and generalization, maintaining high F1 scores.

Overall, the evaluation across hardware, software, network, and SLA metrics revealed dis-

tinct behaviors among the models. Linear and logistic regression methods provided baseline

151

Figure 37: Regression results for SLA metrics.

Availability Resilience Stability

Models
® Linear Regression Decision Tree Regressor 4 NN1 A NN2 ¥ NN3

Figure 38: Classification results for SLA metrics.

Availability Resilience Stability

SE SE

Models
@ Decision Tree Logistic Regression 4 NN1 A NN2 Vv NN3

stability and interpretability, particularly effective when the input-output relationships were lin-
ear and the dataset was well-structured. However, they lacked the flexibility to adapt to dynamic
environments, resulting in higher errors under workload variability, especially in network and
SLA predictions.

Decision tree models performed moderately well across several metrics, especially in struc-
tured classification tasks where decision boundaries were well-defined (e.g., CPU and storage
classification). Nevertheless, their sensitivity to small data fluctuations often led to inconsisten-
cies in both regression and classification results. In scenarios involving temporal or multi-modal
dependencies (e.g., garbage collection time or resilience prediction), trees showed signs of over-
fitting or underperformance due to limited generalization.

The neural network models, particularly NN2 and NN3, showed strong performance in
tasks requiring the capture of non-linear relationships and high-dimensional patterns. NN2,
which employed additional hidden layers without aggressive regularization, achieved a balance
between learning capacity and generalization. It outperformed others in network-related metrics
(packet loss and data transfer rate) and showed stable results in memory usage and response
latency prediction. NN3, with dropout layers, provided better regularization, which proved
beneficial in SLA-related tasks (availability and resilience), where noisy fluctuations and fault
tolerance were critical to model. However, its added complexity occasionally introduced small
variability in classification, especially when the data volume was limited or imbalanced.

In regression tasks, the combination of normalized RMSE, adjusted R?, and NSE high-

152

lighted the strengths of deep architectures for modeling dynamic behavior, especially in garbage
collection and throughput. In classification, F1 and AUC scores reinforced the value of neural
networks in scenarios with class imbalance and overlapping features.

These findings suggest that while simpler models maintain consistent performance in pre-
dictable conditions, deeper architectures are better suited for heterogeneous environments with
non-linear dependencies and high variability. Therefore, the model selection process within
Oraculum should consider the nature of the metric being predicted, the degree of variability in

the environment, and the trade-off between interpretability and adaptability.
8.3 RL Agent Results

This section presents the performance evaluation of the proposed architecture, incorporating
key adaptation metrics to assess its effectiveness. The evaluation includes mean adaptation time
(MAT), adaptation accuracy (AA), adaptation overhead (AO), and adaptation stability (AS).
These metrics quantify how efficiently and effectively the system responds to environmental
changes and adaptive actions.

The mean adaptation time (MAT) measures the elapsed time between anomaly detection

and completed adaptation:

n

MAT — Zizl(tend—adap:tion - Zfdetection) (8 4)

The adaptation accuracy (AA) quantifies the percentage of successful adaptations that ef-

fectively mitigate detected issues:

Number of successful adaptations

= x 100 8.5
Total number of adaptations performed (8.5)

The adaptation overhead (AO) evaluates the additional resource consumption introduced by
the adaptation process:
_ Resource usage after — Resource usage before

A0 = 100 8.6
Resource usage before x (8.6)

Finally, adaptation stability (AS) assesses how stable system performance remains after

adaptation:

AS = !

5 (8.7)

O performance post-adaptation
The proposed Oraculum demonstrated rapid response with an MAT of 0.05 seconds, high
adaptation accuracy of 97%, minimal adaptation overhead of 2%, and system stability reaching
98%. The learning process of RL models was evaluated using Q-learning, PPO, SAC, and TD3
over 2000 episodes. Each model demonstrated different levels of convergence, stability, and

policy effectiveness.

153

Before evaluating the effectiveness of the reinforcement learning (RL) agent and its corre-
sponding adaptation strategies, it is necessary to characterize the practical challenges observed
during the execution of the Oraculum prototype. These problems were identified in a controlled
experimental environment using synthetic workloads with varying intensity and behavioral pat-
terns, generated by the SHIELD simulator. The monitoring modules captured anomalies across
multiple operational layers, including hardware, software, network, and service-level dimen-

sions. A summary of the most relevant issues is presented below:

* CPU Saturation (Hardware Layer): During computation-intensive intervals, CPU usage
frequently exceeded 90%, reaching saturation in some cores. This caused delays in pro-
cess execution, reduced throughput, and increased response times. The cause was traced

to unbalanced thread scheduling and lack of early scaling.

* Memory Pressure and GC Spikes (Hardware/Software Layer): High memory consump-
tion led to recurrent garbage collection cycles, especially under bursty workloads. This
affected response latency and increased variability in service execution. The pressure

originated from uncontrolled object creation and absence of memory-aware throttling.

e Throughput Drops (Software Layer): In several intervals, the number of completed re-
quests per second dropped abruptly, especially under mixed-load conditions. This was
attributed to resource contention, increased context switching, and inefficient request

batching during load peaks.

* Latency Instability (Software/Network Layer): Response latency showed spikes exceed-
ing 300ms in some cycles, especially during transitions between adaptive states. These
oscillations were caused by late reaction to resource needs and temporary thread starva-

tion.

* Packet Loss (Network Layer): The monitoring of network flows revealed periods with
packet loss above 1.2%, impacting communication between microservices. This was of-

ten associated with interface saturation and queue overflow due to uncoordinated scaling.

* Overprovisioning Without Impact (Hardware Layer): Certain resource scaling operations
(e.g., adding memory or CPU) did not translate into performance improvements. In some
cases, increased resources led to higher adaptation overhead without measurable SLA

gains, suggesting inefficient adaptation logic.

* Temporary Unavailability (SLA Layer): The system experienced brief periods of service
unavailability during load surges, particularly when resource adjustments were delayed.
These incidents compromised availability targets and highlighted the need for predictive

adaptation.

154

* Low Fault Resilience (SLA Layer): In simulations of component failures or degraded
links, recovery actions were not always sufficient to restore performance quickly. The
system showed limited ability to reallocate tasks or reroute traffic under fault conditions,

affecting resilience.

* Fluctuations in Stability (Cross-Layer): Post-adaptation performance exhibited mild fluc-
tuations in several metrics, indicating that certain adaptations were not optimally timed or
sufficiently coordinated. This reduced the overall stability metric despite recovery from

the original anomaly.

These observed issues served as triggers for adaptive actions selected by the RL agent.
Each anomaly type was mapped to potential mitigation strategies (e.g., resource scaling, node
restart, parameter adjustment), and feedback from the system guided policy refinement over
time. The following sections present the quantitative results of the adaptation process, including
the impact of each RL model on adaptation metrics and the effectiveness of selected actions
under different operational scenarios.

Q-learning exhibited significantly lower performance, struggling to converge due to its re-
liance on discrete state-action mapping. The reward function oscillated significantly, highlight-
ing its inefficiency in handling continuous action spaces. The learning process was slow, and
the model often made suboptimal decisions, failing to reach an optimal policy.

PPO showed improved stability by leveraging a clipped objective function to regulate policy
updates. However, despite a more controlled learning process, PPO still exhibited fluctuations
in accumulated rewards, indicating occasional instability in selecting optimal actions.

SAC outperformed Q-learning and PPO by employing an entropy-regularized policy op-
timization, which maintained a balance between exploration and exploitation. The model
achieved smoother learning progress and reduced reward variance. However, SAC’s reward
accumulation plateaued slightly below the top-performing model, TD3, due to its reliance on
stochastic policies, which led to more cautious decision-making.

TD3 demonstrated superior performance, achieving the highest reward accumulation and
the lowest variance across training episodes. This was due to its twin-delayed deep deterministic
policy gradient mechanism, which reduced overestimation bias in Q-value estimates. The use
of target policy smoothing further enhanced stability by preventing abrupt policy changes that
could lead to performance degradation. The learning curve in Figure 39 shows a rapid increase
in reward followed by consistent convergence, indicating that TD3 efficiently identified optimal
actions while maintaining a robust policy.

The comparison of these models highlights the advantages of TD3 over other approaches.
While Q-learning struggled with convergence and PPO faced occasional reward fluctuations,
SAC provided better stability but was ultimately outperformed by TD3. The twin-delayed up-
dates and deterministic policy of TD3 allowed it to learn more efficient adaptation strategies,

making it a promising choice for optimizing system performance.

155

Figure 39: Learning curve of TD3, the best-performing RL model.

Learning Curves for Different Algorithms

— TD3

100 4

80

60

Total Reward

40 -

20 A

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Episodes

Table 34 summarizes the effectiveness of each RL model in selecting adaptation actions.
TD3 and SAC achieved the highest accumulated rewards, while Q-learning struggled with sub-

optimal decisions.

Table 34: Count and reward for each action across models, reflecting variations in RL decision-
making.

Action Q-learning PPO SAC TD3
Count Reward | Count Reward | Count Reward | Count Reward
scale up cpu 917 -318.50 1348 4148.75 792 4998.50 803 6397.25
scale up memory 148 -218.75 1395 3602.30 983 5321.45 1347 -6153.20
scale up gpu 1047 397.50 623 4998.75 1583 -5532.50 123 6351.75
scale up storage 977 -498.25 498 4201.80 1498 5202.35 583 6663.10
scale down cpu 298 347.25 523 4702.45 303 5298.75 1203 6801.50
scale down memory 703 -247.80 693 4302.60 183 4901.25 1698 7702.75
scale down gpu 113 382.25 178 4798.50 653 4312.75 733 6302.40
scale down storage 503 -268.90 583 4602.35 323 5501.80 1697 6663.15
restart node 463 -387.50 478 3998.75 793 5432.25 1398 7173.50
increase cpu 663 -458.20 898 4701.60 1233 6502.45 1647 7113.75
increase memory 703 -228.75 1398 4401.85 1083 5102.10 1103 6661.90
adjust filter 643 -297.50 598 4912.30 453 4621.75 1008 6303.25
adjust aggregation 1098 -388.90 283 3102.45 1498 -5603.50 1703 6402.10
adjust compression 83 422.50 1498 4113.25 923 5801.80 653 6293.75

The system’s operational performance was assessed across multiple categories, including
software, hardware, network, security, and SLA metrics. Figures 40-43 present the results,
highlighting how the architecture responded to different workload conditions and adaptation
processes.

Figure 40 illustrates the trends in software performance metrics over time. Throughput

156

Figure 40: Evaluation of software performance metrics.

o
o

latency_response_time
—— throughput
—— garbage_collection_time

Metric Value

o
»
T

0.21

0 5000 10000 15000 20000 25000
Iterations

increased steadily, indicating that the system handled a growing number of requests while
maintaining processing capacity. Response latency and garbage collection time exhibited a
downward trend, suggesting improvements in task scheduling and memory management. These
trends indicate that the RL agent’s adaptive strategies contributed to better workload distribution
and resource allocation.

The gradual decrease in response latency suggests that adjustments in CPU and memory
allocation reduced bottlenecks and improved overall system responsiveness. The increasing
throughput demonstrates that the system sustained a consistent processing rate despite varia-
tions in workload. The declining garbage collection time indicates that memory management
mechanisms, such as heap allocation and object recycling, functioned efficiently, reducing the

need for frequent and prolonged garbage collection cycles.

Figure 41: Evaluation of hardware resource utilization.

cpu

8 —— memory
— 9pu

—— storage

Metric Value

0 5000 10000 15000 20000 25000
Iterations

Figure 41 presents the utilization trends for CPU, memory, GPU, and storage throughout the
monitored period. CPU and memory usage increased significantly at the beginning, likely due
to system initialization and workload adaptation. As the system adjusted its resource allocation,

both metrics stabilized, suggesting that the RL agent effectively optimized hardware utilization

over time.

157

GPU usage remained consistently low, indicating that the computational workload relied
primarily on CPU processing rather than GPU-accelerated tasks. This pattern suggests that the
system’s adaptive strategies focused on CPU-bound operations, which aligns with the nature of
the workload being executed. Storage utilization exhibited minimal variation, with low overall
usage. The absence of significant fluctuations suggests that the system did not require extensive
disk operations, indicating that caching and memory-based processing were sufficient to handle

data requirements.

Figure 42: Analysis of network performance metrics.

latency
1.6 —— data_transfer_rate
—— packet_loss

=
o
T

Metric Value
o
[e4]

0 5000 10000 15000 20000 25000
Iterations

Figure 42 presents the variations in network performance metrics, including latency, data
transfer rate, and packet loss, across multiple monitoring iterations. Initially, latency increased
sharply, likely due to fluctuations in resource allocation and network congestion. As the system
adjusted to workload demands, latency gradually decreased and reached a stable level, indicat-
ing improved data transmission efficiency.

Packet loss followed a similar pattern, increasing in the early iterations before stabilizing at
a lower level. This trend suggests that initial network adaptation led to temporary inconsisten-
cies in data transmission. Over time, the system optimized network configurations, leading to
more reliable packet delivery and reduced transmission errors. The data transfer rate increased
during the adaptation phase and remained stable at a high level. This indicates that the system
maintained efficient bandwidth utilization while minimizing disruptions caused by latency and
packet loss.

Figure 43 presents the evaluation of service-level metrics, including availability, resilience,
and stability. Availability exhibited periodic fluctuations, reflecting system responses to work-
load variations and resource reallocation. Peaks in availability corresponded to periods of im-
proved resource distribution, while occasional declines indicated instances where the system
struggled to meet optimal service levels due to temporary constraints.

Resilience followed a similar trend, with variations influenced by system adaptation mech-
anisms. The results suggest that resilience adjustments occurred dynamically in response to

shifts in performance demands. Spikes in resilience values indicate corrective measures applied

158

Figure 43: Analysis of service level metrics.

1.000 " e TSN T TR

0.975 A

0.950 -

0.925 -

0.900 -

Metric Value

0.875 -
0.850
0.825 - — availability

resilience
—— stability

0.800 -

T T T T T T
0 5000 10000 15000 20000 25000
Iterations

to mitigate temporary inefficiencies, while drops suggest moments of increased system stress
or adaptation delays.

Stability remained consistently high across iterations, suggesting that system reconfigu-
rations did not introduce significant disruptions. While availability and resilience fluctuated
based on operational conditions, stability measurements indicate that the system maintained
predictable and controlled behavior over time.

Overall, the evaluation highlights the impact of RL-based adaptation in maintaining system
performance. The tests conducted with TD3 demonstrated its ability to select effective actions,
contributing to efficient resource allocation and minimal adaptation overhead. The system suc-
cessfully adjusted to workload variations, ensuring stable performance while maintaining high
availability and resilience. The results indicate that the proposed architecture can adapt dy-
namically to changing operational conditions, optimizing performance with controlled resource

consumption.

8.4 Evaluation with Public Benchmarks

To extend the validation beyond simulation-specific conditions, we applied three public
datasets to compare the Oraculum model with three reference architectures: TAM; MATH,;
KIM (2022a), VELRAJAN; SHARMILA (2023), and LIU et al. (2021b). The benchmarks
include: (1) SANCHEZ; GALACHE (2024), for smart city conditions; (i) PUIU; BARNAGHI
et al. (2024), for mobility and traffic-aware systems; and (iii) LAB (2004), for sensor-based
adaptive platforms.

All models were reimplemented and executed within the SHiELD simulation framework,
which was extended to support external datasets and controlled injection of workload variations.
The testbed ensured equivalent conditions for adaptation triggers, metric forecasting, and action
validation across all models. Only these three reference architectures were included in the

benchmark due to the feasibility of reproducing their designs and adaptation strategies with the

159

available implementation resources.

All applications were tested using the SHiELD simulation framework, which was extended
to support the ingestion of real-world datasets and controlled workload injection. Each refer-
ence model was reimplemented and integrated into this environment, enabling uniform mea-
surement of adaptation behavior, response time, prediction accuracy, and resource usage. The
experimental setup included modules for event triggering, data transformation, and adaptive
response generation, monitored using Prometheus and Grafana to ensure consistent logging of
system dynamics.

The benchmark datasets were integrated according to the original specifications provided by
their respective authors. The SmartSantander dataset SANCHEZ; GALACHE (2024) includes
real-time sensor data from urban infrastructure such as lighting, temperature, and traffic sensors;
this dataset was used to simulate city-scale performance degradation and adaptive responses.
The CityPulse dataset PUIU; BARNAGHI et al. (2024) consists of temporally correlated mo-
bility and traffic event streams from urban environments, which were mapped to system metrics
such as latency, throughput, and SLA compliance. Finally, the Intel Lab Data LAB (2004) pro-
vides dense time-series sensor data (e.g., temperature, humidity, and light intensity) captured in
a wireless sensor network context, allowing the evaluation of resource-aware adaptation under
environmental fluctuations. Each dataset was preprocessed to fit a unified format and injected
into SHIiELD using controlled timing and fault patterns, ensuring reproducibility and compara-
bility across models.

The evaluated performance indicators include adaptation time, accuracy, overhead, predic-
tion error, classification quality, and latency improvements. The results are summarized in
Table 35.

Table 35: Performance of Self-Adaptive Architectures on Public Benchmarks

Model MAT (s) AA (%) AO (%) Stability (%) RMSE Fl-score Latency Reduction (%) | Benchmark
Oraculum (Ours) 0.07 95.2 3.8 97.5 0.21 0.89 274 SmartSantander
Tam et al. (2022) 2.84 91.8 5.6 88.9 0.32 0.81 21.6 SmartSantander
Velrajan et al. (2023) 1.52 93.5 4.2 90.7 0.28 0.84 24.1 SmartSantander
Liu et al. (2021) 1.74 90.2 6.1 87.3 0.35 0.76 18.9 SmartSantander
Oraculum (Ours) 0.09 94.6 3.9 96.3 0.24 0.87 25.1 CityPulse

Tam et al. (2022) 291 90.5 59 86.8 0.34 0.79 20.4 CityPulse
Velrajan et al. (2023) 1.43 95.4 43 92.5 0.27 0.86 26.2 CityPulse

Liu et al. (2021) 1.69 89.6 6.5 85.4 0.36 0.75 19.2 CityPulse
Oraculum (Ours) 0.06 93.1 3.5 95.7 0.18 0.90 28.7 Intel Lab Data
Tam et al. (2022) 2.77 91.2 5.1 89.1 0.29 0.83 23.5 Intel Lab Data
Velrajan et al. (2023) 1.48 92.7 4.6 91.5 0.26 0.86 25.6 Intel Lab Data
Liu et al. (2021) 1.64 94.3 6.4 90.1 0.30 0.78 224 Intel Lab Data

The results indicate that Oraculum obtained lower adaptation times (MAT), higher adap-
tation accuracy (AA), and increased system stability across the evaluated benchmarks. These

outcomes suggest that the reinforcement learning component was effective in generating timely

160

and context-aware adaptation decisions. The RMSE values remained lower in all testbeds, in-
dicating consistent performance of the regression models in forecasting system metrics, while
the Fl-scores suggest adequate behavior of the classification module in detecting anomalous

conditions with balanced sensitivity.

Although Oraculum presented consistent results, some competing approaches demonstrated
advantages in specific scenarios. In the CityPulse dataset, VELRAJAN; SHARMILA (2023)
achieved the highest adaptation accuracy (95.4%), marginally above Oraculum’s 94.6%. Their
use of a particle swarm optimization strategy may offer benefits under traffic-intensive urban
conditions, which are characteristic of the CityPulse dataset. Additionally, in the SmartSan-
tander dataset, LIU et al. (2021b) reported higher F1-scores in detecting anomalies under packet
loss conditions, indicating that their unsupervised learning approach handled sensor communi-
cation noise effectively in that context.

Energy efficiency results also reflect architectural trade-offs. While Oraculum maintained
competitive performance, VELRAJAN; SHARMILA (2023) reported slightly higher efficiency
in the CityPulse testbed. This may stem from their lower action frequency, which reduces com-
putational overhead, albeit at the cost of slower reactivity—an approach that may be suitable in
energy-constrained IoT environments.

These observations underscore the influence of context in the design and evaluation of self-
adaptive systems. While Oraculum applies a general-purpose model with broad support for
metric types and rapid decision-making, other architectures such as those proposed by TAM;
MATH; KIM (2022a) and LIU et al. (2021b) exhibit performance gains under specific operating
conditions. This points to the potential of hybrid models that dynamically integrate or switch

between strategies based on the environment.

From a quantitative perspective, Oraculum consistently achieved lower mean adaptation
times (0.06-0.09s) across all datasets, with adaptation accuracy values above 93% and reduced
prediction errors (RMSE < 0.24). These metrics reflect the capability of the system to execute
timely and consistent adaptations under diverse operational profiles. Qualitatively, Oraculum
differs by offering a fully automated adaptation pipeline, a semantic ontology for context-aware
metric interpretation, and a reinforcement learning agent based on an explicitly modeled MDP
structure. In contrast, other approaches relied on static adaptation policies or partially super-
vised optimization strategies. Although some models such as VELRAJAN; SHARMILA (2023)
achieved marginally higher scores in energy-aware scenarios, they required pre-tuned configu-
rations and lacked semantic reasoning layers. The results suggest that Oraculum delivers bal-
anced adaptation performance across multiple benchmarks, while also introducing a modular
and extensible foundation that supports interpretability and automation in adaptive behavior
design.

Future work will include the development of meta-adaptation policies capable of leveraging
reinforcement learning for selecting adaptation strategies according to workload patterns and

system constraints. This may include incorporating components from LIU et al. (2021b) for

161

anomaly classification and from VELRAJAN; SHARMILA (2023) for energy-aware planning.
Further analysis of the internal adaptation overhead per module will also be conducted to better

understand the cost-performance trade-offs.

162

9 FINAL CONSIDERATIONS

This chapter presents the concluding reflections of the dissertation. It summarizes the key
findings and results obtained during the development and validation of the Oraculum model,
highlights its main scientific contributions, discusses its limitations, and outlines possible direc-
tions for future research. The chapter aims to consolidate the knowledge generated through the
research and propose avenues to enhance the adaptability, scalability, and applicability of the

proposed solution in real-world smart environments.

9.1 Conclusions

This work introduced the Oraculum model, a self-adaptive computational framework that
integrates monitoring, prediction, and decision-making capabilities using regression, classifica-
tion, and reinforcement learning (RL) techniques. The model was designed to support runtime
adaptation in smart environments by enabling early detection of anomalies, predictive analysis
of performance degradation, and execution of corrective actions guided by learned policies.

The experimental evaluation indicated that Oraculum responded adequadamente as mu-
dangas dindmicas no comportamento do sistema em diferentes camadas, incluindo hardware,
rede, software e indicadores de SLA (Service Level Agreement). The RL agent, trained using
the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, maintained a balanced
trade-off between adaptation latency and decision accuracy, achieving an average adaptation
time of 0.05 seconds, 94% decision accuracy, and 98% operational stability with limited com-
putational overhead.

Compared to other approaches applying RL to cloud-edge adaptation or self-healing mecha-
nisms in IoT systems, Oraculum achieved lower latency and consistent decision accuracy during
adaptation cycles. The integration of predictive modeling with rule-based ontological reasoning
supported contextual interpretation of performance data, contributing to timely alert generation
and informed metric-based interventions.

Although the evaluation results were satisfactory, some constraints emerged during imple-
mentation. Challenges were observed in handling multi-objective scenarios, managing high-
dimensional input features, and addressing conflicting adaptation goals. These aspects are dis-

cussed in the next sections and offer opportunities for extending the model’s capabilities.

9.2 Contributions

This research introduces a set of scientific and technical contributions that enhance the de-
sign of self-adaptive architectures for performance optimization in smart environments. The
proposed Oraculum framework incorporates predictive intelligence, semantic reasoning, and

reinforcement learning to support timely and reliable adaptation. The main contributions are:

163

Demonstration of a significant reduction in mean adaptation time (MAT), reaching 0.05
seconds. Compared to typical reaction times in adaptive systems, which often exceed
1 second, this result shows that Oraculum is capable of acting preemptively, reducing

exposure to instability and minimizing system degradation before it becomes critical.

Maintenance of high stability across adaptation metrics: adaptation accuracy (AA) reached
94%, adaptation overhead (AO) was kept below 4%, and adaptation stability (AS) reached
98%, indicating the system’s ability to apply consistent and non-disruptive corrective ac-

tions even under dynamic workloads.

Design and implementation of a fully automated predictive pipeline, including data pre-
processing, feature selection, model training, and hyperparameter tuning. The system
uses reinforcement learning-based optimization strategies to select model configurations,
removing the need for manual tuning and allowing continuous retraining when new met-
rics or operational contexts are introduced (ISABONA; IMOIZE; KIM, 2022).

Development of a modular and extensible architecture aligned with the MAPE-K model.
The system separates concerns across monitoring, analysis, planning, execution, and
knowledge layers, allowing for scalability, experimentation, and domain-specific cus-

tomization.

Formal modeling of the reinforcement learning agent as a Markov Decision Process
(MDP), explicitly defining states (based on metric snapshots), actions (executed on the
system), rewards (derived from adaptation impact), and transition probabilities. This

modeling supports reasoning about agent behavior and convergence.

Implementation of practical and executable actions for adaptation, including scaling (CPU,
memory, GPU, storage), scheduling adjustments, filter and compression parameter tun-
ing, and service restarts. These actions are automatically selected based on current state

and projected outcomes.

Integration of a semantic layer using the OntOraculum ontology, which structures moni-
tored metrics into conceptual domains such as Hardware, Network, Software, SLA, En-
ergy, and Security. This layer supports SWRL rule reasoning for context-aware alert

generation and operational classification.

Support for future semantic adaptation: although the current ontology is static, the ar-
chitecture supports dynamic rule updates and future extensions where ontology elements

may adapt based on feedback or metric evolution.

Inclusion of a decision validation mechanism before execution. The system reevaluates
the relevance and consistency of each selected action based on updated predictions, help-

ing avoid redundant or conflicting adaptations and promoting resource efficiency.

164

* Support for parameterized and extensible actions within the RL agent. New actions can be
introduced and configured with minimal effort, allowing the system to evolve alongside

changes in infrastructure, workload, or policy.

* Adoption of Prometheus agent-oriented design principles in the architectural organiza-
tion, promoting modular agent interaction, clear goal decomposition, and separation of

functional roles for analysis, decision-making, and adaptation.
In addition, the following articles were submitted as part of this research:

* Performance Monitoring and Self-Adaptation in Smart Environments: A Systematic Liter-

ature Review, submitted to Computer Science Review (Qualis A1, status: With Editor).

* OntOraculum: A Semantic Ontology for Performance Metric Monitoring and Optimiza-
tion in Smart Environments, submitted to Soft Computing (Qualis A2, status: Editor

Assigned).

* SHIELD: A Sensor Data Simulator with Heuristics and Predictive Modeling for IoT Ap-
plications, submitted to ACM Transactions on Internet Technology (Qualis A1, status:

Under Review).

* Oraculum: A Model for Self-Adaptive System Optimization in Smart Environments, sub-
mitted to Journal of Network and Computer Applications (Qualis Al, status: Under

Review).

Together, these contributions define a comprehensive approach to predictive and adaptive
performance management. Oraculum offers a pathway for building intelligent systems capa-
ble of responding rapidly to environmental changes, while preserving operational stability and

reducing manual overhead through automation and semantic integration.

9.3 Limitations

While the Oraculum model demonstrated coherent behavior and adaptability in a con-
trolled environment, several limitations currently affect its generalization capacity and potential
for real-world adoption. These limitations relate to the scope of the evaluation, architectural
choices, integration constraints, and opportunities for refinement in prediction, adaptation, and

semantic reasoning:

 Evaluation was restricted to simulated and controlled environments. All experiments were
conducted in an isolated testbed using synthetic workloads generated by the SHiELD sim-
ulator. Although these workloads were designed to simulate dynamic behavior, they do
not fully reflect the variability, failure conditions, and latency fluctuations encountered in
operational environments. Therefore, real-world validations are needed to assess robust-

ness under unpredictable and heterogeneous conditions.

165

* The scope of monitored metrics was limited to performance-related indicators such as
CPU usage, memory consumption, throughput, and latency. Important operational met-
rics related to energy efficiency, power usage, battery levels, and security—such as access
violations, failed authentications, or attack detection—were not fully included. Expand-
ing the monitored dimensions would enable broader applicability in domains such as [oT,

mobile computing, and cyber-physical systems.

* The reinforcement learning pipeline was implemented in an offline fashion. Policy learn-
ing was conducted prior to runtime using historical training data. While the system archi-
tecture provides the infrastructure for online learning, real-time policy updates and live
environment feedback were not fully integrated in the current implementation. Contin-
uous learning during deployment is critical for tracking behavioral drift and adapting to

evolving workload patterns.

* The automatic hyperparameter tuning mechanism, although integrated, is based on a re-
inforcement learning search within predefined parameter bounds. More diverse tuning
approaches—such as Bayesian optimization, metaheuristic search, or multi-agent explo-
ration—were not explored. As highlighted by (ISABONA; IMOIZE; KIM, 2022), tun-
ing strategies that leverage ensemble modeling or probabilistic search methods can sig-
nificantly improve model generalization and reduce training time. Incorporating these
methods would allow the system to better discover optimal configurations under various

operational constraints.

¢ The SHIiELD simulator, while useful for controlled evaluation, has limited behavioral fi-
delity. Its workload generation is deterministic, and environmental perturbations follow
static patterns. The simulator does not yet emulate realistic network jitter, multi-user in-
terference, stochastic component failures, or long-tail traffic events. Improving simulator
realism—by integrating real execution traces or injecting variability based on statistical

distributions—would strengthen the representativeness of evaluation scenarios.

* The system has not yet been validated in real-world environments. All results are based
on testbed experiments, without exposure to production infrastructure, third-party depen-
dencies, or unpredictable user behavior. Testing in live deployments (e.g., cloud-native
systems, IoT edge clusters, or smart city platforms) would allow for the identification
of operational challenges such as integration latency, monitoring overhead, and actuator

timing constraints.

* The Oraculum platform is not integrated with widely adopted monitoring ecosystems. It
currently operates as a standalone system and does not support external connectors for
platforms such as Prometheus, Grafana, Zabbix, or ELK Stack. This restricts its ease
of integration in production environments that already rely on established observability

pipelines and alerting frameworks.

166

* Security response mechanisms are not included in the current implementation. Although
the system can detect anomalies in performance metrics, it does not yet provide coordi-
nated reactions to security threats. Capabilities such as dynamic firewall updates, intru-
sion detection integration, or context-aware policy enforcement remain outside the scope

of this version.

These limitations do not undermine the architectural consistency or technical feasibility of
the Oraculum model, but they outline boundaries that currently constrain its full-scale deploy-
ment. At the same time, they identify clear research and engineering opportunities to improve
adaptability, coverage, and resilience. The next section outlines directions for future work based

on these findings.

9.4 Future Work

Future research can address several aspects to enhance the Oraculum model and expand its
applicability. One direction is to validate the framework in real-world environments, such as
production cloud systems, IoT deployments, or smart city platforms, to assess its robustness
under diverse and unpredictable conditions.

Expanding the set of monitored metrics to include energy consumption, battery status, and
security-related indicators may improve the system’s relevance for domains like mobile com-
puting and cyber-physical systems. Integrating Oraculum with established monitoring and ob-
servability platforms, such as Prometheus or Grafana, could facilitate its adoption in operational
settings.

Another area for development is the implementation of online and continual learning mech-
anisms, enabling the reinforcement learning agent to adapt policies in response to live feedback
and evolving workloads. Exploring alternative hyperparameter optimization strategies, such as
Bayesian optimization or metaheuristic search, may further improve model performance and
generalization.

Enhancing the realism of the evaluation environment by incorporating real execution traces,
stochastic events, and more complex workload patterns would provide a more comprehensive
assessment of the model’s behavior. Additionally, extending the semantic layer to support dy-
namic ontology updates and context-aware adaptation rules could increase the flexibility of the
reasoning process.

Finally, integrating security response mechanisms, such as automated policy enforcement
or intrusion detection, may broaden the system’s capabilities in handling operational threats.
These directions can contribute to the continuous improvement and practical deployment of the

Oraculum model in adaptive smart environments.

167

REFERENCES

ABU-TAYEH, G.; AL-RUITHE, M.; AL-FARIES, A.; ALRASHED, A. Managing
data-driven smart city governance. Government Information Quarterly, [S.1.], v. 40, n. 3,
p. 101880, 2023.

ADIL, M.; USMAN, M.; JAN, M. A.; ABULKASIM, H.; FAROUK, A.; JIN, Z. An Improved
Congestion-Controlled Routing Protocol for IoT Applications in Extreme Environments.
IEEE Internet of Things Journal, [S.1.], v. 11, n. 3, p. 3757-3767, 2024.

AGRAWAL, N. Dynamic load balancing assisted optimized access control mechanism for
Edge-Fog-Cloud network in Internet of Things environment. Concurrency and
Computation: Practice and Experience, [S.1.], v. 33, n. 21, p. €6440, 2023.

AHMED, A. A.; ABAZEED, M. Adaptive dynamic duty cycle mechanism for energy efficient
medium access control in wireless multimedia sensor networks. Transactions on Emerging
Telecommunications Technologies, [S.1.], v. 32, n. 12, p. e4364, 2024.

AL-SAYED, M. M.; HASSAN, H. A.; OMARA, F. A. CloudFNF: an ontology structure for
functional and non-functional features of cloud services. Journal of Parallel and Distributed
Computing, [S.1.], v. 141, p. 143173, 2020.

ALIJOYO, F. A.; PRADHAN, R.; NALINI, N.; AHAMAD, S. S.; RAO, V. S.; GODLA, S. R.
Predictive Maintenance Optimization in Zigbee-Enabled Smart Home Networks: a machine
learning-driven approach utilizing fault prediction models. Wireless Personal
Communications, [S.1.], p. 1-25, 2024.

ALKANHEL, R. I.; EL-KENAWY, E.-S. M.; EID, M. M.; ABUALIGAH, L.; SAEED, M. A.
Optimizing loT-driven smart grid stability prediction with dipper throated optimization
algorithm for gradient boosting hyperparameters. Energy Reports, [S.1.], v. 12, p. 305-320,
2024.

ALKHAYYAL, M.; MOSTAFA, A. Recent Developments in Al and ML for IoT: a systematic
literature review on lorawan energy efficiency and performance optimization. Sensors, [S.1.],
v. 24, n. 14, p. 4482, 2024.

ALMUTAIRI, R.; BERGAMLI, G.; MORGAN, G. Advancements and Challenges in IoT
Simulators: a comprehensive review. Sensors, [S.1.], v. 24, n. 5, p. 1511, 2024.

ALMUTAIRI, R.; BERGAMI, G.; MORGAN, G. Advancements and Challenges in 1oT
Simulators: a comprehensive review. Sensors, [S.1.], v. 24, n. 5, 2024.

ALNAFESSAH, A.; CASALE, G. Atrtificial neural networks based techniques for anomaly
detection in Apache Spark. Cluster Computing, [S.1.], v. 23, n. 2, p. 1345-1360, 2020.

ALYMANI, M.; ALMOQHEM, L.; ALABDULWAHAB, D.; ALGHAMDI, A.;
ALSHAHRANI, H.; RAZA, K. Enabling smart parking for smart cities using Internet of
Things (IoT) and machine learning. PeerJ Computer Science, [S.1.], v. 11, p. 2544, 2025.

168

ARANDA, J. A. S.; BAVARESCO, R. S.; CARVALHO, J. V. de; YAMIN, A. C.; TAVARES,
M. C.; BARBOSA, J. L. V. A computational model for adaptive recording of vital signs

through context histories. Journal of Ambient Intelligence and Humanized Computing,
[S.1.], p. 1-15, 2023.

AYDEMIR, O. A New Performance Evaluation Metric for Classifiers: polygon area metric.
Journal of Classification, [S.1.], 2020.

AYDEMIR, O. A new performance evaluation metric for classifiers: polygon area metric.
Journal of Classification, [S.1.], v. 38, p. 1-23, 2021.

AZARI, A.; STEFANOVIC, C.; POPOVSKI, P.; CAVDAR, C. Energy-Efficient and Reliable
IoT Access Without Radio Resource Reservation. IEEE Transactions on Green
Communications and Networking, [S.1.], v. 5, n. 2, p. 908-920, 2021.

AZEVEDO ALBUQUERQUE, K. R. de; MEDEIROS, R. P. de; DUARTE, R. M,;
VILLANUEVA, J. M. M.; MACEDO, E. C. T. de. Routing Algorithm for Energy Efficiency
Optimizing of Wireless Sensor Networks based on Genetic Algorithms. Wireless Personal
Communications, [S.1.], v. 133, n. 3, p. 1829-1856, 2023.

BACANIN, N.; STOEAN, C.; MARKOVIC, D.; ZIVKOVIC, M.; RASHID, T. A.;
CHHABRA, A.; SARAC, M. Improving performance of extreme learning machine for
classification challenges by modified firefly algorithm and validation on medical benchmark
datasets. Multimedia Tools and Applications, [S.1.], p. 1-41, 2024.

BADUGE, S. K.; THILAKARATHNA, S.; PERERA, J. S.; ARASHPOUR, M.; SHARAFI, P;;
TEODOSIO, B.; SHRINGI, A.; MENDIS, P. Artificial intelligence and smart vision for
building and construction 4.0: machine and deep learning methods and applications.
Automation in Construction, [S.1.], v. 141, p. 104440, 2022.

BALL A.; AL-OSTA, M.; BEN DAHSEN, S.; GHERBI, A. Rule based auto-scalability of [oT
services for efficient edge device resource utilization. Journal of Ambient Intelligence and
Humanized Computing, [S.1.], v. 11, p. 5895-5912, 2020.

BAOCALI Y.; HUIRONG, Y.; PENGBIN, F.; LIHENG, G.; MINGLI, L. A framework and
QoS based web services discovery. In: IEEE INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING AND SERVICE SCIENCES, 2010., 2010. Anais... [S.l.: s.n.],
2010. p. 755-758.

BARRETT, E.; HOWLEY, E.; DUGGAN, J. Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud. Concurrency and
Computation: Practice and Experience, [S.1.], v. 25, n. 12, p. 1656-1674, 2013.

BATTULA, S. K.; GARG, S.; MONTGOMERY, J.; KANG, B. An Efficient Resource
Monitoring Service for Fog Computing Environments. IEEE Transactions on Services
Computing, [S.1.], v. 13, n. 4, p. 709-722, 2020.

BEBORTTA, S.; SINGH, A. K.; PATI, B.; SENAPATI, D. A robust energy optimization and
data reduction scheme for iot based indoor environments using local processing framework.
Journal of Network and Systems Management, [S.1.], v. 29, n. 1, p. 6, 2021.

169

BELANI, H.; SOLIC, P.; PERKOVIC, T. Towards Ontology-Based Requirements Engineering
for IoT-Supported Well-Being, Aging and Health. arXiv preprint arXiv:2211.10735, [S.1.],
2022.

BHARGAVA, D.; PRASANALAKSHMI, B.; VAIYAPURI, T.; ALSULAMI, H.; SERBAYA,
S. H.; RAHMANI, A. W. CUCKOO-ANN Based Novel Energy-Efficient Optimization
Technique for IoT Sensor Node Modelling. Wireless Communications and Mobile
Computing, [S.1.], n. 1, p. 8660245, 2022.

BLOMQVIST, E.; HE, Y.; CHEN, J.; DONG, H.; HORROCKS, I.; ALLOCCA, C.; KIM, T,
SAPKOTA, B. DeepOnto: a python package for ontology engineering with deep learning.
Semantic Web, [S.1.], v. 15, n. 5, p. 1991-2004, 2024.

BOMBARDA, A.; RUSCICA, G.; SCANDURRA, P. A self-managing loT-Edge-Cloud
architecture for improved robustness in environmental monitoring. In: ACM/SIGAPP
SYMPOSIUM ON APPLIED COMPUTING, 40., 2025, New York, NY, USA. Proceedings...
Association for Computing Machinery, 2025. p. 1738-1745. (SAC ’25).

BYUN, Y. Sensor Data. Available at:
https://www.kaggle.com/datasets/yungbyun/sensor—-data, Accessed on:
February 11, 2025.

CALDERON, G.; CAMPO, G. del; SAAVEDRA, E.; SANTAMARfA, A. Monitoring
framework for the performance evaluation of an 10T platform with Elasticsearch and Apache
Kafka. Information Systems Frontiers, [S.1.], p. 1-17, 2023.

CALINESCU, R.; GRUNSKE, L.; KWIATKOWSKA, M.; MIRANDOLA, R.;
TAMBURRELLI, G. Dynamic QoS Management and Optimization in Service-Based
Systems. IEEE Transactions on Software Engineering, [S.1.], v. 37, n. 3, p. 387409, 2011.

CALINESCU, R.; MIRANDOLA, R.; PEREZ-PALACIN, D.; WEYNS, D. Understanding
Uncertainty in Self-adaptive Systems. In: [IEEE INTERNATIONAL CONFERENCE ON
AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS (ACSOS), 2020.,
2020. Anais... [S.l.:s.n.], 2020. p. 242-251.

CAO, B.; LIU, J.; WEN, Y.; LI, H.; XIAO, Q.; CHEN, J. QoS-aware service recommendation
based on relational topic model and factorization machines for IoT Mashup applications.
Journal of Parallel and Distributed Computing, [S.1.], v. 132, p. 177-189, 2019.

Carballido Villaverde, B.; REA, S.; PESCH, D. InRout — A QoS aware route selection
algorithm for industrial wireless sensor networks. Ad Hoc Networks, [S.1.], v. 10, n. 3,
p. 458-478, 2012.

CARDULLO, P; KITCHIN, R. Algorithmic governance and the smart city: towards a critical
research agenda. Urban Studies, [S.1.], 2024.

CASCONE, L.; SADIQ, S.; ULLAH, S.; MIRJALILI, S.; SIDDIQUI, H. U. R.; UMER, M.
Predicting Household Electric Power Consumption Using Multi-step Time Series with
Convolutional LSTM. Big Data Research, [S.1.], v. 31, p. 100360, 2023.

CEN, J.; LI, Y. Resource allocation strategy using deep reinforcement learning in cloud-edge
collaborative computing environment. Security and Communication Networks, [S.1.],
v. 2022, p. Article ID 9597429, 2022.

170

CEN, J.; LI, Y. Resource Allocation Strategy Using Deep Reinforcement Learning in
Cloud-Edge Collaborative Computing Environment. Mobile Information Systems, [S.1.],
n. 1, p. 9597429, 2022.

CHAKRABARTI, A.; SADHU, P. K.; PAL, P. AWS IoT Core and Amazon DeepAR based
predictive real-time monitoring framework for industrial induction heating systems.
Microsystem Technologies, [S.1.], v. 29, n. 4, p. 441-456, 2023.

CHEE, K. O.; GE, M.; BAIL G.; KIM, D. D. IoTSecSim: a framework for modelling and
simulation of security in internet of things. Computers and Security, [S.1.], v. 136, p. 103534,
2024.

SZYMANSKI, B. K.; YENER, B. (Ed.). Sense: a wireless sensor network simulator. In:
. Advances in Pervasive Computing and Networking. Boston, MA: Springer US,
2005. p. 249-267.

CHEN, T.; BAHSOON, R.; WANG, S.; YAO, X. To Adapt or Not to Adapt? Technical Debt
and Learning Driven Self-Adaptation for Managing Runtime Performance. In: ACM/SPEC
INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, 2018., 2018,
New York, NY, USA. Proceedings... Association for Computing Machinery, 2018. p. 48-55.
(ICPE ’18).

CHENG, B. H.; RAMIREZ, A.; MCKINLEY, P. K. Harnessing evolutionary computation to
enable dynamically adaptive systems to manage uncertainty. In: INTERNATIONAL
WORKSHOP ON COMBINING MODELLING AND SEARCH-BASED SOFTWARE
ENGINEERING (CMSBSE), 2013., 2013. Anais... [S.l.: s.n.], 2013. p. 1-6.

CHERNYSHEYV, M.; BAIG, Z.; BELLO, O.; ZEADALLY, S. Internet of Things (IoT):
research, simulators, and testbeds. IEEE Internet of Things Journal, [S.1.], v. 5, n. 3,
p. 1637-1647, 2018.

CHHABRA, A.; HUANG, K.-C.; BACANIN, N.; RASHID, T. A. Optimizing bag-of-tasks
scheduling on cloud data centers using hybrid swarm-intelligence meta-heuristic. The Journal
of Supercomputing, [S.1.], v. 78, n. 7, p. 9121-9183, 2022.

CHOULIARAS, S.; SOTIRIADIS, S. Real-Time Anomaly Detection of NoSQL Systems
Based on Resource Usage Monitoring. IEEE Transactions on Industrial Informatics, [S.1.],
v. 16, n. 9, p. 6042-6049, 2020.

COELHO, C. N.; KUUSELA, A.; LI, S.; ZHUANG, H.; NGADIUBA, J.; AARRESTAD,
T. K.; LONCAR, V.; PIERINI, M.; POL, A. A.; SUMMERS, S. Automatic heterogeneous
quantization of deep neural networks for low-latency inference on the edge for particle
detectors. Nature Machine Intelligence, [S.1.], v. 3, n. 8, p. 675-686, 2021.

COLOMBO, V.; TUNDO, A.; CIAVOTTA, M.; MARIANI, L. Towards self-adaptive
peer-to-peer monitoring for fog environments. In: 2022, New York, NY, USA. Anais...
Association for Computing Machinery, 2022.

CORRY, E.; PAUWELS, P.; HU, S.; KEANE, M.; O'DONNELL, J. A performance
assessment ontology for the environmental and energy management of buildings. Automation
in Construction, [S.1.], v. 57, p. 249-259, 2015.

171

DAOUDAGH, S.; MARCHETTI, E. DAEMON: a domain-based monitoring ontology for iot
systems. SN Computer Science, [S.1.], v. 4, n. 5, p. 1-15, 2023.

DASH, B. K.; PENG, J. Zigbee Wireless Sensor Networks: performance study in an
apartment-based indoor environment. Journal of Computer Networks and
Communications, [S.1.], n. 1, p. 2144702, 2022.

DAYALAN, U. K.; FEZEU, R. A. K.; SALO, T. J.; ZHANG, Z.-L. Kaala: scalable,
end-to-end, iot system simulator. In: ACM SIGCOMM WORKSHOP ON NETWORKED
SENSING SYSTEMS FOR A SUSTAINABLE SOCIETY, 2022, New York, NY, USA.
Proceedings... Association for Computing Machinery, 2022. p. 33-38. (NET4us ’22).

DIAMA, A.; DJAMAA, B.; SENOUCI, M. R.; KHEMACHE, N. LAFS: a learning-based
adaptive forwarding strategy for ndn-based iot networks. Annals of Telecommunications,
[S.1.], v. 77, n. 5, p. 311-330, 2022.

DJURIC, D.; GASEVIC, D.; DEVEDZIC, V. Ontology modeling and MDA. Journal of
Object technology, [S.1.], v. 4, n. 1, p. 109-128, 2005.

ELGENDI, I.; HOSSAIN, M. E.; JAMALIPOUR, A.; MUNASINGHE, K. S. Protecting Cyber
Physical Systems Using a Learned MAPE-K Model. IEEE Access, [S.1.], v. 7,
p. 90954-90963, 2019.

ELKHODARY, A.; ESFAHANI, N.; MALEK, S. FUSION: a framework for engineering
self-tuning self-adaptive software systems. In: EIGHTEENTH ACM SIGSOFT
INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING,
2012, New York, NY, USA. Proceedings... Association for Computing Machinery, 2012.

p. 7-16. (FSE ’10).

ESFAHANI, N.; ELKHODARY, A.; MALEK, S. A Learning-Based Framework for
Engineering Feature-Oriented Self-Adaptive Software Systems. IEEE Transactions on
Software Engineering, [S.1.], v. 39, n. 11, p. 1467-1493, 2013.

ETEMADI, M.; GHOBAEI-ARANI, M.; SHAHIDINEJAD, A. A cost-efficient auto-scaling
mechanism for IoT applications in fog computing environment: a deep learning-based
approach. Cluster Computing, [S.1.], v. 24, n. 4, p. 3277-3292, 2021.

FARAJI-MEHMANDAR, M.; JABBEHDARI, S.; JAVADI, H. H. S. A self-learning approach
for proactive resource and service provisioning in fog environment. The Journal of
Supercomputing, [S.1.], v. 78, n. 15, p. 16997-17026, 2022.

FARAJI-MEHMANDAR, M.; JABBEHDARI, S.; JAVADI, H. H. S. Fuzzy g-learning
approach for autonomic resource provisioning of IoT applications in fog computing
environments. Journal of Ambient Intelligence and Humanized Computing, [S.1.], v. 14,
n. 4, p. 4237-4255, 2023.

FERNANDEZ, J.; SMITH, A.; KUMAR, R. A semantic and ontology-based framework for
enhancing interoperability and scalability in IoT systems. Journal of Ambient Intelligence
and Humanized Computing, [S.1.], v. 15, p. 123-139, 2024.

FORTINO, G.; SAVAGLIO, C.; ZHOU, M. Modelling and simulation of Opportunistic [oT
Services with CLOUDAgent. Future Generation Computer Systems, [S.1.], v. 91,
p. 252-262, 2019.

172

FREITAS, A.; VIEIRA, R. An Ontology for Guiding Performance Testing. In:
IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE
(WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), 2014., 2014. Anais...
[S.L.:s.n.], 2014. v. 1, p. 400—407.

GANESH, P;; SUNDARAM, B. M.; BALACHANDRAN, P. K.; MOHAMMAD, G. B.
IntDEM: an intelligent deep optimized energy management system for iot-enabled smart grid
applications. Electrical Engineering, [S.1.], p. 1-23, 2024.

GANGEMI LEHMANN, J. Modelling Ontology Evaluation and Validation. In: THE
SEMANTIC WEB: RESEARCH AND APPLICATIONS, 2006, Berlin, Heidelberg. Anais...
Springer Berlin Heidelberg, 2006. p. 140-154.

GAO, C.; YANG, P;; CHEN, Y.; WANG, Z.; WANG, Y. An edge-cloud collaboration
architecture for pattern anomaly detection of time series in wireless sensor networks.
Complex & Intelligent Systems, [S.1.], v. 7, n. 5, p. 2453-2468, 2021.

GARCIA, L.; SAMIN, H.; BENCOMO, N. Decision Making for Self-Adaptation Based on
Partially Observable Satisfaction of Non-Functional Requirements. ACM Trans. Auton.
Adapt. Syst., New York, NY, USA, v. 19, n. 2, Apr. 2024.

GARLAN, D.; CHENG, S.-W.; HUANG, A.-C.; SCHMERL, B.; STEENKISTE, P. Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer, [S.1.], v. 37, n. 10,
p. 4654, 2004.

GHEIBI, O.; WEYNS, D.; QUIN, F. Applying machine learning in self-adaptive systems: a
systematic literature review. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), [S.1.], v. 15, n. 3, p. 1-37, 2021.

GOKCESU, H.; ERCETIN, O.; KALEM, G.; ERGUT, S. Qoe evaluation in adaptive
streaming: enhanced mdt with deep learning. Journal of Network and Systems
Management, [S.1.], v. 31, n. 2, p. 41, 2023.

GONG, J. Quality of service improvement in iot over fiber-wireless networks using an
efficient routing method based on a cuckoo search algorithm. Wireless Personal
Communications, [S.L.], v. 126, n. 3, p. 2321-2346, 2022.

GONG, Y.; CHEN, K.; NIU, T.; LIU, Y. Grid-Based coverage path planning with NFZ
avoidance for UAV using parallel self-adaptive ant colony optimization algorithm in cloud IoT.
Journal of Cloud Computing, [S.1.], v. 11, n. 1, p. 29, 2022.

GRUBER, T. R. Toward principles for the design of ontologies used for knowledge sharing?
International Journal of Human-Computer Studies, [S.1.], v. 43, n. 5, p. 907-928, 1995.

ROLSTADAS, A. (Ed.). The Role of Competency Questions in Enterprise Engineering. In:
. Benchmarking — Theory and Practice. Boston, MA: Springer US, 1995. p. 22-31.

GUARINO, N. Formal ontology in information systems: proceedings of the first
international conference (fois’98), june 6-8, trento, italy. [S.1.]: IOS press, 1998. v. 46.

GUQO, J.; ZHANG, L. Convex set reliability-based optimal attitude control for uncertain
dynamic systems. ISA Transactions, [S.1.], v. 99, p. 371-379, 2020.

173

GUO, X.; WANG, Z.; ZHANG, C.; ZHANG, H.; HUANG, C. Dual-mode robust fuzzy model
predictive control of time-varying delayed uncertain nonlinear systems with perturbations.
IEEE Transactions on Fuzzy Systems, [S.1.], v. 31, n. 7, p. 2182-2196, 2023.

GUPTA, A.; AGARWAL, S. NCDT-CSS: enhancing performance using noncoherent
distributed transmission of chirp spread spectrum. IEEE Internet of Things Journal, [S.1.],
v. 12, n. 7, p. 7969-7979, 2025.

GUPTA, N.; SHARMA, V. Context Aware Hybrid Network Architecture for Iot with Machine
Learning Based Intelligent Gateway. SN Computer Science, [S.1.], v. 4, n. 3, p. 297, 2023.

GUSENBAUER, M.; HADDAWAY, N. R. Which academic search systems are suitable for
systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar,
PubMed, and 26 other resources. Research Synthesis Methods, [S.1.], v. 11, n. 2, p. 181-217,
2020.

HABBAL, A.; ALIL, M. K.; ABUZARAIDA, M. A. Attificial Intelligence Trust, Risk and
Security Management (Al TRiSM): frameworks, applications, challenges and future research
directions. Expert Systems with Applications, [S.1.], v. 240, p. 122442, 2024.

HAMEED, A. et al. A machine learning regression approach for throughput estimation in an
IoT environment. In: IEEE
ITHINGS/GREENCOM/CPSCOM/SMARTDATA/CYBERMATICS, 2021. Proceedings. ..
[S.L:s.n.], 2021. p. 29-36.

HAMEED, A.; VIOLOS, J.; SANTI, N.; LEIVADEAS, A.; MITTON, N. A Machine Learning
Regression Approach for Throughput Estimation in an IoT Environment. , [S.1.], p. 29-36,
2021.

HAO, J.; BOUZOUANE, A.; GABOURY, S. An incremental learning method based on formal
concept analysis for pattern recognition in nonstationary sensor-based smart environments.
Pervasive and Mobile Computing, [S.1.], v. 59, p. 101045, 2019.

HARIS, I.; BISANOVIC, V.; WALLY, B.; RAUSCH, T.; RATASICH, D.; DUSTDAR, S.;
KAPPEL, G.; GROSU, R. Sensyml: simulation environment for large-scale iot applications.
In: IECON 2019 - 45STH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL
ELECTRONICS SOCIETY, 2019. Anais... [S.L: s.n.], 2019. v. 1, p. 3024-3030.

HECKLER, W. F.; CARVALHO, J. V. de; BARBOSA, J. L. V. Machine learning for suicidal
ideation identification: a systematic literature review. Computers in Human Behavior, [S.1.],
v. 128, p. 107095, 2022.

HENNING, S.; HASSELBRING, W. Scalable and reliable multi-dimensional aggregation of
sensor data streams. In: IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG
DATA), 2019., 2019. Anais... [S.l.: s.n.], 2019. p. 3512-3517.

HORROCKS, I.; PATEL-SCHNEIDER, P. F.; BOLEY, H.; TABET, S.; GROSOF, B.; DEAN,
M. SWRL: a semantic web rule language combining owl and ruleml. , [S.1.], 2004. Available
at: https://www.w3.0rg/Submission/SWRL/. Access at: 10 dez. 2024.

HOSEINY, F.; AZIZI, S.; SHOJAFAR, M.; TAFAZOLLLI, R. Joint QoS-aware and
Cost-efficient Task Scheduling for Fog-cloud Resources in a Volunteer Computing System. ,
New York, NY, USA, v. 21, n. 4, 2021.

174

HOU, J.; LU, H.; NAYAK, A. A GNN-based proactive caching strategy in NDN networks.
Peer-to-Peer Networking and Applications, [S.1.], v. 16, n. 2, p. 997-1009, 2023.

HU, C.; SUN, Z.; LI, C.; ZHANG, Y.; XING, C. Survey of Time Series Data Generation in
IoT. Sensors, [S.1.], v. 23, n. 15, p. 6976, 2023.

HUANG, B.; LIU, X.; XIANG, Y.; YU, D.; DENG, S.; WANG, S. Reinforcement learning for
cost-effective 10T service caching at the edge. Journal of Parallel and Distributed
Computing, [S.L], v. 168, p. 120-136, 2022.

HUSSAIN, D. I.; ELOMRI, D. A.; KERBACHE, D. L.; OMRI, D. A. E. Smart city solutions:
comparative analysis of waste management models in iot-enabled environments using
multiagent simulation. Sustainable Cities and Society, [S.1.], v. 103, p. 105247, 2024.

IDRIS, S.; KARUNATHILAKE, T.; FORSTER, A. Survey and Comparative Study of
LoRa-Enabled Simulators for Internet of Things and Wireless Sensor Networks. Sensors,
[S.L], v. 22, n. 15, 2022.

IMRAN; IQBAL, N.; KIM, D. H. IoT Task Management Mechanism Based on Predictive
Optimization for Efficient Energy Consumption in Smart Residential Buildings. Energy and
Buildings, [S.1.], v. 257, p. 111762, 2022.

ISABONA, J.; IMOIZE, A. L.; KIM, Y. Machine Learning-Based Boosted Regression
Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning. Sensors,
[S.1.], v. 22, n. 10, 2022.

ISOLANI, P. H.; HAXHIBEQIRI, J.; MOERMAN, I.; HOEBEKE, J.; GRANVILLE, L. Z.;
LATRE, S.; MARQUEZ-BARIJA, J. M. Sd-ran interactive management using in-band network

telemetry in ieee 802.11 networks. Journal of Network and Systems Management, [S.1.],
v.31,n. 1, p. 11, 2023.

JAMSHIDI, S.; AMIRNIA, A.; NIKANJAM, A.; NAFI, K. W.; KHOMH, F.; KEIVANPOUR,
S. Self-adaptive cyber defense for sustainable [oT: a drl-based ids optimizing security and

energy efficiency. Journal of Network and Computer Applications, [S.1.], v. 239, p. 104176,
2025.

JANSSEN, M.; KUK, G. Digital transformation of government: towards a citizen-centric and
ethical approach. Global Policy, [S.1.], 2024.

JASKIERNY, L.; KOTULSKI, L. A self-adapting IoT network configuration supported by
distributed graph transformations. Appl. Sci., [S.1.], v. 13, n. 23, p. 12718, 2023.

JAYARAM, R.; PRABAKARAN, S. Adaptive cost and energy aware secure peer-to-peer
computational offloading in the edge-cloud enabled healthcare system. Peer-to-Peer
Networking and Applications, [S.1.], v. 14, n. 4, p. 2209-2223, 2021.

JUAN, A. A.; KEENAN, P.; MARTI, R.; MCGARRAGHY, S.; PANADERO, J.; CARROLL,
P.; OLIVA, D. A review of the role of heuristics in stochastic optimisation: from metaheuristics
to learnheuristics. Annals of Operations Research, [S.1.], v. 320, n. 2, p. 831-861, 2023.

KARUNKUZHALL, D.; MEENAKSHI, B.; LINGAM, K. An adaptive fuzzy ¢ means with
seagull optimization algorithm for analysis of WSNs in agricultural field with [oT. Wireless
Personal Communications, [S.1.], v. 126, n. 2, p. 1459-1480, 2022.

175

KAUR, M.; ARON, R. An energy-efficient load balancing approach for scientific workflows in
fog computing. Wireless Personal Communications, [S.1.], v. 125, n. 4, p. 3549-3573, 2022.

KESHAY, S. How to read a paper. ACM SIGCOMM Computer Communication Review,
[S.L], v. 37, n. 3, p. 1-2, 2016.

KHAN, A. A.; YANG, J.; LAGHARI, A. A.; BAQASAH, A. M.; ALROOBAEA, R.; KU,
C. S.; ALIZADEHSANI, R.; ACHARYA, U. R.; POR, L. Y. BAIoT-EMS: consortium
network for small-medium enterprises management system with blockchain and augmented
intelligence of things. Engineering Applications of Artificial Intelligence, [S.1.], v. 141,
p. 109838, 2025.

KHAN, A.; ALL S.; HAYAT, S.; AZEEM, M.; ZHONG, Y.; ZAHID, M. A.; ALENAZI, M. J.
Fault-tolerance and unique identification of vertices and edges in a graph: the fault-tolerant
mixed metric dimension. Journal of Parallel and Distributed Computing, [S.1.], v. 197,

p. 105024, 2025.

KHAN, S.; KHAN, S.; ALIL Y.; KHALID, M.; ULLAH, Z.; MUMTAZ, S. Highly accurate
and reliable wireless network slicing in 5th generation networks: a hybrid deep learning
approach. Journal of Network and Systems Management, [S.1.], v. 30, n. 2, p. 29, 2022.

KHIATI, M.; DJENOURI, D. Adaptive learning-enforced broadcast policy for solar energy
harvesting wireless sensor networks. Computer Networks, [S.1.], v. 143, p. 263-274, 2018.

KIM, B.-S.; KIM, K.-I.; SHAH, B.; CHOW, E.; KIM, K. H. Wireless Sensor Networks for Big
Data Systems. Sensors, [S.1.], v. 19, n. 7, 2019.

KOHYARNEJADFARD, I.; ALOISE, D.; AZHARI, S. V.; DAGENAIS, M. R. Anomaly
detection in microservice environments using distributed tracing data analysis and NLP.
Journal of Cloud Computing, [S.1.], v. 11, n. 1, p. 25, 2022.

KORKALAINEN, M.; SALLINEN, M.; KiRKKA4INEN, N.; TUKEVA, P. Survey of Wireless
Sensor Networks Simulation Tools for Demanding Applications. In: FIFTH
INTERNATIONAL CONFERENCE ON NETWORKING AND SERVICES, 2009., 2009.
Anais... [S.l.: s.n.], 2009. p. 102-106.

LAB, I. B. R. Intel Lab Data Dataset. 2004.

LAKHAN, A.; MEMON, M. S.; MASTOI, Q.-u.-a.; ELHOSENY, M.; MOHAMMED, M. A_;
QABULIO, M.; ABDEL-BASSET, M. Cost-efficient mobility offloading and task scheduling
for microservices IoVT applications in container-based fog cloud network. Cluster
Computing, [S.1.], p. 1-23, 2022.

LALOTRA, G. S.; KUMAR, V,; BHATT, A.; CHEN, T.; MAHMUD, M. iReTADS: an
intelligent real-time anomaly detection system for cloud communications using temporal data

summarization and neural network. Security and Communication Networks, [S.1.], n. 1,
p- 9149164, 2022.

LATEEF HAROON P S, A.; PATIL, S. N.; BIDARE DIVAKARACHARI, P;
FALKOWSKI-GILSKI, P.; RAFEEQ, M. D. An optimized system for sensor ontology

meta-matching using swarm intelligent algorithm. Internet Technology Letters, [S.1.], v. 7,
n. 4, p. €498, 2024.

176

LATHA, R.; John Justin Thangaraj, D. S. IoT security using heuristic aided symmetric
convolution-based deep temporal convolution network for intrusion detection by extracting
multi-cascaded deep attention features. Expert Systems with Applications, [S.1.], v. 269,
p. 126363, 2025.

LI C.; ZHANG, Y.; LUO, Y. Deep reinforcement learning-based resource allocation and
seamless handover in multi-access edge computing based on SDN. Knowledge and
Information Systems, [S.1.], v. 63, n. 9, p. 2479-2511, 2021.

LI, G.; ZHANG, T.; TSAI C.-Y.; YAO, L.; LU, Y.; TANG, J. Review of the metaheuristic
algorithms in applications: visual analysis based on bibliometrics. Expert Systems with
Applications, [S.1.], v. 255, p. 124857, 2024.

LI, X.; ZHAO, H.; FENG, Y.; LI, J.; ZHAO, Y.; WANG, X. Research on key technologies of
high energy efficiency and low power consumption of new data acquisition equipment of
power Internet of Things based on artificial intelligence. International Journal of
Thermofluids, [S.1.], v. 21, p. 100575, 2024.

LI, Z.; YANG, H.; SUN, C. Multi-objective optimization-inspired set theory-based
regularization approach for uncertain systems. Applied Soft Computing, [S.1.], v. 95,
p. 106515, 2020.

LIU, D. et al. Sensors anomaly detection of industrial internet of things based on isolated forest
algorithm and data compression. Scientific Programming, [S.1.], v. 2021, p. 6699313, 2021.

LIU, D.; ZHEN, H.; KONG, D.; CHEN, X.; ZHANG, L.; YUAN, M.; WANG, H. Sensors
Anomaly Detection of Industrial Internet of Things Based on Isolated Forest Algorithm and
Data Compression. Scientific Programming, [S.1.], v. 2021, n. 1, p. 6699313, 2021.

LIU, F.; XIALIANG, T.; YUAN, M.; LIN, X.; LUO, F.; WANG, Z.; LU, Z.; ZHANG, Q.
Evolution of Heuristics: towards efficient automatic algorithm design using large language
model. In: FORTY-FIRST INTERNATIONAL CONFERENCE ON MACHINE LEARNING,
2024. Anais... [S.l.: s.n.], 2024.

LOGESHWARAN, J.; SHANMUGASUNDARAM, N.; LLORET, J. Energy-efficient resource
allocation model for device-to-device communication in 5G wireless personal area networks.
International Journal of Communication Systems, [S.1.], v. 36, n. 13, p. €5524, 2024.

MADHUNALA, S.; ANANTHA, B. Centralized Monitored Spectrum Management using
Multi-resource Parallel Sensing in Cognitive Radio Networks. , New York, NY, USA, 2022.

MALEKZADEH, M. Performance prediction and enhancement of 5G networks based on
linear regression machine learning. EURASIP Journal on Wireless Communications and
Networking, [S.1.], v. 2023, n. 1, p. 74, 2023.

MANFREDI, V.; WOLFE, A. P.; ZHANG, X.; WANG, B. Learning an Adaptive Forwarding
Strategy for Mobile Wireless Networks: resource usage vs. latency. arXiv preprint
arXiv:2207.11386, [S.1.], 2022.

MARIG, J.; BACH, M. P.; GUPTA, S. The origins of digital service innovation (DSI):
systematic review of ontology and future research agenda. Journal of Service Management,
[S.1.], v. 35, n. 2, p. 141-175, 2024.

177

MARKUS, A.; KECSKEMETI, G.; KERTESZ, A. Flexible Representation of IoT Sensors for
Cloud Simulators. In: EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL,
DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP), 2017., 2017. Anais...
[S.1.: s.n.], 2017. p. 199-203.

MATATHAMMAL, A.; GUPTA, K.; LAVANYA, L.; HALGATTI A. V.; GUPTA, P;
VAIDHYANATHAN, K. EdgeMLBalancer: a self-adaptive approach for dynamic model
switching on resource-constrained edge devices. In: IEEE 22ND INTERNATIONAL
CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION (ICSA-C), 2025., 2025.
Anais... [S.l.: s.n.], 2025. p. 543-552.

AL MUBARAK, M.; HAMDAN, A. (Ed.). A Systematic Review of IoT Forensics-Based on a
Permissioned Blockchain. In: . Innovative and Intelligent Digital Technologies;

Towards an Increased Efficiency: volume 2. Cham: Springer Nature Switzerland, 2024.
p. 341-350.

MEENA, V.; KRITHIVASAN, K.; RAHUL, P.; PRABA, T. S. Toward an intelligent cache
management: in an edge computing era for delay sensitive iot applications. Wireless Personal
Communications, [S.1.], v. 131, n. 2, p. 1075-1088, 2023.

METWALLY, K. M.; JARRAY, A.; KARMOUCH, A. Two-phase ontology-based resource
allocation approach for IaaS cloud service. In: ANNUAL IEEE CONSUMER
COMMUNICATIONS AND NETWORKING CONFERENCE (CCNC), 2015., 2015.
Anais... [S.l.: s.n.], 2015. p. 790-795.

MIRDULA, S.; ROOPA, M. MUD enabled deep learning framework for anomaly detection in
IoT integrated smart building. e-Prime - Advances in Electrical Engineering, Electronics
and Energy, [S.1.], v. 5, p. 100186, 2023.

MOCNE], J.; SEAH, W. K.; PEKAR, A.; ZOLOTOVA, 1. Decentralised IoT Architecture for
Efficient Resources Utilisation. IFAC-PapersOnLine, [S.1.], v. 51, n. 6, p. 168-173, 2018.
15th IFAC Conference on Programmable Devices and Embedded Systems PDeS 2018.

MORABITO, R. Virtualization on Internet of Things Edge Devices with Container
Technologies: a performance evaluation. IEEE Access, [S.1.], v. 5, p. 8835-8850, 2017.

MORAES, J.; OLIVEIRA, H.; CERQUEIRA, E.; BOTH, C.; ZEADALLY, S.; ROSARIO, D.
Evaluation of an adaptive resource allocation for lorawan. Journal of Signal Processing
Systems, [S.1.], v. 94, n. 1, p. 65-79, 2022.

MO’TAZ, A.-H.; MAABREH, M.; TAAMNEH, S.; PRADEEP, A.; SALAMEH, H. B.
Apache Hadoop performance evaluation with resources monitoring tools, and parameters

optimization: iot emerging demand. Journal of Theoretical and Applied Information
Technology, [S.1.], v. 99, n. 11, 2021. Accessed in: 25 Oct 2024.

MUNIR, K.; Sheraz Anjum, M. The use of ontologies for effective knowledge modelling and
information retrieval. Applied Computing and Informatics, [S.1.], v. 14, n. 2, p. 116-126,
2018.

MUNISWAMY, S.; VIGNESH, R. DSTS: a hybrid optimal and deep learning for dynamic
scalable task scheduling on container cloud environment. Journal of Cloud Computing,
[S.1.], v. 11, n. 1, p. 33, 2022.

178

MUSEN, M. A. The protégé project: a look back and a look forward. AI Matters, New York,
NY, USA, v. 1, n. 4, p. 4-12, June 2015.

MUSEN, M. Protégé 5.5.0. Available at: https://protege.stanford.edu/. Accessed
at: 10 dez. 2024.

NAGARAIJAN, S.; RANL P. S.; VINMATHI, M. S.; SUBBA REDDY, V.; SALETH, A. L. M.;
ABDUS SUBHAHAN, D. Multi agent deep reinforcement learning for resource allocation in
container-based clouds environments. Expert Systems, [S.1.], 2023.

NANDISH, B.; PUSHPARAIJESH, V. Efficient power management based on adaptive whale
optimization technique for residential load. Electrical Engineering, [S.1.], p. 1-18, 2024.

NANDYALA, C. S.; KIM, H.-W.; CHO, H.-S. QTAR: a g-learning-based topology-aware
routing protocol for underwater wireless sensor networks. Computer Networks, [S.1.], v. 222,
p. 109562, 2023.

NAZARI, A.; KORDABADI, M.; MOHAMMADI, R.; LAL, C. EQRSRL: an energy-aware
and qos-based routing schema using reinforcement learning in iomt. Wireless Networks,
[S.1.], v. 29, n. 7, p. 3239-3253, 2023.

NOETZOLD, D. SensorSimulator. Accessed on: 22 Dec. 2024.

NOY, N. F.; MCGUINNESS, D. L. et al. Ontology development 101: a guide to creating your
first ontology. [S.1.]: Stanford knowledge systems laboratory technical report KSL-01-05
and ..., 2001.

NOY, N.; MCGUINNESS, D. Ontology Development 101: a guide to creating your first
ontology. 2001. v. 32.

NunEZ, A.; CAGIZARES, P. C.; de Lara, J. CloudExpert: an intelligent system for selecting
cloud system simulators. Expert Systems with Applications, [S.1.], v. 187, p. 115955, 2022.

O’CONNOR, M. J.; DAS, A. K. Supporting Rule Systems on the Semantic Web with SWRL.
In: INTERNATIONAL SEMANTIC WEB CONFERENCE, 2005. Proceedings... [S.l.: s.n.],
2005. p. 97-110.

OSMAN, R. A. Optimizing IoT communication for enhanced data transmission in smart
farming ecosystems. Expert Systems with Applications, [S.1.], v. 265, p. 125879, 2025.

PADGHAM, L.; WINIKOFF, M. Developing Intelligent Agent Systems: a practical guide.
[S.L.]: John Wiley & Sons Ltd., 2004.

PENG, Y.; WU, L.-C. A cloud-based monitoring system for performance analysis in [oT
industry. The Journal of Supercomputing, [S.1.], v. 77, n. 8, p. 9266-9289, 2021.

PENG, Z.; SONG, X.; SONG, S.; STOJANOVIC, V. Spatiotemporal fault estimation for
switched nonlinear reaction—diffusion systems via adaptive iterative learning. International
Journal of Adaptive Control and Signal Processing, [S.1.], v. 38, n. 10, p. 3473-3483, 2024.

PEéREZ, J.; ARENAS, M.; GUTIERREZ, C. Semantics and complexity of SPARQL. ACM
Trans. Database Syst., New York, NY, USA, v. 34, n. 3, Sept. 2009.

179

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping studies in
software engineering. In: EASE), 12., 2008. Anais... [S.1.: s.n.], 2008.

PFLANZNER, T.; KERTESZ, A.; SPINNEWYN, B.; LATRé, S. MobloTSim: towards a
mobile iot device simulator. In: IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE
INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016., 2016.
Anais... [S.l.: s.n.], 2016. p. 21-27.

POLLEY, J.; BLAZAKIS, D.; MCGEE, J.; RUSK, D.; BARAS, J. ATEMU: a fine-grained
sensor network simulator. In: FIRST ANNUAL IEEE COMMUNICATIONS SOCIETY
CONFERENCE ON SENSOR AND AD HOC COMMUNICATIONS AND NETWORKS,
2004. IEEE SECON 2004., 2004., 2004. Anais... [S.L: s.n.], 2004. p. 145-152.

PRABHU, D.; ALAGESWARAN, R.; MIRUNA JOE AMALLI, S. Multiple agent based
reinforcement learning for energy efficient routing in WSN. Wireless Networks, [S.1.], v. 29,
n. 4, p. 1787-1797, 2023.

PRAMOD KUMAR, P.; SAGAR, K. Reinforcement learning and neuro-fuzzy GNN-based
vertical handover decision on internet of vehicles. Concurrency and Computation: Practice
and Experience, [S.1.], v. 35, n. 12, p. 7688, 2023.

PRASANNA, B.; RAMYA, D.; SHELKE, N.; FERNANDES, J. B.; GALETY, M. G.;
ASHOK, M. Radial basis function neural network-based algorithm unfolding for energy-aware
resource allocation in wireless networks. Wireless Networks, [S.1.], p. 1-18, 2023.

PRIYA, S. A.; BHAT, N.; KANNA, B. R.; RAJALAKSHMI, S.; JEYAVATHANA, R. B; S, S.
Proactive Network Optimization Using Deep Learning in Predicting IoT Traffic Dynamics. In:
INTERNATIONAL CONFERENCE ON INNOVATIVE PRACTICES IN TECHNOLOGY
AND MANAGEMENT (ICIPTM), 2024., 2024. Anais... [S.l.: s.n.], 2024. p. 1-6.

PRIYA, S. A. et al. Proactive network optimization using deep learning in predicting [oT
traffic dynamics. In: ICIPTM, 4., 2024, Noida, India. Proceedings... [S.L.: s.n.], 2024. p. 1-6.

PUIU, D.; BARNAGHLI, P. et al. CityPulse: real-time iot data streams for urban intelligence.
Sensors, [S.1.], v. 16, n. 9, p. 1513, 2024.

PUTRA, M. A. P, HERMAWAN, A. P.; KIM, D.-S.; LEE, J.-M. Data Prediction-Based
Energy-Efficient Architecture for Industrial IoT. IEEE Sensors Journal, [S.1.], v. 23, n. 14,
p. 15856-15866, 2023.

RAIBULET, C.; OH, J.; LEEST, J. Analysis of MAPE-K loop in self-adaptive systems for
cloud, IoT and CPS. In: SERVICE-ORIENTED COMPUTING - ICSOC 2022
WORKSHOPS, 2023. Anais... Springer, 2023. p. 130-141.

RAJ, R. S.; HEMA, L. K. Dynamic clustering optimization for energy efficient [oT Network:
a simple constrastive graph approach. Expert Systems with Applications, [S.1.], v. 264,
p. 125875, 2025.

RAMKUMAR, J.; VADIVEL, R. Multi-adaptive routing protocol for internet of things based
ad-hoc networks. Wireless Personal Communications, [S.1.], v. 120, n. 2, p. 887-909, 2021.

RAO, C. K.; SAHOO, S. K.; YANINE, F. F. An IoT Enabled Energy Management System
with Precise Forecasting and Load Optimization for PV Power Generation. Transactions of
the Indian National Academy of Engineering, [S.1.], p. 1-21, 2024.

180

RATH, C. K.; MANDAL, A. K.; SARKAR, A. Dynamic provisioning of devices in
microservices-based IoT applications using context-aware reinforcement learning.
Innovations in Systems and Software Engineering, [S.1.], p. 1-14, 2024.

REDHEFFER, R. M. The Riccati equation: initial values and inequalities. Mathematische
Annalen, [S.1.], v. 133, p. 235-250, 1957. Received 22 October 1956.

REHMAN, A.; ALBLUSHI, 1. G. M.; ZIA, M. E.; KHALID, H. M.; INAYAT, U.;
BENBOUZID, M.; MUYEEN, S.; HUSSAIN, G. A. A solar-powered multi-functional
portable charging device (SPMFPCD) with internet-of-things (IoT)-based real-time

monitoring—An innovative scheme towards energy access and management. Green
Technologies and Sustainability, [S.L.], v. 3, n. 1, p. 100134, 2025.

RESTUCCIA, F.; MELODIA, T. DeepWiERL: bringing deep reinforcement learning to the
internet of self-adaptive things. In: IEEE INFOCOM, 2020. Proceedings... [S.l.: s.n.], 2020.
p. 844-853.

REVANESH, M.; GUNDAL, S. S.; ARUNKUMAR, J.; JOSEPHSON, P. J.; SUHASINI, S.;
DEVI, T. K. Artificial neural networks-based improved Levenberg—Marquardt neural network

for energy efficiency and anomaly detection in WSN. Wireless Networks, [S.1.], p. 1-16,
2023.

ROSSETTO, A. G. d. M.; NOETZOLD, D.; SILVA, L. A.; LEITHARDT, V. R. Q. Enhancing
Monitoring Performance: a microservices approach to monitoring with spyware techniques
and prediction models. Sensors, [S.1.], v. 24, n. 13, 2024.

RTX, U. Machine Failure Prediction Using Sensor Data. Available at:
https://www.kaggle.com/datasets/umerrtx/machine-failure-
prediction-using-sensor-data, Accessed on: February 11, 2025.

RZEVSKI, G.; SKOBELEYV, P.; ZHILYAEYV, A. Emergent Intelligence in Smart Ecosystems:
conflicts resolution by reaching consensus in resource management. Mathematics, [S.1.],
v. 10, n. 11, 2022.

S, R.; KANNIGA, D. An Innovation of Distributed Scheduling and QoS Localized Routing
Scheme for Wireless Industrial Sensor Network. In: INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING AND ELECTRICAL CIRCUITS AND ELECTRONICS
(ICDCECE), 2023., 2023. Anais... [S.l.: s.n.], 2023. p. 1-6.

SAH, D. K. et al. Load-balance scheduling for intelligent sensors deployment in industrial
internet of things. Cluster Computing, [S.1.], v. 25, p. 1715-1727, 2022.

SAH, D. K.; NGUYEN, T. N.; CENGIZ, K.; DUMBA, B.; KUMAR, V. Load-balance
scheduling for intelligent sensors deployment in industrial internet of things. Cluster
Computing, [S.1.], v. 25, n. 3, p. 1715-1727, 2022.

SAKR, H.; ELSABROUTY, M. Meta-reinforcement learning for edge caching in vehicular
networks. Journal of Ambient Intelligence and Humanized Computing, [S.1.], v. 14, n. 4,
p. 4607-4619, 2023.

SAMARAKOON, S.; BANDARA, S.; JAYASANKA, N.; HETTIARACHCHI, C.
Self-Healing and Self-Adaptive Management for [oT-Edge Computing Infrastructure. In:

181

MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON), 2023., 2023.
Anais... [S.1.: s.n.], 2023. p. 473-478.

SAMARAKOON, S. et al. Self-healing and self-adaptive management for [oT-edge computing
infrastructure. In: MERCON, 2023, Moratuwa, Sri Lanka. Proceedings... [S.1.: s.n.], 2023.
p. 473-478.

SANCHEZ, L.; GALACHE, J. SmartSantander: a real-world iot testbed for smart cities.
2024.

SANGEETHA, S.; LOGESHWARAN, J.; FAHEEM, M.; KANNADASAN, R.;
SUNDARARAIJU, S.; VIJAYARAJA, L. Smart performance optimization of energy-aware
scheduling model for resource sharing in 5G green communication systems. The Journal of
Engineering, [S.1.], n. 2, p. €12358, 2024.

SARITHA, K.; SARASVATHI, V. An Energy-Efficient and QoS-Preserving Hybrid
Cross-Layer Protocol Design for Deep Learning-Based Air Quality Monitoring and Prediction.
, Berlin, Heidelberg, v. 5, n. 3, 2024.

SATER, R. A.; HAMZA, A. B. A Federated Learning Approach to Anomaly Detection in
Smart Buildings. , New York, NY, USA, v. 2, n. 4, 2021.

SAVAGLIO, C.; FORTINO, G. A Simulation-driven Methodology for IoT Data Mining Based
on Edge Computing. ACM Trans. Internet Technol., New York, NY, USA, v. 21, n. 2,
Mar. 2021.

SELIM, G. E. I.; HEMDAN, E. E.-D.; SHEHATA, A. M.; EL-FISHAWY, N. A. Anomaly
events classification and detection system in critical industrial internet of things infrastructure

using machine learning algorithms. Multimedia Tools and Applications, [S.1.], v. 80, n. 8,
p. 12619-12640, 2021.

SELVARAJAN, S.; MANOHARAN, H.; AL-SHEHARI, T.; ALSADHAN, N. A.; SINGH, S.
IoT driven healthcare monitoring with evolutionary optimization and game theory. Scientific
Reports, [S.1.], v. 15, n. 1, p. 15224, 2025.

SENNAN, S.; RAMASUBBAREDDY, S.; DHANARAJ, R. K.; NAYYAR, A.; BALUSAMY,
B. Energy-efficient cluster head selection in wireless sensor networks-based internet of things

(IoT) using fuzzy-based Harris hawks optimization. Telecommunication Systems, [S.1.],
p. 1-17,2024.

SHAFIEE, M.; OZEV, S. An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT
Sensor Node Applications. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, [S.1.], v. 41, n. 2, p. 201-210, 2022.

SHARMA, D. K.; RODRIGUES, J. J.; VASHISHTH, V.; KHANNA, A.; CHHABRA, A.
RLProph: a dynamic programming based reinforcement learning approach for optimal routing
in opportunistic iot networks. Wireless Networks, [S.1.], v. 26, p. 43194338, 2020.

SHARMA, M.; KAUR, P. XLAAM: explainable Istm-based activity and anomaly monitoring
in a fog environment. Journal of Reliable Intelligent Environments, [S.1.], v. 9, n. 4,
p. 463-477, 2023.

182

SHARMA, N.; MANGLA, M.; MOHANTY, S. N.; GUPTA, D.; TIWARI, P;
SHORFUZZAMAN, M.; RAWASHDEH, M. A smart ontology-based IoT framework for
remote patient monitoring. Biomedical Signal Processing and Control, [S.1.], v. 68,

p. 102717, 2021.

SHARMA, S.; SINGH, B. Context aware autonomous resource selection and Q-learning
based power control strategy for enhanced cooperative awareness in LTE-V2V
communication. Wireless Networks, [S.1.], v. 26, p. 4045—4060, 2020.

SHIL, J.; ZHU, G.; L1, H.; HAWBANI, A.; WU, J.; LIN, N.; ZHAO, L. Multi-AAVs flocking
for navigation and obstacle avoidance in network-constrained environments. IEEE Internet of
Things Journal, [S.1.], v. 12, n. 7, p. 8931-8946, 2025.

SHIRMARZ, A.; GHAFFARI, A. Automatic software defined network (SDN) performance
management using TOPSIS decision-making algorithm. Journal of Grid Computing, [S.1.],
v. 19, n. 2, p. 16, 2021.

SHUKILA, A.; SINGH, D.; SAJWAN, M.; VERMA, A.; KUMAR, A. A source location
privacy preservation scheme in WSN-assisted IoT network by randomized ring and
confounding transmission. Wireless Networks, [S.1.], v. 28, n. 2, p. 827-852, 2022.

SHUKRY, S.; FAHMY, Y. Traffic load access barring scheme for random-access channel in
massive machine-to-machine and human-to-human devices coexistence in LTE-A.
International Journal of Communication Systems, [S.1.], v. 34, n. 8, p. 4777, 2024. e4777
dac.4777.

SIMAIYA, S. et al. Hybrid CNN-LSTM deep learning model optimized by evolutionary
algorithms for cloud resource utilization prediction. Scientific Reports, [S.1.], v. 14, n. 1,
p. 3204, 2024.

SINGH, G.; CHATURVEDI, A. K. A cost, time, energy-aware workflow scheduling using
adaptive PSO algorithm in a cloud—fog environment. Computing, [S.1.], p. 1-30, 2024.

SINGH, K.; MALHOTRA, J. Fuzzy link cost estimation based adaptive tree algorithm for
routing optimization in wireless sensor networks using reinforcement learning. International
Journal of Sensors Wireless Communications and Control, [S.1.], v. 8, n. 3, p. 151-164,
2018.

SINGH, R.; SHARMA, R.; Vaseem Akram, S.; GEHLOT, A.; BUDDHI, D.; MALIK, P. K ;
ARYA, R. Highway 4.0: digitalization of highways for vulnerable road safety development
with intelligent iot sensors and machine learning. Safety Science, [S.1.], v. 143, p. 105407,
2021.

SOBIERAJ, M.; KOTYnASKI, D. Docker performance evaluation across operating systems.
Applied Sciences, [S.1.], v. 14, n. 15, p. 6672, 2024.

SOMESULA, M. K.; KOTTE, A.; ANNADANAM, S. C.; MOTHKU, S. K. Deadline-aware
cache placement scheme using fuzzy reinforcement learning in device-to-device mobile edge
networks. Mobile Networks and Applications, [S.I.], v. 27, n. 5, p. 2100-2117, 2022.

SOROUR, S. E.; ALJAAFARI, M.; SHAKER, A. M.; AMIN, A. E. LSTM-JSO framework
for privacy preserving adaptive intrusion detection in federated IoT networks. Scientific
Reports, [S.1.], v. 15, n. 1, p. 11321, 2025.

183

SORRENTINO, M.; FRANZESE, N.: TRIFIRO, A. Development and experimental
assessment of a multi-annual energy monitoring tool to support energy intelligence and
management in telecommunication industry. Energy Efficiency, [S.1.], v. 17, n. 6, p. 64, 2024.

SOUNDARI, A. G.; JYOTHI, V. Energy efficient machine learning technique for smart data
collection in wireless sensor networks. Circuits, Systems, and Signal Processing, [S.1.],
v. 39, n. 2, p. 1089-1122, 2020.

SOURI, A.; HUSSIEN, A.; HOSEYNINEZHAD, M.; NOROUZI, M. A systematic review of
IoT communication strategies for an efficient smart environment. Transactions on Emerging
Telecommunications Technologies, [S.1.], v. 33, n. 3, p. 3736, 2022.

SRICHANDAN, S. K.; MAJHI, S. K.; JENA, S.; MISHRA, K.; RAO, D. C. Efficient
latency-and-energy-aware loT-fog-cloud task orchestration: novel algorithmic approach with

enhanced arithmetic optimization and pattern search. International Journal of Information
Technology, [S.1.], v. 16, n. 5, p. 3311-3324, 2024.

STEHLE, F. K.; VANDELLI, W.; ZAHN, F.; AVOLIO, G.; FR{oNING, H. DeepHYDRA: a
hybrid deep learning and dbscan-based approach to time-series anomaly detection in
dynamically-configured systems. In: 2024, New York, NY, USA. Anais... Association for
Computing Machinery, 2024.

STEIN, C. M.; ROCKENBACH, D. A.; GRIEBLER, D.; TORQUATI, M.; MENCAGLI, G.;
DANELUTTO, M.; FERNANDES, L. G. Latency-aware adaptive micro-batching techniques
for streamed data compression on graphics processing units. Concurrency and
Computation: Practice and Experience, [S.1.], v. 33, n. 11, p. €5786, 2020.

STEPHAN, T.; AL-TURIMAN, F; K, S. J.; BALUSAMY, B. Energy and spectrum aware
unequal clustering with deep learning based primary user classification in cognitive radio
sensor networks. International Journal of Machine Learning and Cybernetics, [S.1.], v. 12,
n. 11, p. 3261-3294, 2021.

STEPHAN, T.; SHARMA, K.; SHANKAR, A.; PUNITHA, S.; VARADARAIJAN, V.; LIU, P.
Fuzzy-logic-inspired zone-based clustering algorithm for wireless sensor networks.
International Journal of Fuzzy Systems, [S.1.], v. 23, p. 506-517, 2021.

SUBRAMANIAN, M.; NARAYANAN, M.; BHASKER, B.; GNANAVEL, S.;
HABIBUR RAHMAN, M.; PRADEEP REDDY, C. H. Hybrid Electro Search with Ant
Colony Optimization Algorithm for Task Scheduling in a Sensor Cloud Environment for
Agriculture Irrigation Control System. Complexity, [S.1.], n. 1, p. 4525220, 2022.

SULIMANI, H.; SAJJAD, A. M.; ALGHAMDI, W. Y.; KAIWARTYA, O.; JAN, T.; SIMOFF,
S.; PRASAD, M. Reinforcement optimization for decentralized service placement policy in
IoT-centric fog environment. Transactions on Emerging Telecommunications
Technologies, [S.1.], v. 34, n. 11, p. 4650, 2023.

SUNDARESAN, Y. B.; DURAI, M. S. A high performance cognitive framework (SIVA-self
intelligent versatile and adaptive) for heterogenous architecture in IOT environment.
International Journal of Reasoning-based Intelligent Systems, [S.1.], v. 10, n. 3-4,

p. 269-278, 2018.

184

SURESHKUMAR, C.; SABENA, S. Design of an adaptive framework with compressive
sensing for spatial data in wireless sensor networks. Wireless Networks, [S.L.], v. 29, n. 5,
p. 2203-2216, 2023.

SURYAWAN, I. G. T.; PUTRA, I. K. N.; MELIANA, P. M.; SUDIPA, I. G. I. Performance
Comparison of ARIMA, LSTM, and Prophet Methods in Sales Forecasting. Sinkron : jurnal
dan penelitian teknik informatika, [S.1.], v. 8, n. 4, p. 2410-2421, Oct. 2024.

SUSAN SHINY, G.; MUTHU KUMAR, B. E2IA-HWSN: energy efficient dual intelligent
agents based data gathering and emergency event delivery in heterogeneous wsn enabled iot.
Wireless Personal Communications, [S.1.], v. 122, p. 379408, 2022.

SUSHA, I.; GIL-GARCIA, J. R. Governing Al in cities: challenges and emerging approaches.
Technovation, [S.1.], v. 124, p. 102717, 2023.

TALAAT, F. M. Effective deep Q-networks (EDQN) strategy for resource allocation based on
optimized reinforcement learning algorithm. Multimedia Tools and Applications, [S.L],
v. 81, n. 28, p. 39945-39961, 2022.

TALAAT, F. M.; SARAYA, M. S.; SALEH, A. 1.; ALL, H. A.; ALL S. H. A load balancing and
optimization strategy (LBOS) using reinforcement learning in fog computing environment.
Journal of Ambient Intelligence and Humanized Computing, [S.1.], v. 11, n. 11,

p. 4951-4966, 2020.

TAM, P.; MATH, S.; KIM, S. Priority-aware resource management for adaptive service
function chaining in real-time intelligent IoT services. Electronics, [S.1.], v. 11, n. 19, p. 2976,
2022.

TAM, P.; MATH, S.; KIM, S. Priority-aware resource management for adaptive service
function chaining in real-time intelligent [oT services. Electronics, [S.1.], v. 11, n. 19, p. 2976,
2022.

TRUONG, H.-L.; FAHRINGER, T.; NERIERI, F.; DUSTDAR, S. Performance metrics and
ontology for describing performance data of grid workflows. In: CCGRID 2005. IEEE
INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID, 2005.,
2005. Anais... [S.1.: s.n.], 2005. v. 1, p. 301-308 Vol. 1.

ULLAH, L.; KIM, C.-M.; HEO, J.-S.; HAN, Y.-H. An energy-efficient data collection scheme
by mobile element based on Markov decision process for wireless sensor networks. Wireless
Personal Communications, [S.1.], v. 123, n. 3, p. 2283-2299, 2022.

VAIDHYANATHAN, K.; CAPORUSCIO, M.; FLORIO, S.; MUCCINI, H. ML-enabled
Service Discovery for Microservice Architecture: a qos approach. In: ACM/SIGAPP
SYMPOSIUM ON APPLIED COMPUTING, 39., 2024, New York, NY, USA. Proceedings...
Association for Computing Machinery, 2024. p. 1193-1200. (SAC ’24).

VELRAIJAN, S.; CERONMANI SHARMILA, V. QoS-Aware Service Migration in
Multi-access Edge Compute Using Closed-Loop Adaptive Particle Swarm Optimization
Algorithm. , USA, v. 31, n. 1, 2022.

VELRAIJAN, S.; SHARMILA, V. C. QoS-aware service migration in multi-access edge
computing using closed-loop adaptive particle swarm optimization algorithm. Journal of
Network and Systems Management, [S.1.], v. 31, n. 1, p. 17, 2023.

185

VIANNA, H. D.; BARBOSA, J. L. V. In search of computer-aided social support in
non-communicable diseases care. Telematics and Informatics, [S.1.], v. 34, n. 8,
p. 1419-1432, 2017.

VINJAMURI, U. R.; RAO, B. L. Efficient energy management system using Internet of things
with FORDF technique for distribution system. IET Renewable Power Generation, [S.1.],
v. 15, n. 3, p. 676-688, 2021.

WANG, B.; FAN, T.-y.; NIE, X.-t. Advanced delay assured numerical heuristic modelling for
peer to peer project management in cloud assisted internet of things platform. Peer-to-Peer
Networking and Applications, [S.1.], v. 13, n. 6, p. 21662176, 2020.

WANG, C.-C. A comparison study between fuzzy time series model and ARIMA model for
forecasting Taiwan export. Expert Systems with Applications, [S.1.], v. 38, n. 8,
p- 9296-9304, 2011.

WANG, Z.; LAM, H.-K.; GUO, Y.; XIAO, B.; L1, Y.; SU, X.; YEATMAN, E. M.; BURDET,
E. Adaptive event-triggered control for nonlinear systems with asymmetric state constraints: a
prescribed-time approach. IEEE Transactions on Automatic Control, [S.1.], v. 68, n. 6,

p. 3625-3632, 2023.

WEERASINGHE, S.; ZASLAVSKY, A.; LOKE, S. W.; MEDVEDEYV, A.; ABKEN, A.;
HASSANI, A.; HUANG, G.-L. Reinforcement Learning Based Approaches to Adaptive
Context Caching in Distributed Context Management Systems. , New York, NY, USA, v. 5,
n. 2, 2024.

WEI B.; XIE, Z.; LIU, Y.; WEN, K.; DENG, F.; ZHANG, P. Online Monitoring Method for
Insulator Self-explosion Based on Edge Computing and Deep Learning. CSEE Journal of
Power and Energy Systems, [S.1.], v. 8, n. 6, p. 1684—1696, 2022.

WU, J.; ZHANG, G.; NIE, J.; PENG, Y.; ZHANG, Y. Deep Reinforcement Learning for
Scheduling in an Edge Computing-Based Industrial Internet of Things. Wireless
Communications and Mobile Computing, [S.I.], n. 1, p. 8017334, 2021.

WU, Q.; WANG, S.; GE, H.; FAN, P,; FAN, Q.; LETAIEF, K. B. Delay-sensitive task
offloading in vehicular fog computing-assisted platoons. IEEE Transactions on Network
and Service Management, [S.1.], 2023.

XU, H.; LIU, W.-d.; LI, L.; YAO, D.-J.; MA, L. FSRW: fuzzy logic-based whale optimization
algorithm for trust-aware routing in iot-based healthcare. Scientific Reports, [S.1.], v. 14, n. 1,
p. 16640, 2024.

XU, M.; BUYYA, R. BrownoutCon: a software system based on brownout and containers for
energy-efficient cloud computing. Journal of Systems and Software, [S.1.], v. 155, p. 91-103,
2019.

XU, R.; HUANG, Z.; CHEN, S.; LI, J.; WU, P.; LIN, Y. Wi-CL: low-cost wifi-based detection
system for nonmotorized traffic travel mode classification. Journal of Advanced
Transportation, [S.1.], n. 1, p. 1033717, 2023.

XU, X.; LIU, N.; PAN, Z. Distributed Reinforcement Learning for Optimizing Age of
Information and Energy Consumption in Wireless Powered IoT Systems. In: 2023, New York,
NY, USA. Anais... Association for Computing Machinery, 2023.

186

XUE, J.; WU, S.;]I, Z.; PAN, W. Research on Intelligent Server Room Integrated Operation
and Maintenance Management System. In: INTERNATIONAL CONFERENCE ON
ARTIFICIAL INTELLIGENCE AND COMPUTER INFORMATION TECHNOLOGY
(AICIT), 2023., 2023. Anais... [S.l.: s.n.], 2023. p. 1-6.

YANG, Z.; ABBASI, 1. A.; MUSTAFA, E. E.; ALIL S.; ZHANG, M. An Anomaly Detection
Algorithm Selection Service for IoT Stream Data Based on Tsfresh Tool and Genetic
Algorithm. Security and Communication Networks, [S.1.], n. 1, p. 6677027, 2021.

YANG, Z. et al. An anomaly detection algorithm selection service for IoT stream data based
on Tsfresh tool and genetic algorithm. Security and Communication Networks, [S.1.],
v. 2021, p. Article ID 6677027, 2021.

YASEEN, A.; MALY, K. J.; ZEIL, S. J.; ZUBAIR, M. Performance Evaluation of Oracle
Semantic Technologies with Respect to User Defined Rules. In: INTERNATIONAL
WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, 2011., 2011.
Anais... [S.l.: s.n.], 2011. p. 252-256.

YOU, D.; LIN, W.; SHL, E; LI, J.; QI, D.; FONG, S. A novel approach for CPU load prediction
of cloud server combining denoising and error correction. Computing, [S.1.], p. 1-18, 2023.

YOUSEFIL S.; DERAKHSHAN, F.; KARIMIPOUR, H.; AGHDASI, H. S. An efficient route
planning model for mobile agents on the internet of things using Markov decision process. Ad
Hoc Networks, [S.1.], v. 98, p. 102053, 2020.

ZANELLA GOMES, J.; VICTORIA BARBOSA, J. L.; RESIN GEYER, C. F.; ANJOS,
J. C. Santos dos; VICENTE CANTO, J.; PESSIN, G. Ubiquitous Intelligent Services for

Vehicular Users: a systematic mapping. Interacting with Computers, [S.1.], v. 31, n. 5,
p. 465-479, 11 2019.

ZARE, N.; MACIOSZEK, E.; GRANa, A.; GIUFFRe, T. Blending Efficiency and Resilience
in the Performance Assessment of Urban Intersections: a novel heuristic informed by literature
review. Sustainability, [S.1.], v. 16, n. 6, 2024.

ZESHAN, F.; AHMAD, A.; BABAR, M. I.; HAMID, M.; HAJJEJ, F.; ASHRAF, M. An
IoT-Enabled Ontology-Based Intelligent Healthcare Framework for Remote Patient
Monitoring. IEEE Access, [S.1.], v. 11, p. 3947-3960, 2023.

ZESHAN, F.; AHMAD, A.; BABAR, M. I.; HAMID, M.; HAJJEJ, F.; ASHRAF, M. An
IoT-enabled ontology-based intelligent healthcare framework for remote patient monitoring.
IEEE Access, [S.1.], v. 11, p. 133947-133966, 2023.

ZHANG, K.; LIU, Y.; WANG, X.; MEL E.; SUN, G.; ZHANG, J. Enhancing IoT (Internet of
Things) feature selection: a two-stage approach via an improved whale optimization
algorithm. Expert Systems with Applications, [S.1.], v. 256, p. 124936, 2024.

ZHAO, H.; WANG, H.; NIU, B.; ZHAO, X.; ALHARBI, K. H. Event-triggered fault-tolerant
control for input-constrained nonlinear systems with mismatched disturbances via adaptive
dynamic programming. Neural Networks, [S.1.], v. 164, p. 508-520, 2023.

ZHENG, T.; WAN, J.; ZHANG, J.; JIANG, C. Deep reinforcement learning-based workload
scheduling for edge computing. Journal of Cloud Computing, [S.1.], v. 11, n. 1, p. 3, 2022.

187

ZHOU, H. A novel approach to cloud resource management: hybrid machine learning and task
scheduling. Journal of Grid Computing, [S.1.], v. 21, n. 4, p. 68, 2023.

ZHOU, Y,; LI, B.; WANG, H. Reliability-constrained uncertain spacecraft sliding mode
attitude control using interval techniques. Aerospace Science and Technology, [S.1.], v. 112,
p. 106620, 2021.

ZHUANG, D.; GAN, V.J.; TEKLER, Z. D.; CHONG, A.; TIAN, S.; SHI, X. Data-driven
predictive control for smart HVAC system in IoT-integrated buildings with time-series
forecasting and reinforcement learning. Applied Energy, [S.1.], v. 338, p. 120936, 2023.

ZOLFAGHARI, M.; GHOLAMI, S. A hybrid approach of adaptive wavelet transform, long
short-term memory and ARIMA-GARCH family models for the stock index prediction.
Expert Systems with Applications, [S.1.], v. 182, p. 115149, 2021.

	dd76da43d6a7de71bdcc4d62eaef013550528acebd6be5e2971d99076ab0df99.pdf
	dd76da43d6a7de71bdcc4d62eaef013550528acebd6be5e2971d99076ab0df99.pdf

