v

UNISINOS

Programa de Pos-Graduacgéo em

Computacao Aplicada

Mestrado/Doutorado Académico

Vitor Werner de Vargas

Heimdall: an architecture for online Machine Learning through
imbalanced data

Sao Leopoldo, 2023

UNIVERSIDADE DO VALE DO RIO DOS SINOS — UNISINOS
UNIDADE ACADEMICA DE PESQUISA E POS-GRADUACAO
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO APLICADA
NIVEL MESTRADO

VITOR WERNER DE VARGAS

HEIMDALL:
AN ARCHITECTURE FOR ONLINE MACHINE LEARNING THROUGH
IMBALANCED DATA

Sao Leopoldo
2023

V297h Vargas, Vitor Werner de.
Heimdall : an architecture for online machine learning
through imbalanced data / by Vitor Werner de Vargas. — 2023.
100 p. :il. ; 30 cm.

Dissertation (master’s degree) — Universidade do
Vale do Rio dos Sinos, Applied Computing Graduate
Program, S&o Leopoldo, RS, 2023.

Advisor: Dr. Jorge Luis Victéria Barbosa.

Co-advisor: Dr. Paulo Ricardo da Silva Pereira.

1. Imbalanced data. 2. Preprocessing. 3. Sampling.
4. Machine learning. 5. Software architecture. 6. Reactive
agents. I. Title.

UDC: 004.85

Cataloging in Publication (CIP):
Librarian Alessandro Dietrich - CRB 10/2338

J UNIVERSIDADE DO VALE DO RIO DOS SINOS
Escola Politécnica
U N]S]NOS Programa de Pés-Graduagdo em Computacdo Aplicada - PPGCA

ATA DE BANCA EXAMINADORA DE DISSERTACAO DE MESTRADO N° 12/2023

Aluno: Vitor Werner de Vargas
Titulo da Dissertacdo: “HEIMDALL: AN ARCHITECTURE FOR ONLINE MACHINE LEARNING
THROUGH IMBALANCED DATA”.

Banca: Prof. Dr. Jorge Luis Victoria Barbosa (Orientador) — Unisinos
Prof. Dr. Paulo Ricardo Da Silva Pereira (Coorientador) — Unisinos
Prof. Dr. Gabriel De Oliveira Ramos (Avaliador) — Unisinos
Prof. Dr. Marilton Sanchotene De Aguiar (Avaliador) — UFPel

Ao vinte e seis dias do més de setembro do ano de 2023, as 14h a Comissdo Examinadora de Defesa de
Dissertacao composta pelos professores: Prof. Dr. Jorge Luis Victoria Barbosa (Orientador) — Unisinos
(participacéo por webconferéncia); Prof. Dr. Paulo Ricardo Da Silva Pereira (Coorientador) — Unisinos
(participacdo por webconferéncia); Prof. Dr. Gabriel De Oliveira Ramos (Avaliador) — Unisinos
(participacdo por webconferéncia) e Prof. Dr. Marilton Sanchotene De Aguiar (Avaliador) — UFPel
(participacéo por webconferéncia) para analisar e avaliar a Dissertacdo apresentada pelo Vitor Werner de

Vargas (participacéo por webconferéncia).

Consideracdes da Banca:

Apbs a apresentacdo realizada pelo aluno, os professores se reuniram para avaliacdo do trabalho. Os
professores confirmaram os aperfeicoamentos indicados durante a banca, as quais estao gravados no
video e deverao constar na versao final da dissertacéo.

Ocorreu alteragao do titulo? (X) Nao () Sim
Lo oz= T o TN (o) o I8 £ 11][OSSR
A Banca Examinadora, em cumprimento ao requisito exigido para a obtencdo do Titulo de Mestre em
Computacgédo Aplicada, julga esta dissertacao:

(X) APROVADA ()REPROVADA
Conforme Artigo 67 do Regimento do Programa o texto definitivo, com aprova¢éo do Orientador, devera
ser entregue no prazo maximo de sessenta (60) dias apés a defesa. O resultado da banca é de consenso

entre os avaliadores. A emisséo do Diploma esta condicionada a entrega da verséo final da Dissertacao.

Séo Leopoldo, 26 de setembro de 2023.

Prof. Dr. Prof. Dr. Jorge Luis Victoria Barbosa — Orientador

Av. Unisinos, 950 Caixa Postal 275 CEP 93022-750 Sao Leopoldo Rio Grande do Sul Brasil
Fone: (51) 590-3333, Ramal 1601 Fax: (51) 3590-8161 http://www.unisinos.br

This study was financed in part by the Coordenagdo de Aperfeicoamento de Pessoal de Nivel
Superior - Brasil (CAPES) - Finance Code 001 / O presente trabalho foi realizado com apoio
da Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior Brasil (CAPES) - Cédigo de
Financiamento 001.

ACKNOWLEDGEMENTS

First of all, I would like to thank my family. If I have grown to enjoy learning, it is because
my parents, Eunice and Volmir, have nourished my inquisitive mind since I was a little boy. If
I made wise choices, it is because my girlfriend, Bruna, advised me after patiently hearing my
predicaments. If I allowed myself to do so much, it is because my sister, Raquel, was a role
model. If I had the confidence to follow this path, it is because I knew I could always count on
the unconditional love and support from my family. Thank you. You are the most important
people in my life.

Additionally, I would like to thank my advisor, professor Dr. Jorge Luis Victoria Barbosa,
and co-advisor, professor Dr. Paulo Ricardo da Silva Pereira, who guided me forward in every
step of my master’s studies. Thank you for not only presenting opportunities but also investing
effort into making them achievements. This dissertation has also been improved with the help of
professors Dr. Gabriel de Oliveira Ramos, Dr. Marilton Sanchotene de Aguiar, and Dr. Sandro
José Rigo. Thank you for your detailed reviews and suggestions.

I would also like to thank the professors at the UNISINOS’ PPGCA, who always focused
on connecting their content to the students’ research, and the secretary staff for their support
during a challenging period of my life.

Finally, I would like to thank CAPES for the financial support through the first 16 months
of my master’s studies.

“Our main business is not to see what lies dimly at a distance,
but to do what lies clearly at hand”.
(Thomas Carlyle)

ABSTRACT

Machine Learning (ML) algorithms have been increasingly applied to domain areas where
data is available for process automation. However, in the case of imbalanced data applications,
the training process is challenging since ML algorithms intrinsically learn from balanced dis-
tributions. This research proposes Heimdall, a resourceful architecture for online ML through
imbalanced data. Designed as a service for prediction and analysis requests, Heimdall serves
existing applications from external systems, extending artificial intelligence capabilities and
automated processes to traditional applications supervised by experts. The architecture focuses
on efficiently solving imbalance and improving performance through a set of good practices
compiled from mapped studies — such as probability threshold optimization, high-performance
sampling, and ensemble learning. Furthermore, Heimdall proposes and evaluates the efficiency
of novel functionalities. Firstly, a new performance metric corrects precision-recall balance
according to the application’s needs, enhancing probability threshold optimization. Secondly,
the architecture independently automates data management and training pipelines through two
rule-based reactive agents constantly monitoring data changes and model degradation to trigger
processes. These reactive agents compose a strategy for adaptive efficiency, enabling better and
more stable performance by sacrificing efficiency in warm-up conditions, and maintaining ex-
cellent performance and efficiency in hot conditions. To adequately evaluate the architecture,
this study implemented a prototype for one well-studied and severely imbalanced application —
Credit Card Fraud Detection (CCFD). Isolating the improvement of each proposed functional-
ity, the analysis evaluated performance over time and overall performance against related works
through five scenarios. Namely, the results indicated that the prototype achieved excellent per-
formance even with few anomalies, and improved systemic efficiency over time. Finally, the
overall performance achieved comparable results to the best-performing related works.

Keywords: Imbalanced data. Preprocessing. Sampling. Machine Learning. Software archi-
tecture. Reactive agents.

RESUMO

Algoritmos de aprendizado de mdquina tém sido crescentemente utilizado em areas de apli-
cacdo que possuem dados disponiveis para automacdo de processos. No entanto, no caso de
aplicacdes com dados desbalanceados, o processo de treinamento é desafiador, visto que algorit-
mos de aprendizado de méaquina sdo desenvolvidos para aprender, intrinsicamente, de distribui-
coes balanceadas. Esta pesquisa propde Heimdall, uma arquitetura com diversos recursos para
aprendizagem de mdquina ativa através de dados desbalanceados. Projetado como um servigo
para atendimento de requisi¢des de previsdes e andlises, Heimdall serve aplicacdes existentes de
sistemas externos, estendendo recursos de inteligéncia artificial e automatiza¢do de processos
a aplicagOes tradicionais supervisionadas por especialistas. A arquitetura soluciona o desba-
lanceamento através de uma série de boas praticas compiladas em mapeamentos de trabalhos
relacionados — como otimizacao do limiar de probabilidade, amostragem de alto desempenho e
aprendizado em conjunto. Adicionalmente, Heimdall propde e avalia a eficiéncia de funcionali-
dades inovadoras. Primeiramente, uma nova métrica de performance corrige o equilibrio entre
precision-recall de acordo com as necessidades da aplicac@o, aprimorando a otimizac¢ao do li-
miar de probabilidade. Segundamente, a arquitetura automatiza processos de gerenciamento
de dados e aprendizado de mdquina, de forma independente, através de dois agentes reativos
baseados em regras, 0s quais monitoram constantemente as mudancas de dados e degradagdo de
performance do modelo para acionar processos. Esses agentes reativos compdem uma estraté-
gia para eficiéncia adaptativa, habilitando uma performance melhor e mais estavel ao sacrificar
eficiéncia em condicdes iniciais de implantagcdo, e mantendo excelentes performance e eficién-
cia em condi¢des normais da aplicagdo. Para avaliar a arquitetura de forma adequada, o presente
estudo implementou um protétipo para uma aplicacdo conhecida contendo dados severamente
desbalanceados — detec¢do de fraudes em cartdes de crédito. Isolando a melhoria de cada funci-
onalidade proposta, a andlise avaliou a performance no decorrer do tempo e performance global
versus trabalhos relacionados através de cinco cendrios. Especificamente, os resultados indicam
que o protétipo alcancou performance excelente mesmo com poucas anomalias € melhorou a
eficiéncia sistémica no decorrer do tempo. Por fim, a performance global obteve resultados
similares aos melhores resultados em trabalhos relacionados.

Palavras-chave: Dados desbalanceados. Pré-processamento. Amostragem. Aprendizado de
mdquina. Arquitetura de software. Agentes reativos.

B~ W

— = \O 00 1 O\ W1

— O

12

13

14
15

16
17

18
19
20
21
22
23
24
25
26

27
28

29
30
31
32
33

LIST OF FIGURES

Imbalanced Ratios in a binary classification problem 25
Absolute rarity in imbalanced datasets: (a) small sample; (b) adequate sam-

ple; (c); adequate sample withnoise 26
Sampling types for imbalanceddata, 26
Supervised Machine Learning: (a) example of training dataset; (b) general-

ization performance for different model complexities 27
Five-fold cross validation 28
Probability threshold optimization visual representation 30
Precision-Recall curveso oL 30
Grid search results for SVM with cross-validation 31
Basic automated Machine Learning pipeline 31
Filtering process e 39
Taxonomy of sampling techniques proposed or compared in reviewed papers

byID . . 47
Quantitative analysis of the reviewed papers proposing, comparing, and se-

lecting: (a) sampling techniques; (b) Machine Learning models 49
Taxonomy of Machine Learning models proposed or compared in reviewed

papersby ID 50
Development tools of reviewed applications 52
Quantitative analysis in different domain areas for the selection of: (a) sam-

pling techniques; (b) Machine Learning models 53
Reviewed studies per year by digital library and type of venue 54
Architecture for Machine Learning with imbalanced data: (a) block diagram;

(b) preprocessing pipeline o 58
Architecture for Machine Learning as an online service 61
Process monitoring applications: (a) architecture diagram; (b) components . 62
Measuring model degradation: (a) framework; (b) experimental results . . . 63
Heimdall’s Technical Architecture Module diagram 65
Machine Learning model evaluation delay caused by supervised labels . . . 67
Time series anomaly labeling: (a) chart; (b)data 67
Sampler processes flowcharts: (a) training data generation; (b) minority update 68
Heimdall’s pipeline and dataflow 71
Balanced Performance Indicator’s flexibility: (a) probability threshold curve;

(b) standard Precision-Recallcurve 72
Training control L 73
Box plot of PCA features, Scaled Amount (SA) and Scaled Time (ST) for

each class of the ULB-CCFD dataset 78
Daily samples throughout the evaluation of performance over time 79
Testing data procedure for performance over time and overall 80
Performance metrics and agents’ triggers over time for tested scenarios . . . 82
Comparison of BPI over time for tested scenarios 83

Data characteristics over time: (a) Imbalance Ratio; (b) fraudulent transactions 83

0NN N AW

p— et et et ek e e e \O
~NON DNk W= O

LIST OF TABLES

Basic Machine Learning performance metrics for classification problems . . 29
Details of topics fromrelated workso 34
Research Questions 37
Searchstring e 37
Quality scores for the answers of Research Questions 39
Quality Assessment Lo 40
Domain areas of reviewed applications 45
Lessons learned by answering the Research Questions 56
Search string for imbalanced data applications 57
Search string for general applications 60
General rules for Data Manager triggers 69
Heimdall databases’ essential features 70
General rules for Training Controller triggers 73
Comparison between Heimdall’s and related works’ solutions 75
Evaluation Scenarios: S1-S5. o Lo 79
Analyses of performance metrics and processing times for SI-S5 84

Performance comparison between tested configurations and related works . 86

CONTENTS

1 INTRODUCTION e e e e e 21
1.1 Motivation 21
1.2 Research question 21
1.3 Objectives e 22
1.4 Methodology 22
1.5 Structure 23
2 BACKGROUND e 25
2.1 Imbalanceddata 25
2.2 Supervised Machine Learning 27
2.2.1 Model evaluation and optimization 28
222 Pipelines e e 30
2.3 Final considerations 31
3 RELATED WORKS e 33
3.1 Imbalanced data preprocessing for Machine Learning 33
3.1.1 Relatedworks e 33
3.1.2 Researchmethod 36
3.1.3 Results. e e e 39
3.1.4 Conclusion e e e e e 55
3.2 Real-Time Machine Learning architectures 55
3.2.1 Imbalanceddata 56
3.2.2 General applications L 60
3.3 Final considerations 63
4 HEIMDALL e 65
4.1 Architecture overview 65
4.2 Datamanagement 66
4.3 Storage e 69
4.4 Machine Learning and evaluation 69
4.5 Interface e 74
4.6 Applications 74
4.7 Final considerations 75
5 EXPERIMENTAL EVALUATION 77
5.1 Application and dataset L. 77
5.2 Testing methodology 78
5.3 Resultsand discussion L 81
5.4 Final considerations 87
6 CONCLUSION. e e e e e 89
6.1 Contributions e 89
6.2 Futureworks 90
6.3 Publications e 90

REFERENCES e 93

21

1 INTRODUCTION

Machine Learning (ML) has been increasingly applied to domain areas in which data is
available for process automation. However, the training process is challenging since ML algo-
rithms conceptually learn from balanced distributions (ZHANG; ZHOU; DENG, 2019). There-
fore, learning from unevenly distributed samples can decrease both accuracy and reliability from
the trained model. This characteristic is called imbalance or unbalance (FOTOUHI; ASADI;
KATTAN, 2019).

Imbalanced data occur naturally in the majority of real-world classification problems. Nev-
ertheless, when the ratio between the minority and majority classes is low, the minority classes
tend to be ignored as noise (REKHA; REDDY; TYAGI, 2020). Consequently, the ML model
becomes biased towards the majority classes (WONG; LEUNG; LING, 2014).

The solution for learning from imbalanced data applications can be implemented in two
levels: data, through sampling techniques; and algorithmic, through ML algorithms optimized

for imbalanced data, such as cost-sensitive and ensemble (ZHANG et al., 2017).

1.1 Motivation

Cost-sensitive learning optimizes the models for the training dataset characteristics, being
hard to reapply models to new datasets. Conversely, data level solutions fix the imbalance and
allow the use of standard ML models with multiple datasets (DONG; WANG, 2011). Addi-
tionally, data level solutions enable implementations in conjunction with ensemble ML models,
further improving learning (ZHAO; WANG; YUE, 2020).

In this sense, studies with applications from various domain areas implement sampling tech-
niques to correct imbalanced datasets before learning. This topic displays a growing research
interest, specially since 2019 (VARGAS et al., 2022).

According to results from related works’ reviews (Section 3.2), the research community has
also directed efforts to advance software architectures for online ML, streamlining predictions in
real-time — also known as real-time ML. Hence, online prediction models have been developed
as a service for specific applications, returning predictions when accessed by clients. However,

few works have proposed architectures addressing the imbalance problem.

1.2 Research question

The scenario presented in Section 1.1 leverages opportunities for exploring existing research
on sampling techniques for improving ML, establishing favorable technologies, and defining
new paths for further research. Consequently, the findings from such analysis can outline
requirements for a new software architecture, generalized for imbalanced data applications.

Therefore, this study adheres to the following research question:

22

“How should a Machine Learning application be implemented to efficiently solve data
imbalance through sampling techniques and enable online operation for real-time predic-

tions?”

1.3 Objectives

This research work has the main objective of proposing a software architecture which ef-
ficiently solves data imbalance through sampling and ML optimization, and extends external
systems without artificial intelligence capabilities by providing an online interface. The study

segments this goal into the following targets:

* Identify the most commonly used and best-performing sampling techniques and ML mod-
els for imbalanced data applications;

* Analyze and compare online ML architectures, and productive functionalities for au-
tomating and optimizing both general and imbalanced data applications;

* Specify a software architecture (Heimdall) applying a set of good practices from the state
of the art in ML, and proposing novel solutions focused on efficiently solving data imbal-
ance;

* Implement an experimental strategy focused on evaluating performance and efficiency
improvements of the proposed functionalities in a severely imbalanced dataset through a
prototype based on Heimdall. The evaluation must compare results against related works,
analyze active learning and improvements over time.

Specifically, the proposed software architecture limits the scope to supervised ML, depend-

ing on access to a local database of an external system — with labels maintained by the system’s
experts. In addition, the online aspect refers to providing an online server for prediction re-

quests, maintained by an automated pipeline.

1.4 Methodology

The research started by laying the foundations for the subjects needed to understand au-
tomated ML with imbalanced data. Hence, this step studied and detailed imbalanced data,
resulting issues, solutions with sampling techniques, supervised ML, model evaluation, and
optimization.

The second step of this study reviewed related works. This step focused on a systematic
literature review of sampling techniques and ML models for imbalanced data applications. Ad-
ditionally, this step reviewed software topologies for real-time ML in imbalanced data and gen-
eral applications. Finally, this investigation highlighted takeaways and gaps from the reviewed
domains, presenting directions for developing software architectures solving imbalance through

sampling techniques.

23

The next step applied directions from the reviews of related works and foundations from the
background to propose Heimdall — a software architecture for online ML with imbalanced data.
This step consisted of the architecture design, defining essential functionalities and resources,
modules, and technologies to build ML systems.

Lastly, the final step implemented a test environment with a prototype based on Heimdall
and evaluated its performance and efficiency, with different configurations, against baseline
architectures. Further analyses compared the results of these configurations against other studies
applying the same dataset, defined whether the study achieved the objectives, and proposed

paths for future studies.

1.5 Structure

This study is divided into six chapters. Chapter 1 introduces the study, contextualizing the
problem and describing the adopted methodology. Later, Chapter 2 provides a background for
understanding imbalanced data and supervised ML. After laying the foundations, Chapter 3
describes related works and lists highlights for developing a ML architecture and improving
imbalanced data applications. Then, Chapter 4 specifies the software architecture Heimdall
through the takeaways and research gaps from Chapter 3. Chapter 5 details the selected dataset,
testing methodology and results. Finally, Chapter 6 summarizes the research and findings, and

presents directions for future research on online ML through imbalanced data.

24

25

2 BACKGROUND

This chapter presents a brief description of the main concepts supporting the theoretical
foundations of this work. Section 2.1 introduces imbalanced data and means for balancing
datasets. Section 2.2 details supervised ML algorithms and their categories, performance met-

rics, optimization, and pipelines for automation.

2.1 Imbalanced data

Ferndndez et al. (2018) state that a dataset is imbalanced when there is a considerable dis-
proportion among the number of instances of each class within the dataset. Consequently,
statistical analyses, such as classification and regression, tend to under represent the minority
classes.

The degree to which a dataset suffers from the imbalance problem is commonly estimated
by the ratio between the minority and majority classes, called the Imbalance Ratio (IR). While
most studies with imbalanced data fixate on IRs ranging between 1:4 and 1:100, several real-
life applications — such as fraud and fault detection — suffer from IRs between 1:1000 and
1:5000. Figure 1 illustrates scatter plots for different IRs in a binary classification problem
(BROWNLEE, 2021).

Figure 1: Imbalanced Ratios in a binary classification problem

Source: Adapted from Brownlee (2021).

According to He and Ma (2013), there are two main issues when analyzing imbalanced data:
* Absolute rarity — Lack of data: when the IR is low and the application recently started
collecting data, the rarity of occurrences from the minority classes deteriorates the real
instance space. Consequently, more data is needed to recognize the real distribution and

dimensionality of the dataset. Applications presenting noise aggravate this problem since

26

few instances may cause great spacial changes in the minority class. Figure 2 shows these
characteristics;

* Relative rarity — Inability to learn: most learning algorithms are designed to learn by
optimizing evaluation metrics such as accuracy. Hence, since the majority classes have
proportionally higher instances, the learning process becomes biased — favoring the ma-

jority classes.

Figure 2: Absolute rarity in imbalanced datasets: (a) small sample; (b) adequate sample; (c);
adequate sample with noise

Source: He and Ma (2013).

There are different methods to counter the imbalance problem for enabling learning algo-
rithms. One of the most popular and efficient is called sampling. As the name suggests, the
method creates a new dataset, relatively more balanced, by sampling the original imbalanced
dataset. The solution can apply three types of techniques: oversampling the minority classes;
undersampling the majority classes; or both, called hybrid sampling (HE; MA, 2013). Figure 3

illustrates these techniques.
Figure 3: Sampling types for imbalanced data

e Majority ® Minority e Added Removed

:>-.:-:=. SaE, e,
o:o..': :: ...ﬁ. 2:::..: ...: ::

Original Oversampling Hybrid Undersampling

Source: Created by the author.

While sampling does not solve the issue of absolute rarity, it does alleviate relative rar-

ity. Consequently, learning algorithms can better capture decision boundaries between majority

27

and minority classes (HE; MA, 2013). Incidentally, applications with learning tend to apply

sampling techniques in preprocessing, feeding learning algorithms with balanced datasets.

2.2 Supervised Machine Learning

According to Géron (2017), “ML is the science of programming computers so they can
learn from data”. Specifically, supervised ML encompasses learning algorithms trained with
examples of desired solutions to the learned task. The two most typical tasks are grouped
in classification, for categorical identification, and regression, for numerical value prediction.
Hence, ML enables humans to automate these tasks and make accurate predictions for new data
using computer applications.

Technically, supervised ML algorithms are said to extract knowledge from a training dataset
composed of a set of input features and the expected output, commonly called label. These al-
gorithms build a ML model after learning from the training dataset, which then can be used
to predict the output of unseen input data — called test datasets. A good model can general-
ize the training dataset in order to accurately predict the outputs of test datasets (MULLER;
GUIDO, 2017). Figure 4 illustrates an example of a training dataset for potential boat customer

prediction, as well as a generalization performance for different model complexities.

Figure 4: Supervised Machine Learning: (a) example of training dataset; (b) generalization
performance for different model complexities

Age Numberof Ownshouse Number of children Marital status Ownsadog Bought a boat
cars owned L L Training

66
5
n
25
"
39
2%
40
53
64
58
33

LN NN W e O m o o .

yes
yes
no
no
no
yes
no
yes
yes
yes
yes
no

N T T S S)

(a)

widowed
married
married
single
divorced
married
single
married
divorced
divorced
married
single

no
no
yes
no
yes
yes
no
yes
no
no
yes
no

yes
yes

Accuracy

Underfitting

Sweet spot

Generalization

Overfitting

Model complexity

(b)

Source: Miiller and Guido (2017).

ML models can be grouped in different categories, correlated according to their learning
algorithms. Classical models, such as K-Nearest Neighbors (KNN) and Decision Trees (DTs),
are widely used and extensively studied over the last decades. In addition, ensemble algorithms
combine multiple classical models to create more powerful and complex models. The most
common and effective ensemble models derive from multiple DTs, like Random Forest (RF)
and AdaBoost. Finally, Neural Networks (NN) models create probability-weighted associations

based on the mechanics of the human brain. Their structure is usually customized to specific

28

applications (MiLLER; GUIDO, 2017).

2.2.1 Model evaluation and optimization

A good model generalizes to new data. As illustrated in Figure 4b, the model needs not
to perfectly fit the training dataset, but to make accurate predictions of data unobserved during
training. Therefore, to estimate the performance with only training data, evaluation strategies
usually partition the training dataset into two sets: train, used for training; and test, used for
evaluating performance (MiLLER; GUIDO, 2017).

However, there are more robust and commonly accepted strategies for assessing the model
performance, such as the statistical method of cross-validation. For instance, k-fold, one of the
most commonly used algorithms, splits the training dataset into k parts of equal size — usually
between five to ten. Then, the algorithm evaluates the model with the & folds, achieving a better
representation of the model’s performance. Figure 5 shows a visual representation of a five-fold
for model evaluation (MiiLLER; GUIDO, 2017).

Figure 5: Five-fold cross validation

seiit 1 A 7 . 7 A AL 7. |
e Seit2F7 777 7 77 7 | Al gl] .
] P71 Training data
& soieag 2 W 777777777 X, i 7 g Test duts
5 spit4 A A7 PRy /.
Split 5 |7 A7 A |9 N 77777777 A

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Data points

Source: Miiller and Guido (2017).

Model performance varies according to the application since each application has different
priorities. In a binary classification problem, the predicted output can be True Positive (TP),
True Negative (TN), False Positive (FP), or False Negative (FN). While some applications may
prioritize detecting positive instances and ignoring false instances, others may prioritize avoid-
ing false instances and catching remaining positive instances. Thus, the existing literature de-
veloped different metrics for evaluating ML models. Table 1 presents some of the most common
metrics for classification problems — where every metric ranges between 0 and 1.

In addition to the metrics in Table 1, ML classification models can be better evaluated and
optimized by analyzing probability curves. For instance, when a ML model predicts the output
of a binary classification problem, the assigned value corresponds to the probability for belong-
ing to the positive class — ranging between 0 and 1. ML models default to defining a probability
threshold of 0.5, classifying any probability higher than the threshold as positive. Nonethe-
less, the ML model can be optimized by varying the probability threshold, achieving favorable
results (BROWNLEE, 2021).

One method for estimating the ML model capability is calculating the Area Under the Curve
(AUC) score of probability curves — such as Receiver Operating Characteristic (ROC) and

29

Table 1: Basic Machine Learning performance metrics for classification problems

Metric Definition Description
A TP+ TN C t dicti t M th
ccuracy acc = orrect prediction rate. Measures the pro-
TP+TN+FP+FN portion of correct predictions in all instances.
TP
Recall rec = —m———— True positive rate. Measures the propor-
TP+ FN . e .
tion of positive instances actually assigned as
positive. Also called sensitivity.
TN
Specificity spe = ————— True negative rate. Measures the propor-
TN + FP . o .
tion of negative instances actually assigned
as negative. Complements recall.
.. TP . . .
Precision pre = TP FP Measures the proportion of assigned positive

instances that are truly positive.

G-Mean gm = \/rec- spe Geometric mean. Measures the relative bal-
ance between the performances of both pos-
itive and negative classes.

(14 «)-rec-pre

F-Measure fm= Weighted harmonic mean of precision and

sensitivity for any weighting factor o« >

0,a € R. Also called F1-score.

IBA iba =[1+ a - (rec — spe)] - M Index of Balanced Accuracy. Measures a
metric M favoring the positive class by a

weighting factor « > 0, € R.

o - pre—+rec

Source: Created by the author.

Precision-Recall (PR). ROC and PR curves explore the trade-off between correctly classified
positive instances and misclassified negative instances for different probability thresholds (HE;
MA, 2013). Figure 6 illustrates the effect of changes in the probability threshold for precision
and recall. Additionally, Figure 7 shows PR curves of classifiers by varying the threshold.

The curves in Figure 7 demonstrate that the classifier C1 has a smaller AUC than C2. Con-
sequently, the latter has better capabilities for classification, enabling optimal combinations of
PR - according to the application’s priorities. This resource is particularly useful for imbal-
anced data applications, where the ML model needs sensitivity to the minority classes without
overfitting (HE; MA, 2013).

Finally, in addition to the probability threshold, every ML algorithm has different parameters
for learning. For instance, Support Vector Machine (SVM) has a kernel function, a kernel band-
width (gamma), and a regularization parameter (C). The literature presents different methods
for optimizing these parameters, ranging from exhaustive search to heuristic strategies. Grid
search, the most commonly used, tests a predefined set of parameters to find the best overall
performance (MiLLER; GUIDO, 2017). Figure 8 shows results from a grid search for a SVM

model with cross-validation.

30
Figure 6: Probability threshold optimization visual representation

Classification

Threshold
: . TP 9
©000000000000000000000000000000 Precision = 7555 = 933 ~ 07
TNTININTNTINTNTNTNTNTNININTNTNTNFN INFNFP TP FP TP FP TP TP TP TP TP TP TP
. TP 9
Recall = ———— = —— =0.82
o LS T TPYFN T 942
| Precision — _ TP _ 8 _
©00000000000000000000000000000 TeCsion = T FpP T 812 =08
ITN]N]NTNTNTNWINTNTNWWTNTNWFNTNFNT\IFN:FP TP FP TP TP TP TP TP TP TPI TP 8
Recal = ———— = —— =0.73
o LS T TPYFN T 8+3
: TP 7
: Precision = ———— = —— =0.88
©00000000000000000000000000000 TP+FP 7+1
TINTNINTNTINTNTNTNTNTNTNIN TN TN TNFN TNFN TNFN TN FN|FP TP TP TP TP TP TP TP
l ; | TP 7
| Recall = 0.64

TP+FN 7+4
0.0 Output of model 1.0 * *

Source: Adapted from Google (2020).

Figure 7: Precision-Recall curves

1.00 -

C2
0.95

0.90

0.85 -
C1

Precision

0.80 -

0.75

0.70 -

0.65
I 1 1 | 1

0.6 0.7 0.8 0.9 1.0
Recall

Source: Adapted from He and Ma (2013).

2.2.2 Pipelines

The essential benefit of ML comes from the automation of real-life tasks. When new training
data becomes available in an application, a workflow should automatically trigger the execution
of processes, such as data validation, model training and deployment. Hence, current auto-
mated applications develop ML pipelines — responsible for maintaining ML models, recording
historical model changes, and standardizing configurations (HAPKE; NELSON, 2020).

A pipeline is a recurring cycle. Computationally, a pipeline executes in a feedback loop,

Figure 8: Grid search results for SVM with cross-validation

31

0 1 p) 3 38 39 40 M
param_(0.001 0.001 0.001 0.001 0.1 1 10 100
param_gamma 0.001 0.01 0.1 1 NaN NaN NaN NaN
param_kernel rbf rbf rbf rbf linear linear linear linear
mean_test_score 0.37 0.37 0.37 0.37 0.95 0.97 0.96 0.96
rank_test_score 27 27 27 27 1 1 3 3
split0_test_score 0.38 0.38 0.38 0.38 0.96 1 0.96 0.96
split1_test_score 0.35 0.35 0.35 0.35 0.91 0.96 1 1
split2_test_score 0.36 0.36 0.36 0.36 1 1 1 1
split3_test_score 0.36 0.36 0.36 0.36 0.91 0.95 0.91 0.91
split4_test_score 0.38 0.38 0.38 0.38 0.95 0.95 0.95 0.95
std_test_score 0.011 0.011 0.01 0.011 0.033 0.022 0.034 0.034

Source: Adapted from Miiller and Guido (2017).

continuously creating triggers to run specific processes. A basic model cycle starts collecting,
validating and preprocessing data for training. Then, the pipeline optimizes and validates the
model for deployment. Finally, the model stays constantly analyzed to start a new cycle when
the performance from the previous training data does not represent the current instance space,
reducing the model’s performance (HAPKE; NELSON, 2020). Figure 9 illustrates this cycle.

Figure 9: Basic automated Machine Learning pipeline

(===
-

Model
training

Data
validation

Data
preprocessing

Data ingestion/
versioning

A

Model
validation

Model
deployment

Model
feedback

Model
analysis

88 - -

Source: Hapke and Nelson (2020).

.

Namely, the engineering design of a ML application has to break down the stages of the
pipeline into manageable tasks — a ML life cycle MCMAHON, 2021).

2.3 Final considerations

This chapter provided essential information for understanding imbalanced data, resulting
issues, and how to solve them with sampling techniques. Additionally, the second section de-
tailed supervised ML, how to evaluate and optimize models, and the foundation for developing

automated ML systems.

32

33

3 RELATED WORKS

This chapter presents two studies on published papers applying ML through imbalanced
data. Section 3.1 presents a systematic mapping of sampling techniques for ML applications
with imbalanced data, analyzing both techniques and ML models. In addition, Section 3.2
shows two reviews of supervised ML software architectures — dividing into ones focused on
imbalanced data and others for general applications. Finally, Section 3.3 discusses key aspects
from these studies, highlighting research gaps and relevant features for the architecture proposed
in Chapter 4.

3.1 Imbalanced data preprocessing for Machine Learning

This study, published in the journal “Knowledge And Information Systems” (VARGAS
et al., 2022), has the main objective of reviewing papers solving ML in imbalanced data appli-
cations through data level preprocessing techniques. Additionally, this work details the analyzed
works’ domain areas and solutions — specifying current and effective sampling techniques and
ML models, thus serving as a basis for future works. Structured as a systematic mapping study,
the search process found 9,927 papers through seven digital libraries. From these, an eight-step
filtering process selected 35 papers for analyses and discussions.

The section is organized as follows: Section 3.1.1 describes related literature reviews and
this study’s contribution; Section 3.1.2 details the materials and methods used in this literature
review; Section 3.1.3 answers research questions, discusses results, and presents taxonomies
and illustrations of the findings; and, finally, Section 3.1.4 provides conclusions and lessons

learned from the study.
3.1.1 Related works

The research method described in Section 3.1.2 yielded 5 reviews and surveys address-
ing techniques for dealing with the imbalance problem generally (KAUR; PANNU; MALHI,
2019; FELIX; LEE, 2019; SPELMEN; PORKODI, 2018; SUSAN; KUMAR, 2020; SHA-
KEEL; SABHITHA; SHARMA, 2017). Additionally, 19 reviews analyzed solutions limited to
specific applications (JOHNSON; KHOSHGOFTAAR, 2019; LI; MAO, 2014; BUDA; MAKI,;
MAZUROWSKI, 2018; BHATORE; MOHAN; REDDY, 2020; SIRSAT; FERME; CAMARA,
2020; THANOUN; YASEEN, 2020; CHUGH; KUMAR; SINGH, 2021; ISHTIAQ et al., 2020;
HU et al., 2018; BENHAR; IDRI; FERNANDEZ-ALEMAN, 2020; IDRI et al., 2018; LEI
et al., 2020; ZHANG et al., 2021; AMARASINGHE; APONSO; KRISHNARAJAH, 2018;
PRISCILLA; PRABHA, 2019; LI; JING; ZHU, 2018; PANDEY; MISHRA; TRIPATHI, 2021;
MALHOTRA, 2015; GUZELLA; CAMINHAS, 2009).

This section describes general and application-limited reviews in Sections 3.1.1.1 and 3.1.1.2,

34

respectively. Moreover, Section 3.1.1.3 details this study’s contribution.

3.1.1.1 General reviews and surveys

Kaur, Pannu and Malhi (2019) presented an in-depth literature review on the imbalanced
data challenges for ML. The paper extensively details solution methods in ML, exploring pre-
processing techniques, cost-sensitive learning, algorithm-centered and hybrid methods. The
authors structured and analyzed works through domain areas and corresponding applications.
Additionally, the authors described and compared ML algorithms applied to metrics obtained
in the selected studies.

Felix and Lee (2019) reviewed published studies on preprocessing techniques for general
ML applications. The work focuses on evaluating the quality of published papers, highlighting
the score per data-related issues and preprocessing techniques — hence directing future works.

Spelmen and Porkodi (2018) detailed solutions from papers handling imbalanced data on
both data and algorithmic levels — including hybrid models. The study describes the proposed
solution and results for each work through a discussion organized by solution methods.

Susan and Kumar (2020) surveyed studies on preprocessing techniques for ML applications.
The paper thoroughly describes sampling methods and how each analyzed work implemented
the proposed solutions. Finally, the survey also summarizes experimental procedures, details,
and reported results.

Shakeel, Sabhitha and Sharma (2017) reviewed works on preprocessing techniques for ML
binary and multiclass classification. The authors briefly described classification algorithms,
preprocessing, and ensemble methods.

Furthermore, the reviewed papers (KAUR; PANNU; MALHI, 2019; FELIX; LEE, 2019;
SPELMEN; PORKODI, 2018; SUSAN; KUMAR, 2020; SHAKEEL; SABHITHA; SHARMA,
2017) discuss strengths, weaknesses, applications, and opportunities for future works. Table 2
outlines relevant topics of these papers: reference, data level preprocessing as the only solution
method, ML-only applications, Quality Assessment (QA), and primary focus. The topic is
classified as partially when the study covers balancing solutions different than sampling for

preprocessing — such as cost-sensitive and ensemble learning, or applications without ML.

Table 2: Details of topics from related works

Work Preproc. ML QA Primary focus

Kaur, Pannu and Malhi (2019) Part. Yes No Applications and results

Felix and Lee (2019) Yes Part. Yes Quality assessment

Spelmen and Porkodi (2018) Part. Part. No Solution description

Susan and Kumar (2020) Yes Yes No Solution description and results

Shakeel, Sabhitha and Sharma (2017) Part. Yes No Classification applications
Source: Created by the author.

35

3.1.1.2 Application-focused reviews and surveys

The research method also found 19 reviews addressing solutions for specific imbalanced
data and ML applications. These papers explore: classification algorithms (JOHNSON; KHOSH-
GOFTAAR, 2019; LI; MAO, 2014; BUDA; MAKI; MAZUROWSKI, 2018), credit risk evalua-
tion (BHATORE; MOHAN; REDDY, 2020), disease diagnosis (SIRSAT; FERME; CAMARA,
2020; THANOUN; YASEEN, 2020; CHUGH; KUMAR; SINGH, 2021; ISHTIAQ et al., 2020;
HU et al., 2018; BENHAR; IDRI; FERNANDEZ-ALEMAN, 2020; IDRI et al., 2018), fault di-
agnosis (LEI et al., 2020; ZHANG et al., 2021), transaction fraud detection (AMARASINGHE,;
APONSO; KRISHNARAJAH, 2018; PRISCILLA; PRABHA, 2019), software defect predic-
tion (LI; JING; ZHU, 2018; PANDEY; MISHRA; TRIPATHI, 2021; MALHOTRA, 2015), and
spam filtering (GUZELLA; CAMINHAS, 2009). Furthermore, some of these papers also limit
reviewed studies by the ML algorithms, covering only boosting (LI; MAO, 2014), Convolu-
tional Neural Networks (CNN) (BUDA; MAKI; MAZUROWSKI, 2018), and Deep Learning
(DL) JOHNSON; KHOSHGOFTAAR, 2019; HU et al., 2018).

3.1.1.3 Contribution

Although there is a large number of studies addressing imbalanced data through preprocess-
ing, Felix and Lee (2019) affirm that there is a lack of literature reviews in order to assert the

reliability of the proposed techniques.

Related works mainly focus on specific applications (JOHNSON; KHOSHGOFTAAR, 2019;
LI; MAO, 2014; BUDA; MAKI; MAZUROWSKI, 2018; BHATORE; MOHAN; REDDY, 2020;
SIRSAT; FERME; CAMARA, 2020; THANOUN; YASEEN, 2020; CHUGH; KUMAR; SINGH,
2021; ISHTIAQ et al., 2020; HU et al., 2018; BENHAR; IDRI; FERNANDEZ-ALEMAN,
2020; IDRI et al., 2018; LEI et al., 2020; ZHANG et al., 2021; AMARASINGHE; APONSO;
KRISHNARAJAH, 2018; PRISCILLA; PRABHA, 2019; LI; JING; ZHU, 2018; PANDEY;
MISHRA; TRIPATHI, 2021; MALHOTRA, 2015; GUZELLA; CAMINHAS, 2009). Addition-
ally, other works focus on describing the solutions proposed by the reviewed papers (KAUR;
PANNU; MALHI, 2019; SPELMEN; PORKODI, 2018; SUSAN; KUMAR, 2020; SHAKEEL;
SABHITHA; SHARMA, 2017), or assessing their quality (FELIX; LEE, 2019).

Conversely, this review aims to quantitatively detail sampling techniques and ML models in
imbalanced data applications. This approach centers on structuring and analyzing publication
data from different domains. In this sense, the study enables the creation of two taxonomies of
sampling techniques and ML models tested in the reviewed studies. Additionally, this analysis
may outline novel findings on performance and correlation with domain areas.

The quantitative analysis evaluates the reliability of sampling techniques and ML models
through the number and relative performance by comparing the ratio between selected and

tested methods in the reviewed studies. Moreover, this study searches for simulation-based

36

solutions as support for future implementations.

Expanding related reviews from Table 2, this study covers both preprocessing and ML, as-
sessing the studies’ quality through answers for the Research Questions (RQs). Finally, the pub-
lication date gap may also contribute by including more recent studies. Related works covered
their most recent papers from 2017 (SPELMEN; PORKODI, 2018; SHAKEEL; SABHITHA;
SHARMA, 2017), 2018 (KAUR; PANNU; MALHI, 2019; FELIX; LEE, 2019), and 2020 (SU-
SAN; KUMAR, 2020).

3.1.2 Research method

This work applied a systematic mapping methodology for conducting an evidence-based
literature review of research publications addressing preprocessing techniques for imbalanced
data in ML applications. Generally used to identify, aggregate, and classify studies on the
research topic, the methodology aims to be unbiased and replicable (KITCHENHAM et al.,
2010; COOPER, 2016).

Oriented by the guidelines proposed by Petersen, Vakkalanka and Kuzniarz (2015), this sys-
tematic mapping defined the following procedures: (1) Research Questions; (2) Search strategy;

(3) Papers filtering; and (4) Quality Assessment.

3.1.2.1 Research Questions

Accurate RQs are the key to finding a good sample of articles on a domain area (De Almeida
et al., 2020). Hence, a preliminary research and analyses of the resulting articles defined this
study’s questions. These questions guided the discovery and characterization of studies apply-
ing sampling techniques for improving ML applications with imbalanced datasets.

This study divided RQs into three sets, shown in Table 3:

e General Question (GQ): it states the main research focus;

» Focused Questions (FQs): these five questions detail existing solutions in order to struc-

ture models, identify patterns, limitations, and gaps for future research;

e Statistical Questions (SQs): these two questions comprise bibliography information for

chronological analysis and QA.

3.1.2.2 Search strategy

The study defined three steps for the search strategy: (1) specify search string; (2) select
databases; and (3) collect results. The first step identified the major terms and their most relevant
synonyms — based on preliminary research and related works. Subsequently, the search string
merged the major terms with their synonyms with Boolean operators. Table 4 presents the

specified string.

37

Table 3: Research Questions

RQ# Description

GQ1 How have preprocessing techniques been used to optimize Machine Learning from
imbalanced datasets?

FQ1 What are the domain areas of Machine Learning applications with imbalanced
datasets?

FQ2 Which preprocessing techniques are used to balance imbalanced datasets for Machine
Learning training?

FQ3 Are there any studies that use simulation data for preprocessing imbalanced datasets?

FQ4 Which Machine Learning models are used in imbalanced data applications?

FQ5 Which development tools are used for implementing the proposed solutions? (pro-
gramming language, package, or software)

FQ6 Are there any correlations between domain areas and preprocessing techniques or
Machine Learning models?

SQ1 How has the quantity of studies evolved? (publications per year)

SQ2 Where have the studies been published? (type of venue and digital library)

Source: Created by the author.

The preliminary research found other combinations of search terms yielding numerous re-
sults — such as “filtering” for “preprocessing”, and “class imbalance” for “imbalanced data”.
However, these synonyms created negative effects. For instance, “filtering” resulted in too many
irrelevant signal noise reduction works, and “class imbalance” biased results towards general

classification problems.

Table 4: Search string

Major term Search terms

Imbalanced data ((*“imbalanced data” OR ‘““imbalanced dataset” OR “imbalanced data
set” OR “unbalanced data” OR “unbalanced dataset” OR “unbalanced
data set”)
AND

Preprocessing (preprocessing OR pre-processing OR preparation)
AND

Machine Learning (“machine learning” OR “deep learning” OR “artificial intelligence’))

Source: Created by the author.

Secondly, the search strategy encompassed seven digital libraries: Association for Comput-
ing Machinery (ACM), IEEE Xplore, Institution of Engineering and Technology (IET), Science
Direct, Scopus, Springer Link, and Wiley. The selection of these libraries prioritized well-
known research sources with multidisciplinary fields, which is essential to finding applications
in various areas of knowledge — as suggested by Silva and Braga (2020).

Finally, in addition to the search string as the search query, the research applied filters for
language and type of venue according to the filtering process — when available in the digital

library.

38

3.1.2.3 Papers filtering

The collected papers went through a filtering process, removing studies unrelated to sam-
pling techniques for ML applications. The following Exclusion Criteria (EC) supported the
filtering process:

* ECI: the study is not written in English;

* EC2: the study venue is neither conference nor journal;

e EC3: the study matches the keywords defined in the search string, but the context is
different from the research purposes;

* EC4: the study is a literature review (Section 3.1.1);

e EC5: the study is not accessible in full-text;

* EC6: the study is a short paper (4 pages or less);

» EC7: the solution focuses on algorithmic level techniques for imbalanced data;

* ECS8: the study does not detail the sampling techniques or ML models implemented in
the solution — answering FQ2 and FQ4;

* EC9: the study validates the proposed solution through datasets from multiple applica-

tions.

Papers filtering started at the initial search from each digital library, removing results com-
plying with EC1 and EC2. This process did not have any date restraint, therefore collecting all
results published in conferences or journals, and written in English. Then, one filter by title and
one filter by abstract extracted studies meeting EC3 and EC4. After that, a combination of the

remaining papers removed repeated works.

Subsequently, the original papers went through a filter based on the three-pass method (Ke-
shav S., 2007), excluding papers complying with EC5, EC6, and EC7. Finally, a careful full-text
read selected the most representative works for the research purposes. The final step rejected

algorithmic level solutions, low-quality papers, and papers without a single predetermined ap-
plication — meeting EC7, EC8, or EC9.

3.1.2.4 Quality Assessment

Following the scoring system proposed by Kitchenham et al. (2010), this study evaluates
the selected papers’ quality applying FQs 1 to 5 — since they inherently structure the research.
Table 5 presents the QA scores, attributing better values for more satisfactory answers through a
classification between Yes (Y), Partially (P), and No (N). Additionally, this study also presents

the H-Index, year of publication, and type of venue of each paper.

Table 5: Quality scores for the answers of Research Questions

Answer Score Criterion

Y 1.0 The paper entirely answers the question
P 0.5 The paper partially answers the question
N 0.0 The paper does not address the topic

Source: Created by the author.

3.1.3 Results

39

The collection of results in all seven digital libraries integrated 9,927 studies. After an

eight-step filtering process, the selection of the representative works resulted in the 35 papers

indicated in the QA (Table 6). Figure 10 details the filtering process.

Figure 10: Filtering process

Initial Language Filter by title Filter by . Duplicate Filter by three- Filter by full- Representative
search and venue (EC3, EC4) abstract Combination removal step read (EC5, | text read (EC7, works selection
) (EC1, EC2) ’ (EC3, EC4) EC6, EC7) EC8, EC9) o
1.86% 86.11% 80.63%
ACM filtered filtered filtered
1,401 1,375 191 37
1.11% 24.72% 43.28%
IEEE ﬁl[crc; ﬂltcrcdo ﬂhercdo
Xplore 90 89 67 38
10.67% 79.10% 50.00%
IET filtered filtered filtered
75 67 14 7
: 5.70% 92.36% 78.09% 7.84% 66.67% 64.29%
Science ﬁl[crcci) ﬂltcrcdo ﬂhercdo L filtered filtered filtered 35
Direct C
4,495 4,239 324 71 319 294 98
8.96% 54.64% 30.12%
Scopus filtered filtered filtered
201 183 83 58
S 10.96% 83.08% 82.88%
DLIESY filtered filtered filtered
Link 3.139 2,795 473 81
12.55% 76.74% 74.77%
Wlley filtered filtered filtered
526 460 107 27
7.24% 86.33% 74.66%
Total filtered filtered filtered
9,927 9,208 1,259 319

Source: Created by the author.

The selected studies completely answer FQs 1 to 4, so Table 6 merges their quality score in

the column FQ1-FQ4. The only majorly unanswered question details development tools (FQ5).

Therefore, all works have their QA between 4 and 5. This result indicates good quality papers

— detailing application, sampling techniques, and ML models.

40

Table 6: Quality Assessment

ID Work Venue FQ1-FQ4 FQ5 QA H-Index
1 Wang and Ye (2020) Journal 1.0 00 4.0 110
2 Liu, Ma and Cheng (2020) Journal 1.0 00 4.0 127
3 Tra, Duong and Kim (2019) Journal 1.0 00 4.0 119
4 Shamsudin et al. (2020) Conference 1.0 00 4.0 20
5 Haldar et al. (2019) Conference 1.0 00 4.0 -
6 Lee and Kim (2020) Journal 1.0 1.0 5.0 68
7 Gici¢ and Subasi (2018) Journal 1.0 00 4.0 38
8 Yanetal. (2016) Journal 1.0 1.0 5.0 180
9 Tashkandi and Wiese (2019) Conference 1.0 1.0 5.0 -
10 Vuetal. (2016) Conference 1.0 00 4.0 -
11 Purnami and Trapsilasiwi (2017) Conference 1.0 00 4.0 -
12 Chang, Lin and Liu (2019) Conference 1.0 00 4.0 -
13 Dewi et al. (2020) Conference 1.0 00 4.0 -
14 Zhou et al. (2020) Conference 1.0 05 45 -
15 Zhang et al. (2019) Journal 1.0 0.0 40 71
16 Rustam et al. (2019) Journal 1.0 0.0 4.0 22
17 Santos et al. (2015) Journal 1.0 05 45 103
18 Smiti and Soui (2020) Journal 1.0 05 45 66
19 Mahadevan and Arock (2021) Journal 1.0 05 45 70
20 Malhotra and Lata (2020) Journal 1.0 1.0 5.0 43
21 Faris et al. (2020) Journal 1.0 0.0 4.0 18
22 Han et al. (2019) Journal 1.0 05 45 44
23 Marqués, Garcia and Sanchez (2013) Journal 1.0 00 4.0 108
24 Maetal. (2019) Journal 1.0 0.0 4.0 52
25 Gangwar and Ravi (2019) Conference 1.0 1.0 50 -
26 Jiang and Li (2021) Journal 1.0 1.0 5.0 130
27 Malhotra and Kamal (2019) Journal 1.0 1.0 5.0 143
28 Cohen et al. (2006) Journal 1.0 00 4.0 87
29 Filho et al. (2019) Conference 1.0 05 45 76
30 Liuetal. (2017) Journal 1.0 05 45 92
31 Yan et al. (2020) Journal 1.0 0.0 4.0 184
32 Jiang et al. (2019) Journal 1.0 0.0 4.0 4
33 Pereira et al. (2020) Journal 1.0 0.0 4.0 102
34 Zhou (2013) Journal 1.0 1.0 5.0 121
35 Nnamoko and Korkontzelos (2020) Journal 1.0 00 4.0 87

Source: Created by the author.

3.1.3.1 GQI: How have preprocessing techniques been used to optimize Machine Learning

from imbalanced datasets?

Data preparation is fundamental for ML. Hence, several preprocessing techniques can be
applied to improve the learning process in applications with imbalanced datasets.
Cohen et al. (2006) published the first study filtered in the search process. The authors

proposed the use of two clustering techniques in a hybrid model: Agglomerative Hierarchi-

41

cal Clustering (AHC)-based oversampling and K-Means-based undersampling. Tested against
Random UnderSampling (RUS) and Random OverSampling (ROS), the hybrid model achieved
the most effective results with five different ML models — improving hospital-acquired (noso-
comial) infection prediction.

Lee and Kim (2020) also compared RUS, ROS, and a hybrid approach (RUS+ROS) with
different sampling probabilities for DL-based toxicity classification in nuclear receptor com-
pounds. The hybrid model enhanced specificity and sensitivity without compromising accuracy
for two models — SCFP and FP2VEC.

Other works also create hybrid models combining RUS and oversampling through synthetic
sample generation. Mahadevan and Arock (2021) advanced ensemble learning by using RUS
and Synthetic Minority Oversampling TEchnique (SMOTE). The system achieved the best re-
sults for review rating prediction in e-commerce — compared to other models. RUS+SMOTE

avoided induced bias and loss of useful information.

Complementary hybrid models applied clustering techniques for undersampling with syn-
thetic oversampling. Rustam et al. (2019) applied Edited Nearest Neighbour (ENN) and SMOTE
for improving the performance of cerebral infarction detection in hospital patients through
SVM. The experimental results show that the performance of SVM classifiers is improved
by using these techniques — which produce better accuracy as a hybrid algorithm rather than
individually.

Similarly, Chang, Lin and Liu (2019) implemented hybrid sampling with ENN and ADAp-
tive SYNthetic sampling (ADASYN) for enhancing the sensitivity of fraud identification in
telephones through Stacked-SVM. Han et al. (2019) developed a credit scoring solution pre-
processed by a Gaussian Mixture Model (GMM)-based majority undersampling and SMOTE.
Based on tested ML metrics with both Logistic Regression (LR) and Decision Trees (DT), the
authors assessed that the proposed algorithm generally performs better than eleven standard
sampling algorithms.

Marqués, Garcia and Sanchez (2013) also proposed credit scoring solutions by testing eight
undersampling and oversampling techniques with LR and SVM. The authors concluded that
oversampling generally outperforms undersampling for both ML models. Following a con-
gruent path, Pereira et al. (2020) compared eight well-known sampling techniques in order to
identify COVID-19 from a record of chest X-Ray images. The most effective combination
results from ENN with a Multi-Layer Perceptron (MLP) model.

Vu et al. (2016) tested different techniques for encrypted network traffic identification. The
study shows that ConDensed Nearest Neighbour (CDNN) and SVM-based SMOTE (SVM-
SMOTE) performed the best as undersampling and oversampling techniques, respectively. How-
ever, both techniques proved to be slow compared to simpler algorithms, such as RUS, ROS,
and SMOTE. Correspondingly, Shamsudin et al. (2020) also achieved one of the highest pre-
cision and recall with a hybrid model between SVM-SMOTE and RUS - for credit card fraud
detection with Random Forest (RF).

42

Haldar et al. (2019) addressed epilepsy detection by applying the hybrid sampling technique
Selective Preprocessing of Imbalanced Data, also known as SPIDER, with three different ML
models. The results showed that SPIDER with the K-Nearest Neighbours (KNN) classifier
achieved the best performance.

Malhotra published two studies on software source code problems (MALHOTRA; KA-
MAL, 2019; MALHOTRA; LATA, 2020). The first, with Kamal, implements a modified
version of the SPIDER?2 algorithm, called SPIDER3. The proposed solution for software de-
fect prediction performed better than SPIDER?2 and the original SPIDER. However, ADASYN
achieved the best average results in combination with five ML models MALHOTRA; KAMAL,
2019)

In addition, Malhotra and Lata (2020) performed an empirical study for selecting the best
well-known sampling techniques and ML models for software maintainability prediction. After
conducting tests with fourteen techniques and eight models, the authors found that Safe Level
SMOTE (SL-SMOTE) significantly outperformed other techniques. The study also achieved
relevant results with hybrid sampling between ENN and SMOTE, as well as Tomek Links (TL)
and SMOTE.

Ma et al. (2019) improved SL-SMOTE through an evolutionary optimization process for the
algorithm’s parametrization. The solution, named Evolutionary SL-SMOTE (ESL-SMOTE),
achieved the highest metrics for seminal quality prediction with AdaBoost against related works.
Additionally, the results indicate that the preprocessing technique achieves good recall for other
models — such as Back Propagation Neural Networks (BPNN) and SVM.

Five works applied only SMOTE for improving ML and retaining superior overall results
(YAN et al., 2016; PURNAMI; TRAPSILASIWI, 2017; DEWI et al., 2020; ZHANG et al.,
2019; GICIC; SUBASI, 2018). Yan et al. (2016) achieved good results for lung cancer recur-
rence prediction with Gaussian Radial Basis Function Network (GRBFN). Moreover, Purnami
and Trapsilasiwi (2017) advanced breast cancer malignancy classification from biopsy records
through Least Squares SVM (LS-SVM).

Another two SMOTE-focused studies used SMOTE in biology applications. Dewi et al.
(2020) improved stability of patchouli (flowering plants) classification with Extreme Learning
Machine (ELM). Additionally, Zhang et al. (2019) achieved higher accuracy for Protein-Protein
Interactions (PPI) hot spots identification than related works through SMOTE and RF.

Gici¢ and Subasi (2018) applied SMOTE in order to improve credit scoring for micro-
enterprises of the minority class (poor). After preprocessing at 100% and 200% of the minority
sample and testing with fifteen classical and ensemble ML models, the authors concluded that
the minority classification improved significantly and retained superior results overall.

Tra, Duong and Kim (2019) introduced a solution for diagnosing fault symptoms in the
insulation oil of power transformers. The authors implemented an algorithm for improving
SMOTE by estimating a local reachability distance of the majority and minority samples with
two clusters. The Adaptive SMOTE (ASMOTE) algorithm achieved a higher classification

43

accuracy than ROS and SMOTE with the proposed MLP model.

Comparably, Jiang and Li (2021) improved fault detection in wind turbines by combin-
ing Dependent Wild Boostrap (DWB) with SMOTE (DWB-SMOTE). Since wind buffers have
multivariate time series of sensors from several subsystems, the proposed CNN model generated
better temporal-dependent synthetic samples and, consequently, better results.

Faris et al. (2020) tested various oversampling techniques and ML models in order to predict
companies’ financial bankruptcy through financial and non-financial records. After analyzing
the results, the authors concluded that SMOTE with AdaBoost achieved promising and reliable
predictions.

A modified version of SMOTE, called BorderLine SMOTE (BL-SMOTE), focuses on syn-
thetic sample generation at the boundary between classes. Smiti and Soui (2020) proposed this
technique for companies’ financial bankruptcy prediction through DL. Jiang et al. (2019) also
applied BL-SMOTE for heartbeat classification through electrocardiograms with CNN. Both
works achieved the best results with BL-SMOTE.

Santos et al. (2015) implemented a clustering-based oversampling approach through K-
Means++ and SMOTE for hepatocellular carcinoma survival prediction. ML with Artificial
Neural Networks (ANN) and LR presented significantly better results than without clustering
or oversampling. Alternatively, Tashkandi and Wiese (2019) applied K-means++ for under-
sampling. The results indicated an improvement in the prediction accuracy of mortality risk
prediction in Intensive Care Units (ICUs) through different classical and ensemble ML models.

Zhou et al. (2020) undersampled standard features for lower back pain early diagnosis
through K-Means clustering — testing both stratified sampling and Manhattan distance. In gen-
eral, these techniques improved the performance of all tested models for different k values.

Three papers proposed synthetic oversampling through a modern technique based on ML,
called Generative Adversarial Networks (GAN) (LIU; MA; CHENG, 2020; GANGWAR; RAVI,
2019; YAN et al., 2020). Liu, Ma and Cheng (2020) developed GAN for balancing individual
and fused sensor data of rotating machinery, such as bearing and gearbox. After learning with
a multi-class CNN, the proposed techniques showed effective results in a wide range of IRs.

In addition, Gangwar and Ravi (2019) applied GAN and Wasserstein GAN (WGAN) over-
sampling for a highly imbalanced dataset of credit card transactions. According to the authors,
the results against ROS, SMOTE, and ADASYN indicate that GAN-based methods control FP
spectacularly without affecting TP — which is essential for imbalanced data applications.

Yan et al. (2020) implemented a Conditional WGAN (CWGAN) framework for multi-class
air handling units’ fault detection. Combined with quality control of the synthetic samples, the
solution improved results from different ML classifiers — reaching an accuracy of almost 1 for
every model.

Data spatial distribution is important for optimized classification. Therefore, Wang and Ye
(2020) implemented a spatial distribution-based sample generation for balancing historical and

simulated power system stability data. The solution classifies distance intervals through KNN

44

and creates properly distributed synthetic data through SMOTE — which feeds a Deep Neural
Network (DNN) for evaluating transient stability.

Nnamoko and Korkontzelos (2020) also created an optimized version of SMOTE for en-
hancing diabetes prediction. The algorithm uses the InterQuartile Range (IQR) technique for
oversampling dispersed/extreme data before SMOTE, improving the training sample distribu-
tion. According to the authors, IQR+SMOTE consistently produced the best accuracy for dif-
ferent models and maintained the best overall metrics.

Liu et al. (2017) introduced a Fuzzy-based OverSampling (FOS) algorithm for balancing
tweets’ data in spam detection — optimizing the distribution in synthetic sampling. The method
improved precision for different ensemble learning models. However, ROS and RUS achieved
better accuracy.

Filho et al. (2019) studied automated essay scoring through ML regression and classifica-
tion for Brazil’s National High School Examination (ENEM). After testing SMOTE, ADASYN,
ROS, and RUS, the authors concluded that random sampling performs better because the em-
ployed vectorization for feature extraction has unusual spatial characteristics.

Lastly, Zhou (2013) tested different preprocessing techniques in order to enhance corporate
bankruptcy prediction through ML. The authors concluded that there is no significant differ-
ence between the results of oversampling and undersampling with large amounts of data — for
instance, in a dataset of USA companies from 1981 to 2009. However, the computational time
is better in undersampling. When there is not much data, SMOTE performs the best overall.
Additionally, GMM-based undersampling and RUS are better than Cluster Centroid (CC).

3.1.3.2 FQI: What are the domain areas of Machine Learning applications with imbalanced

datasets?

There are 5 central domain areas for 31 of the reviewed works: health, finance, engineering,
software, and biology. Additionally, 4 works are from other areas — classified as others. Table 7
summarizes the domain areas and corresponding applications.

Health is the most prevalent domain, accounting for 12 studies. These studies differ in
their application and type of classification. For instance, the 3 cancer-related works classify
breast cancer malignancy (PURNAMI; TRAPSILASIWI, 2017), predict hepatocellular carci-
noma survival (SANTOS et al., 2015), and predict lung cancer recurrence (YAN et al., 2016).

Nosocomial studies spread even more, proposing solutions for predicting risk of mortality
in ICUs (TASHKANDI; WIESE, 2019) and nosocomial infections (COHEN et al., 2006), clas-
sifying heartbeats (JIANG et al., 2019), detecting cerebral infarction (RUSTAM et al., 2019)
and COVID-19 (PEREIRA et al., 2020). Other health domain works introduce solutions such
as detection of epileptic seizure (HALDAR et al., 2019) and lower back pain (ZHOU et al.,
2020), as well as prediction of semen quality (MA et al., 2019) and diabetes (NNAMOKO;
KORKONTZELOS, 2020).

45

Table 7: Domain areas of reviewed applications

Domain Subdomain Application ID
Cancer Lung cancer recurrence 8
(8.6%) Breast cancer malignancy 11
Hepatocellular carcinoma survival 17
Risk of mortality in ICUs 9
Hospital Cerebral infarction 16
Health (14.3%) Nosocomial infections 28
(34.3%)) Heartbeats 32
COVID-19 33
Epileptic seizure 5
Others Lower back pain 14
(11.4%) Seminal fluids quality 24
Diabetes 35
. Companies bankruptcy 18, 21, 34
legagn ;S Credit cards fraud 4,25
) Credit risk 7,22,23
Power systems stability 1
. . Rotating machiner 2
Engineering - Fault Power t%ansformerz 3
(14.3%) (14.3%) Wind turbines 26
Air handling units 31
. Nuclear receptor compounds toxicity 6
2061;5}] Flowering plants species 13
' PPI hot spot 15
Software Source code ~ Maintainability 20
(8.6%) (5.7%) Defect 27
Others (2.9%) Network traffic data 10
Telephone fraud 12
Others E-commerce products rating 19
(11.4%) Essay score 29
Spam in tweets 30

Source: Created by the author.

Finance, on the other hand, deals with cost-effective correlated problems. Representing 8
works, they predict companies bankruptcy (SMITI; SOUI, 2020; FARIS et al., 2020; ZHOU,
2013), credit risk (GICIC; SUBASI, 2018; HAN et al., 2019; MARQUES; GARCIA; SANCHEZ,
2013), and credit card fraud (SHAMSUDIN et al., 2020; GANGWAR; RAVI, 2019).

Similarly, engineering studies propose solutions for fault diagnosis in different electrical and
mechanical engineering applications. Accounting for 5 works, the solutions improve stability
in power systems (WANG; YE, 2020), wind turbines (JIANG; LI, 2021), power transformers
(TRA; DUONG; KIM, 2019), rotating machinery (LIU; MA; CHENG, 2020), and air handling
units (YAN et al., 2020).

Furthermore, there are 3 papers related to software. These works improve ML for source
code maintainability (MALHOTRA; LATA, 2020) and defect prediction (MALHOTRA; KA-

46

MAL, 2019), as well as network traffic data classification (VU et al., 2016).

Biology also accounts for 3 studies. These studies introduce nuclear receptor compounds
toxicity prediction (LEE; KIM, 2020), flowering plants species (DEWI et al., 2020) and PPI hot
spot classification (ZHANG et al., 2019).

Finally, 4 papers from other areas deal with telephone fraud detection (CHANG; LIN; LIU,
2019), e-commerce rating prediction (MAHADEVAN; AROCK, 2021), essay score classifica-
tion (FILHO et al., 2019), and spam detection in tweets (LIU et al., 2017).

Dataset characteristics — such as features and IR — differ for each subdomain according to
its applications. The reviewed studies do not always explore these characteristics, difficulting a
comparative analysis. Specifically, some applications do not have enough data to infer the exact
IR. Therefore, 4 works overcame this problem and generalized their solution by manually test-
ing different IRs (WANG; YE, 2020; LIU; MA; CHENG, 2020; LEE; KIM, 2020; MARQUES;
GARCIA; SANCHEZ, 2013).

Moreover, every domain area has particularities in its applications, demanding special-
ized preprocessing procedures before sampling. For instance: time series data in engineering
(JTANG; LI, 2021; LIU; MA; CHENG, 2020; YAN et al., 2020; WANG:; YE, 2020) and health
(JTANG et al., 2019); image processing in health (PEREIRA et al., 2020; COHEN et al., 2006;
YAN et al., 2016) and biology (DEWI et al., 2020); text processing in other areas (MAHADE-
VAN; AROCK, 2021).

3.1.3.3 FQ2: Which preprocessing techniques are used to balance imbalanced datasets for

Machine Learning training?

The literature covers a wide variety of preprocessing techniques for ML applications with
specific characteristics and applications. This question focuses on sampling techniques for bal-
ancing datasets before ML training. Consequently, preprocessing techniques for other purposes,
such as feature extraction, image, and natural language processing are not answered in this sec-
tion.

Some of the reviewed studies propose a sampling technique and compare them with alter-
natives. Conversely, other reviews implement empirical analyses comparing several techniques
to discuss results and select the best one(s). Therefore, this systematic mapping classified the
techniques applied in each paper between proposed, compared and selected.

Figure 11 shows a taxonomy of all sampling techniques, either proposed or compared in
the reviewed papers — indicated by ID below the corresponding box. The taxonomy divides
these algorithms into three types: oversampling, undersampling, and hybrid sampling. Each
algorithm is distributed according to its parent technique or type.

Additionally, Figure 12a details the number of papers applying each technique in three
columns: proposed, compared, and selected. The figure presents the most used techniques

as darker, while less used as lighter — based on a grayscale. These techniques are grouped by

47

Figure 11: Taxonomy of sampling techniques proposed or compared in reviewed papers by ID

‘Wasserstein Agglomerative o 5 One Sided
. : Adaptive Synthetic ne Side
Conditional GAN (WGAN) Hierarchical L Selection (OSS
25 (ADASYI\I) 3 3(4) Repeated ENN

WGAN (CWGAN) 25 Clustering-based

31 {Deep Convolutional OS (AHC-0S)
Evoluti y SL-
SMOTE (ESL-SMOTE)

GAN (DCGAN) 28
24

26 Generative Adversarial
Networks (GAN)

5 15

24,25

Fuzzy-based OS (F-OS)

30

22,33

Edited Nearest
Neighbour (ENN)

Neighbourhood
Cleaning Rule
(NCR)

ConDensed Nearest
Neighbour (CDNN)

BorderLine Synthetic Minority

SMOTE Over Duplicate
BL-SMOTE TEchnique (SMOTE 33
(l 41820) SVM-based e) Preprocessing UnderSampling (US)

2,410 23,24,25,28,29, 30, 34 Random US (RUS) 20

[Y 3 15 L R~ . 22,23
SMOTE 4,5,7,8,10, 11, 13,15, 16, Random OS (ROS) Techniques
619 3 ques - ;
21263235 | (SVM-SMOTE) el % 14.6,10,19.20.21, Cas E“s"(‘g‘ﬁxl‘l"s‘;z"‘“"“

SMOTE for Nominal carest Neighbours-based Clustering-based
i Hybri lin; 4,6, 10, 19, 20, _
and Continuous data SMOTE (KNN-SMOTE) ybrid sampling ” ;& 503034 DBSCAN-US

(SMOTE-NC)

>
2

9
K-MeDoids US (KMD-US)

9

Affinity Propagation
US (AP-US)

22

Gaussian Mixture
Model US (GMM-US)

w
based Adaptive SMOTE [SMOTE + TL

(ASMOTE) 1,20

RUS + BL-SMOTE| [K-Means US (KM-US)
9,22,28
K-Means with Stratified
22 Random Sampling US
SMOTE + Wilson (KMSS-US)
Editing-based US

K-Means-based
SMOTE (KM-SMOTE)

InterQuartile Range
0S + SMOTE
(IQR-SMOTE)

SMOTE + ENN
1, 16,20

RUS + SMOTE

K-Means++-based SMOTE
(KMPP-SMOTE)

7

35 4. 1922 (SMOTE-WE-US) K-Means with
23 :
Density-Based Spatial Clusterin; : RUS +ROS = Distance 34
ty p g Dependent Wild " RUS * ADASYN ey

of Applications with Noise-based:

Bootstrap-based SMOTE

K-Means++ US
(KMPP-US)

L6
SMOTE (DBSCAN-SMOTE) (DWB-SMOTE) RUS + SVM-SMOTE 4 14
24 26 4 LEY 5+ A SPIDER3 9
AHC-0S + KM-US 12 57 Cluster Centroids (CC)
28 P

Selective Prep ing of — 22,34
Imbalanced Data (SPIDER) SI:I‘:)]::FZ

Legend: @—»(Sampling type)—)(Samplingsubtype)—)[Technique }—){ Derived tehcnique J

Applied papers IDs Applied papers IDs

Source: Created by the author.

their type and subtipes, following the taxonomy in Figure 11. The rightmost column indicates
the percentage ratio of selected to proposed and compared techniques (relative performance).

The distribution of techniques in Figure 12a shows a more significant interest in oversam-
pling and hybrid sampling for the proposed solutions. The studies frequently compare results
with standard oversampling and undersampling techniques — such as SMOTE, ADASYN, ROS,
and RUS. Namely, each has at least 10 implementations.

Techniques focused at the boundary between classes are also popular (BL-SMOTE, ENN,
and TL). Additionally, clustering-based algorithms are common in both oversampling and un-
dersampling. For instance, AHC, KM, and DBSCAN have implementations in both. Neverthe-
less, clustering is more frequent in undersampling due to the grouping behavior.

In addition, the distribution of selected methods indicates growth in hybrid sampling and
a decrease in oversampling and undersampling — relative to the proposed methods. Specifi-
cally, 13 of 35 papers tested hybrid sampling, out of which 9 (69.2%) were the best performing
sampling type (SHAMSUDIN et al., 2020; HALDAR et al., 2019; LEE; KIM, 2020; CHANG;
LIN; LIU, 2019; RUSTAM et al., 2019; MAHADEVAN; AROCK, 2021; HAN et al., 2019;
MARQUES; GARCIA; SANCHEZ, 2013; COHEN et al., 2006). In the remaining 4 papers,
hybrid sampling is outperformed by oversampling with KNN-SMOTE (WANG; YE, 2020), SL-
SMOTE (MALHOTRA; LATA, 2020), and ADASYN (MALHOTRA; KAMAL, 2019), and by
undersampling with ENN (PEREIRA et al., 2020).

However, oversampling remains the most selected sampling method, proportionally. Over-

all, synthetic sample generation techniques have the best performance, either individually or

48

in hybrid models. The selected methods are composed of modified SMOTE algorithms in 12
(34.3%), standard SMOTE in 10 (28.6%), ADASYN in 2 (5.7%), and AHC-OS in 1 (2.9%).
Finally, GAN-based oversampling performed as the best techniques in 3 out of 4 papers (75%)
— with GAN (LIU; MA; CHENG, 2020), WGAN (GANGWAR; RAVI, 2019), and CWGAN
(YAN et al., 2020).

Three works indicate the need for testing different sampling techniques (VU et al., 2016;
MALHOTRA; KAMAL, 2019; LIU et al., 2017). More specifically, 3 other works name the
need for testing GAN-based oversampling (WANG; YE, 2020; LEE; KIM, 2020; JIANG:; LI,
2021), since related studies achieved good results. Reviewed studies also support GAN-based
approaches in their conclusions. Liu, Ma and Cheng (2020) claim that GAN improves exper-
imental accuracy as the IR increases when compared to other sampling techniques. Gangwar
and Ravi (2019) assert that WGAN outperforms GAN due to having a better objective function,
as well as envision investigating different generator architectures for improving results even
more.

Concerning the importance of hybrid sampling, 2 studies affirm that this is the best sam-
pling type for improving the classification of imbalanced data (SHAMSUDIN et al., 2020;
MAHADEVAN; AROCK, 2021). According to both studies, undersampling alone causes loss
of information, while oversampling alone might cause induced bias or overfitting — especially
in highly imbalanced datasets.

3.1.3.4 FQ3: Are there any studies that use simulation data for preprocessing imbalanced

datasets?

There is only one study using simulation data — on power system stability (WANG; YE,
2020). However, the authors used simulated data for training and testing, not as preprocessing
support for real-world data tests.

Even so, some of the domain areas have potentially applicable simulators for synthetic
data generation. For instance, electrical and mechanical engineering have fault simulators, and
health has exam simulators to this end.

From the 35 studies, 28 (80%) selected solutions based on synthetic oversampling (SMOTE,
ADASYN, AHC-OS, and GAN). Thus, using simulation data in suitable domain areas can
represent a means for optimizing results and accelerating training time. This acceleration is

essential due to the high computational cost for synthetic data generation.

3.1.3.5 FQ4: Which Machine Learning models are used in imbalanced data applications?

Similar to preprocessing techniques, the studied works test a wide variety of ML models to
improve predictions. From the 35 works, 15 (42.9%) propose a specific model and compare it

against alternatives. Conversely, 20 works (57.1%) implement empirical analyses comparing

49

Figure 12: Quantitative analysis of the reviewed papers proposing, comparing, and selecting:
(a) sampling techniques; (b) Machine Learning models

SMOTE

ROS

ADASYN
BL-SMOTE
SL-SMOTE
SVM-SMOTE
GAN

ASMOTE
CWGAN
DWB-SMOTE
ESL-SMOTE
F-08
IQR+SMOTE
KMPP-SMOTE
KNN-SMOTE
WGAN
AHC-0S
DBSCAN-SMOTE
DCGAN
KM-SMOTE
SMOTE-NC
SMOTE+TL
RUS+SMOTE
SMOTE+ENN
SPIDER
RUS+ROS
SPIDER2
AHC-OS+KM-US
ENN+ADASYN
GMM-US+SMOTE
SPIDER3
RUS+ADASYN
RUS+BL-SMOTE
RUS+SVM-SMOTE
SMOTE+WE-US
RUS

ENN

KM-US

NCR

cc

CDNN

NM

0SS

TL

KMMD-US
KMPP-US
KMSS-US
AP-US

AIIKNN
CDNN-TL
CPM-US
DBSCAN-US
GMM-US
KMD-US

RENN

Hybrid sampling Oversampling

Undersampling

2

SO DO OO OO PP OO0 PP, PO R P00 O R, R PR R R FRFRAF,F~RFNOONO OO

No. of papers

4 6 8

10

12 14 16 18

| |

6
0
1
2
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
0
0
1
1
1
0
0
1
1
1
0
0
1
1
1
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0

— 26.1

— 7.70
—25.0
—25.0
— 333
— 50.0
— 100
— 100
— 100
— 100

— 100
— 100
— 100
— 100

— 333
— 333
— 333

— 100
— 100
— 100

— 100
— 100
— 100

— 333

— 50.0

— 100

Proposed Compared Selected Ratio [%]

(a)

Source: Created by the author.

Classical

Neural Networks

Ensemble

SVM

KNN

LR

C4.5

DT

NB
LS-SVM
RIPPER
AnDE

BN

Cs5.0

CART

CTC

IBI

IF

LASSO
LDA

REP

RT

MLP

CNN

ANN

LSTM
SSAE

ELM
FP2VEC
GRBFN
SCFP
SSAE+SF
SSDAE+LR
BPNN
IRBFN
RBFN

RF
AdaBoost
Bagging
RotationForest
Bagging+AdaBoost
Stacked-SVM
DECORATE
GBDT

GBT
MultiBoosting
Stacking
Vote

No. of papers

2 4 6 8 10 12 14 16 18
1 1 1

2 2 105
0 1 —09.10
0 0

1 7 1 — 12.5
0 7 0

1 5 0

1 0 1 — 100
1 0 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

1 7 2 —25.0
3 1 3 — 75.0
0 4 1 —25.0
0 2 0

0 2 0

1 0 1 — 100
1 0 0

1 0 1 — 100
1 0 0

1 0 1 — 100
1 0 1 — 100
0 1 0

0 1 0

0 1 0

> EEEm 2 182
0 Bl 2 —250
0 5 0

0 2 1 — 50.0
1 0 1 — 100
1 0 1 — 100
0 1 0

0 1 1 — 100
0 1 1 — 100
0 1 0

0 1 0

0 1 0

Proposed Compared Selected Ratio [%]

(b)

50

multiple ML models to discuss results and select the best one.

Hence, following the method applied to sampling techniques, this review proposes a taxon-
omy and a quantitative description of all ML models from the reviewed studies. The taxonomy
in Figure 13 allocates models by their category, dividing into classical, NN, and ensemble.
The figure also indicates the ID of papers applying each model below the corresponding box.
Moreover, Figure 12b details the number of papers for each ML model — grouping by the corre-
sponding category, classifying between proposed, compared, and selected, as well as showing
the relative performance.

Figure 13: Taxonomy of Machine Learning models proposed or compared in reviewed papers
by ID

Di E ble Creation b Back Propagation Gaussian RBFN
Bootstrap aggregation (e el B CReitm Neural Networks Radial Basis (GRBFN)

i Oppositional Relabeling of :
Baggin, PP g :
{Bogeing) Artificial Training Examples (BPNN) Function Network 3

(DECORATE) 24 (REER) Incremental RBEN
21 Multi-Layer 20 (IRBFN)

Bagging +
AdaBoost

19 Perceptron (MLP) Extreme Learning 20
Adaptive Boosting 3,5,7,20,21,26,31,33 Machine (ELM) Long Short-Term
AdaBoost : 13 Memory (LSTM
(Gradient Boosting 7(19.20.2 I) Artific _‘ ?7(6)
Decision Tree 24.27. 28 35 Networks (ANN) Deep Learning (DL) -
(GBDT) B 1,17,18,34 Convolutional Neural
9 Networks (CNN)
. Neural Networks Stacked Sparse 1.2.26.32
Gradient Boosted AutoEncoders (SSAE)
regression Trees Stacked Machine 1.26 —
(GBT) Generalization Lomine Stacked Sparse “a',‘“,ta“"el ‘."““:,re"
29 (Stacking) M = SSAE + Softmax B Activity Relationship
odels F ion (SSAE+SF Denoising (QSAR)
Random 7 S unction () AutoEncoder + LR
- Forest (RF) 18 (SSDAE+LR)
4,7,10, 14,15, 21, L 1
27,30,31,33,35 Logistic Molecular SMILES
Supp.ort Vector Regression (LR) Featurizer Convolution
Machine (SVM 9,12, 14,17, 19, (FP2VEC) | | FingerPrint
20,22,23,25,34 6 (SCFP)

1,3 16,
Least Square 23,24,25,26, 28,
7,20,21,27, SVM (LS-SVM) 30,31, 33,
28, 30, 34,35 1
Random Decision Trees (DT)
Trees (RT) 01418223133 Instance Based
21 D S s A o learner 1 (IB1) Bayesian
Networks (BN)

Classification and 28

Reduced Error
Pruning (REP)

21

Naive Linear
V¢ . ..
Discriminant
Bayesi(NB) Analysis (LDA)

Repeated
I 1

Pruning to Produce
Error Reduction

i 1,7,21, (RIPPER)
18 Regression Trees (CART) 27.28.35 34 "
10 Consolidated Trees K-Nearest -
Construction (CTC) | |Neighbors (KNN) [Averaged n-Dependence] Least 1l\bsolute Shrinkage and
Forest (IF) 7 1.3.5.7.9. 18, Estimators (AnDE) Selection Operator (LASSO)
12 20,21,30,31,33 7 29
Legend: @—)C Model category >—><Model subcategory)—)[Model }—)[Derived model]
Applied papers IDs Applied papers IDs

Source: Created by the author.

The distribution of models in Figure 12b indicates a substantial interest in classical super-
vised learning models for empirical studies — such as SVM, KNN, LR, DT, and NB. Even so,
most of the proposed ML models involve ANN and CNN optimally configured for the applica-
tion (LIU; MA; CHENG, 2020; TRA; DUONG; KIM, 2019; JIANG; LI, 2021; JIANG et al.,
2019). This is specially noticeable in works of singularly used models, such as SSDAE+LR
(WANG:; YE, 2020), SCFP and FP2VEC (LEE; KIM, 2020), GRBFN (YAN et al., 2016), ELM
(DEWI et al., 2020), and SSAE+SF (SMITI; SOUI, 2020).

Comparatively, 6 out of 7 studies (85.7%) testing both NN and classical models achieved
better performance with NN models (WANG; YE, 2020; TRA; DUONG; KIM, 2019; SANTOS
et al., 2015; SMITT; SOUI, 2020; JIANG; LI, 2021; PEREIRA et al., 2020). Additionally, 5

51

NN models achieved the best performance when not compared with classical models (LIU;
MA; CHENG, 2020; LEE; KIM, 2020; YAN et al., 2016; DEWI et al., 2020; JIANG et al.,
2019). Conversely, 4 classical models achieved the best performance when not tested against
NN models (PURNAMI; TRAPSILASIWI, 2017; RUSTAM et al., 2019; COHEN et al., 2006;
NNAMOKO; KORKONTZELOS, 2020) — besides the 1 out of 7 studies that did and performed
better (HALDAR et al., 2019).

Ultimately, ensemble models correspond to 9 (25.7%) of the best-performing out of 35
papers. The results in Figure 12b indicate that RF, AdaBoost, and Bagging are frequently
applied — even with preprocessed imbalanced data.

The superiority of NN and ensemble models is noticeable in the studies’ conclusions, men-
tioning the lack of these model categories as a limitation. Incidentally, 4 works expect to apply
NN models in future implementations (FILHO et al., 2019; YAN et al., 2020; JIANG et al.,
2019; PEREIRA et al., 2020). Additionally, 4 works want to apply ensemble models (SHAM-
SUDIN et al., 2020; FARIS et al., 2020; MALHOTRA; KAMAL, 2019; FILHO et al., 2019).

Finally, Jiang et al. (2019) argue the importance of evaluating the most meaningful metrics
for improving imbalanced datasets — since many studies only consider the system’s accuracy.
Different applications have different priorities. For instance, Haldar et al. (2019) focus on
improving the sensitivity of the minority class while sufficiently preserving the accuracy in
epileptic seizure detection (health). In applications such as disease detection, it is better to

guarantee all TPs (diagnoses) possible, even though this creates more FPs.

3.1.3.6 FQS5: Which development tools are used for implementing the proposed solutions?

Figure 14 shows the development tools applied for implementing the studies’ solutions.
The difficulty in answering this FQ is that most papers do not report any tools used for data
processing and ML. These papers account for 20 works (57.1%). The remaining 15 papers
report using at least one tool for data preprocessing, ML training, and testing. The completion
of this answer — such as programming language, package, and software — corresponds to the
QA score for FQ5 in Table 6.

The programming language Python is the most used tool, with ML models through the pack-
ages Scikit-learn (GANGWAR; RAVI, 2019; FILHO et al., 2019), Keras (JIANG; LI, 2021),
Tensorflow and Chainer (LEE; KIM, 2020). Additionally, text data applications use natural
language processing packages, such as SpaCy (MAHADEVAN; AROCK, 2021), NLPNET
and NLTK (FILHO et al., 2019). Other use cases implement sampling techniques through
Imbalanced-learn (GANGWAR; RAVI, 2019) and user-developed scripts (ZHOU et al., 2020;
HAN et al., 2019).

Another programming language applied in the studies is Matlab. Two studies employ the
language for implementing both preprocessing and ML models (SANTOS et al., 2015; SMITT;

SOUI, 2020). In contrast, 2 studies create a test system with Matlab in conjunction with standard

52

Figure 14: Development tools of reviewed applications

No. of papers Development tools

weo N
i

10
Weka+Matlab —
RapidMiner —n

DCRS+CKJV -
0 +Weka+KEEL
0.0 05 1.0 1 2 3 4 5 6 7

QA for FQ5 No. of papers

()]

Source: Created by the author.

ML models from the software Weka (MALHOTRA; KAMAL, 2019; ZHOU, 2013). Moreover,
other solutions use only Weka for all experiments — such as feature selection, sampling, ML
training, and testing (YAN et al., 2016; LIU; MA; CHENG, 2020).

Tashkandi and Wiese (2019) compared solutions with the software RapidMiner Studio —
combining preprocessing, modeling, training, and testing. Finally, Malhotra and Lata (2020)
created a testing system with the following tools: Data Collection and Reporting System (DCRS)
tool for data extraction through GIT repositories; Chidamber and Kemerer Java Metrics (CKJV)
tool for object-oriented metrics in Java source codes; Weka for outlier analysis through IQR;
Knowledge Extraction based on Evolutionary Learning (KEEL) tool for sampling techniques
and ML.

3.1.3.7 FQG6: Are there any correlations between domain areas and preprocessing techniques

or Machine Learning models?

Generally, the 5 central domain areas and others — segmented in Section 3.1.3.2 — applied
distinctive sampling techniques and ML models in their solutions. Figure 15 details the number
of sampling techniques and ML models selected by the authors of at least one paper within the
corresponding domain areas. Additionally, studies which did not select and clearly indicate at
least one best performing method for the application have not been accounted for — such as ML
models in software (Figure 15b).

Studies on health applied the most diverse methods, potentially due to the substantial pro-
portion of works (34.3%). This domain is the only one applying classical ML models. Addi-
tionally, health is the only domain selecting pure undersampling techniques — apart from one
study on software (VU et al., 2016).

Finance, the second most prevalent domain (22.9%), splits between using oversampling
and hybrid sampling techniques. However, for ML categories, 75% of the works indicate a

preference for ensemble models. In contrast, one work implements a specialized DL model

53

for bankruptcy prediction (SSDAE +SF) — although it does not compare results with ensemble
models (SMITTI; SOUI, 2020).

Engineering studies (14.3%) selected an unanimous combination of methods: oversampling
and NN models. This domain has all applications related to fault detection — generally suffering
from high IR and benefiting from oversampling techniques.

Similarly to engineering, biology studies (8.6%) also selected only oversampling — through
SMOTE. Additionally, two studies split ML between NN, with ELM, and ensemble, with RF.

Software studies did not select any best performing ML model. However, the three studies
(8.6%) achieved their best results through oversampling. One implementation, by Vu et al.
(2016), points similar performance between SMOTE-SVM and CDNN (undersampling) — in
less processing time with the latter. Finally, all studies in other areas (11.4%) indicate better

performance through hybrid sampling and ensemble models.

Figure 15: Quantitative analysis in different domain areas for the selection of: (a) sampling
techniques; (b) Machine Learning models

No. of selected in papers

0 0.5 1 1.5 2
' ' D e—
SMOTE 0 0 0 No. of selected in papers
BL-SMOTE 0 0 0 0 0 05 1 15 2
ADASYN 0 0 0 0 0 . .
ASMOTE 0 O JEEl 0 0 0]
o0 CWGAN 0 0 0o 0 0 — SVM o 0 0 0 0
= <
= DWB-SMOTE 0 0 0 0 0 2 C4.5 0 0 0 0 0
g ESL-SMOTE 0 0 0 0 0 E KNN 0 0 0 0 0
: I R+SM(3)ATI; 8 g g g : LSSVM o V0
g [] v CNN 0 0o 0 0
KMPP-SMOTE 0 0 0 0 0 Z e T 0 T 0 0 0
KNN-SMOTE 0 0 0 0 0 S [| | L
SLSMOTE 0 0 0 0 0 5 AR o0 0 0 0
SVYMSMOTE 0 0 0 0 0 Z ELM- 0 0 0 o 0
WGAN 0 0 0 0 0 g GRBFN 0 0 0 0 0
AHC-OS+KM-US 0 0 0 0 0 Z SSAE+SF 0 0 0 0 O
s ENNHADASYN'. 0 0 0 0 0 SSDAE+LR 0 0 0 0 0
= (;1\11\1-1!3»3.\1()’1‘; 0 0 0 0 0 AdaBoost 0 0 0 0
g RUS+BL-SMOTE 0 0 0 0 0 RE 0 0 0 0
= Rl:‘S\th)Tl: 0 0 0 0 0 = Bagging+AdaBoost 0 0 0 0 0
‘E RUS+SVM-SMOTE 0 0 0 0 0 = GBDT 1 0 0 0 0 0
& SMOTE+ENN 0 0 0 0 0 2 . L
SMOTE+WE-US 0 0 0 0 0 = GBT 0 0 0 0 0
&0 SPIDER 0 0 0 0 0 RotationForest 0 0 0 0 0
;_—E_ CDNN 0 0 0 0 0 Stacked-SVM 0 0 0 0 0
s ENN 0 0 0 0 0 c o @ s o
5 KMPP-US 0 0 0 0 0 s £ £ 2 § 2
£ = £ 8 3 & 3
- E 8 2 & g 5 I
=] £ 8= 5 g 2 2
O < 5 = 2 = g
T .g e 2 < &) &3]
=~ 5 2] 2
=
3]
(a) (b)

Source: Created by the author.

As pointed in Sections 3.1.3.3 and 3.1.3.5 (FQ2 and FQ4), undersampling techniques and

54

classical models obtain generally worse results than other methods. These studies have only
been selected in the bigger sample of studies from the health domain. Therefore, better re-
sults should be expected in all domain areas by implementing solutions with combinations of

oversampling or hybrid sampling with NN or ensemble models.
3.1.3.8 SQI1: How has the quantity of studies evolved?

Figure 16 shows the yearly publication of selected papers by the originated digital library

and type of venue. The research was performed at the beginning of April 2021 without any date

restraint.
Figure 16: Reviewed studies per year by digital library and type of venue
Digital library | Symbol | Quantity | Percentage Type of venue | Color | Quantity | Percentage
ACM O 7 20.00% Journal 25 71.43%
IEEE Xplore e 4 11.43% Conference 10 28.57%
IET A 1 2.86% 12
Science Direct | () 10 2857%
SCOPUS [\ 2 5.71%
Springer Link D 8 22.86%
Wiley O 3 8.57%
2 2 2 2
‘.

- e ..

2016

2021
Jan-Mar

.

2006 ... 2013 2014 2015

2017 2018

Source: Created by the author.

The results indicate a growing interest in data level preprocessing techniques for ML in
imbalanced data applications, especially since 2019. Worth noting that EC7 and ECO filtered
out some algorithmic level techniques and solutions for multiple applications — creating a gap of
representative works between 2007 and 2012. However, papers using these solutions followed

a similar pattern of growing interest, presented in Figure 16.
3.1.3.9 SQ2: Where have the studies been published?

The representative works selection integrates 35 publications. This selection shows that 25
journal publications correspond to 71.4%, and 10 conference publications account for 28.6%
of the studies reviewed in this work. Figure 16 indicates the type of venue of these studies by

color.

55

The search process collected most selected papers through the digital libraries ACM, Sci-
ence Direct, and Springer Link, where each accounts for at least 20% of the results. Addi-
tionally, only the journal “Artificial Intelligence in Medicine” has 2 works — one from 2006
(COHEN et al., 2006), and the other from 2020 (NNAMOKO; KORKONTZELOS, 2020).

3.1.4 Conclusion

This study applied a systematic mapping study to review current and effective data level
preprocessing techniques and ML models in imbalanced data applications. After an eight-step
filtering process, the selection of the representative works culminated in 35 papers. The results
section presents two taxonomies and quantitative classifications of proposed, compared, and
selected preprocessing techniques and ML models.

Overall, research studies mainly focus on applying standard or modified clustering-based
sampling techniques for balancing data. Specifically, oversampling is the most common and
also the best performing type of sampling, proportionally. Relatively, however, hybrid sampling
techniques can potentially surpass oversampling if future studies implement them.

Classical ML models such as SVM, KNN, and LR still are the most frequent. Nevertheless,
the most recent mapped studies show an increase in NN models — from simple ANNSs, like
MLP, to complex DL models. The results indicate that well configured NN models tend to
achieve better results than classical models. Additionally, ensemble learning models also show
promising results.

Ultimately, the results found in this systematic mapping study indicate that future works
may explore the usage of simulation-based oversampling for balancing data in ML applications.
Moreover, a solution with hybrid sampling mixed with NN or ensemble learning models can
potentially achieve favorable results. Table 8 compiles the highlights from RQs’ answers.

The lack of analyzable dataset characteristics is a limiting factor for this study. In future
literature reviews, the authors suggest the addition of an EC if studies do not present the infor-
mation of interest. An alternate study could be performed by reviewing papers with well-known

prefixed datasets from different domain areas.

3.2 Real-Time Machine Learning architectures

This study’s main objective is to analyze the topology of software architectures for super-
vised ML applications proposed in published papers. The study is divided into two reviews.
The first one, on Section 3.2.1, performs an in-depth search for finding every paper proposing
architectures for imbalanced data applications. The last one, on Section 3.2.2, scans papers
proposing ingenious implementations in their architectures for general applications.

Both reviews apply a search strategy similar to the systematic mapping in Section 3.1: (1)

specify search string; (2) select databases; and (3) collect results. However, this study samples

56

Table 8: Lessons learned by answering the Research Questions

RQ#

Lessons learned

FQI

FQ2

FQ3

FQ4

FQ5

FQ6

SQl
SQ2

There are 5 central domain areas in imbalanced data applications: health (34.3%),
finance (22.9%), engineering (14.3%), biology (8.6%), and software (8.6%). These
areas have good references for new applications. New domains have the potential to
be explored.

The studies applied 55 different sampling techniques — oversampling (55.5%), under-
sampling (27.4%), and hybrid sampling (17.1%). Oversampling techniques achieved
the best performance among the existing types, whereas hybrid sampling techniques
performed better relatively (ratio of selected within tested studies).

None of the studies used simulation as a means for optimizing synthetic data genera-
tion and accelerating training time in oversampling. This technology could optimize
results and reduce computational costs in domains such as engineering and health.
The studies applied 45 different ML models — classical (54%), ensemble (24.8%), and
NN (21.2%). NN models achieved the best performance overall and relative to tested
studies, with ensemble models as a close second.

There are 3 recurrent development tools within the studies: Python, Matlab, and
Weka. These tools have both sampling techniques and ML models already imple-
mented as resources.

Domain areas selected distinctive sampling techniques and ML models — especially in
health. However, there is a clear preference for oversampling in engineering, biology,
and software, while finance splits between oversampling and hybrid sampling. For
ML, engineering selected only NN models, and finance selected mostly ensemble
models. Other domains did not have a clear categorical preference.

There 1s a growing research interest in the subject, especially since 2019.

The 35 reviewed studies show a prevalence of journal publications, with 25 works
(71.4%), while the remaining 10 are from conferences. The digital libraries ACM,
Science Direct, and Springer Link account for at least 20% of the results individually.

Source: Created by the author.

results by selecting 2 of the 6 previous digital libraries: ACM and IEEE Xplore. This con-

figuration concentrates a reasonable sample of software engineering works, since other digital

libraries consist of broader domains. Finally, each review has an individual filtering process for

selecting collected results — detailed in Sections 3.2.1 and 3.2.2.

3.2.1

Imbalanced data

This review applied a systematic mapping methodology for revising research publications

proposing software architectures for supervised ML in imbalanced data applications. Hence,

this work seeks to answer the following guiding GQ: “How have software architectures been

solving the imbalance problem in ML?”.

57

3.2.1.1 Search strategy

Following the search strategy in Section 3.1, the first step determined major terms and their
most relevant synonyms based on preliminary research. Afterwards, the search string in Table 9
merged major terms with their synonyms with Boolean operators. Finally, this string defined
the query applied in both digital libraries — ACM and IEEE Xplore.

Table 9: Search string for imbalanced data applications

Major term Search terms

Architecture ((architecture OR service OR framework OR system)
AND

Real-time (“real-time” OR “real time”)
AND

Machine Learning (“machine learning” OR “deep learning” OR “artificial intelligence”)
AND

Imbalanced data (“imbalanced data” OR “imbalanced dataset” OR ‘“imbalanced data set”
OR “unbalanced data” OR “unbalanced dataset” OR ‘“‘unbalanced data
set’”))

Source: Created by the author.

3.2.1.2 Papers filtering

The collected papers went through a filtering process, removing ones that did not propose a
software architecture for real-time ML with imbalanced data. The following EC supported the
filtering process:

* ECI: the study is written before 2012;

* EC2: the study is not written in English;

e EC3: the study venue is neither conference nor journal;

e EC4: the study matches the keywords defined in the search string, but the context is

different from the research purposes;

e ECS5: the study is a literature review;

* EC6: the study is not accessible in full-text;

* EC7: the study is a short paper (4 pages or less);

* ECS8: the solution focuses on a procedure for experiments;

* EC9: the study does not detail the proposed architecture or framework.

Papers filtering started at the initial search from each digital library, removing results com-
plying with EC1, EC2, and EC3 - resulting in journal and conference publications, written in
English over the last 10 years (up to the review date). Then, one filter by title extracted studies
meeting EC4 and ECS.

The remaining papers went through a filter based on the three-pass method (Keshav S.,
2007), excluding works complying with EC6, EC7, and EC8. Finally, a careful full-text read

58

selected all papers detailing a software architecture for imbalanced data ML. The final step
rejected experimental procedures for validating one scenario and low-quality papers — meeting
EC8 or EC9, respectively.

3.2.1.3 Results

The combination of results from the 2 digital libraries integrated 472 works, reduced to
397 after applying EC1, EC2, and EC3. During the filtering process, a considerable amount of
papers within the context of imbalanced data applications only propose an experiment procedure
(EC8) and do not propose a software architecture (EC9). Incidentally, the selection of the
representative works resulted in 5 papers.

Distner et al. (2018) proposed the most complete work: a lambda architecture for classify-
ing military aircraft in real-time radar systems using radar tracker and automatic surveillance
data. The architecture consists of a batch layer for storing data, a serving layer for training and
supplying classifiers, and a speed layer for applying the classifiers to identify aircraft through
streaming data. The software has a preprocessing pipeline using oversampling to overcome
the imbalance problem — elementary configured for an initially optimized and fixed IR after

sampling. Figure 17 shows a block diagram of the architecture and the preprocessing pipeline.

Figure 17: Architecture for Machine Learning with imbalanced data: (a) block diagram; (b)
preprocessing pipeline

Speed Layer
s X Link -)))
Radar

Tracker _ Classification
Fusion Identification
ADS-B HMI —
Cleaning - [Raw Data H Cleaning H Filtering HNO’:_':[';“O"
3 o)
v Feature
Extraction]_q Scaling

Serving Layer

Classification
Identification
Prediction
Detection

Learned
ML/DL
Models

Generated
Tables

R

Batch Layer
ADS-B Raw Data

(a) (b)

Source: Déstner et al. (2018).

Li et al. (2019) built an online defect detection system for large-scale photovoltaic plants.
The system inspects photovoltaic modules with unmanned aerial vehicles and offloads captured
images for expert acknowledgment of newly found defects by the MLL model. The model con-
sists of a CNN trained by previously labeled defects — acknowledged by experts. The system
treats imbalanced data by generating synthetic images to train the model, as well as analyzing

the model’s PR curve to measure performance. Additionally, the system applies transfer learn-

59

ing to fine-tune the CNN model without having to retrain too frequently, reducing training time
and resource consumption.

Correspondingly, Ruan et al. (2022) developed a cyber-physical system for fault prediction
in industrial processes. The proposed model gathers real-time data from wireless sensors of a
chemical plant and applies a novel DL network (CURNet) for multi-class classification. This
DL network handles imbalanced time series data intrinsically.

Choi and Jeon (2021) proposed a real-time framework for detecting spam tweets. Similarly
to Li et al. (2019), the framework uses experts to evaluate tweets and label spams to improve
automated spam detection through supervised learning. A module from the framework is re-
sponsible for retraining the ML model when new diagnoses from experts reconstruct the train-
ing dataset. The solution handles imbalanced data with a cost-based ML model and evaluates
results with the following metrics: precision, recall, and F-measure.

Finally, Barata et al. (2021) proposed a framework for designing ML solutions in applica-
tions under cold start, specifically with imbalanced data. The authors compared results from dif-
ferent proposed solutions with credit card fraud datasets. The study’s main contribution comes
from policies directing algorithms for fully unlabeled data (cold), few labeled data (warm-up),
and sufficiently labeled data (hot). Whereas only unsupervised learning is able to handle cold
conditions, warm-up and hot conditions may apply supervised learning algorithms. Barata et al.
(2021) developed different probabilistic approaches for both warm-up and hot states. Specifi-
cally, the authors suggest a higher efficiency when applying only labeled data — as opposed to
also using unlabeled data —, consuming less computing power to achieve better results. Addi-
tionally, the authors measured the compared models by running 35 simulations and evaluating
performance over time.

In addition to the representative selection of works, Ahmed, Raman and Mathur (2020) pre-
sented challenges and suggestions for anomaly detection in real-time applications — focusing on
industrial control systems. The authors make and discuss numerous assertions for supervised
learning, noting the importance of updating the database with new labeled data in regular inter-
vals and retraining the ML models — catering for environmental effects and process variations.
Additionally, the authors highlight the difficulty of detecting distribution shifts and learning

from imbalanced data, since they easily degrade the currently trained model.

3.2.1.4 Conclusion

This review applied a systematic mapping methodology for conducting a revision of re-
search publications proposing software architectures for supervised ML in imbalanced data
applications. After a filtering process, the selection of representative works resulted in 5 papers.

From these papers, only Distner et al. (2018) detailed a software architecture with minor
module management, segregating between 3 layers: speed, serving, and batch. However, the

authors did not apply the proposed architecture in a real-case scenario, where the software

60

should automate data management and ML model retraining — testing performance over time.
The study only collects results by changing dataset variables, such as oversampling rate and
time series window size, as well as configurations with different ML models.

The remaining four studies show an overview of frameworks and systems for specific appli-
cations (LI et al., 2019; RUAN et al., 2022; CHOI; JEON, 2021; BARATA et al., 2021). From
them, Li et al. (2019) apply oversampling indirectly by generating synthetic images. Other
works do not use sampling techniques for preprocessing data (RUAN et al., 2022; CHOI; JEON,
2021; BARATA et al., 2021).

In conclusion, the gaps left in existing research present opportunities for further research.
Challenges discussed by Ahmed, Raman and Mathur (2020) need more solutions and data. The
complexity for active learning with imbalanced data, studied by Barata et al. (2021), expresses
the need for analyses of performance over time. Finally, a fully automated architecture using

current design and tools could improve upon the work of Déstner et al. (2018).

3.2.2 General applications

This review searched for efficient designs and tools in research publications proposing soft-
ware architectures for supervised ML. Therefore, this revision seeks to answer the following

guiding GQ: “How can ML software architectures be efficiently implemented?”.

3.2.2.1 Search strategy and Paper filtering

Following the search strategy in Section 3.1 and Section 3.2.1, the first step determined
major terms and their most relevant synonyms based on preliminary research. Afterwards, the
search string in Table 10 merged major terms with their synonyms with Boolean operators.
Finally, this string defined the query applied in both digital libraries — ACM and IEEE Xplore.

Table 10: Search string for general applications

Major term Search terms

Architecture ((architecture OR service OR framework OR system)
AND

Real-time (“real-time” OR “real time”)
AND

Machine Learning (“machine learning” OR “deep learning” OR “artificial intelligence’))

Source: Created by the author.

The search string in Table 10 expands the results obtained in Section 3.2.1 by removing
terms related to imbalanced data. Consequently, the collected papers have a broader range of
applications and solutions. Hence, to narrow the reviewed scope and improve research quality,
the initial search from each digital library filtered only journal and conference publications

written in English over the last 10 years (up to the review date).

61

Later, a brief read-through of titles selected works ingenious solutions for ML software ar-
chitectures. Then, the remaining papers went through a filter based on the three-pass method
(Keshav S., 2007). This step selected studies that detailed the proposed architectures, present-
ing visual representations of the topology design and processes, as well as charts validating
proposed tools. Finally, a careful full-text read singled out a sample of papers with complete

and efficient design and tools — avoiding duplicated ideas.
3.2.2.2 Results

Baldominos et al. (2015) proposed an architecture for real-time analysis in big data, ar-
ranged as an online service. The design resembles a lambda architecture — such as the one from
Distner et al. (2018) in Figure 17 —, dividing ML processes in two modules: batch and stream.
The batch module is responsible for accessing and processing historical data, and training the
ML model. The stream module is responsible for processing new data and returning predic-
tions through the current ML model. The architecture conditions the batch module to execute

periodically while the stream module runs in real-time.

Figure 18: Architecture for Machine Learning as an online service

historical data

0
" « ©
> V7772 20 . K -

stream

Markov Chains machine learning
module

customer

Decision
Trees
Collab

Filtering

real -time stream

request +

JSON data

Processing
Clustering
Model
Building

batch machine learning
module,

|E| m Mahout

RESTful API

dashboard

Source: Baldominos et al. (2015).

Bundling the ML modules, a REpresentational State Transfer (REST) Application Program-
ming Interface (API) enables users to perform consultations for predictions and analyses. Pre-
dictions operate as immediate requests for the stream module. Analyses occur on-demand as an
individual module (dashboard). Figure 18 shows the architecture’s diagram. Although the pa-
per does not develop new tools or algorithms, the authors conclude that the proposed topology
simplifies data analysis for end users, extracting value from data while abstracting complexi-
ties. Additionally, preliminary evaluations showed encouraging results (BALDOMINOS et al.,
2015).

62

Also based on a lambda topology, Batyuk, Voityshyn and Verhun (2018) designed a soft-
ware architecture for monitoring processes in real-time. Aiming at applications that do not re-
quire big data, this architecture creates a local cache persisting recent data, minimizing latency
and reducing complexity. Similarly to Baldominos et al. (2015), the authors propose serving
a REST API for supplying a fast and flexible means of integrating the system to external ser-
vices. Finally, the authors conclude that this design can efficiently extend features of third-party

applications with processes on an operator control level.

Figure 19: Process monitoring applications: (a) architecture diagram; (b) components

Single Page Web Application / Visual Dashboards

1l ']
: Built-in Platform Features i | Custom Features [Control Flow Visualization] [Visualization 1] { Visualization N]

; [Control Flow Visualization] : . { Visualization 1] 1 Visualization N

{

7

i1 | Process Mining] ‘ Process Mining J : Microservices

i | Prediction |[suggesti
: (ECIGLOT J { UESEESHOnS Technique 1 Technique N

Alerting

Prediction ||Suggestions|| Alerting

Microservice 1]

Microservice N]

\ | |

__" | A 4
Online -
(Fvent bata Strear 0 :> Cur t I:> |:"> -------------
Process Mining | | /@ —)| = e
{Event Data| "
Online

i ; <:> In memory
@ @ :>(Message Queue () |:> Process Mining i

Database !
i
Historical <:| Offlme. . [::> Process -
Event Data IFrerE=ss WG Models N S . Busmess
Time Series <:| Offline :> o bQ Rules
Database Process Mlnmg Data ase Engine

(a)

N

Source: Batyuk, Voityshyn and Verhun (2018).

Cerquitelli et al. (2019) discussed the concept of automated triggers for updating ML mod-
els by continuously evaluating their performance with newly labeled data to detect distribu-
tion drifts. In the context of online models, predicting in real-time, model degradation self-
evaluation enables unsupervised maintenance. The alternative is to retrain the model periodi-
cally, which is computationally intensive and less efficient (CERQUITELLI et al., 2019).

To fully automate the process, Cerquitelli et al. (2019) proposed using a quantitave metric
for measuring model degradation. This metric triggers a retraining process after reaching a
predefined threshold — within the risks of possible predicting errors. Figure 20 shows building
blocks of the proposed framework and the results from an experiment conducted by the authors.
In their conclusions, the authors direct future research to propose metrics and improve triggering

mechanisms.

3.2.2.3 Conclusion

This review searched for efficient designs and tools in research publications proposing soft-
ware architectures for supervised ML. A filtering process selected solutions with efficient im-

plementations and clear directions for future research, resulting in 3 papers.

63

Figure 20: Measuring model degradation: (a) framework; (b) experimental results

=== Degraded

Model degradation
evaluation
over time

Real time g
New unseen data e Labeled data Label 0 Label 1
—— Base
4 z -
radation

Predictive -7
model

1
1
Data with Semi-supervised !
data labeling :
1
1
1

Silhouette

Automated KDD
to build a new
predictive model LEELEN
Samples Samples

(a) (b)

Source: Cerquitelli et al. (2019).

Considering solutions from filtered works, especially the selected papers, a lambda-based
architecture emerges as an intrinsically efficient topology. Decoupling ML modules between
batch and speed naturally organizes non-recurring model maintenance and time-constrained
predictions. Additionally, wrapping ML processes with a REST API shows promising results.
Existing papers classify the solution as a flexible way of integrating ML with external systems
and returning predictions — while suppressing complexities from users (BALDOMINOS et al.,
2015; BATYUK; VOITYSHYN; VERHUN, 2018).

Ultimately, ML processes — such as preprocessing, training, and optimization — need guiding
rules to achieve a fully automated ML architecture. Cerquitelli et al. (2019) propose triggering
these processes after the model’s performance decreased to a maximum threshold of model
degradation — measured with new data. Nonetheless, there is space for further research by

employing metrics for specific applications, such as imbalanced data.

3.3 Final considerations

After the thorough examination of studies with sampling techniques and ML models, the
results from the systematic mapping in Section 3.1 direct new works to efficient solutions and
design considerations. These aspects are essential for creating a software architecture with a
specific purpose, such as active ML with imbalanced data. In this sense, pairing the specialized
points from imbalanced data solutions with the software topology references from Section 3.2,
the following takeaways and research gaps can be concluded:

* Imbalanced data applications using ML have been increasingly studied, especially since
2019, presenting relevant references in broad domain areas — particularly with sampling
techniques. However, the majority of software development solutions focus on experi-
mental procedures and frameworks, opening a path for new software architectures;

* Lambda-based topologies are an efficient design for ML software architectures since the
three layers have straightforward purposes in ML: batch for processing historical data,

training and optimizing the model; speed (or stream) for processing new data and return-

64

ing predictions; and serving for enabling access to the ML capabilities;

REST API is a flexible tool for serving ML and extending data analysis capabilities to
external applications while suppressing complexities from users;

The development of fully automated and computationally efficient ML systems depends
on retraining criteria for maintaining a high-performance by measuring its degradation.
In this context, there is space for further research on new metrics and triggers for dealing
with specific problems — such as data imbalance;

The lack of data from the minority classes is one of the main challenges for imbalanced
data applications. Consequently, cold and warm-up conditions in developing applica-
tions delay reliable model deployment. To overcome this problem, new works can apply
modern high-performance algorithms, such as GAN-based oversampling and ensemble
learning, to evaluate improvements in model reliability and reduce ML systems’ time to
deployment;

Creating a cache and using local storage is a clear path for applications that do not require
big data, minimizing latency and reducing complexity. In this context, undersampling
may enable this feature by reducing required storage;

Oversampling and hybrid sampling for ML achieves encouraging results over different
domain areas;

NN and ensemble models achieve the best performance overall on imbalanced data ap-
plications;

Python, Matlab, and Weka are favorable development tools in imbalanced data applica-
tions since they supply fully implemented resources for preprocessing data and training
ML models.

65

4 HEIMDALL

This chapter presents Heimdall, an architecture for online ML through imbalanced data.
The chapter is organized in seven sections. The first one introduces the architecture of the
proposed model and overviews its four layers. Sections 4.2 to 4.5 detail each layer, modules,
and processes. Finally, Section 4.6 outlines potential applications, and Section 4.7 discusses

final considerations on the topology.
4.1 Architecture overview

Heimdall is designed as a service for predictions and analyses requests, based on a lambda
topology — organized with stream and batch processes. The service receives these requests
through an interface with existing external systems, and accesses their databases for training
and maintaining the ML model. Figure 21 presents the proposed architecture based on SAP’s
Technical Architecture Module (TAM) diagram (SAP, 2007). In summary, Heimdall is com-

posed of four layers: data management; storage; ML and evaluation; and interface.

Figure 21: Heimdall’s Technical Architecture Module diagram

Storage 3
Training

Training data @
REST
—— Trainer {l R
Coneiion) ﬁ v °
Data é_
Sampler {l ML odd @ < Analysis g
p. »() N R« @
: 4 Predictor —O— &
L <
Manager —
O [1R @IS d o @ N
: 4 1
v g
Labeler {l B
_‘ Buffer @ P Dashboard a
I R4]
=
o (_Predicions) i

puEEC | g

Labels (component type): i Agent {l Module @ Database

Source: Created by the author.

The service interface encapsulates all ML capabilities and serves external systems, provid-
ing predictions and analyses on-demand through REST API requests. The service performs
best by processing predictions in streams and examinations in batches — since evaluations have

considerable changes only after enough new predictions. However, this rule is not mandatory,

66

and the service may stream both.

The architecture has two rule-based reactive agents independently monitoring data and de-
ciding when to run processes: Data Manager and Training Controller. By definition, soft-
ware agents are autonomous and aware of their environment, enabling decentralized decisions.
Specifically, reactive agents respond to significant changes and events, hence causing imme-
diate actions (PADGHAM; WINIKOFF, 2004). These characteristics can fully automate ML
maintenance and allow asynchronous batch processing, potentially reducing CPU loads and
improving computational efficiency.

Since synthetic data generation has a high-computational cost, the Data Manager is essen-
tial for deciding when and how to update training data in imbalanced data applications. This
agent uses strict application-based criteria, enabling complex algorithms, such as GAN-based
oversampling. Similarly, the Training Controller improves the ML model performance through
metrics focused on imbalanced data.

Furthermore, the layers for data management, ML and evaluation, and interface contain
modules with separate processing tasks, whereas storage symbolically keeps associated databases.
Technically, both modules and reactive agents correspond to software classes. The next sections

detail these components.

4.2 Data management

The data management layer is responsible for maintaining training data and supervised la-
bels. To accomplish that, the Data Manager monitors historical data from databases and decides

if and how both Labeler and Sampler act.

External systems usually segregate data through two processes: logging and labeling. While
systems log measures and information automatically — periodically or through event-driven
approaches —, labels are commonly classified or validated by human experts. This supervised
learning characteristic creates a delay for performance evaluation since predictions synchronize
with historical data logs (real-time), but data is only labeled afterward. Figure 22 demonstrates
this characteristic, in which the buffer contains unlabeled predictions that are not taken into
account for performance evaluation. Consequently, the buffer size is bigger than the evaluation
sample.

The relationship between logging and labeling databases varies according to the applica-
tion. Applications sharing unique IDs (keys), such as shopping orders, need only direct con-
nections for labeling. However, applications sharing only time series data, such as fault anal-
ysis, require anomaly detection algorithms for labeling data through input variables (logs) and
reported occurrence time (labels) by experts. Hence, the algorithm has to find unusual distur-
bances within input data around the reported time and label the anomaly. Figure 23 illustrates
this phenomenon. In Heimdall, the Labeler is responsible for performing this task — labeling

both buffer and training data, inherited by the Sampler.

67

Figure 22: Machine Learning model evaluation delay caused by supervised labels

o> | [[[T [TTTTTTTT]]

e Y« cicions,
wavets [] [LT TP [

Buffer evaluation Waiting for labels

Buffer size

Source: Created by the author.

Figure 23: Time series anomaly labeling: (a) chart; (b) data

Inputs/Label
A
Time tl ©2 3
§ Input1 | 058 | .. | 035 | .. | 059
§ 032 | .. |oo2| .. |o027
Label 0 1 0
- + > Reported anomaly time: around t2
tl t2 t3 Time
%
Anomaly
(@ (b)

Source: Created by the author.

The Sampler has two main tasks: generating training data and updating the minority sam-
ple. The first one transforms historical data into training data through necessary preprocessing
techniques. For instance, in the case of time series data, the module should label and slice data
through predetermined periods, before and after anomalies.

Data preparation is an essential step for ML — particularly for imbalanced data (MURESAN
etal., 2015). The techniques composing this step depend on the application. For instance, image
preprocessing requires gray scale conversion and data augmentation, while text preprocessing
requires tokenization, stemming and feature extraction. Generally, the fundamental techniques
can be conventionalized as:

* Null data handling: solving raw data inconsistencies due to missing values throughout
instances’ features. Example: removal of instances or imputation of values through cus-
tomized functions, such as mean;

* Dimensionality reduction: reducing the feature space (number of features) while retaining
as much information as possible. Example: Principal Component Analysis (PCA);

* Scaling: scaling numerical attributes to fit within a specified range — usually [0, 1] or
[—1, 1]. Example: min-max scaler;

* Encoding: converting textual classes (labels) into scalar values. Example: label encoder.

68

In addition to these techniques, the Sampler sorts preprocessed data between majority and mi-
nority samples before applying sampling techniques.

Following the takeaways concluded in Section 3.3, Heimdall should preferably apply hybrid
sampling or oversampling with complex and CPU-demanding algorithms — such as GAN-based
oversampling. This process results in a balanced relational database divided into: core ma-
jority sample (undersampled or raw); synthetic minority (oversampled); and original minority.
Figure 24a illustrates this process with hybrid sampling.

The update process for new instances initiates filtering new data from existing training data.
After that, it sorts only minority samples for preparation — configured identically to the current
training data. Lastly, the task removes the closest synthetic minority data and adds new original
minority data. Figure 24b shows this process.

Figure 24: Sampler processes flowcharts: (a) training data generation; (b) minority update

/ 'Y . : :

—> R e | °e - ~ :

: : e (XY X L4 : :
Labeling Slicing Preparation

Time
series

Sorting Undersampling

o
e e
P YY)

celeesse

0.:.. -..:...

R o)
Original

Smin._~J

Oversampling

(a)

o
000

1D
o . ° L] .. ' $ ﬁ..;.;.._’ i .
Rel. W > . .1. .o SR \ / o

Original

. min. '

Training data

K series Labeling Slicing Sorting Preparation Updating

Filtering
new data

?

Historical
data

(b)

Source: Created by the author.

Both training data generation and minority sample update processes depend on triggers from
the Data Manager. This agent’s independence grants training consistency and computational
efficiency — since high-performance oversampling generates high-quality training samples, but
it is not overdone when not necessary. Furthermore, the delegation for labeling the predictions
buffer (supervised labels) also maintains the ML model’s evaluation efficiency.

Moreover, each application may have different rules for managing data. Table 11 generalizes
essential rules to trigger processes from both Sampler and Labeler. Specifically, the Sampler’s

rules can be applied in conjunction. For instance, although periodicity enables generation, the

69

Data Manager has to wait for an offline gap. This capability is advised for sampling generation
since this process has high CPU usage. However, the Data Manager should prioritize high-

frequency labeling — and update, if necessary for the application.

Table 11: General rules for Data Manager triggers

Module Sub-process Rule Description
Sampler Generation Delay Pre-defined number or percentage of new labeled
anomalies since the last generation
Periodicity Pre-defined time difference between last generation
and recent historical data
Offline gap External system offline for enough time (mainte-
nance, weekend, ...) to generate training data — calcu-
lated through last generation time and data load
Update Delay Pre-defined number or percentage of new labeled
anomalies since the last update
Periodicity Pre-defined time difference between last update and
recent labeled anomalies
Offline gap External system offline in order to update minority
samples through new labeled anomalies
Labeler Label Delay Pre-defined number or percentage of new labeled
anomalies since last supervised label

Source: Created by the author.

Finally, the data management modules save data locally — minimizing latency and reducing
complexity. These databases, proposed in Section 4.3, are accessed by components of the ML

and evaluation layer, as detailed in Section 4.4.

4.3 Storage

The storage layer represents data saved within processes for maintaining the service. This
data, displayed at each process of Heimdall’s pipeline in Figure 25, is grouped in: training data,
ML model, and buffer.

The features composing each database vary since every application has different inputs and
parameters. However, in order to accomplish Heimdall’s purpose and allow the processes de-
tailed in Sections 4.2 and 4.4, these databases have minimally essential features. Table 12

describes these features by group, database and type — based on Python data types.
4.4 Machine Learning and evaluation
The ML and evaluation layer has four main tasks: training the ML model through data

maintained by the data management layer; making predictions for new data; evaluating the

model’s performance; and creating analyses to validate predictions and training data. These

70

Table 12: Heimdall databases’ essential features

Group Database Feature Type Description
DT datetime Date and time of occurence
ID int, str Identifier (key)
Training Inputs* float Preprocessed input variables
data Label int, str Supervised label (or class)
Synthetic bool If instance is artificially generated
Train bool If instance is used in training
StartDT datetime Start date and time of training
TrainTime datetime Training time from StartDT
SampleSize int Number of instances
LabelRatios* dict Proportion of each label
. . Optimize bool If optimized, else retrained
Historical : -
Model str Trained algorithm
ML metadata = ; - =
Model Hyperpar int, float Algorthm s hyperparameters
ProbThr float Optimized probability threshold
CVPar* int, float Cross-validation parameters
Metrics* float Trained model’s CV results
BPI float BPI (Equation 4.1)
Scaler object Trained scaler object
Model object Trained ML Model object
DT datetime Date and time of rep. occurence
ID int, str Identifier (key)
Buffer Prediction int, str Predicted label
Label int, str Supervised label

* indicates multiple features, represented as one due to sharing the same description
Source: Created by the author.

tasks are executed by the four corresponding modules from Figure 21 — Trainer, Predictor,

Evaluator, and Examiner.

Similarly to the data management layer, ML and evaluation has an agent, named Train-
ing Controller. This agent monitors training data and the model’s performance to decide if
and how the Trainer acts. In contrast to the basic pipeline from Figure 9 and to the real-time
ML architecture from Figure 18, the inclusion of these reactive agents optimizes processing
efficiency through automated triggers — as suggested by Cerquitelli et al. (2019). Figure 25 il-
lustrates Heimdall’s pipeline for ML and evaluation through training data and supervised labels
maintained by the data management layer. Additionally, this figure shows the interface with an

external system — following the TAM diagram in Figure 21.

The learning process, performed by the Trainer and, uses local training data. Following the
conclusions from the systematic mapping for ML in imbalanced data applications (Section 3.1),
the architecture should preferably apply NN or ensemble models to achieve good results. Ad-

ditionally, the Trainer can use different approaches and technologies:

* Standardization: selected model through Exploratory Data Analysis (EDA) and iterations

71

Figure 25: Heimdall’s pipeline and data flow

ML Model Online data Analysis
External system

$ stream request
. . ~ . Buffer
Sampling :
/?\ : 2 S . Predictions
: Dashboard

Training Prediction
— : ; f
Historical : metadata
! labels
dt = | = !

Manager

A 4

Il @

Training data

I i

Labeling Controller Evaluation

A 4

Label (layer): External system . Data management Machine Learning & Evaluation REST API

Source: Created by the author.

between different models;

* Application-specific: model specifically developed for the application in previous or re-
lated works — such as the QSAR-based FP2VEC for learning molecular properties (LEE;
KIM, 2020);

* Optimization: dynamic adjustment of the ML model hyperparameters to improve the
objective function composed by the performance metrics of interest — such as grid search
(Figure 8);

* Auto ML: automated iterations between different models and optimization of their hyper-

parameters.

Auto ML has growing research interest and potentially good results — even outperform-
ing human data scientists within training time or performance in some cases (HANUSSEK;
BLOHM; KINTZ, 2020). However, once the best model is selected, this iterative process is
more time-consuming and may create unpredictable performances due to model variability.
Nonetheless, developers with less modeling experience or data knowledge could benefit from
prototyping with this technology before deploying it to Heimdall.

In contrast, standardized and application-specific models coupled with optimization algo-
rithms favor the proposed architecture by producing stable performance metrics and training
times. The Trainer saves these measurements for every trained model into the historical meta-
data database, allowing future analyses. Firstly, stable performance metrics enable the valida-
tion of the model’s continual improvement at every training. Secondly, stable training times

support more accurate estimations for the Training Controller.

When optimizing the model, the Trainer iterates through hyperparameters and cross-validates

the model to calculate generalized performance metrics. Since imbalanced data has dispropor-

72

tionate samples for each class, the Trainer uses the stratified k-fold cross-validation — preserving
the IR. Additionally, the cross-validation uses the same predefined parameters from previous
models.

Subsequently, the training process searches for the best probability threshold — described in
Section 2.2.1 — to maximize recall and precision within possible, according to the application
priorities. Instead of using the F-Measure or standard AUC of probability curves, this study
proposes a new metric for imbalanced data, called Balanced Performance Indicator (BPI), for
the objective function. This metric calculates the weighted arithmetic mean between recall and

precision. Thus,
_a-rec+ 3-pre

a+p

where: rec is the recall; pre is the precision; « is the recall weight; and f is the precision

BPI(«,) ,€10,1] 4.1

weight.

The BPI allows flexibility for solving the applications’ priorities by analyzing PR trade-offs.
For instance, if the application detects faults in power systems, there is a high cost for FNs —
so it is preferable to weigh more on recall than on precision. Alternatively, if the application
detects fraudulent transactions, it is best to avoid overloading and delaying clients by reducing
FPs — weighing more on precision. If a fraud is not detected, the client reports it, and the model
improves in future training data updates. Figure 26 illustrates the flexibility of BPI, prioritizing

precision over recall and achieving better results than the standard probability of 0.5.

Figure 26: Balanced Performance Indicator’s flexibility: (a) probability threshold curve; (b)
standard Precision-Recall curve

1.0 1.0

0.9 0.9

I

0.8

%

Metrics
Precision

S
N

0.6 Precision ‘
‘ 0.6

Recall

05 J BPI(6, 8) ‘ —— PR curve
: ® BPImax. ® BPImax.
| 0.5
0.0 0.2 0.4 0.6 0.8 1.0 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Probability threshold Recall
(a) (b)

Source: Created by the author.

The Training Controller delegates the training process by monitoring three sources: training
data, historical metadata, and buffer evaluation. In conjunction with analyses of these sources,
this agent’s independence guarantees training efficiency and reduces model degradation. Sim-

ilarly to the Data Manager, each application may have different rules for training a model.

73

Table 13 generalizes essential rules to trigger the Trainer. Ideally, if the application has pro-

cessing restraints, delay, degradation, and periodicity should wait for an offline gap.

Table 13: General rules for Training Controller triggers

Module Process Rule Description
Trainer Training Delay Pre-defined number or percentage of new minority in-
stances since last training
Degradation Pre-defined negative variation in the model’s evaluation
Periodicity ~ Pre-defined time difference between recent training data
and the historical metadata time period
Offline gap External system offline for enough time (maintenance,
weekend, ...) in order to train a new model

Source: Created by the author.

In general, the complete training process — with optimization — should only be commanded
by the Training Controller when the model’s performance degraded below a significant thresh-
old. Delay and periodicity avoid model degradation by fitting (retraining) the current model
with new training data generated by the Data Manager. Otherwise, no trigger should be gener-

ated since the current model retains acceptable performance. Figure 27 illustrates this process.

Figure 27: Training control

@ Current model .| Training Controller
loading (TC) analysis

A

A 4 4212 TC
E . : H Optimize-train /" Trigger
—> Model @ """"""""" (Table
13)
Buffer evaluation & ----------------co-eocosaeiaiand ; Optimization Retrain
Trainingdata g___"__________________________________I K-fold
-1o

cross-validation

Historical metadata g --- !
New metadata

instance

Prob. threshold |

optimization
Model update 4—,_

Learning

Source: Created by the author.

Training times generally vary according to the selected ML algorithm, number of features,
and sample size. For instance, the time complexity for SVM regression is O(n, - ng,”), where
2 < p < 3 (SCIKIT-LEARN, 2021). However, since the Trainer saves the trained models’ his-
torical metadata, detailed in Section 4.3, the training time can be estimated through regression
from previous models — enabling the projection of adequate offline gap periods.

The Predictor loads the currently trained model in Random-Access Memory (RAM) for
predicting the output of new streamlined data — returning REST API requests (Section 4.5).

74

Moreover, this module verifies the current model by accessing historical metadata and reloads
if the Trainer updates the model. By default, this verification happens at every new prediction,
but high-frequency applications can benefit from low-frequency accesses.

After the prediction for a new instance is processed, the Predictor returns it for the external
system through the REST API. Additionally, the module appends all predictions to the buffer —
subsequently labeled by the Labeler, maintained by the data management layer. As illustrated
in Figure 22, only labeled predictions compose the evaluated buffer.

Similarly to the Trainer’s continual improvement method, the Evaluator applies stratified
k-fold cross-validation or stratified train-test split to obtain performance metrics and calculate
the buffer’s BPI through Equation 4.1. This result feeds the Training Controller. Finally, the
Examiner uses training data, historical metadata, and buffer to generate summaries and charts
on the stored data via REST API requests.

4.5 Interface

The interface layer has the task of serving requests for predictions and analyses. This layer is
composed of a REST API, enabling the external system (client) to access Heimdall’s resources
(server) on-demand. Consequently, these systems can extend their functionalities with artificial
intelligence resources without any internal ML developments.

Specifically, this topology enables external systems to automatically stream newly logged
data to Heimdall, benefiting from online prediction responses for real-time applications. More-
over, these systems can request the Examiner’s analyses in batches, allowing periodical valida-
tions — such as model degradation, current performance, and buffer delay. Finally, the REST
API approach facilitates a flexible, fast, reliable, and widely-accepted interface (BALDOMI-
NOS et al., 2015; BATYUK; VOITYSHYN; VERHUN, 2018).

4.6 Applications

Heimdall is an architecture with the potential to be applied in any application from the five
domains in Table 7 — mapped in Section 3.1. Namely, these applications could add a client to
the available management system for accessing Heimdall’s resources. Some of the potential
applications are:

* Health: disease detection and prognostic in hospital and exam management systems;

* Finance: fraud and risk evaluation in corporate and banking systems;

* Engineering: fault detection in machines, systems, and industrial plants;

* Biology: classification in research facilities and laboratories;

* Software: data and source code analyses in software companies.

Furthermore, other applications implemented in systems with enough development flexibility —

to access Heimdall’s REST API — and processing power could benefit from this service.

75

Ultimately, Heimdall encompasses rulesets and best practices described in previous sec-
tions. In this sense, new imbalanced data applications can ensure good performance and effi-
ciency by employing the best sampling techniques and ML models from related domains — such

as the ones analyzed in Section 3.1.3.7.

4.7 Final considerations

This chapter detailed Heimdall, an architecture for online ML through imbalanced data. The
architecture stands out from related works by proposing new strategies centered on improving
performance in imbalanced data applications — such as a new performance metric and minority
sample data management. In addition, Heimdall applied research conclusions and efficient
features from reviews of related works (Section 3.3). Table 14 compares key characteristics

from related works (Sections 3.2.1 and 3.2.2) in relation to the proposed architecture.

Table 14: Comparison between Heimdall’s and related works’ solutions

=
=)
a
. nlela
=2 _|lalg|z5l58|2 3
SRR IR
gl legl=l=|e|3 | =
Solution characteristics sl= |8 |32l |2 |E
clSlBl= %2258
g D) [e) < - =) 8 m
+ s < . — < E > S
2 -2 2|8 25 ¢
A @) M = |~ 5}
22BNV o
=]
2
<
M
Focused on imbalanced data XX | XXX X
Designed as an architecture X X | X | XX
Lambda-based architecture for ML X X | X X
Local storage XX | XX X X
Handles time series data XXX X X
Preprocesses with sampling techniques | X | X X
High-performance oversampling X
Training data monitoring X
Neural Networks or ensemble models XX X
Analyzes probability curve X X
Online service with REST API X | X X
Model degradation monitoring X X | X
Rule-based active learning X X | X
Reactive agents for automation X
Balanced Performance Indicator X

Source: Created by the author.

76

To sum up, Heimdall stands out through the following key aspects:

Architecture designed as an online service for imbalanced data applications, extending

artificial intelligence functionalities to a wide range of existing systems;

Local storage for fast data access and implementation simplicity;

Processing capabilities for both ID and time series-only relational databases;

Full automation through two rule-based reactive agents, responsible for independently

monitoring data changes and model degradation, as well as triggering processing pipelines;
High-performance in imbalanced data applications through complex sampling algorithms,

potentially enabling earlier deployment — in warm-up conditions;

Performance enhancement through probability threshold optimization and a novel metric

(BPI) as the objective function.

71

S EXPERIMENTAL EVALUATION

This chapter presents the experimental evaluation of a prototype based on Heimdall. The
evaluation focuses on incrementally enabling proposed functionalities through five scenarios,
validating their improvements to systemic efficiency and performance in one severely imbal-
anced data application. Consequently, analyzed results show the efficiency of the proposed
architecture for active learning in imbalanced data.

Section 5.1 details the application and selected dataset. Section 5.2 presents the testing
methodology, describing the developed prototype’s functionalities, components extracted from
Heimdall, and test configurations to obtain results. Subsequently, Section 5.3 analyzes test re-
sults, comparing them to baseline architectures and related works. Finally, Section 5.4 discusses

final considerations on the experimental evaluation.

5.1 Application and dataset

As indicated in Section 3.1.3.2, finance is one of the most studied domains with imbalanced
data applications. One of these applications is credit card fraud — a highly imbalanced binary
classification problem where most transactions are legitimate (not fraudulent).

With the advancement of digitalization and utilization of internet technology in banking in-
stitutions, credit card transactions increase significantly from a wide range of payment channels
— such as physical stores and e-commerce. Consequently, credit card fraud poses a grave finan-
cial issue (ITOO; MEENAKSHI; SINGH, 2020). The literature usually refers to solutions for
this problem as Credit Card Fraud Detection (CCFD) or CCFD Systems (CCFDS).

A systematic review of CCFD by Priscilla and Prabha (2019) analyzed evaluation metrics,
ML models, tools, and datasets. The most used public dataset has been provided by a research
collaboration within the Université Libre de Bruxelles (ULB), accounting for 37.5% of mapped
works. The ULB-CCFD dataset compiles transactions made by European credit cardholders in
September 2013 (ULB, 2018).

Highly imbalanced, the ULB-CCFD dataset contains 492 frauds in 284,807 transactions.
Therefore, frauds account for 0.173% of all transactions, resulting in an IR of approximately
1:579. Whereas payment-processing companies like MasterCard® track multiple features —
such as transaction size, location, time, device, and purchase data (ALTEXSOFT, 2021) —, ULB
renamed the dataset’s features due to confidentiality issues. In addition, the university prepro-
cessed the dataset with a PCA transformation, reducing feature space and showing only numer-
ical input (V1, V2, ..., V28). As a result, the dataset contains only the 28 transformed variables,
the time elapsed between each and first transaction, and the amount paid (ULB, 2018). Fig-
ure 28 illustrates the numerical data distribution for PCA features, and scaled time and amount.

Thus, the implementation of the present study selected the ULB-CCFD dataset for the fol-

lowing reasons: real-life data; a reasonable amount of instances; extremely low IR; and a sub-

78

stantial quantity of related works with standardized preprocessing — due to the built-in PCA.

Figure 28: Box plot of PCA features, Scaled Amount (SA) and Scaled Time (ST) for each class

of the ULB-CCFD dataset
el
B |

Fraud
1 . 0
H x -

15 -

Vi V2 V3 V4 Vs Vo6 V7 V8 Vo V10 Vil V12

VI3 Vi4 V15
. ; : . i 1 |
x - l i .
0 = —+ —-— -r!i[- ——
! [
X !
o | H . i
' :
20 - Fraud
¥ H I 0
: -
=30
V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 SA ST

Source: Created by the author.

5.2 Testing methodology

Following the takeaways from Section 3.3, a CCFDS prototype was developed in Python,
applying resources from various third-party packages distributed by the Anaconda platform',
such as pandas, sklearn and tensorflow. Each processing layer from Heimdall contains the
corresponding modules and reactive agents as classes with necessary methods and attributes.
Conversely, the storage layer consists of Python objects (ML model and scaler) and relational
databases — such as training data, buffer, historical metadata and evaluations.

In addition to the CCFDS, a test environment developed in a Jupyter Notebook acts as an
external system — connecting to Heimdall’s interface and streaming new data to detect fraud-
ulent transactions and requesting analyses focused on performance evaluation for this study’s
purposes.

The test algorithm extracts and streams 30 samples from the ULB-CCFD dataset to validate
performance over time and deployment in warm-up conditions (BARATA et al., 2021). This
number simulates the 30 days from the recorded data (September 2013), corresponding to an
average of approximately 9493 instances and 16 frauds within daily transactions. Furthermore,
the test creates a 1-day delay between the streaming and labeling to account for expert labeling

or deficiencies in the process. Figure 29 illustrates data flow throughout the test.

Thttps://www.anaconda.com/

79

Figure 29: Daily samples throughout the evaluation of performance over time

< Trainable
<« Admissible

250,000
200,000 I I

BN Dataset
150,000 B Unlabeled data
W Labeled data
100,000
- || “l “ “ “ “ ‘ ‘ ‘ ‘
0..|.||||||| |||
1 2 3 4 5 6

vy

300,000

Transactions (instances)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Day (sample)

Source: Created by the author.

Specifically, the test evaluates the effect of Heimdall’s essential functionalities on CCFDS’s
performance by incrementally enabling them and creating different scenarios — shown in Ta-
ble 15. These scenarios collect results for classification metrics and processing time throughout
the daily data flow (Figure 29), evaluating performance through buffer data. Since prelimi-
nary results of scenarios 3 to 5 yielded mostly perfect performance scores through only cross-
validation, the prototype’s Trainer segregates currently labeled data into stratified (similar IR)
train-test sets of the standard 70-30% size, respectively. The train set goes through preprocess-
ing for learning, while the test set is saved as the initial buffer — which grows in size after each

daily stream of transactions through the REST API. Figure 30 summarizes this procedure.

Table 15: Evaluation Scenarios: S1-S5

Scenario 112(314]|5
Standard ML X | X
Hyperparameters optimization through BPI XXX [X X
Standard oversampling X | XXX
Probability threshold optimization through BPI X[X[XX
Ensemble ML X | XX
Data Manager & Training Controller X | X
High-performance oversampling X

Source: Created by the author.

In addition to the performance over time, a second script tests the overall performance for
the configuration from each scenario applying to the entire ULB-CCFD dataset — using the same
stratified train-test split characteristics from Figure 30. These results are compared between one
another and against best-performing models in related works — mapped by Priscilla and Prabha
(2019).

Complying with the preferences for sampling and ML in the finance domain (Section 3.1.3.7)

80

Figure 30: Testing data procedure for performance over time and overall

o
e XXy
ode 0.0;3.”
o0 o

a2¥

Oversampling

=

Stratified train-
test split

Training

—k

(for performance Prediction -
over time) Evaluation

Source: Created by the author.

and in CCFDS (PRISCILLA; PRABHA, 2019), the tests apply the following techniques and
models: SMOTE for standard oversampling; CGAN for high-performance oversampling; LR
for standard ML; RF for high-performance ML (ensemble). A preliminary EDA defined the
ML model’s hyperparameters iterated in a grid search optimization.

Moreover, the CCFDS prototype respects the following premises to evaluate improvements

in performance and efficiency:

e Admissible results (S1-S5): labeled data must contain at least 50 anomalies (frauds) to
allow admissible results — achieved on day 3 due to the 1-day delay, as illustrated in
Figure 29. Since training data is split into train-test (70-30%), this premise requires at
least 15 frauds in the buffer to evaluate performance properly;

* Baseline architectures (S1-S3): periodical execution of basic ML pipelines (data prepro-
cessing and ML model training), with hyperparameter optimization and standard proba-
bility threshold (fixed at 0.5), every 3 days (update);

* Probability threshold optimization (S2-S5): wrongful fraud predictions must not delay
cardholders. Therefore, the CCFDS must prioritize the mitigation of FP, weighing more
on precision without sacrificing recall — hence, varying the probability threshold for a BPI
with 8 > « for Equation 4.1. Definition: 8 = 8 and o = 6;

* Data management (S4-S5): the Sampler must generate new training data only if labeled
data accumulated 7% more frauds than current training data (delay) — following Table 11;

* Training control (S4-S5): the Trainer must only retrain the model if the Evaluator mea-
sured a 1.5 — 3% drop in BPI (degradation) — following Table 13 and Figure 27. Addi-
tionally, the Trainer must train and optimize the model if the Evaluator measured a drop
higher than 3% in BPI (degradation) or if 7 days have passed since the last optimization
(periodicity).

As a result, collected data from the testing environments, presented in Section 5.3, enable

the answer to questions such as: does high-performance oversampling and ensemble learning

enable deployment in warm-up conditions? Are reactive agents efficient for ML automation?

81

Compared to periodically trained ML models, what are the advantages of a fully automated
architecture? Is Heimdall a perceptive solution to implement ML applications with imbalanced

data for online prediction?

5.3 Results and discussion

Following the principles defined by He and Ma (2013), one of the main imbalanced data
issues is absolute rarity. Therefore, historical analysis of performance over time enables con-
clusions on time to deployment — specifically at a stage of warm-up conditions, when there are
few labeled data (BARATA et al., 2021). Hence, the test environment for performance over

time, described in Section 5.2, registered analyses for each streamed sample.

Accordingly, Figure 31 presents performance metrics recorded throughout the evaluation of
each scenario, as well as triggers for the most computationally costly processes — training data
generation by the Data Manager and model training by the Training Controller. The figure
represents data generation as “DM Sample” and divides model training into “TC Optimize” or
“TC Retrain”, following the premises described at the end of Section 5.2 and decision from the

flow chart in Figure 27. In addition, Figure 32 isolates BPI over time for tested scenarios.

The first 3 scenarios (S1-S3) simulated results with a baseline solution, applying standard
oversampling and ML model with periodical updates every 3 days. Specifically, scenarios 1 and
2 were more susceptible to variations since they employed a simpler ML model (LR). Conse-
quently, Figure 31 shows that these models started with performance metrics superior to those
in later evaluations — which stabilized around the 11th day. These results occur due to a higher
concentration of frauds within the first third of the ULB-CCFD dataset, illustrated through
the IR in Figure 33a. The changes within dataset characteristics also validate the foundation
of continuous performance monitoring in order to adapt models after instance space changes
(HAPKE; NELSON, 2020).

While S2 presented only a slight advantage in performance compared to S1, this difference
induces relevant improvement for the application. Particularly in the case of imbalanced data,
the 3% variance in average BPI improved the balance between precision and recall — reduc-
ing total FP by 26%, consequently decreasing credit card disruptions and user friction, one of
the main concerns for CCFD. Additionally, every metric improved their average performance.
However, the improvement came at a cost in processing time. While S1 spent an average of 4
minutes in training, S2 spent 203% more time, at approximately 11 minutes. Table 16 presents
processing time and average performance metrics throughout S1-S5.

Hence, S2 ascertains a cost-effective functionality for imbalanced data: probability thresh-
old optimization. This technique achieved interesting results in improving a targeted perfor-
mance metric — especially BPI, improving average precision by 25% while retaining other met-
rics. However, even though probability threshold optimization enhances solutions for imbal-

anced data, the standard ML model LR could not achieve acceptable performance (BPI > 0.8)

82

Figure 31: Performance metrics and agents’ triggers over time for tested scenarios

Performance over time

Scenario 1
°c o o 9
35} E [=)} oo

2
=3

123456738 910111213141516171819202122232425262728293031

—_
(=]

e
\J_\/\M

o
o

o
2N

Scenario 2
N
B

=
%}

g
=3

12345678 910111213141516171819202122232425262728293031

w

1.0
o 0.6
2
3
£ 0.4
Q
w1
0.2
0'0 L] [l (] o o o (] [J [J (]
° ° ° ° (] ° (] (] (] (]
1234567 8910111213141516171819202122232425262728293031
1.0
08 W
< 0.6
2
g
504
Q
wn
0.2
0'0 o L] L] o L] L] L] o o
° ° (] ° ()
1234567 8910111213141516171819202122232425262728293031
1.0
S DR\ e S —
0.8 \/\/\/—/\W

Scenario 5
s o o
S} B [=)}

I
=3

12345678 910111213141516171819202122232425262728293031

Source: Created by the author.

Day

Metric labels

Metric labels

Metric labels

Metric labels

Metric labels

Distribution

*-.
}||",

BPI

G-Mean
Precision
Recall
ROC-AUC
F1-Score
Accuracy
DM Sample
TC Optimize

|.|4.,-x

——

00 02 04 06 08 1.0

mm.x

BPI

G-Mean
Precision
Recall
ROC-AUC
F1-Score
Accuracy
DM Sample
TC Optimize

H
i
Ll

-
}

00 02 04 06 08 1.0

BPI

G-Mean
Precision
Recall
ROC-AUC
F1-Score
Accuracy
DM Sample
TC Optimize

I

00 02 04 06 08 1.0

BPI

G-Mean
Precision
Recall
ROC-AUC
F1-Score
Accuracy
DM Sample
TC Optimize
TC Retrain

—_—

00 02 04 06 08 1.0

===

BPI

G-Mean " |'I'|
Precision |_I_|
Recall

ROC-AUC |-|-|
F1-Score

Accuracy I'I'I
DM Sample |.I.|
TC Optimize

TC Retrain |

0.0 02 04 06 08 1.0
Performance

83

in extremely low IR applications. Namely, scenarios 1 and 2 achieved their higher BPIs, be-
tween 0.5 < BPI < 0.6, only in the first 4 days — when I R > 0.25% (Figure 33a). Addition-
ally, the exposure to changes in data characteristics created a high variability in results — which

is noticeable generally through the box plots of Figure 31 and standard deviation in Table 16.

Figure 32: Comparison of BPI over time for tested scenarios

1.0
0.8 Scenario
S1
=
@ 07 s2
— S3
0.6 — s
\ — 55
03 \/\
0.4
12345678 910111213141516171819202122232425262728293031
Day

Source: Created by the author.

In contrast, scenarios 3 to 5, applying ensemble learning through RF, achieved BPI > 0.8
throughout the entire month — even at the lowest IR (0.173%) on day 31. As expected from the
systematic mapping in Section 3.1, ensemble ML added processing complexity in S3, causing
a 110% increment in average training time against S2. Nevertheless, applying the preferred
sampling and ML from the finance domain with probability threshold optimization significantly
improved targeted performance metrics in S3. For instance, BPI and F-Measure, measures of
PR equilibrium, enhanced an average of 91% and 302%, respectively. The upgrade occurred
primarily due to a 622% average increase in precision, sacrificing recall with a slight decrease
of 8%.

Figure 33: Data characteristics over time: (a) Imbalance Ratio; (b) fraudulent transactions

0.5 500
Labeled data —— Labeled data

Train set Train set
Test set 400 —— Test set

o
=

o
w

o
¥}

Imbalance Ratio (%)

Fraudulent transactions

o

e
=3

1234567 8910111213141516171819202122232425262728293031 12345678910111213141516171819202122232425262728293031
Day Day

(a) (b)

Source: Created by the author.

84

Interestingly, S3 allows the examination of a general decay in performance after periodical
updates every 3 days — through data generation and model training. Even though the update
interval is low, there is high variability in performance within each period of Figure 31. This

variability can also be seen through the high standard deviation in Table 16.

Table 16: Analyses of performance metrics and processing times for S1-S5

Analysis Metric Scenario
3 4
BPI 0.87736 | 0.87223
G-Mean 0.90931 | 0.90056
Average Precision 0.91477 | 0.91781
performance Recall 0.82749 | 0.81146
ROC-AUC 0.91365 | 0.90565
F-Measure 0.86065
Accuracy 0.99947 | 0.99945
BPI 0.03405 0.03251 | 0.02662
G-Mean 0.01789
Standard Precision 0.03899
deviation in | Recall 0.03448
performance | ROC-AUC
F-Measure 0.03164 | 0.02557
Accuracy
Average Data generation | 00:00:06 | 00:00:05 00:00:06
time Training 00:11:26 00:12:46
Total Data generation | 00:01:01 | 00:00:47 00:01:05
time Training 01:54:21 | 04:00:07 | 02:07:36

Source: Created by the author.

The inclusion of the reactive agents Data Manager and Training Controller in S4 enabled
automated triggers for data generation and model training. Hence, negative changes in perfor-
mance were quickly dealt with by Training Controller. As a result, the variability decreased by
approximately 20% for every performance metric compared to S3 — while maintaining roughly
the same average performance.

The automated triggers in S4 show the importance of real-time monitoring of newly labeled
data and performance metrics. When the fraud rate increased rapidly, changing IR between days
3-13 and 16-19 (Figure 33a), the frequency of “DM Sample” triggers increased at a maximum
of every 2 days. Conversely, when the IR stabilized and labeled data did not accumulate 7%
more frauds, data generation awaited for even 4 days without regenerating training data. The
triggering behavior and performance results due to the inclusion of both reactive agents show
that their governance enables Heimdall to withstand drastic changes in instance space.

Additionally, the Training Controller also prioritized retraining over optimized training ev-
ery time by triggering “TC Retrain” when perceiving a 1.5 — 3% drop in BPI, anticipating a

superior decrease and preventing the need for the computationally expensive process. Training

85

triggers also concentrated within the first 3 weeks, when data characteristics changed the most.
However, after day 19, the agent only triggered “TC Optimized” due to the periodicity premise
of an optimization every week (after 7 days).

On the whole, the results from process automation through the proposed reactive agents in
S4 indicate extensive gains in efficiency for the CCFDS:

* Similar average performance to S3;

* Increased performance stability through lower standard deviation than S3 and previous

scenarios;

* Decreased total processing time, in data generation and training, by 47%;

» Adaptive efficiency of performance to processing time — decreased in warm-up conditions
by frequently triggering data generation and model training to achieve acceptable perfor-
mance, and increased by reducing triggers in hot conditions, when labeled data stabilized
instance space.

After increasing efficiency through reactive agents in S4, replacing standard oversampling
(SMOTE) with high-performance oversampling (CGAN) yielded even better results in S5. This
sampling technique increased average BPI and precision by approximately 1.5% and 3.5%,
respectively, sacrificing recall by 1.4%. However, as expected from the literature, these re-
sults come with a significant computational resource cost, as suggested by Vargas et al. (2022).
Namely, the total data generation time took almost 22 hours, increasing by 118, 395% compared
to S4.

Comparatively, the conjunction of standard sampling with ensemble learning (S3) stands for
excellent results — achieving better stability and efficiency when controlled by reactive agents
(S4). In contrast, combining high-performance oversampling with ensemble learning (S5) pro-
duces the best results and stability overall, even in warm-up conditions. Hence, if data genera-
tion time meets the offline gap or if the associated processing load does not impact the external
system, high-performance oversampling provides a straightforward path for better results.

Moreover, in addition to the analysis over time, Table 17 compares overall results from the
tested configurations in S1-S5 against best-performing models mapped by Priscilla and Prabha
(2019) using the whole ULB-CCFD dataset. These tests apply the same strategy of 70-30%
stratified train-test split with 5-fold cross-validation. S4 was not tested since it has the same
configuration as S3, adding reactive agents to independently govern processes over time.

Table 17 shows a common problem in related works: using ROC-AUC or accuracy as an
objective metric for imbalanced data, ignoring the importance of the equilibrium defined for
precision and recall. Ultimately, the evaluation of 3 studies considered several metrics and
visibly favored precision over recall, consequently reducing FP (AWOYEMI; ADETUNMBI;
OLUWADARE, 2017; FIORE et al., 2019; RAZA; QAYYUM, 2019). These works corroborate
the importance of evaluating the most meaningful metrics for improving imbalanced datasets
(JIANG et al., 2019).

In this environment, Heimdall’s S2 shows the importance of probability thredhold opti-

86

Table 17: Performance comparison between tested configurations and related works

€9666°0 | ¥S666°0 | 6.866°0 | 110660 - £9666°0 - 0SIL60 - - Aovmooy
$6666°0 | 686660 | S8666°0 | 6£066°0 - £6666°0 - 00000 - - Aoyroadg
17€88°0 | SI8S8°0 | 8967S°0 | 8YSTTO | 00¥SS'0 | 1SOTS0 - - 000£6°0 - QINSBIN-
SL806°0 | 09868°0 | L8S69°0 | €L0T60 - - 0£096°0 - 00086°0 | 02§96°0 | DNV-D0d
LSLYSO | OEL6L0 | 68T6E°0 | SOTES0 | 000SL0 | TSTELO - 0S878°0 - - 11809y
7€096°0 | €1676°0 | 06918°0 | €HOET'0 | 00S¥6'0 | $0TE6°0 - 000001 - - UOISIO1]
LIY06°0 | L8T68°0 | 96579°0 | ¥7L06°0 - - - - - - UBSN-D)
P1668°0 | €97L8°0 | SLPEI'0 | TLOSH'0 | 6THLS'0 | 999+8°0 - 0S976°0 - - (9°9)1dd
Ad A A1 A1 1500gepY | 4S+1d av NN I Id [opour TN
NVO)D | ALOINS | ALOINS | ALOIAS - NVD - SO+SN | ALONS 00 Surdweg
e~
>
Q
)
—_ ~ o]
) = g ~
S & 8 2 = =
70 e 3\ — = p o Q >
= 2 | 2| 2| 8 | &)& | 5| S| .
g & E £ z 3 E z 5 = 5
E E E E o B s g b 3 =
%)) 5] %) o) m m = (= 1))
a = T & 5 S = E 5 &
3 - m ,am = W
& Z < 7
£
2
5
<

Source: Created by the author.

87

mization more visibly, achieving a 47% increase in BPI by increasing precision five-fold and
sacrificing recall by 53%.

Two of the best-performing related works comply with the findings for the finance do-
main (Section 3.1.3.7) — applying GAN oversampling and a DL model (FIORE et al., 2019),
as well as ensemble learning (RAZA; QAYYUM, 2019). However, the best result claimed
by related works does not describe the hybrid sampling techniques, impairing further analysis
(AWOYEMI; ADETUNMBI; OLUWADARE, 2017).

Finally, Heimdall’s tested configurations presented increasingly better results from scenar-
ios 1, 2, 3, and 5. While S3 achieved an acceptable performance, S5 achieved the best per-
formance overall, combining the best takeaways from reviewed works (Table 8) and apply-
ing high-performance oversampling with ensemble learning. These results are comparable to
the best-performing related works (AWOYEMI; ADETUNMBI; OLUWADARE, 2017; RAZA;
QAYYUM, 2019).

To sum up, answering the questions posed at the end of Section 5.2, high-performance
oversampling and ensemble learning do enable deployment in warm-up conditions. In fact,
even ensemble learning with standard sampling can achieve acceptable results. However, it
is essential that the frequency of training under these conditions must be higher than in hot
conditions.

In this sense, the proposed reactive agents (Data Manager and Trainer Controller) introduce
a flexible solution for efficiently automating CCFDS processes — increasing processing in warm-
up conditions and later maintaining performance within predefined ranges. In addition to the
flexibility of rule-based agents, Heimdall solutions applied to CCFD presented prime and stable
results throughout tests over time and when compared to related works. Thus, Heimdall offers
an excellent set of solutions for imbalanced data applications, tested for CCFD in an extremely
low IR.

5.4 Final considerations

This chapter detailed the implementation of test environments based on Heimdall (Sec-
tion 5.2) focused on evaluating the architecture and novel proposed features, as well as com-
paring results of proposed practices against related works (Section 5.3). Hence, the evaluation
applied a well-known and highly imbalanced dataset for CCFD — explored in Section 5.1.

Ultimately, the results from Heimdall’s experimental evaluation validate the following as-
sertions:

* Performance over time is an important method to validate performance of ML solutions
in imbalanced data applications, specially in warm-up conditions — when there are few
labeled anomalies and the IR changes considerably;

* The combination of high-performance oversampling and ensemble learning yields the

best results for imbalanced data overall. However, the efficiency of performance to pro-

88

cessing power is much greater for ensemble learning — producing excellent results even
when combined with standard sampling techniques;

Probability threshold optimization can significantly improve a ML model’s performance.
Incidentally, BPI (Equation 4.1) proved to be a flexible indicator to measure and bal-
ance PR according to the application’s priorities within this optimization — as opposed to
standard metrics in related works;

Automating ML pipelines through the 2 proposed reactive agents, responsible for in-
dependent governance of data and learning — Data Manager and Training Controller,
respectively —, attains adaptive efficiency. Consequently, these agents produce better and
more stable performance by sacrificing efficiency in warm-up conditions, and maintaining
excellent performance and efficiency in hot conditions;

Heimdall is a resourceful architecture to implement online prediction systems in applica-
tions suffering from data imbalance. The functionalities and rulesets proposed in Chapters
4 and 3, partially tested in Section 5.2 and analyzed Section 5.3, present excellent results

over time and indicate a promising pathway for future developments.

89

6 CONCLUSION

In a time of rapid technological growth and data availability, ML plays a significant role
in process automation. However, a large proportion of real-world problems suffer from data
imbalance, impairing their capacity to apply ML solutions.

Hence, this dissertation introduced Heimdall, an architecture for online ML through imbal-
anced data. The proposed architecture closes current research gaps, proposing new function-
alities and compiling a set of good practices for developing real-time ML systems to solve the
imbalance problem through sampling techniques.

This study began by presenting a theoretical background on imbalanced data and super-
vised ML, laying the foundations for each subject. Subsequently, this work performed three
literature reviews on the subjects. The first review systematically mapped the state of the art
on sampling techniques and ML models for imbalanced data applications of various domain
areas — investigating their performance and domain preference, defining new taxonomies, and
compiling lessons learned for new solutions. The last two reviews searched for software ar-
chitectures focused on active learning from imbalanced data and efficient supervised learning
designs, gathering relevant functionalities.

In effect, Heimdall unified the essential concepts from reviewed architectures and detailed
a set of rules and algorithms for imbalanced data applications. In addition, the proposed archi-
tecture innovated from existing research by proposing a new indicator (BPI) and two reactive
agents to guide and optimize active learning through imbalanced data. After verifying their
contribution separately, the combination of these three novel functionalities proved to signif-
icantly improve the prototype’s performance in comparison to related works and enable fully
automated pipelines through adaptive efficiency — producing better and more sable performance
by sacrificing efficiency in warm-up condition, and later maintaining excellent performance and

efficiency in hot conditions.

6.1 Contributions

This dissertation has the following main scientific contributions:

* Consolidation of best practices in sampling techniques and ML models in imbalanced
data applications, as well as topologies and functionalities of software architectures for
online learning systems — based on literature reviews;

* BPI: a flexible metric to evaluate a ML model’s performance in imbalanced data — focused
on balancing PR according to the application’s needs and further enhancing probability
threshold optimization;

* Adaptive efficiency: a strategy for ML automation through two reactive agents indepen-
dently managing data and ML according to predefined rulesets — enabling better and more

stable performance by sacrificing efficiency in warm-up conditions, and maintaining ex-

90

cellent performance and efficiency in hot conditions;

* Heimdall: an architecture for ML in imbalanced data, compiling consolidated best prac-
tices, probability threshold optimization through BPI, data and model governance through
reactive agents, among other functionalities to extend artificial intelligence capabilities
for existing systems.

Hence, this dissertation is a valuable reference for future online ML systems through imbal-

anced data of any domain area — integrating state of the art and novel proposed solutions.

6.2 Future works

While the ULB-CCFD dataset enables fair comparisons to related works and the CCFDS
tests focus on evaluating the solutions for ML with imbalanced data proposed in Heimdall,
specifically the most innovative — such as BPI and reactive agents —, only some of Heimdall’s
functionalities have been implemented. The proposed architecture describes several preprocess-
ing and ML algorithms that would significantly improve online predictions in imbalanced data
applications with raw datasets.

In this sense, Heimdall presents opportunities for future works by implementing the archi-
tecture and rulesets defined in this research to solve real-world problems explored in all domains
of Section 3.1.3.2. For instance, Supervisory Control And Data Acquisition (SCADA) systems
could apply time series processes, such as anomaly labeling (Figure 23), and outsource complex
analyses through the Examiner.

Additionally, new works could improve upon the evaluation of performance over time by
expanding the analyzed time horizon and exploring data flow in smaller streams or batches. The
current work was limited to sending daily batches due to implementation time constraints, as
well as due to the dataset’s size and IR. Moreover, efficiency of performance over time could
be improved through the application of intelligent multi-agents, rather than rule-based reactive
agents.

The proposed topology is highly efficient for local applications — such as SCADA sys-
tems. However, future works could expand on this research’s findings by generalizing for dis-
tributed/cloud systems.

Finally, the literature reviews from Chapter 3 encompassed works mostly up to 2021 in
accordance to the dissertation’s progress. Nevertheless, the advances and accelerated interest
in generative artificial intelligence applications after 2021 may yield new solutions applying

high-performance oversampling, such as GAN and its variations.

6.3 Publications

The studies for this dissertation currently produced two research papers. The first, published

in the journal “Knowledge and Information Systems”, surveying works on sampling techniques

91

for ML with imbalanced data (VARGAS et al., 2022). The second, proposing Heimdall and
evaluating the prototype described in this dissertation, submitted to the same journal. Hence:
1. VARGAS, V. W.; ARANDA, J. A. S.; COSTA, R. S.; PEREIRA, P. R. S.; BARBOSA, J.
L. V. Imbalanced data preprocessing techniques for Machine Learning: a systematic map-
ping study. Knowledge and Information Systems. ISSN 0219-3116. Status: published in
09/11/22. DOI: https://doi.org/10.1007/s10115-022-01772-8.
2. VARGAS, V. W.; ARANDA, J. A. S.; COSTA, R. S.; PEREIRA, P. R. S.; BARBOSA,
J. L. V. A software architecture for online Machine Learning in imbalanced data appli-
cations. Knowledge and Information Systems. ISSN 0219-3116. Status: submitted in
23/09/23.
The subsequent step for this research consists of adapting the developed prototype for online
power system fault prediction (engineering domain) in a real-world SCADA for distribution sys-
tems — applying short circuit and power flow simulations for high-performance oversampling,
a research gap explored in Section 3.1.3.4.
In addition to the dissertation research, the author supported the publication of three more
papers:
1. ARANDA, J. A. S.; COSTA, R. S.; VARGAS, V. W.; PEREIRA, P. R. S.; BARBOSA,
J. L. V.; VIANNA, M. P. Context-aware Edge Computing and Internet of Things in
Smart Grids: A systematic mapping study. Computers and Electrical Engineering. ISSN
0045-7906. Status: published in 02/03/22. DOI: https://doi.org/10.1016/j.compelece-
ng.2022.107826.
2. COSTA, R. S.; ARANDA, J. A. S.; VARGAS, V. W.; PEREIRA, P. R. S.; BARBOSA,
J. L. V.; VIANNA, M. P. Data Analysis Techniques Applied to Distribution Systems: A
Systematic Mapping Study. Electric Power Components and Systems. ISSN 1532-5016.
Status: published in 13/02/23. DOI: https://doi.org/10.1080/15325008.2023.2175927.
3. ARANDA, J. A. S.; COSTA, R. S.; VARGAS, V. W,; PEREIRA, P. R. S.; BARBOSA, J.
L. V.; VIANNA, M. P; SILVA, E. L. M. OntoFreya: A Power distribution ontology for
electric metrics classification. Applied Ontology. ISSN 1570-5838. Status: submitted in
19/05/23.

https://doi.org/10.1007/s10115-022-01772-8
https://doi.org/10.1016/j.compeleceng.2022.107826
https://doi.org/10.1016/j.compeleceng.2022.107826
https://doi.org/10.1080/15325008.2023.2175927

92

93

REFERENCES

AHMED, C. M.; RAMAN, G.; MATHUR, A. P. Challenges in machine learning based
approaches for real-time anomaly detection in industrial control systems. Proceedings of the
6th ACM on Cyber-Physical System Security Workshop, [S.1.], v. 7, 2020.

ALTEXSOFT. Fraud detection, machine learning in fintech and ecommerce. 2021.

AMARASINGHE, T.; APONSO, A.; KRISHNARAJAH, N. Critical analysis of machine
learning based approaches for fraud detection in financial transactions. In: INTERNATIONAL
CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, 2018., 2018, New York,
USA. Proceedings... ACM, 2018. p. 12-17.

AWOYEMLI, J. O.; ADETUNMBI, A. O.; OLUWADARE, S. A. Credit card fraud detection
using machine learning techniques: a comparative analysis. In: INTERNATIONAL
CONFERENCE ON COMPUTING NETWORKING AND INFORMATICS (ICCNJ), 2017.,
2017. Anais... Institute of Electrical and Electronics Engineers Inc., 2017. v. 2017-January,
p. 1-9.

BALDOMINOS, A. et al. A scalable machine learning online service for big data real-time
analysis. In: IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIG DATA
(CIBD), 2014., 2015. Anais... IEEE, 2015. p. 1-8.

BARATA, R. et al. Active learning for imbalanced data under cold start. Proceedings of the
Second ACM International Conference on Al in Finance, [S.1.], p. 1-9, 11 2021.

BATYUK, A.; VOITYSHYN, V.; VERHUN, V. Software architecture design of the real- time
processes monitoring platform. In: IEEE 2ND INTERNATIONAL CONFERENCE ON DATA
STREAM MINING AND PROCESSING, 2018., 2018. Anais... [S.l.: s.n.], 2018. p. 98-101.

BENHAR, H.; IDRIL A.; FERNANDEZ-ALEMAN, J. L. Data preprocessing for heart disease
classification: a systematic literature review. Computer Methods and Programs in
Biomedicine, [S.1.], v. 195, p. 105635, 2020.

BHATORE, S.; MOHAN, L.; REDDY, Y. R. Machine learning techniques for credit risk
evaluation: a systematic literature review. Journal of Banking and Financial Technology,
[S.L],v.4,n. 1, p. 111-138, 2020.

BROWNLEE, J. Imbalanced classification with python: choose better metrics, balance
skewed classes, and apply cost-sensitive learning. v1.3. ed. [S.l.]: Independently published,
2021.

BUDA, M.; MAKI, A.; MAZUROWSKI, M. A. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks, [S.1.], v. 106, p. 249-259, 2018.

CERQUITELLL, T. et al. Towards a real-time unsupervised estimation of predictive model
degradation. In: ACM INTERNATIONAL CONFERENCE PROCEEDING SERIES, 2019.
Anais... [S.1.: s.n.], 2019. p. 1-6.

94

CHANG, Q.; LIN, S.; LIU, X. Stacked-svm: a dynamic svm framework for telephone fraud
identification from imbalanced cdrs. In: ACAI 2019: PROCEEDINGS OF THE 2019 2ND
INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL
INTELLIGENCE, 2019, New York, USA. Anais... ACM, 2019. v. 9, p. 112-120.

CHOIL, J.; JEON, C. Cost-based heterogeneous learning framework for real-time spam
detection in social networks with expert decisions. IEEE Access, [S.1.], v. 9,
p. 103573-103587, 2021.

CHUGH, G.; KUMAR, S.; SINGH, N. Survey on machine learning and deep learning
applications in breast cancer diagnosis. Cognitive Computation, [S.1.], p. 1-20, 2021.

COHEN, G. et al. Learning from imbalanced data in surveillance of nosocomial infection.
Artificial Intelligence in Medicine, [S.1.], v. 37, n. 1, p. 7-18, 2006.

COOPER, I. D. What is a “mapping study?”. Journal of the Medical Library Association,
[S.1.], v. 104, n. 1, p. 76-78, jan 2016.

De Almeida, L. G. et al. Data analysis techniques in vehicle communication networks:
systematic mapping of literature. IEEE Access, [S.1.], v. 8, p. 199503-199512, oct 2020.

DEWI, C. et al. Improve performance of extreme learning machine in classification of
patchouli varieties with imbalanced class. In: SIET *20: PROCEEDINGS OF THE 5TH
INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING
AND TECHNOLOGY, 2020, New York, USA. Anais... ACM, 2020. p. 16-22.

DONG, Y.; WANG, X. A new over-sampling approach— random-smote for learning from
imbalanced data sets. In: KSEM 2011: STH INTERNATIONAL CONFERENCE ON
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, 2011, Irvine, USA.
Anais. .. Springer, 2011. p. 343-352.

DASTNER, K. et al. Classification of military aircraft in real-time radar systems based on
supervised machine learning with labelled ads-b data. 2018 Symposium on Sensor Data
Fusion: Trends, Solutions, Applications, SDF 2018, [S.1.], 11 2018.

FARIS, H. et al. Improving financial bankruptcy prediction in a highly imbalanced class
distribution using oversampling and ensemble learning: a case from the spanish market.
Progress in Artificial Intelligence, [S.1.], v. 9, n. 1, p. 31-53, 2020.

FELIX, E. A.; LEE, S. P. Systematic literature review of preprocessing techniques for
imbalanced data. IET Software, [S.1.], v. 13, n. 6, p. 479-496, 2019.

FERNANDEZ, A. et al. Foundations on imbalanced classification. [S.1.]: Springer, Cham,
2018. 19-46 p.

FILHO, A. H. et al. Imbalanced learning techniques for improving the performance of
statistical models in automated essay scoring. In: KNOWLEDGE-BASED AND
INTELLIGENT INFORMATION & ENGINEERING SYSTEMS: PROCEEDINGS OF THE
23RD INTERNATIONAL CONFERENCE KES2019, 2019, Budapest, Hungary. Anais...
Elsevier B.V., 2019. v. 159, p. 764-773.

FIORE, U. et al. Using generative adversarial networks for improving classification
effectiveness in credit card fraud detection. Information Sciences, [S.1.], v. 479, p. 448-455,
4 2019.

95

FOTOUHI, S.; ASADI, S.; KATTAN, M. W. A comprehensive data level analysis for cancer
diagnosis on imbalanced data. Journal of Biomedical Informatics, [S.1.], v. 90, p. 103089,
2019.

GANGWAR, A. K.; RAVI, V. Wip: generative adversarial network for oversampling data in
credit card fraud detection. In: ICISS 2019: 15TH INTERNATIONAL CONFERENCE ON

INFORMATION SYSTEMS SECURITY, 2019, Hyderabad, India. Anais... Springer, 2019.
v. 11952, p. 123-134.

GICIC, A.; SUBASI, A. Credit scoring for a microcredit data set using the synthetic minority
oversampling technique and ensemble classifiers. Expert Systems, [S.L.], v. 36, n. 2, p. 1-22,
2018.

GOOGLE. Classification: precision and recall | machine learning crash course | google
developers. 2020.

GUZELLA, T. S.; CAMINHAS, W. M. A review of machine learning approaches to spam
filtering. Expert Systems with Applications, [S.1.], v. 36, n. 7, p. 10206-10222, 2009.

GEéRON, A. Hands-on machine learning with scikit-learn and tensorflow: concepts, tools,
and techniques to build intelligent systems. 1st. ed. [S.1.]: O’Reilly, 2017.

HALDAR, S. et al. Improved epilepsy detection method by addressing class imbalance
problem. In: IEEE 9TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND
MOBILE COMMUNICATION CONFERENCE (IEMCON), 2018., 2019, Vancouver, BC,
Canada. Anais... IEEE, 2019. p. 934-939.

HAN, X. et al. A gaussian mixture model based combined resampling algorithm for
classification of imbalanced credit data sets. International Journal of Machine Learning
and Cybernetics, [S.1.], v. 10, n. 12, p. 3687-3699, 2019.

HANUSSEK, M.; BLOHM, M.; KINTZ, M. Can AutoML outperform humans? An
evaluation on popular OpenML datasets using AutoML Benchmark. In: INTERNATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, 2020.,
2020, Cairo, Egypt. Anais... ACM, 2020. p. 29-32.

HAPKE, H.; NELSON, C. Building machine learning pipelines automating model life
cycles with tensorflow. 1st. ed. [S.1.]: O’Reilly, 2020.

HE, H.; MA, Y. Imbalanced learning — foundations, algorithms and applications. [S.1.]:
Wiley, 2013.

HU, Z. et al. Deep learning for image-based cancer detection and diagnosis — a survey.
Pattern Recognition, [S.1.], v. 83, p. 134-149, 2018.

IDRI, A. et al. A systematic map of medical data preprocessing in knowledge discovery.
Computer Methods and Programs in Biomedicine, [S.1.], v. 162, p. 69-85, 2018.

ISHTIAQ, U. et al. Diabetic retinopathy detection through artificial intelligent techniques: a
review and open issues. Multimedia Tools and Applications, [S.1.], v. 79, p. 15209-15252,
2020.

96

ITOO, F.; MEENAKSHI; SINGH, S. Comparison and analysis of logistic regression, naive
bayes and knn machine learning algorithms for credit card fraud detection. International
Journal of Information Technology, [S.1.], p. 1-9, 2020.

JIANG, J. et al. A novel multi-module neural network system for imbalanced heartbeats
classification. Expert Systems with Applications: X, [S.1.], v. 1, p. 100003, 2019.

JIANG, N.; LI, N. A wind turbine frequent principal fault detection and localization approach
with imbalanced data using an improved synthetic oversampling technique. International
Journal of Electrical Power and Energy Systems, [S.1.], v. 126, Part A, p. 106595, 2021.

JOHNSON, J. M.; KHOSHGOFTAAR, T. M. Survey on deep learning with class imbalance.
Journal of Big Data, [S.L], v. 6, p. 1-54, 2019.

KAUR, H.; PANNU, H. S.; MALHI, A. K. A systematic review on imbalanced data
challenges in machine learning: applications and solutions. ACM Computing Surveys, [S.L],
v. 52, n. 4, p. 1-36, 2019.

Keshav S. How to read a paper. ACM SIGCOMM Computer Communication Review,
[S.1.], v. 37, n. 3, p. 83-84, jul 2007.

KITCHENHAM, B. et al. Systematic literature reviews in software engineering — a tertiary
study. Information and Software Technology, [S.1.], v. 52, n. 8, p. 792-805, aug 2010.

LEE, Y. O.; KIM, Y. J. The effect of resampling on data-imbalanced conditions for prediction
towards nuclear receptor profiling using deep learning. Molecular Informatics, [S.1.], v. 39,
n. 8, p. 1900131, 2020.

LEL Y. et al. Applications of machine learning to machine fault diagnosis: a review and
roadmap. Mechanical Systems and Signal Processing, [S.1.], v. 138, p. 106587, 2020.

LI, Q.; MAO, Y. A review of boosting methods for imbalanced data classification. Pattern
Analysis and Applications, [S.1.], v. 17, p. 679-693, 2014.

LI, X. et al. Building an online defect detection system for large-scale photovoltaic plants.
BuildSys 2019 - Proceedings of the 6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation, [S.1.], p. 253-262, 11 2019.

LI, Z.; JING, X. Y.; ZHU, X. Progress on approaches to software defect prediction. IET
Software, [S.1.], v. 12, n. 3, p. 161-175, 2018.

LIU, Q.; MA, G.; CHENG, C. Data fusion generative adversarial network for multi-class
imbalanced fault diagnosis of rotating machinery. IEEE Access, [S.1.], v. 8, p. 70111-70124,
2020.

LIU, S. et al. Addressing the class imbalance problem in twitter spam detection using
ensemble learning. Computers and Security, [S.1.], v. 69, p. 3549, 2017.

MA, J. et al. Predicting seminal quality via imbalanced learning with evolutionary safe-level
synthetic minority over-sampling technique. Cognitive Computation, [S.1.], p. 1-12, 2019.

MAHADEVAN, A.; AROCK, M. A class imbalance-aware review rating prediction using
hybrid sampling and ensemble learning. Multimedia Tools and Applications, [S.1.], v. 80,
n. 5, p. 6911-6938, 2021.

97

MALHOTRA, R. A systematic review of machine learning techniques for software fault
prediction. Applied Soft Computing, [S.1.], v. 27, p. 504-518, 2015.

MALHOTRA, R.; KAMAL, S. An empirical study to investigate oversampling methods for

improving software defect prediction using imbalanced data. Neurocomputing, [S.1.], v. 343,
p. 120-140, 2019.

MALHOTRA, R.; LATA, K. An empirical study on predictability of software maintainability
using imbalanced data. Software Quality Journal, [S.1.], v. 28, n. 4, p. 1581-1614, 2020.

MARQUES, A. I.; GARCIA, V.; SANCHEZ, J. S. On the suitability of resampling techniques
for the class imbalance problem in credit scoring. Journal of the Operational Research
Society, [S.1.], v. 64, n. 7, p. 1060-1070, 2013.

MCMAHON, A. P. Machine learning engineering with python: manage the production life
cycle of machine learning models using mlops with practical examples. 1. ed. [S.1.]: Packt
Publishing Ltd., 2021. 1-277 p.

MURESAN, S. et al. Pre-processing flow for enhancing learning from medical data. In: IEEE
11TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER
COMMUNICATION AND PROCESSING, ICCP 2015, 2015., 2015, Cluj-Napoca, Romania.
Anais... IEEE, 2015. p. 27-34.

MiLLER, A. C.; GUIDO, S. Introduction to machine learning with python: a guide for
data scientists. 1st. ed. [S.1.]: O’Reilly, 2017.

NNAMOKO, N.; KORKONTZELOS, 1. Efficient treatment of outliers and class imbalance for
diabetes prediction. Artificial Intelligence in Medicine, [S.1.], v. 104, p. 101815, 2020.

PADGHAM, L.; WINIKOFF, M. Developing intelligent agent systems — a practical guide.
[S.L.]: John Wiley and Sons Ltd, 2004.

PANDEY, S. K.; MISHRA, R. B.; TRIPATHI, A. K. Machine learning based methods for
software fault prediction: a survey. Expert Systems with Applications, [S.1.], v. 172,
p. 114595, 2021.

PEREIRA, R. M. et al. Covid-19 identification in chest x-ray images on flat and hierarchical
classification scenarios. Computer Methods and Programs in Biomedicine, [S.1.], v. 194,
p. 105532, 2020.

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting systematic
mapping studies in software engineering: an update. Information and Software Technology,
[S.L], v. 64, p. 1-18, aug 2015.

PRISCILLA, C. V.; PRABHA, D. P. Credit card fraud detection: a systematic review. In:
FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND
CUTTING-EDGE TECHNOLOGIES (ICICCT 2019), 2019, Istanbul, Turkey. Proceedings...
Springer, 2019. p. 290-303.

PUMSIRIRAT, A.; YAN, L. Credit card fraud detection using deep learning based on
auto-encoder and restricted boltzmann machine. International Journal of Advanced
Computer Science and Applications, [S.1.], v. 9, p. 18-25, 55 2018.

98

PURNAMI, S. W.; TRAPSILASIWI, R. K. Smote-least square support vector machine for
classification of multiclass imbalanced data. In: ICMLC 2017: PROCEEDINGS OF THE 9TH
INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING,
2017, New York, USA. Anais... ACM, 2017. p. 107-111.

RAZA, M.; QAYYUM, U. Classical and deep learning classifiers for anomaly detection. In:
INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND
TECHNOLOGY, IBCAST 2019, 2019., 2019. Anais... Institute of Electrical and Electronics
Engineers Inc., 2019. p. 614-618.

REKHA, G.; REDDY, V. K.; TYAGI, A. K. An earth mover’s distance-based undersampling
approach for handling class-imbalanced data. International Journal of Intelligent
Information and Database Systems, [S.1.], v. 13, n. 2-4, p. 376-392, 2020.

RUAN, H. et al. Deep learning-based fault prediction in wireless sensor network embedded
cyber-physical systems for industrial processes. IEEE Access, [S.1.], v. 10, p. 10867-10879,
2022.

RUSTAM, Z. et al. Hybrid preprocessing method for support vector machine for classification
of imbalanced cerebral infarction datasets. International Journal on Advanced Science,
Engineering and Information Technology, [S.1.], v. 9, n. 2, p. 685-691, 2019.

SAIA, R.; CARTA, S. Evaluating the benefits of using proactive transformed-domain-based
techniques in fraud detection tasks. Future Generation Computer Systems, [S.1.], v. 93,
p. 18-32, 4 2019.

SANTOS, M. S. et al. A new cluster-based oversampling method for improving survival
prediction of hepatocellular carcinoma patients. Journal of Biomedical Informatics, [S.1.],
v. 58, p. 49-59, 2015.

SAP. Standardized technical architecture modeling — conceptual and design level.
[S.1.: s.n.], 2007. (March).

SCIKIT-LEARN. Support vector machines — complexity. 2021.

SHAKEEL, F.; SABHITHA, A. S.; SHARMA, S. Exploratory review on class imbalance
problem: an overview. In: INTERNATIONAL CONFERENCE ON COMPUTING,
COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2017., 2017,
Delhi, India. Anais... IEEE, 2017. p. 1-8.

SHAMSUDIN, H. et al. Combining oversampling and undersampling techniques for
imbalanced classification: a comparative study using credit card fraudulent transaction dataset.
In: IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION
(ICCA), 2020., 2020, Singapore. Anais... IEEE, 2020. p. 803—-808.

SILVA, R. D. A.; BRAGA, R. T. V. Simulating systems-of-systems with agent-based
modeling: a systematic literature review. IEEE Systems Journal, [S.1.], v. 14, n. 3,
p. 3609-3617, sep 2020.

SIRSAT, M. S.: FERME, E.; CAMARA, J. Machine learning for brain stroke: a review.
Journal of Stroke and Cerebrovascular Diseases, [S.1.], v. 29, n. 10, p. 105162, 2020.

99

SMITI, S.; SOUI, M. Bankruptcy prediction using deep learning approach based on borderline
smote. Information Systems Frontiers, [S.1.], v. 22, n. 5, p. 1067-1083, 2020.

SPELMEN, V. S.; PORKODI, R. A review on handling imbalanced data. In:
INTERNATIONAL CONFERENCE ON CURRENT TRENDS TOWARDS CONVERGING
TECHNOLOGIES (ICCTCT), 2018., 2018, Coimbatore, India. Anais... IEEE, 2018.

p. 1-11.

SUSAN, S.; KUMAR, A. The balancing trick: optimized sampling of imbalanced datasets—a
brief survey of the recent state of the art. Engineering Reports, [S.1.], v. 3, n. 4, p. 1-24, 2020.

TASHKANDI, A.; WIESE, L. A hybrid machine learning approach for improving mortality
risk prediction on imbalanced data. In: WAS2019: PROCEEDINGS OF THE 21ST
INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND
WEB-BASED APPLICATIONS & SERVICES, 2019, New York, USA. Anais... ACM, 2019.
p. 83-92.

THANOUN, M. Y.; YASEEN, M. T. A comparative study of parkinson disease diagnosis in
machine learning. In: ICAAI 2020: 2020 THE 4TH INTERNATIONAL CONFERENCE ON
ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, New York, USA. Anais... ACM,
2020. p. 23-28.

TRA, V.; DUONG, B. P.; KIM, J. M. Improving diagnostic performance of a power
transformer using an adaptive over-sampling method for imbalanced data. IEEE Transactions
on Dielectrics and Electrical Insulation, [S.1.], v. 26, n. 4, p. 1325-1333, 2019.

ULB. Credit card fraud detection | kaggle. 2018.

VARGAS, V. W. de et al. Imbalanced data preprocessing techniques for machine learning: a
systematic mapping study. Knowledge and Information Systems, [S.1.], v. 65, p. 31-57,
12022.

VU, L. et al. Learning from imbalanced data for encrypted traffic identification problem. In:
SOICT ’16: PROCEEDINGS OF THE SEVENTH SYMPOSIUM ON INFORMATION AND
COMMUNICATION TECHNOLOGY, 2016, New York, USA. Anais... ACM, 2016.

p. 147-152.

WANG, H. et al. An ensemble learning framework for credit card fraud detection based on
training set partitioning and clustering. In: IEEE
SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI, 2018., 2018. Anais... IEEE,
2018. p. 94-98.

WANG, H.; YE, W. Transient stability evaluation model based on ssdae with imbalanced
correction. IET Generation, Transmission and Distribution, [S.1.], v. 14, n. 11,
p. 2209-2216, 2020.

WONG, G. Y.; LEUNG, F. H.; LING, S. H. A novel evolutionary preprocessing method based
on over-sampling and under-sampling for imbalanced datasets. In: IECON 2013 - 39TH
ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2014,
Vienna, Austria. Anais... IEEE, 2014. p. 2354-2359.

YAN, K. et al. Unsupervised learning for fault detection and diagnosis of air handling units.
Energy and Buildings, [S.1.], v. 210, p. 109689, 2020.

100

YAN, S. et al. Improving lung cancer prognosis assessment by incorporating synthetic
minority oversampling technique and score fusion method. Medical Physics, [S.1.], v. 43, n. 6,
p. 2694-2703, 2016.

ZHANG, C.; ZHOU, Y.; DENG, Y. Vcos: a novel synergistic oversampling algorithm in
binary imbalance classification. IEEE Access, [S.1.], v. 7, p. 145435-145443, 2019.

ZHANG, J. et al. Imbalanced classification of mental workload using a cost-sensitive majority
weighted minority oversampling strategy. Cognition, Technology and Work, [S.1.], v. 19,
n. 4, p. 633-653, 2017.

ZHANG, T. et al. Intelligent fault diagnosis of machines with small & imbalanced data: a
state-of-the-art review and possible extensions. ISA Transactions, [S.1.], 2021.

ZHANG, X. et al. Efficiently predicting hot spots in ppis by combining random forest and
synthetic minority over-sampling technique. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, [S.1.], v. 16, n. 3, p. 774-781, 2019.

ZHAO, S. X.; WANG, X. long; YUE, Q. sheng. A novel mixed sampling algorithm for
imbalanced data based on xgboost. In: CWSN 2020: 14TH CHINA CONFERENCE ON
WIRELESS SENSOR NETWORKS, 2020, Dunhuang, China. Anais... Springer, 2020.
p. 181-196.

ZHOU, L. Performance of corporate bankruptcy prediction models on imbalanced dataset: the
effect of sampling methods. Knowledge-Based Systems, [S.1.], v. 41, p. 16-25, 2013.

ZHOU, Q. et al. K-means clustering based undersampling for lower back pain data. In:
ICBDT 2020: PROCEEDINGS OF THE 2020 3RD INTERNATIONAL CONFERENCE ON
BIG DATA TECHNOLOGIES, 2020, New York, USA. Anais... ACM, 2020. p. 53-57.

	Introduction
	Motivation
	Research question
	Objectives
	Methodology
	Structure

	Background
	Imbalanced data
	Supervised Machine Learning
	Model evaluation and optimization
	Pipelines

	Final considerations

	Related works
	Imbalanced data preprocessing for Machine Learning
	Related works
	Research method
	Results
	Conclusion

	Real-Time Machine Learning architectures
	Imbalanced data
	General applications

	Final considerations

	Heimdall
	Architecture overview
	Data management
	Storage
	Machine Learning and evaluation
	Interface
	Applications
	Final considerations

	Experimental evaluation
	Application and dataset
	Testing methodology
	Results and discussion
	Final considerations

	Conclusion
	Contributions
	Future works
	Publications

	References

