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ABSTRACT

The integration of blockchain technology within the healthcare industry has garnered sig-
nificant attention due to its potential to address critical challenges such as data privacy, interop-
erability, and the integrity of health records. Although electronic health record (EHR) standards
such as HL.7 FHIR and OpenEHR have established frameworks for data consistency and system
interoperability, concerns remain about the privacy and security of sensitive patient information,
particularly in light of regulations such as the Health Insurance Portability and Accountability
Act (HIPAA), the General Data Protection Regulation (GDPR), and the Lei Geral de Protecdo de
Dados (LGPD). Most related work stores only data hash on blockchain nodes, making data val-
idation impossible from a blockchain perspective, which raises the risks of invalid or malicious
data being provided. This work introduces the MEPCA model, a novel framework grounded in
five core principles that explore the application of blockchain and cryptographic technologies
in the management of health records, focusing on maximizing the use of on-chain resources
for the processing of EHR data. Our main contribution is to provide guidance and techniques
to maximize the adoption of decentralized solutions in the healthcare industry, with practical
use cases and technical analysis. Our model introduces novel elements for secure data sharing,
called Data Steward and Shared Data Vault, and proposes an innovative method that gener-
ates Zero-Knowledge Proofs of HL7 FHIR required fields for hash digests. We run technical
experiments with Fully Homomorphic Encryption (FHE) algorithms to evaluate on-chain data
analysis using a dataset with 1.3 million records and evaluates on-chain data processing and
storage with a 10 thousand HL7 FHIR dataset with plain and hash representation. Our find-
ings suggest that maximizing on-chain processing can improve the security and reliability of
health records, offering a robust alternative to traditional off-chain data processing approaches.
The adoption of the MEPCA model can bring an evolution to the healthcare industry, allowing
society and institutions to have a more secure and efficient digital infrastructure for EHR.

Keywords: Blockcahin. Electronic Health Records. Personal Health Records. Homomorphic
Encryption. Distributed Hash Tables. Distributed Network.






10

LIST OF FIGURES

Solution contribution: in the traditional model, the blockchain layer has res-
tricted contribution to the solution, while in the MEPCA model, we promote
enhanced on-chain data processing and end-to-end encryption, in a scenario
where the blockchain layer is able to validate incoming data, even when it is
ahashdigest. . . . . . .. .. 19

EHR and PHR Overview: an evolution from a institution-centered data ma-
nagement to a patient-centered approach . . . . . .. ... ... ... ... 22

Blockchain strategies and on-chain usage comparison. First, the traditional
approach, where only a hash representation is processed on-chain, with no
data validation. Second, MEPCA recommended approaches: a) a minimum
reliable model has on-chain data validity check to ensure incoming data com-
plies with standards; b) a hybrid approach is an alternative where part of the
data is stored into blockchain nodes and another part in traditional infras-
tructure; ¢) the recommended approach for most use cases has data analysis
and proof generation on-chain, even on encrypted data. . . . . . . ... .. 40
Solution Data Flow: Patient authorizes a Data Steward (a) to keep an encryp-
ted version of PHR off-chain (b) on an IPFS network (c); A Health Institution
requires a patient for PHR (d) and, whenever authorized, PHR metadata can
be shared on-chain (e) in a blockchain network (f). . . . . .. ... ... .. 45
Architecture Components: IPFS Network for off-chain data, Blockchain
Network for on-chain metadata, Data Steward to keep encrypted version of
PHR and Shared Data Vault to support temporary data sharing encrypted
with requester publickey. . . . . . .. ... ... L L oL 46
Solution Sequence Diagram with three primary use cases represented: 1) Pa-
tient stores encrypted health records in Data Steward nodes (IPFS network);
2) Patient stores encrypted metadata in Blockchain Nodes; 3) Patient autho-
rizes health institution and consortium to access a portion of data in a Shared
Data Vault for a predefined period. . . . . .. ... ... ... ... ... 48
On-chain hash proof algorithm for HL7 FHIR data: a Merkle Tree based
system for Zero Knowledge Proof generation. The system is able to produce
verify if a given hash digest contains required fields in the input. Required
fields map deterministically to specific leaves in a Merkle Tree, making it
possible to use the complementary values from a Merkle Proof to act as
proof toaverifier. . . . . . ... .. L 51

Experiments network architecture using Hyperledger Fabric 2.5 and Caliper

2.0 L e 57
Transactions per second for read and write. Fixed Rate delivered better re-

sults for write, while Fixed Load delivered the best overall performance. Ma-
ximum Rate reached worst result of the tree strategies. Fixed Rate resulted

in failing transactions due to system overload. . . . . . ... ... .. ... 59
Hash processing in milliseconds compared to (WANG et al., 2021) and MEPCA.
As the number of required fields increases, the processing time reduces. The
baseline hash calculation for SHA-256 took 0.00993ms to calculate, and the
reference value from (WANG et al., 2021) took 0.68ms. . . . . . . . .. .. 60



11

12

Hash storage compared to (WANG et al., 2021) and MEPCA. Proof cal-
culation takes 364 B for one required field and decreases as the number of
required fields increases, as the proof size requires less data for validation.
It reaches better results compared to (WANG et al., 2021) for higher number
ofrequired fields. . . . . . . .. ..o
Blockchain Network Simulation: 10k pool size with 500B of block header
and 5 seconds block time. Scenarios compare different block sizes (535KB,
1070KB, and 2140KB) in three formats (raw data, encrypted cyphertext, and
compressed encrypted cyphertext) with 10, 30, and 100 nodes distributed
in 3 different regions. The chart summarizes the time in seconds for 10k
registries to propagate in the network. . . . . . . ... .. Lo



B W

o))

10

11

LIST OF TABLES
Related work, organized by use case, focus and support to health data stan-

Gaps and Opportunities: a summary of gaps found in related work and that
raise opportunities for contribution in the proposed model . . . . . . . . ..

Key requisites for MEPCA model implementation . . . . . ... ... ...
MEPCA components and use cases . . . . . . . . . . . v vt e
Applied Example . . . . .. .. ..o

Evaluation aspects for the proposed model . . . . . .. ... ... .....
Evaluation results for data write: Fixed rate reached best results, but with
higher number of pending transactions and some failing transactions. Fixed
Load reached 64.3 TPS with 12 pending transactions, while Maximum Rate
generated no pending transactions, while delivering 51.6 TPS. . . . . . . ..
Performance evaluation: FHE calculation on different dataset sizes compa-
ring the raw data to encrypted data (in seconds). The second and third co-
lumns show the overall calculation time for addition in seconds comparing
raw data and ciphertext respectively. . . . . . .. ... . oo
Algorithm profiling: parameters n and ¢ for Polynomial Modulus Degree
and Coefficient Modulus respectively in BFV encryption. The steps of en-
cryption, addition and decryption are in the following rows. . . . . . . . ..
Storage consumption: as the (n, ¢) pair increases, the ciphertext string size
in KB also increases. Each column S has the average size of each registry in
plain, encrypted and compressed format, while each column 7" has the total
storage amount for a set of 100k registries . . . . .. ... ... ... ...
Security and Privacy scenarios: comparison. . . . . . . . . .. .. ... ..

60






ABE
DHT
DS
EHR
FHE
FHIR
GDPR
HE
HIPAA
HL7
IoHT
IPFS
LGPD
PHE
PHR
SC
SDV
ZKP

LIST OF ACRONYMS

Attribute-Based Encryption

Distributed Hash Table

Data Steward

Electronic Health Record

Fully Homomorphic Encryption

Fast Healthcare Interoperability Resources
General Data Protection Regulation
Homomorphic Encryption

Health Insurance Portability and Accountability Act
Health Level Seven International

Internet of Health Things

Interplanetary File Systems

Lei Geral de Protecao de Dados

Partally Homomorphic Encryption
Personal Health Record

Smart Contract

Shared Data Vault

Zero-Knowledge Proof






CONTENTS

1 INTRODUCTION . . . . . . . . . . e 17
1.1 Research Problem and Objectives . . . .. ... ... ............ 18
1.2 Research Hypothesis . . . . .. ... ... ... ... . ..... . ...... 20
1.3 Text Organization . . . . . . . . ... ... ... .. .. ... ... 20
2 BACKGROUND . . . . . ... . . e 21
2.1 Electronic Health Records . . . . . . . ... ... ... ... ......... 21
2.2 Healthcare DataStandards . . . . . . . ... ... ... ... ... ..... 22
2.3 Distributed Networks and Cryptography Components . . . . . . ... .. 25
2.3.1 Blockchain Networks . . . . . . . . . . . . .. 25
2.3.2 Network architecture and configuration . . . . . .. ... ... ... ..... 26
2.3.3 Distributed Hash Table and IPFS . . . . . . .. ... ... ... ....... 27
2.3.4 Asymmetric Cryptography and Digital Signatures . . . . ... ... ... .. 27
2.3.5 Hash functions and Hash Structures . . . . ... ... ... ......... 28
2.3.6 Zero-Knowledge Proofs. . . . . . . ... ... ... ... ... ... ... 28
2.3.7 Proxy Re-encryption and Attribute-Based Encryption. . . . . ... ... .. 29
2.3.8 Homomorphic Encryption . . . . . ... ... ... 29
3 RELATEDWORK . . . . . . . . e 31
3.1 SelectionCriteria . . . . . . ... ... ... .. ... 31
3.2 State-of-the-art . . . .. ... ... . ... ... 32
3.3 Open Gaps and Opportunities . . . . ... ... ... ... .......... 36
4 MEPCAMODEL. . ... ... .. . . e 39
4.1 Design DecisionsandUsecases . .. ... ... ............... 39
4.1.1 Use Case 1: International Patient Summary (IPS) . .. ... ........ 42
4.1.2 Use Case 2: Digital Public Infrastructure (DPI-H) . . . . ... ... ... .. 43
4.1.3 Use Case 3: Internet of Health Things (loHT) . . . ... ... ... ... .. 43
4.2 End-to-end data protectionforPHR. . . . . . . ... ... ... ... ... 44
421 DataSteward . .. .. ... ... 46
422 SharedDataVault. . .. ... ... ... . . ... ... 47
4.3 On-chainhashproofs . . ... ... .. ... ... ... ... ......... 47
5 RESULTSANDDISCUSSION. . . . .. .. ... .. .. .. ... ... ..... 53
5.1 Methodology . . . . . . . . . . . .. 53
5.1.1 On-chaindataprocessing . ... .. ... ... . .. ... ... ... ... 55
5.1.2 Data analysison encrypteddata . ... ... ... ... ........... 57
5.2 ExperimentsandResults . . . . . . ... ... ... .. L. 58
5.2.1 Test Set 1: HL7 FHIR on-chain processing . . . . ... ... .. ....... 58
5.2.2 Test Set 2: Fully Homomorphic Encryption. . . . . . ... ... ... .... 59
5.3 Discussion . . . . . ... 64
6 CONCLUSION . . . . . . . . . 67
6.1 Scientific Contribution. . . . . ... ... ... ... ... ... ... .... 68
6.2 Publications . . . . . . ... 69
6.3 Limitations and FutureWork . . . . . . ... ... ... ... .. ....... 69

BIBLIOGRAPHY . . . . . . 71






17

1 INTRODUCTION

The adoption of blockchain solutions for healthcare recently gained significant attention in
the scientific community and in the healthcare industry (NAMASUDRA, 2024), as the popu-
lation and institutions increase the demand for efficient services, increased privacy protection,
and a higher level of integration between the actors in the industry. Blockchain technologies
provide many elements that contribute significantly to important topics, such as security and
privacy (YANG et al., 2023), interoperability (SENTAUSA; HAREVA, 2023), and could be
very helpful in scenarios such as the COVID-19 pandemics (NG et al., 2021), medical research,
counterfeit prevention, and management of medical supply chains (TAHERDOOST, 2023). In
this work, we focus on the use of blockchain and cryptography technologies for health records.

Electronic Health Record (EHR) refers to an electronic structure for patient health records,
generally collected and stored by health institutions(ISO, 2021). Patient Health Record (PHR)
refers to an electronic structure for patient health records, collected by devices such as IoT sen-
sors (ARCHER et al., 2011; DA COSTA et al., 2018) and stored in a repository that supports
sharing in different digital formats (ISO, 2021; ROEHRS; COSTA; ROSA RIGHI, 2017). The
healthcare industry has evolved over the last few decades in defining standards for Electronic
Health Records (EHR), such as HL7 FHIR (Health Level Seven International, 2019) and Ope-
nEHR (OPENEHR, 2020). These standards provide benefits such as system interoperability,
data consistency, efficiency, and cost savings (SETYAWAN et al., 2021). However, from a
privacy and security perspective, they should also offer means to protect patient privacy and
comply with data protection regulations (FINCK, 2019) such as the Health Insurance Porta-
bility and Accountability Act (HIPAA) (HIPAA, 1996), the General Data Protection Regula-
tion (GDPR) (UNION, 2016), and the Lei Geral de Protecao de Dados (LGPD) (REPUBLICA,
2018).

Although scalability is a challenge in blockchain solutions for EHR, considering the amount
of data, it could not become feasible in terms of computational resources and cost (MISBHAUD-
DIN et al., 2020). Thus, most existing solutions adopt off-chain data processing, such as Cloud
Service Providers (CSP) (REEGU et al., 2023; YAZDINEJAD et al., 2020), the Interplanetary
Protocol File System (IPFS) (MADINE et al., 2020a; MISBHAUDDIN et al., 2020; VANIN
et al., 2023) or Distributed Hash Table (DHT) (ROEHRS; COSTA; ROSA RIGHI, 2017), over
the on-chain alternative, frequently sending only a hash representation of a given input data to
the blockchain (TAHERDOOST, 2023). Such strategies face the risk of cyberattacks that could
cause data leaks (CHEN et al., 2022), and the introduction of incorrect or malicious data into
blockchain nodes if there are no means of on-chain validation of incoming data in terms of
structure, cardinality, and value domains (Health Level Seven International, 2024).

In this work, we analyze many technical aspects in the use of blockchain technologies for the
EHR lifecycle. We introduce the MEPCA model, a combination of five principles (Maximize,
Encrypt, Prove, Comply, and Adapt) divided into multiple architectural building blocks from
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blockchain and cryptography, aimed at enhancing the use of EHR on-chain processing. We
propose a set of key requirements and provide technical background for adoption, detailed in
three different use cases, and levels of adoption. The model presents an algorithm for on-chain
hash validation of HL7 FHIR JSON data, based on Merkle Trees and Zero-Knowledge Proofs.
We applied the MPECA model for PHR interoperability, proposing a hybrid strategy for data
and metadata, using Hyperledger Fabric and IPFS network, end-to-end encryption, and Fully
Homomorphic Encryption (FHE) techniques to support data analysis on encrypted data.

We evaluated the proposed model, analyzing technical aspects of on-chain storage of HL7
FHIR documents, with a data set of 10,000 registries, compared to the hash-based model, consi-
dering processing time for proof calculation, along with security aspects of on-chain validation
of hash digests. We also evaluated the FHE calculation on a data set of 1.3M cases from the Uni-
ted States Center for Disease Control and Prevention (CDC). We provide analysis of algorithm
performance, cryptography calculation, and security and privacy scenarios to identify impacts
on each building block in the proposed model. Our main contribution is to provide guidance
and techniques to maximize the adoption of decentralized solutions in the healthcare industry,

with practical use cases and technical analysis.

1.1 Research Problem and Objectives

The digital approach to health records has many applications in the health industry (CHUKWU;
GARG, 2020; YAQOORB et al., 2022). When it comes to data sharing and interoperability, so-
lutions must address issues such as scalability, privacy protection, and compliance with regula-
tion (PERERA et al., 2020; SHUAIB et al., 2021; PAIK et al., 2019). Blockchain solutions for
EHR recently gained significant attention in the scientific community (TAHERDOOST, 2023),

although most approaches face the following problems:

* Most data processing off-chain: the use of the blockchain only to store data, especially
hash digest, raises risks to data consistency, as whenever blockchain nodes do not run any

business logic or validation, malicious or invalid information might be stored on-chain;

e Unencrypted data: whenever during transport or at rest, unencrypted data processing

raises privacy issues, especially unauthorized access;

» Lack of control from Data Subjects: especially with PHR, allowing data subjects to ma-
nage access to data is key for a secure blockchain EHR syste. Most models do not im-
plement access management systems that include data subjects as responsible for data, or

any delegation model to service providers.

Our work approaches the context of EHR with the given research problem: How to im-

prove smart healthcare for the exchange and interoperability of EHR, protecting privacy,
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Figure 1: Solution contribution: in the traditional model, the blockchain layer has restricted
contribution to the solution, while in the MEPCA model, we promote enhanced on-chain data
processing and end-to-end encryption, in a scenario where the blockchain layer is able to vali-
date incoming data, even when it is a hash digest.

meeting scalability and regulatory requirements? The problem relates to the EHR lifecy-
cle, considering the challenges related to access policy, data security, and support for decision-
making. To approach the research question, our main objective is to create a blockchain-based
model to maximize on-chain EHR data processing, promoting privacy protection and data
interoperability. To achieve this objective, we establish the following sub-objectives:

1. Propose a model to drive the adoption of on-chain strategies and support decision-making;

2. Design blockchain and cryptography strategies that support multiple use cases for EHR,

with technical components;

3. Apply the model to PHR interoperability, promoting end-to-end encryption and data

analysis on encrypted data;

4. Evaluate technical aspects regarding storage occupation, data synchronization, crypto-

graphy methods and data analysis.
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1.2 Research Hypothesis

To approach the proposed research problem and deliver the objectives of this work, we es-
tablish some hypotheses that combine techniques for data protection, network interoperability,

and data analysis. In the following, we describe each of the research hypotheses.

1. There is an opportunity to increase the adoption of on-chain strategies and cryptography

compared to the existing literature;

2. A consistent set of design principles and a mapping between relevant use cases in health
care and key building-blocks in blockchain and cryptography can drive decision-making

and technology adoption;

3. The ability to add proofs to hash data for on-chain validation can improve auditability of

data existing in the network;

4. End-to-end encryption techniques can support data analysis in an acceptable processing

time when compared to raw data processing and reduce the demand for unencrypted data.

1.3 Text Organization

This document is organized as follows: we start with a background on the main research
topics on Chapter 2. In Chapter 3 we analyze the most representative related work, on PHR
data sharing and interoperability using distributed networks, describing gaps and opportuni-
ties in the existing literature. Chapter 4 introduces the proposed model, its components, and
use case applications. In Chapter 5, we describe technical evaluation criteria for the proposed
method and in Chapter 5.2 we present experiments and results, with two data sets and the hash
proof algorithm. In Chapter 6 we analyze results and project future work and opportunities for

research.
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2 BACKGROUND

In this chapter, we cover the main building-blocks of the proposed model, including health
records, blockchain components, and cryptography techniques. We start by covering Electronic
Health Records (EHR), conceptualizing important elements, such as Personal Health Records
(PHR), and data standards, including OpenEHR and HL'7 FHIR, as these standards represent an
important design aspect in the proposed model. Next, we describe multiple concepts in decen-
tralized network and blockchain, covering Distributed Hash Tables, blockchain networks, and
technical aspects related to network performance, scalability, and security, such as transaction
finality and consensus algorithms. The chapter also describes multiple cryptography techniques
that will be applied in the model for data protection, data analysis, and data validation, including
Zero-Knowledge Proofs, Attribute-Based Encryption, and Hash data structures, such as Merkle

Trees, which play an important role in the proposed model.

2.1 Electronic Health Records

Digitization is an important topic in the healthcare industry, as many processes still rely
on paper and manual work. Such scenario opens opportunities for standards and methods in
Information Technology to tackle issues regarding topics like regulation compliance, interope-
rability, data standards, system integration (sensors, [oT, applications) and data privacy.

Electronic Health Records (EHR) refer to an electronic representation of patient health re-
cords, collected and stored in a repository, that can be shared in different digital formats(CHUKWU;
GARG, 2020; ROEHRS et al., 2017; MELLO et al., 2022). EHR can contain several data
groups, such as allergies, vital signs, medical appointments, laboratory exams results, medi-
cal imaging and diagnoses. Usually, EHR origination, distribution, and storage, run by Health
Institution, so patients don’t have access to such records.

Patient Health Records (PHR) are an evolution of EHR(ISO, 2021). In a PHR context,
patients have control over data and can grant - and revoke - access permission to third parties,
such as Health Institutions(MADINE et al., 2020b). Data could be obtained by sensors, [0T, and
mobile technologies, for example. PHR can receive data from healthcare providers, stored in a
repository where the patient has access(ROEHRS et al., 2019; SHE et al., 2019). We illustrate
the differences between EHR and PHR on Figure 2, having a convergence of data coming from
the patient side and from the health institution side, generating a large set of records related to
a specific patient.

As PHR involves multiple actors during the data lifecycle, it raises the need for semantic
interoperability standards(MELLO et al., 2022), such as HL7/FIHR (SARIPALLE; RUNYAN;
RUSSELL, 2019) and OpenPHR (OPENEHR, 2020). It becomes more complex to comply with
existing regulations, such as the Health Insurance Portability and Accountability Act (HIPAA),
the General Data Protection Regulation (GDPR), and the Brazilian equivalent LGPD (SHUAIB
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Figure 2: EHR and PHR Overview: an evolution from a institution-centered data management
to a patient-centered approach

etal., 2021) as PHR can be transmitted in insecure connections, and there is a challenge to track

which actor has access to a given portion of data.

2.2 Healthcare Data Standards

Health data standards are a set of established rules, conventions and specifications desig-
ned to ensure consistency and interoperability in the collection, storage, exchange and use of
health-related information within the healthcare ecosystem. These standards play a pivotal role
in creating a unified and structured framework for organizing diverse health data, enabling se-
amless communication between different health information systems and stakeholders. The
purpose of health data standards is to establish a common language and format that facilitates
the exchange of information between healthcare providers, institutions, and systems, ultimately
improving the quality, safety, and efficiency of patient care.

At its core, health data standards encompass various dimensions, including data formats,
terminologies, and communication protocols. The standardization of data formats ensures that
health information is uniformly structured, making it easier to interpret and exchange across
different platforms. The adoption of health data standards brings several benefits. Interoperabi-
lity, a key advantage, allows disparate healthcare systems to seamlessly exchange information,
reducing data silos, and improving care coordination. Standardized health data promotes the
accuracy and integrity of data, minimizing errors and discrepancies in patient records.

HL7 FHIR (Fast Healthcare Interoperability Resources) is a modern and widely adopted
healthcare interoperability standard developed by Health Level Seven International (HL7) (He-
alth Level Seven International, 2019). FHIR represents a set of specifications that standardize
the exchange of healthcare information in a more accessible and web-friendly format. FHIR
leverages contemporary web standards such as RESTful APIs (Representational State Trans-
fer), JSON (JavaScript Object Notation), and XML (eXtensible Markup Language) to facilitate
seamless data exchange and interoperability across diverse healthcare systems.

One of the defining features of HL7 FHIR is its modular and resource-based approach. FHIR
resources are discrete units of standardized clinical or administrative information that represent
entities such as patients, medications, observations, etc. These resources are designed to be
modular, making it easy to assemble and exchange only the necessary information for specific

use cases. FHIR also supports a RESTful architecture, allowing for simple and efficient com-
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munication over the web. This approach to standardization promotes flexibility, making FHIR
adaptable to various healthcare scenarios and enabling agile development and implementation.

OpenEHR is an open standard framework that defines specifications for the construction of
electronic health records (EHRs) and related systems (OPENEHR, 2020). Unlike traditional
health information systems that are often constrained by rigid formats and proprietary structu-
res, OpenEHR takes a fundamentally flexible and modular approach. At its core, OpenEHR
employs a dual-model architecture, distinguishing between the information model for data sto-
rage and retrieval and the knowledge model for defining clinical content. This separation allows
for the creation of standardized, yet adaptable, clinical archetypes and templates, providing a
foundation for interoperable and customizable EHR systems.

One of the key strengths of OpenEHR lies in its use of archetypes and templates. Archety-
pes represent standardized clinical concepts, while templates combine multiple archetypes to
define specific clinical documents or forms. This approach enables healthcare organizations to
tailor their EHR systems to meet unique clinical requirements without sacrificing interopera-
bility. OpenEHR’s emphasis on semantic interoperability ensures that health information can
be consistently interpreted and shared across different systems and settings, promoting a more
connected and collaborative healthcare ecosystem.

OpenEHR is well-suited for data modeling and long-term data persistence, making it sui-
table for systems requiring extensive data analysis and complex querying. In contrast, HL7
FHIR prioritizes interoperability and real-time data exchange, offering a modular and flexible
approach that supports rapid implementation and integration across various healthcare applica-
tions (KRYSZYN et al., 2023). As HL7 FHIR facilitates seamless data sharing and integration,
we will adopt this standard for the experiments in our model.

Standardized health data should be meet the FAIR principles, with are Findability, Acces-
sibility, Interoperability, and Reusability. This concept applies to data and metadata (GROUP,
2021). Metadata are known as “data about data", as they play a key role on making existing
data in a health system easily to locate and process. In the context of our work, we consider
both data and metadata as key elements to establish on-chain strategies in the proposed model.
We provide an example of an HL'7 FHIR file in JSON format in Listing 2.1.



Listing 2.1: Example HL7 FHIR file in JSON format

"resourceType": "Patient",
"id": "example",
"text": |

"status ": "generated",
}
"identifier ": [

{

"use": "usual",
"system": "urn:o0id:1.2.36.146.595.217.0.1",

"value": "12345"

}
I,

"active ": true ,

"name": [

{

"use": "official",
"family ": "Doe",
"given": ["John"]
}
I,

"gender": "male",
"birthDate ": "1974-12-25",

"address": [

{
"use": "home",
"line ": [
"123 Main St"
I,
"city ": "Anytown",
"state ": "CA",
"postalCode ": "12345"
}
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2.3 Distributed Networks and Cryptography Components

As a significant part of the population and companies operate over the Internet, it is now na-
tural that different industries, including healthcare, make use of Wide-Area Networks (WAN)
to gain scale and integrate with multiple partners and actors. The remarkable work of Satoshi
Nakamoto in 2008 (NAKAMOTO, 2008) has established the basis for distributed tamper-proof
blockchain networks, making it practically viable to address issues regarding privacy, audita-
bility and tracking of transactions involving sensitive elements, from currency to assets, from
retail products to health records. In the following chapters, we describe Blockchain Networks

and Distributed Hash Networks and relevant concepts in the context of the proposed model.
2.3.1 Blockchain Networks

Blockchain technologies represent a unique design of ledger structure, distributed network,
consensus protocol, and cryptographic mechanisms to promote transparency, data immutability,
consistency, equal rights and data availability(PAIK et al., 2019). Data processing and sharing
in a blockchain are triggered by transactions. Transactions are grouped into blocks and each
block must reach specific consensus rules to be accepted by network peerstGEBREMEDHIN,
2018). Security in blockchain transactions is promoted by the use of cryptography algorithms
and techniques such as Asymmetric Key Pairs e.g. RSA and Elliptic Curves, Hashing Algo-
rithms, Hashing Hierarchy (e.g. Merkle and PATRICIA trees), Zero-Knowledge Proofs, and
Homomorphic Encryption (ZHANG et al., 2018).

Networks are made up of peer nodes that exchange data in transactions. Transaciton finality
may vary according to the adopted Consensus Algorithm, which is the method used by the
nodes to agree on each new accepted block of transactions. Blockchain networks are usually
divided in two major types: public and permissioned. In public networks, any computing node
can enter the network with no need for permission of any participant beside the need to comply
with the protocol e.g. block size, block timing, agreed by existing members. Permissioned
networks adopt governance protocols that depend outside the protocol itself. Thus, new nodes
in the network need some kind of approval in order to operate in the network. The concept of
Blockchain Consortium emerges in this context, as consortia represent well how a permissioned
blockchain network might work.

Depending on the existing network protocol, richer forms of transactions might take place,
like the concept of Smart Contracts (SC). SC are programmable idempotent pieces of software
that run on top of network peers and allow specific-purpose solutions to generate transactions
in the network. Such transactions might carry extended data fields that meet the specific needs

of a SC interface! and consume storage area in each network peers, as they are stored in the

'Smart Contract interfaces are equivalent to Application Programmable Interfaces (API) in terms that each
interface defines a set of incoming parameters, returning data, and error messages. Blockchain network peers
usually expose such interfaces via protocols like Remote Procedure Call (RPC).
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Distributed Ledger, the synchronized transaction history shared among network peers. This
characteristic raises a debate on which data should be stored in the ledger (on-chain) and which

data should not, as the ledger file size could compromise network performance through time.

Most blockchain networks adopt an economic model to pay for transactions and prevent
malicious behavior. Public blockchain protocols, by default, have a crypto currency as the
underlying economic element. Such a currency works as a network incentive, as it may work for
taxation and rewarding. In networks that support Smart Contracts, taxes may vary according to
the demand for computational resources of each SC interface. Thus, it is of great importance to
consider the economic model and its corresponding costs when designing a blockchain network

or a blockchain-based solution.

2.3.2 Network architecture and configuration

Consensus algorithms and transaction finality are two highly coupled concepts in blockchain
with a great influence on the processing of EHR data on-chain. Networks such as Bitcoin have
probabilistic finality, since their consensus algorithm (proof-of-work) results in higher transac-
tion finality probability as more blocks enter the ledger. Proof-of-stake algorithms, such as
Ethereum and most compatible networks, have financial finality, as the cost of tampering with a
transaction of older blocks increases drastically. Most private and permissioned networks adopt
different types of consensus algorithms, such as Practical Byzantine Fault Tolerance (PBFT),
which result in instant finality. Granular EHR data writing operations suit well with higher
transaction finality, while EHR interoperability operations demand smaller or instant transac-

tion finality, as data access might be for critical situations.

Each network protocol establishes a maximum size for data attached to transactions, as
they influence the block size and consequently the number of transactions a block can hold.
The Bitcoin network allows 80Bytes arbitrary data attached to each transaction, while Ethe-
reum supports 128 K' B. Hyperledger Fabric has no formal limit for transactions, neither blocks,
although such parameters can be defined in the network configuration. For EHRs with larger file
sizes, on-chain storage strategies might require multiple transactions to complete a file transfer.
We further explore this aspect in detail on Chapter 5.2.

Subnetworks allow specialized access control to blocks and transactions, higher perfor-
mance, and lower costs. This technique is applied by using different approaches, such as
Shardings and Rollups in Ethereum, Parachains in Polkadot, Channels and Private Data in Hy-
perledger Fabric. As a general rule, each network layer L2 has its own node infrastructure and
ledger, and according to a set of rules, provides proofs of its transactions to another network
layer L1. It allows for lower costs and network scalability, as L2 can be a smaller network with
a fast consensus algorithm, while relying on a larger network L1 to keep proofs of its transacti-
ons. Such an approach might help protecting EHR with the formation of networks exclusive to

authorized participants.
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2.3.3 Distributed Hash Table and IPFS

Distributed Hash Tables (DHT) represent a content routing system in which data is distribu-
ted in a key-value format (IPFS Distributed Hash Table, 2022; MUBASHAR et al., 2021). Dif-
ferently from a Blockchain, a DHT shares Content Identifiers (CID) and peer lists that provide
such files. There are multiple algorithms to manage DHT routing, including Content Access
Network (CAN), Chord, Kademlia, Pastry and Tapestry (ROEHRS; COSTA; ROSA RIGH]I,
2017). One of the most popular public DHT implementations is called Interplanetary File Sys-
tem (IPFS)(LABS, 2024).

IPFS uses the Kademlia algorithm to manage its DHT (MAYMOUNKOV; MAZIERES,
2002). Kademlia uses a binary tree to represent nodes with a given CID in the shortest path.
Its protocol ensures each node knows at least one peer in its CID sub-tree, if there is one. The
purpose of Kademlia is to build a DHT on top of three system parameters(IPFS Kademlia,
2022):

1. An address space as a way that all of the network peers can be uniquely identified. In
IPFS, this is all the numbers from 0 to 22°6—1.

2. A metric to order the peers in the address space and therefore; visualize all the peers along
a line ordered from smallest to largest. IPFS takes S H A256( PeerlD) and interprets it

as an integer between 0 and 22°0~1;

3. A projection that will take a record key and calculate a position in the address space

where the peer or peers most ideally suited to store the record should be near. IPFS uses
S H A256(RecordKey).

2.3.4 Asymmetric Cryptography and Digital Signatures

represent a set of underlying technologies on top of which the security of blockchain sys-
tems rely. Let (sk, pk) be a pair of private and public keys, respectively. A Digital Signature
consists in applying the private key sk on an input data = to generate an output y, which can
be verified using the public key pk, having V' (pk, x,y) = 1, where V' is a verification function.
In recent years, new solutions, such as Decentralized Identifiers (DID), Smart Accounts, and
signed typed messages standards (ERC-712) added support for more complex key management
and digital signatures. Individuals, institutions, government agencies, and smart health devices
might have a corresponding key pair as their main identification in a blockchain system, to sign
health records and blockchain transactions. In self-sovereign models, users are responsible for
protecting private keys, although many scenarios in healthcare require a trusted element, such

as a government agency, to provide identity-pegged cryptographic key pairs.
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2.3.5 Hash functions and Hash Structures

are one of the most widely adopted techniques for blockchain EHR, as they can represent
external information to the blockchain in a format that can protect original data and reduce the
use of on-chain storage. Given an arbitrary input M, H(M) = M’ is a n-bit hash function
if collisions meet a security goal of 2"/? work, where M’ is a fixed-size representation of M.
In addition to collision resistance, secure hash algorithms must have preimage resistance in
which, given a value for M’, it is computationally infeasible to find M, and second preimage
resistance, where given M is computationally infeasible to find a second input S with H(S) =
M'(KELSEY; SCHNEIER, 2005). Blockchain solutions for EHR can calculate hash functions
on-chain using Smart Contracts (e.g. keccak256 in Ethereum), although when it is impractical
or not desired to calculate such a value on-chain, it is highly recommended to provide additional
information, such as the used hash algorithm and bit size (e.g. SHA-3, 512), along with the hash
data.

whenever a batch of health records need to be stored on-chain at once, hash structures, such
as Merkle Trees and Merkle Patricia Tries, become useful techniques. Such solutions consist of
one root, multiple leaf and inner nodes, where every non-leaf node N = H (V;|N;1) in a binary
Merkle Tree is a hash derivation from its child nodes N; and N, ;. To proof if an arbitrary hash
is part of a Merkle Tree, it requires a log,(n) subset of its nodes to reach an arithmetically
verifiable output, called Merkle Proof, where n is the numbrer of leaf nodes in the tree. Such
solutions are applicable to health monitoring scenarios, with potentially large volumes of health
records generated from devices, such as remote monitoring devices, IoT, and wearables. For
instance, let’s consider a health monitoring device that collects 1K B of data every second;
in one hour, it generates 3, 600K B; assuming a 256bits hash function, it generates a 32bytes
digest for each record, 115.2 K B total; for a well-balanced binary Merkle Tree, it requires twice
the area for leaf and non-leaf nodes, resulting in a total of 230.4 K B area, which is 93.6% lower
than the original data size; each proof, in worst case, demands around 12 nodes to produce a

valid proof, resulting in 384 B for each proof.
2.3.6 Zero-Knowledge Proofs

Another prominent cryptographic technique for the protection and validation of EHR data
is Zero-Knowledge Proof (ZKP) systems. This technique consists in having a prover P to
prove to a verifier V' that a statement is true by providing no detail about the statement other
than a proof x € L. Being P and V' Probabilistic Turing Machines, an interactive proofing
system P(x) <> V(z,z) is considered valid if there is a system S(x, z) that can reproduce
the interactions between P and V' in a probabilistic polynomial time, where z represents any
prior knowledge P and S have from previous interactions. Non-interactive protocols such as
the zk-SNARKS and zk-STARKS have become popular recently for blockchain solutions as
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well. ZKP systems can be applied to validation of data against standards such as HL7 FHIR
and OpenEHR, where proofs are provided to the blockchain along with hash data to ensure that

the incoming data represent a valid and standard health record.

2.3.7 Proxy Re-encryption and Attribute-Based Encryption

access control is a key topic in healthcare. Considering that health records are potentially
encrypted for privacy protection, such techniques become useful in managing data delivery
upon request without compromising privacy (MHIRI et al., 2024). It consists of having a proxy
P(sk, pk) that is able to transform data encrypted by another key pair A(sk,pk) using a re-
encryption key rka_,p = G(ska, pkp), where G is the re-encryption key generator function.
Thus, given an arbitrary message m and its corresponding encrypted version C'y = E(m, pka),
the proxy is able to re-encrypt it to Cp = E(Ca, ks, p) and to decrypt it using its private key,
having m = D(Cp, skp). Such a technique has great utility for health records, as it allows data

owners to delegate decryption permission to a third party, such as a hospital or a relative.

Attribute-Based Encryption (ABE) allows setting up a key pair with a master private key
A(M sk, pk) and encrypt m adding a set of attributes, having Cy = E(m, pk, {A1, Aa, ..., Ay }).
The master private key can generate a secret key sk; = KeyGen(M sk, T') based on an access
policy 7', and this key can be used to decrypt C'4 and obtain m = D(Cljy, sk;). Such a techni-
que is well suited for institutional access management to data, where a set of permissions can

control access to EHR data.

2.3.8  Homomorphic Encryption

Represent a set of cryptography techniques that allow the execution of arithmetic operations
using encrypted values. It has a good fit with EHR data, as it makes it possible to run data analy-
sis without compromising data privacy (VANIN et al., 2023). Let £ and D be encryption and
decryption functions, respectively, a valid homomorphic encryption operation, with input mes-
sages my and meo, has the following property for the addition operation D(c; @ ¢) = my +meq
and D(c; Q) ca) = my x my for multiplication, where ¢; = E(m;) and ¢o = FE(msy). Parti-
ally Homomorphic Encryption techniques (PHE), such as Paillier Cryptosystem, support only
one operation type (addition or multiplication), while Fully Homomorphic Encryption (FHE),
such as Brakerski-Gentry-Vaikuntanathan (BGV), support both addition and multiplication for
the same set of encrypted values. Such techniques might be used to support decision-making
in medicine and bioinformatics, as it is possible to design Machine Learning mechanisms that
learn based on encrypted data (WOOD; NAJARIAN; KAHROBAEI, 2020).

A homomorphic cryptosystem in a given message space M is a quadruple (K, E, D, A) of
probabilistically expected time-based algorithms conforming to the following conditions (AL-
LOGHANI et al., 2019):
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* Key Generation (K): a key pair (k., ks)= k € K where K represents the key space;

* Encryption (E): consist in applying the key k. on a message m € M, producing a cipher-

text c in the cipher-space C where c € C;

* Decryption (D): consist in applying the key k; on an encrypted message ¢ to produce
m € M;

* Homomorphic Property (A): is a scheme that requires c;,co € C to produce a third

element c3 € C such that Vm,, mo € M holds only when ms = myme..

Thus, Homomorphic Encryption could support mathematical operations like summation,
multiplication, and logic XOR operation (NAEHRIG; LAUTER; VAIKUNTANATHAN, 2011)
directly on encrypted data. Calculation algorithms are highly dependent on the K element. The
most popular key pair techniques used in the Blockchain context are Rivest-Shamir-Adleman
(RSA) and Elliptic Curves.

There are basically two major groups of HE algorithms; Partially Homomorphic Encryption
(PHE) and Fully Homomorphic Encryption. (FHE) (ROCHA; LOPEZ; FALCAO DA ROCHA,
2019). PHE algorithms support only one type of mathematical operations, like Paillier (addi-
tion), RSA and ElGamal (multiplication). However, FHE algorithms support more than one
mathematical operation. The work of Gentry (GENTRY, 2009) set the ground-base for FHE
with the concept of bootstrapping and was followed by many works, such as the Brakerski,
Fan and Vercauteren (BFV) algorithm for FHE (FAN; VERCAUTEREN, 2012) that addressed
performance issues towards a practical implementation of FHE.

HE has great applicability in many use cases, such as Big Data, Cloud Computing, Medi-
cal Applications, Financial Applications, Advertising, Pricing, and Smart Home Systems (AL-
LOGHANTI et al., 2019; NAEHRIG; LAUTER; VAIKUNTANATHAN, 2011; SHE et al., 2019).
Data Analysis on encrypted data is a raising trend in technology in the last three years (RIMOL,
2021).
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3 RELATED WORK

To design the proposed model, we selected relevant publications regarding the use of block-
chain for PHR with distributed networks, especially focusing on data sharing and interopera-
bility. We adopted a bottom-up selection strategy, mapping relevant use cases for blockchain
and EHR to the state-of-the-art. In the following, we detail the three selected use cases for our
work.

An International Patient Summary (IPS) document is an extract of an electronic health
record that contains essential healthcare information about a subject of care. As specified in
EN 17269 and ISO 27269, it is designed to support the use case scenario for “unplanned cross-
border care’, but it is not limited to it. As it presents the challenge of compiling multiple histori-
cal data in healthcare, such access to data is key for a proper implementation of IPS. One impor-
tant design principle in this use case is that the data set must be “minimal and non-exhaustive
patient summary dataset, specialty-agnostic, condition-independent, but readily usable by cli-
nicians for the cross-border unscheduled care of a patient”. In the following, we describe the
on-chain strategy recommended for this use case.

Digital Public Infrastructure for Health (DPI-H) is a concept that transcends the health-
care industry, although having significant contribution in this field. It describes a series of digital
services provided by government agencies to support citizens and private industry. In health-
care, it can contribute in multiple areas, such as citizen and entities identification, data exchange
and interoperability, personal health data, prescription and medicament, reporting, and supply
chain tracking.

Internet of Health Things (IoHT) allows health devices equipped with sensors and actu-
ators to interact and communicate over the Internet, working together to better understand the
individual health of each person (DA COSTA et al., 2018). The term IoHT comprises many
devices and solutions, including wearables and mobile applications, integrated with ad hoc sen-
sors/actuators. Such devices contribute significantly to the collection of PHR, which play an
important role in health records management, and might benefit from blockchain and crypto-
graphy components.

In the following, we describe the article selection criteria and related work analysis.

3.1 Selection Criteria

To create the proposed model, we selected relevant articles in Computer Science and Bioin-

formatics based on the following criteria.
¢ The healthcare use case
¢ Use of distributed network for EHR

» Use of cryptography techniques for EHR
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Table 1: Related work, organized by use case, focus and support to health data standards.

Reference Use Case Focus Data Standard
(ROEHRS; COSTA; | Interoperability Data Exchange OpenEHR
ROSA RIGHI, 2017)
(GHADAMYARI; SAMET, | IPS Data Exchange -
2019)
(NIU et al., 2019) Interoperability Data Exchange -
(SHARMA,; HALDER; | DPI-H Data Exchange -
SINGH, 2020)
(YAZDINEJAD et al., 2020) | Care Services Access Manage- | -
ment
(ZHUANG et al., 2020) Care Services Data Exchange -
(WANG et al., 2021) IoHT Data Exchange -
(SONKAMBLE et al, | Interoperability Data Exchange HL7 FHIR, Ope-
2021) nEHR
(ZHANG et al., 2022) IoHT Data Exchange -
(KIM et al., 2022) Care Services Data Exchange -
(ALI et al., 2022) IoHT Access Manage- | -
ment
(REEGU et al., 2023) Interoperability Data Exchange HL7 FHIR
(YANG et al., 2023) Interoperability Access Manage- | HL7 FHIR
ment

* Year of publication

* Article relevance (publisher, citations)

We analyzed a total of 53 articles and selected the 13 most relevant considering aspects such
as privacy protection, data access control, and the use of on-chain and off-chain resources. We
organized the selected related work according to their use case, technical focus, and supported
data standard in Table 1. Most works focus on data exchange, as interoperability is a major

topic in the segment.

3.2 State-of-the-art

The data strategy is a major evaluation criteria, as it defines the role a blockchain solu-
tion can play in each proposed model. Most selected publications process encrypted EHR in
off-chain components (ROEHRS; COSTA; ROSA RIGHI, 2017; NIU et al., 2019; SHARMA;
HALDER; SINGH, 2020; WANG et al., 2021; ZHANG et al., 2022; ALI et al., 2022; YANG
et al., 2023), which can set the basis for an end-to-end encryption model. However, some mo-
dels rely on unencrypted EHR (GHADAMYARI; SAMET, 2019; ZHUANG et al., 2020; KIM
et al., 2022; REEGU et al., 2023), which may raise privacy protection issues, especially when
managing PHR, as in (KIM et al., 2022). In (SONKAMBLE et al., 2021), they adopt a data size
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criterion, having smaller data on-chain, and larger files off-chain.

The use of on-chain resources to store the hash digest is a common strategy (SHARMA;
HALDER; SINGH, 2020; ZHUANG et al., 2020; REEGU et al., 2023), although it might re-
duce the importance of blockchain, if there are no means for data validation. Some models
run on-chain data validation, either for keyword search or for permission (NIU et al., 2019;
SHARMA; HALDER; SINGH, 2020; WANG et al., 2021), using Zero-Knowledge Proof as a
main technique. No method uses on-chain components to validate and keep proofs of health
records, however, the work of (WANG et al., 2021) implements a mechanism to validate IPFS
hash that could be applicable for EHR.

The data exchange technique is an important evaluation criterion as it drives how participa-
ting actors in the system will request and receive data. Access management techniques, such
as control-based (Access Control List, Mandatory Access Control) (GHADAMYARI; SAMET,
2019; ALI et al., 2022), Attribute-Based Encryption (NIU et al., 2019; WANG et al., 2021;
ZHANG et al., 2022), Proxy Re-encryption (SHARMA; HALDER; SINGH, 2020), and Secret
Sharing (YANG et al., 2023). However, some models do not implement any cryptographic sys-
tem for data exchange (ZHUANG et al., 2020; SONKAMBLE et al., 2021; KIM et al., 2022),
which could lead to privacy protection issues. The work of (ROEHRS; COSTA; ROSA RIGH]I,
2017) and (REEGU et al., 2023) delegates the task of data exchange to the data owner.

In terms of decentralized infrastructure, most related works adopt Ethereum (SHARMA;
HALDER; SINGH, 2020; ZHUANG et al., 2020; SONKAMBLE et al., 2021; YANG et al.,
2023) or Hyperledger Fabric (GHADAMYARI; SAMET, 2019; WANG et al., 2021; ZHANG
et al., 2022; ALI et al., 2022; REEGU et al., 2023). However, the work of (NIU et al., 2019)
and (YAZDINEJAD et al., 2020) does not specify which blockchain network was used, while
in (KIM et al., 2022) a network simulator was used to evaluate the model. Roehrs et al.~(ROEHRS;
COSTA; ROSA RIGHI, 2017) propose an architecture model called OmniPHR, which does not
use blockchain for decentralized data processing. Instead, a Distributed Hash Table (DHT)
was implemented to share small portions of health records, which they called "data blocks",
adopting the Chord algorithm (STOICA et al., 2001).

DHT solutions represent an alternative for off-chain data storage due to their scalability and
data availability mechanisms. In the related work, IPFS emerged as a common solutions for
such models (SHARMA ; HALDER; SINGH, 2020; WANG et al., 2021; YANG et al., 2023).
Data analysis on encrypted data is also an important aspect we analyzed in the related work, as it
can improve the decision-making support, while mitigating privacy issues. The work of (GHA-
DAMYARI; SAMET, 2019) adopts the Paillier cryptosystem for data analysis, supporting count
and mean operations. The work of (YANG et al., 2023) also set the basis for Homomorphic En-
cryption by adopting the ElGamal cryptosystem, which supports HE calculations. The work
of (JTANG et al., 2020) adopts FHE to reduce the query time for health records, while preser-
ving the privacy of patients.

The support for Decision-making in blockchain and cryptography adoption is an element in
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our research. The work of (REEGU et al., 2023) presents a framework for blockchain adoption
in healthcare called BCIF-EHR, They propose a patient-centric and HIPAA-based model with
support for interoperability among different blockchain networks, by the use of Hash Locking,
a system consisting of a secret/hash pair (z, H(z)), where H(x) is public and z is kept secret.
The method consists in locking an operation on the blockchain B;, while a related operation
executes on the blockchain B5. In the occurrence of a transaction that provides the preimage
x to By, the lock is completed. The model covers the following use cases: Registration Phase,
Pre-Agreement and Verification, Bank Fund Transfer and Certificate Generation, Health Record
Exchange between Two Hospitals.

The work of (WANG et al., 2021) proposes a method for sharing PHR with privacy pre-
servation, using a blockchain consortium. The model uses IPFS to store encrypted data and
Attribute-Based Encryption for data search. They apply Zero-Knowledge Proof to create a
"storage proof”, to allow on-chain validation that the incoming data were effectively stored on
IPFES. They tested the model with 500 attributes, using Hyperledger Fabric. The model does not
adopt a data standard.
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3.3 Open Gaps and Opportunities

As presented in this chapter, some models consider that whenever patients participate in the
model, access to their data is automatically granted (ROEHRS; COSTA; ROSA RIGHI, 2017;
GHADAMYARI; SAMET, 2019; SHE et al., 2019; SUN et al., 2020) without further authori-
zation needed. When a third party generates a patient’s private key, privacy issues may occur,
which is why the encryption key pair generation is a crucial step, and some models consider
patients as responsible for generating their own keys (ROEHRS; COSTA; ROSA RIGHI, 2017;
MAHDY, 2020; MISBHAUDDIN et al., 2020; MADINE et al., 2020b; GHANI; ZINEDINE;
EL MOHAIIR, 2021; WANG et al., 2021). Most models do not provide ways for patients,
once granted access to PHR data, to formally revoke such access, except for the work of Son-
kamble et al. (SONKAMBLE et al., 2021), Misbhauddin et al. (MISBHAUDDIN et al., 2020)
and Ghani et al. (GHANI; ZINEDINE; EL MOHAIJIR, 2021). Some models allow patients to
encrypt PHR data (ROEHRS; COSTA; ROSA RIGHI, 2017; SHE et al., 2019; MADINE et al.,
2020b; WANG et al., 2021), and only the work of Roehrs et al. with the OmniPHR model (RO-
EHRS; COSTA; ROSA RIGHI, 2017), and Wang et al. (WANG et al., 2021) provides ways for
patients to manage data location, as most of the related articles consider health institutions as
the only responsible for managing data location.

Most related work combine on-chain with off-chain storage because storing all medical
records on-chain could raise scalability issues, as data is replicated in most/all nodes in the
network. Most models put only the hash of PHR data on-chain (SHE et al., 2019; YAZDI-
NEJAD et al., 2020; ZHUANG et al., 2020; MISBHAUDDIN et al., 2020; MADINE et al.,
2020b; SUN et al., 2020), while the work of Sonkamble et al. (SONKAMBLE et al., 2021)
with the MyBlockEHR model put lightweight data on-chain and bigger data files, like scan
images and medical reports, off-chain. The work of Muizz Mahdy (MAHDY, 2020) considers
medical records to be on-chain, whereas most models consider medical records to be off-chain.
Some articles adopt decentralized file storage, such as IPFS or DHT (MADINE et al., 2020a;
MISBHAUDDIN et al., 2020; ROEHRS; COSTA; ROSA RIGHI, 2017; SUN et al., 2020), as
a solution for scalability.

The work of (REEGU et al., 2023) presents a blockchain-based framework to guide the
decision-making for EHR. It focuses on the interoperability of HL7 and HIPAA, for entities
such as hospitals, clinics, and insurance companies. For interoperability between different
blockchain networks, their model adopts a Hash Lock technique. This technique consists in
locking a given data in blockchain A, while it becomes available in blockchain B for usage.
However, with this approach, a EHR cannot be updated while in another blockchain network.
The model proposes the use of cloud infrastructure to store EHR. They framework develops four
scenarios, including care service provisioning, healthcare payment, and data exchange between
hospitals. A government agency is responsible for providing identity to the patients.

We summarize gaps and opportunities in Table 2.
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Table 2: Gaps and Opportunities: a summary of gaps found in related work and that raise
opportunities for contribution in the proposed model

Gap

Opportunity

Low or non-existing on-chain data processing
for EHR, only data storage

Propose models to enhance the adoption of on-
chain data processing, for data validation and
analysis, on hash or encrypted data

Low specialization of cryptography and block-
chain techniques for different EHR use cases

Identify key use cases for EHR and provide gui-
dance for blockchain adoption

Lack of on-chain validation of incoming data,
especially in hash format R

Provide methods methods to improve on-chain
data validation, even on hash data

Patients are not able to manage access and data
location. Once data is in the network, it is assu-
med that all members have access to PHR

Give patients the condition to decide who has
access to PHR, where data will be stored and
for how long

Centralized off-chain data location e.g. cloud
servers

Adopt decentralized network, such as Distribute
Hash Tables, for on-chain and off-chain records
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4 MEPCA MODEL

In this chapter we introduce our scientific contribution for the use of blockchain and cryp-
tography technologies for EHR. Firs, we introduce the MEPCA model with a map of key re-
quirements for blockchain and EHR to use cases in health care industry. Next, we introduce a
hash proof algorithm that allows for on-chain validation of HL7 FHIR required fields, without
exposing sensitive data. The third element is a specification of the MEPCA model to promote
end-to-end data protection for PHR, with Fully Homomorphic Encryption techniques for data

analysis.

4.1 Design Decisions and Use cases

We propose the MEPCA model to improve the use of on-chain resources to process EHR
data. Our approach aims to avoid risks of inserting malicious or invalid data into the block-
chain, as most existing models use the blockchain only to store hash representations, with no
proper data validation or analysis. MEPCA 1is an acronym of the five principles in our proposed
approach (Maximize, Encrypt, Prove, Comply, Adapt), aimed to improve the use of blockchain
and cryptography for health data processing, describe in the following.

We compare such strategies in Figure 3, considering important steps in the EHR, from data
generation to decommissioning. In our recommended approaches, we include a step of on-chain
data validation, where even if data hash is provided to the blockchain, it has means to validate
if the provided hash corresponds to a valid EHR record. The steps in the lifecycle are described
as follows.

1. Generation: when data are obtained from health devices and systems in a standard format;
2. Hash Calculation: calculates a digest based on each obtained file;
3. Hash storage: file contents are stored in the file system, mainly in a database;

4. Data proof: the generation of a cryptographic proof related to the input file, specially for

structure, cardinality, and value domains;

5. Data analysis: knowledge obtaining from existing data, using techniques such as symbo-

lic artificial intelligence and machine learning;
6. Validation: test a given data proof against a predefined set of criteria;
7. Encryption: apply a cryptosystem to convert the input data into an encrypted version;

8. Anonymisation: techniques to remove sensitive data form the input files, to protect the

data subject identity;
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9. Decommissioning: when a given data becomes invalid, unavailable or is removed from

the system.

Generation Hash Calculation Hash Storage Data Analysis ion D

(a) MEPCA: Minimum reliable on-chain strategy

Generation Hash Calculation Data Proof Validation Hasg;v::g:rool Data Analysis ion > D

(b) MEPCA: Hybrid blockchain strategy

Generation Anonymisation Data Proof Encryption Validation Data Storage Data Analysis Decommissioning

(c) MEPCA: Enhanced on-chain strategy

Generation Anonymisation Encryption Validation Data Storage Data Proof Data Analysis

l:l off-chain - on-chain l:lon-chain and off-chain

Figure 3: Blockchain strategies and on-chain usage comparison. First, the traditional appro-
ach, where only a hash representation is processed on-chain, with no data validation. Second,
MEPCA recommended approaches: a) a minimum reliable model has on-chain data validity
check to ensure incoming data complies with standards; b) a hybrid approach is an alternative
where part of the data is stored into blockchain nodes and another part in traditional infrastruc-
ture; ¢) the recommended approach for most use cases has data analysis and proof generation
on-chain, even on encrypted data.

1. Maximize on chain usage: to take advantage of the benefits the blockchain can provide,
it is important to maximize the use of its elements whenever possible, otherwise it might

become irrelevant;

2. Encrypt data whenever possible: privacy protection is a design principle that improves
the reliability of health systems, and the existing data encryption techniques allow access

management and data analysis, even on encrypted data;

3. Prove, dot not trust: from a blockchain perspective, incoming data must provide proof of

its validity, not only a hash representation;

4. Comply with regulation: data subjects and healthcare institutions must comply with exis-
ting regulations such as GDPR, LGPD, and HIPAA, thus our proposed approach must

consider it as a major guideline;

5. Adapt to the use case: there is no one-size-fits-all strategy for blockchain and crypto-
graphy adoption, multiple variations of architecture are possible according to factors,
such as the segment, data scope, business requirements, technical restrictions, and roles

involved.
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# Key Requisites for EHR MEPCA Implementation Guidelines
KR-1 | Input data should be in standard for- | Data validation mechanisms are necessary to ensure inco-
mat (e.g. HL7 FHIR, OpenEHR) ming data meet the desired standard; Data validation should
occur on-chain
KR-2 | Unique data subject identification Adopt asymmetric keys to identify data subjects
KR-3 | Data privacy and security Data encryption techniques should take place for data in
transit and at rest; Roles such as of Data Controller and
their responsibilities should be unequivocally implemented:
EHR metadata should indicate which fields are considered
sensitive data
KR-4 | Scalability and availability to sup- | Data replication among peers in the network should respect
port a high number of records and | a minimum of copies available
transactions
KR-5 | Access control mechanisms should | Consent on data access should be recorded on-chain; Ac-
keep track of every read or right | cess privileges must have an expiration period
operation on existing data
KR-6 | Storage strategy should provide fe- | Provide support to storing data in multiple formats, such as
asible hardware allocation, data | hash digest, hash with proof, encrypted, and compacted.
availability and protection

Table 3: Key requisites for MEPCA model implementation

Our work relies on a set of state-of-the-art techniques for distributed networks in a com-

bination of cryptography, distributed systems, deeply inspired by the work of Satoshi Naka-

moto (NAKAMOTO, 2008). Cryptography provides design elements regarding key mana-

gement, data encryption and decryption, digital signatures, Homomorphic Encryption, Zero-

Knowledge Proofs, Merkle Trees and hashing algorithms. Distributed systems contribute to

the design by adding elements for data availability, synchronization, fault tolerance and parallel

processing. The MEPCA proposed model respects the following design principles:

1. Data subject (or any caregiver/authorized personnel) has control of their corresponding

health records;

2. All data access requires a corresponding express authorization from patient (or responsi-

ble personnel) auditable on the blockchain

3. Any granted data access will have a predefined time frame;

4. Data subjects can, at any time, revoke permission to data for any participant;

5. Regardless the incoming data format (raw, encrypted, hash digest), there are means to

validate such data on-chain;

6. End-to-end data encryption elevates the security level, while supporting data analysis by

the use of Homomorphic Encryption;



42

Technique/Use International Patient Sum- | Digital Public Infrastruc- | Internet of Health Things
Case mary ture

Asymmetric Transaction signature DID Signed Typed Messages
Cryptography

and Digital

Signature

Hash Functions Represent granular data N/A N/A

Hash Structures

Merkle Proofs for EHR veri-
fication

Merkle Proofs for PHR veri-
fication

Merkle Proofs for PHR veri-
fication

Zero-Knowledge
Proofs

Data validation

Data validation

N/A

Homomorphic Data analysis Public interest reports Data analysis and reporting
Encryption

Proxy Re- | PRE for summary exchange | PRE for data subjects, ABE | ABE for purpose-based role
encryption  and for institutions permissions

Attribute-Based

Encryption

Consensus Algo-
rithms and Tran-
saction Finality

Permissioned network with
public access. Instant finality
for on-chain access manage-
ment

Layer-1 network for general
purpose transactions

Layer-1 public network for
permission management

Subnetworks N/A Layer-2 networks for specia- | Layer-2 network for metadata
lized applications
Block Data IPS data, Merkle Trees, Mer- | Operations metadata on | Roles, permissions, and me-
kle Proofs layer-1, granular data on | tadata

layer-2

Table 4: MEPCA components and use cases

7. Some data might be publicly accessible in encrypted format to provide public interest

information;

8. Access to data should have an expiration date, to allow data owners to define in advance

the period they wish to concede access to their health records.

The MEPCA model is a multipurpose blockchain adoption strategy for EHR. To support
practical implementations of the model, we describe three use cases in health care. In Table 4
we present a summary of the application of MEPCA components to the proposed use cases.
4.1.1 Use Case 1: International Patient Summary (IPS)

We recommend using on-chain storage for the IPS dataset instead of for granular data that
generate the summary. However, every granular record should have a corresponding proof of its
usage, thus a Modified Patricia Trie with hashes from all input data is recommended to generate
proofs and be provided along with the summary. If granular data need to be on the chain for
arbitrary reasons, we recommend encrypting all registries and applying homomorphic encryp-
tion techniques to generate the patient summary whenever possible. Homomorphic Encryption

might also be applied to obtain information from an encrypted patient summary, reducing the

need for plain data. When there is a demand to access plain data, Proxy Re-encryption techni-
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ques are recommended, as they allow for IPS to stay encrypted at rest within blockchain nodes
and be provided to requester for their exclusive reading when authorized by the data owner.

In terms of blockchain architecture and protocol, we recommend using a permissioned
network, where all participating nodes have previous authorization to hold IPS data and con-
trol access to it. The nodes might be publicly accessible for data reading, as IPS aims to be
on a worldwide scale, thus reinforcing the need for end-to-end data encryption. The consen-
sus protocol and transaction finality are highly influenced by whether access authorization is
held on-chain or off-chain. Whenever access management runs on-chain, it is recommended
that the network have fast consensus and instant transaction finality. When it is held off-chain,
the network might operate with probabilistic or financial finality, although it is recommended
that proofs of each request/authorization pair are stored on-chain for auditing and transparency

purposes.

4.1.2 Use Case 2: Digital Public Infrastructure (DPI-H)

MEPCA components can set the basis for multiple DPI-H services. For digital identification
services, we recommend the use of asymmetric key cryptography and the adoption of DID,
where the government can generate claims for individuals and institutions. Key rotation or
Proxy Re-encryption mechanisms are recommended for individuals to manage access to EHR.
For care services infrastructure, we recommend ABE, where government can establish standard
roles for health professionals to deliver interoperable access management.

For data strategy, we recommend the adoption of a hybrid approach with subnetworks,
where DPI-H services provide layer-1 nodes to keep metadata and proofs of EHR operations in
subnetworks, maintained by medical institutions. Such an approach can also deliver greater per-
formance and scalability, as most transactions will occur in layer 2. For PHR, we recommend
storing Modified Patrice Tries to keep data proof on layer 1, while granular data might reside
in off-chain infrastructure or at a layer 2 network. Public reporting services can receive encryp-
ted data from medical institutions to produce public interest information using Homomorphic

Encryption techniques for on-chain data analysis and privacy protection.

4.1.3 Use Case 3: Internet of Health Things (IoHT)

A blockchain network for [oHT and PHR can improve care services with data interoperabi-
lity, health monitoring, and data analysis (BENNACER et al., 2023). This network will have the
main purpose of keeping control of permissions over data and providing metadata for search.
It will not store PHR data due to the fact that they reside in heterogeneous applications and in
high volume, making it not viable to replicate efficiently in a blockchain network. However, we
recommend that data access permissions and revocations have an on-chain proof counterpart,

along with metadata that allow to query for existing data and players with access to it. A pu-
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blic layer-1 network to maintain access permissions and a layer-2 network for metadata are the
recommended approach.

We recommend the definition of purpose-based role set for data access, e.g. care services,
data analysis, research, data steward (VANIN et al., 2023). Such roles will drive the design of
an ABE system, where data subjects can manage which keys have access to data, and for which
purpose. Permission events should be in the form of Signed Typed Messages, in accordance
to EIP-712. Thus, each authorization can be validated and stored on-chain, in accordance with
MEPCA principles, despite the fact that the data are off-chain. Every time a new data set
becomes available for a role, a metadata transaction on such data should become available on
the layer-2 network.

Metadata should be in standard format, such as FAIR Data Objects (GROUP, 2021) to
facilitate queries. Such queries might help requesters identify which type of data (e.g. heart
rate, blood pressure), coverage period, and supported roles are available for a given data subject.
Based on this information, a data access request can be created, so a data subject can add the
requester to a role, making it possible to have interoperability from other players in the same

role.

4.2 End-to-end data protection for PHR

In this chapter, we apply the MEPCA model to address two significant issues regarding
PHR/EHR interoperability in distributed health systems: How to give patients complete control
over their data and obtain relevant information without exposing individual data. The propo-
sed method combines Blockchain Architecture with IPFS and Fully Homomorphic Encryption
(FHE) to deliver a distributed health system in which patients control their data and support
relevant information calculations on encrypted data.

The main data flow in our model is summarized in Figure 4. Our focus is to provide patients
complete control over PHR data throughout the lifecycle, applying end-to-end encryption to
improve privacy, separating data from metadata to improve scalability, applying role segregation
to prevent conflicts of interest, and Fully Homomorphic Encryption to provide flexibility with
calculations even on encrypted data. We introduce a new role called Data Steward, which
will run IPFS nodes to manage PHR data via temporary areas called Data Vault, triggered by
requesters and approved by patients.

Patient control over PHR is a crucial characteristic in the proposed model. One of our
design principles is that “patient (or any caregiver/authorized personnel) has control of all data
access”. To accomplish that, patients are responsible for creating their cryptographic key pair.
The private key will encrypt data and sign transactions, while health institutions will use the
public key to encrypt patient data. Patients could store data in many different ways, be it on

their premises or in specialized service providers, like a Data Steward as we introduce further.

The model considers health institutions as data consumers grouped into consortia with spe-
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Figure 4: Solution Data Flow: Patient authorizes a Data Steward (a) to keep an encrypted
version of PHR off-chain (b) on an IPFS network (c); A Health Institution requires a patient for
PHR (d) and, whenever authorized, PHR metadata can be shared on-chain (e) in a blockchain
network (f).

cific purposes (e.g., clinic, research, data analysis). Whenever a health institution generates data
about a particular patient, it should be provided to the corresponding patient to store and protect
new records. In every circumstance in which there is demand for a patient’s data (b), the patient
(or a previously authorized person) will formally grant access to requested data for a predefined
period and a specific consumer (c).

All requested data are provided to a specific health consortium, encrypted using the reques-
ting institution’s public key (d). Requesting institution can fetch data and decrypt it outside the
Blockchain and provide the data to other consortium members whenever requested. Patients
have the right to revoke access to data or retire data at any time.

Data stored outside the blockchain network are said to be off-chain, while data already
shared among participants in a distributed network are said to be on-chain. Our model considers
metadata to be on-chain and PHR to be off-chain. The responsibility over data is delegated from
the patient to Data Stewards and from Data Stewards to health institutions in the consortium to
respect the design principles to guarantee end-to-end encryption and control over data access,
scope, and availability for a predefined period.

Our model relies on the gaps and opportunities identified in the related work (Chapter 3) to
propose and architecture formed by two complementary distributed networks: an IPFS network,
as in (MADINE et al., 2020b; WANG et al., 2021; MUBASHAR et al., 2021), for off-chain data
dedicated to plain text PHR and one blockchain network for on-chain data, focused on metadata,
as in (MADINE et al., 2020b).

In Figure 5 we present all the main components of the architecture and introduce two ele-

ments that allow better segregation of responsibilities regarding patient data and clinic treat-
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Figure 5: Architecture Components: IPFS Network for off-chain data, Blockchain Network for
on-chain metadata, Data Steward to keep encrypted version of PHR and Shared Data Vault to
support temporary data sharing encrypted with requester public key.

ment, called Data Steward and Shared Data Vault. These elements respond to health records in
different phases of the lifecycle, allowing data sharing with end-to-end protection. We describe

both elements in the following chapters.

4.2.1 Data Steward

Data Steward is a role in our model focused on storing data on patient’s behalf. They are
service providers and their role can be performed by public or private institutions. Each Data
Steward represents a distributed network of IPFS nodes that store data on behalf of patients,
originated by third-party health solutions, such as sensors, monitoring devices or mobile appli-

cations, and encrypted using the public key of the corresponding patient.

Health data will be made available in a Shared Data Vault whenever requested and appro-
ved by the patient. Requests are data payloads in the format: {date, consortium-public-key,
institution-public-key, requester-public-key, data-scope, finality, requested-period}. The
payload can be in the form of a QR Code, accessible by patients through a mobile application
with their private key, to sign the payload and send a transaction to the Data Steward authorizing
data access for a period. Requested data will be re-encrypted by patients using the requester

public key and posted to a Shared Data Vault.

Patients can give permission to a specific health institution or a health consortium. When
allowing access to a consortium, we could adopt a technique such as attribute-based encryp-

tion (NIU et al., 2019) to provide access to all members of the consortium.
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4.2.2 Shared Data Vault

Shared Data Vaults (SDV) represent temporary file Content Identification (CID) distributed
on the IPFS network and made available to fulfill a specific request from a health institution.
They are created by a Data Steward, only with express authorization from the patient, using
encrypted data sent directly from them. For interoperability, SDVs respect a market standard
such as HL7 FHIR (SARIPALLE; RUNYAN; RUSSELL, 2019) or OpenEHR (OPENEHR,
2020), as each institution runs a different Health Management System (HMS)(MELLO et al.,
2022). For the FHE calculation, the data should be in numeric array format. To meet the design
guideline of “all data access will have a predefined time frame”, each data vault should have a
predefined expiration time. We present the access management process in Figure 6 and describe

the steps in the following.

1. Patient authorizes a given consortium to access their data

2. Patient requires the creation of a Data Vault and a data scope from Data Steward;

3. Patient decrypts data with private key and encrypt with health institution’s public key
4. Data Steward creates a Shared Data Vault and returns the CID to patient

5. Patient shares CID with health institution

6. Once time window expires, Data Steward removes (unpin) the file from IPFS

As Shared Data Vaults store data encrypted with a specific institution’s public key, the given
institution will be able to decrypt data using their private key. This situation does not represent
any security issue related to privacy exposure, as only patients can authorize such access for a
predefined period.

The data analysis process runs on data from an SDV. In Table 5, we present an example with
the main steps that start when a health institution requires access to a set of PHR data until the
execution of FHE algorithms for data analysis. Covers technical and clinical aspects involved

in the process, which can drive the design of systems with the proposed architecture.

4.3 On-chain hash proofs

A minimum reliable on-chain approach should be able to meet the key requirements descri-
bed in Table 3, and some use cases could benefit from the increased adoption of cryptography
and blockchain technologies. Having the ability to validate incoming hash data on-chain is a
major scientific contribution in our model. It allows for a higher level of auditability and vali-
dation from a blockchain perspective, as many models opt to store EHR data off-chain and only
send hash digest to the blockchain.
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Figure 6: Solution Sequence Diagram with three primary use cases represented: 1) Patient sto-
res encrypted health records in Data Steward nodes (IPFS network); 2) Patient stores encrypted
metadata in Blockchain Nodes; 3) Patient authorizes health institution and consortium to access
a portion of data in a Shared Data Vault for a predefined period.
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Table 5: Applied Example

Medical Event

Technical Aspects

Patient enters a medical institu-
tion for care

Patient shares their data with a Data Steward; a previous
virus test result is already shared to the network via Data
Steward; patient carries their Key Management app along
to the medical institution

Health professionals request ac-
cess to medical records

Medical institution communicates with Data Steward to
request data access; the patient receives notification and
signs transaction;

Patient allows access for ten days

A Shared Vault is created between Medical Institution
and Data Steward (Zero-Knowledge Proof)

The screening process is conduc-
ted

Health professionals, patient, and medical institutions
sign a transaction with data

The medical record is updated

Blockchain is updated with encrypted data

A new statistics round is started

Homomorphic encryption computation is executed to ob-
tain updated statistic data

We introduce an algorithm to verify whether a hash digest preimages to a file containing
a predefined set of HL7 FHIR required fields. In Algorithm 1, we detail the on-chain data
validation process in the recommended approach (a), adopting Zero-Knowledge Proofs as a

way to verify the incoming hash data. We detail this strategy in the following.

Assume an input HL7 FHIR file .J in JSON format with a set of fields F' = { f1, fa, ..., fu} €
L, where L is the language schema that describes J. There is a subset F” C F with all required

fields in L. The proposed hash validation method consists of a prover P being able to prove to

a verifier S that he knows F” (the secret) by providing only the hash h and a proof 7, without

revealing any value in .J. Thus, for each arbitrary set F”, there is a maximum 2* possible proofs

that satisfy:

H(w,m)=nh (4.1)

M+« H{F Ug,(F—F),V}) 4.2)

where:
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H = ahash function

M = a Sparse Merkle Tree

h = the root of M

F’ = the set of required fields in L

k = the size of I’

¢ =aNULL set with [2V*+! — k| elements
M, = the leftmost sub-tree of M, with leaf nodes € F’ U ¢
w = the root of M

V' = the set of field values in J

II; = the Merkle Proof of f € F’in M

7 = the proof of / in the form: ITy — M,

Notice that any field combination in F' can produce a valid proof. M is a sparse tree because
we add a set of null values ¢ to its leaf nodes to meet the quadratic structure of Merkle Proof
calculations and allow for a deterministic construction of M. The proof 7 is a set of hash values
with size log(n+m)—log(k). Removing M, hashes from II; to obtain 7 strictly reduces the size
of the log(k) elements. For instance, an arbitrary file J with 50 fields where 10 are required, the
proof 7 will be composed of 4 hash values. In Algorithm 1 we describe the verification process
to be executed on-chain and validate A against 7.

We provide a diagram to demonstrate the flow for Hash Proof in Figure 7. The flow from the
bottom to the top of the diagram, stars with the input JSON file, with the list of required fields.
These fields will be used to set up the witness w in the verifier. The prover generates a Sparse
Merkle Tree M; having required fields and phi at the leftmost ramification. The remaining leaf
nodes will be composed by non-required fields and values from the file. The file hash will be the
Merkle Root that, along with the generated proof, allows for a verification if the hash contains
or not the required fields. I the demonstration I1yy = H(Ha, Hg, Hop, Hpre) and 7 = Hppe
is the proof.



51

true——»  valid

Verifier false—» invalid
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Figure 7: On-chain hash proof algorithm for HL7 FHIR data: a Merkle Tree based system for
Zero Knowledge Proof generation. The system is able to produce verify if a given hash digest
contains required fields in the input. Required fields map deterministically to specific leaves in
a Merkle Tree, making it possible to use the complementary values from a Merkle Proof to act
as proof to a verifier.
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Algorithm 1 EHR on-chain validation. Requests need to provide the used hash function and
a Zero Knowledge Proof of data validity along with hash data. It validates hash size and algo-
rithms, then verifies the proof agains a pre-defined witness.

w <— GenerateWitness(F")
r < random()
procedure VERIFY(h: Hash, 7: Proof)

if len(z) ¢ [32, 40, 64, 128] then

return false > Invalid hash length
end if
h < H(r) > Generate hash of a random value
if len(h) # len(x) then

return false > x and H not compatible
end if
if H(w, ) = h then

return true > Proof is correct
end if
return false > Proof is not correct

end procedure
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5 RESULTS AND DISCUSSION

In this chapter, we present the evaluation methodology and experiment results for the MEPCA
model. We have two test sets, one to evaluate the impacts of on-chain strategy for HL7 FHIR
data, in raw and hash format, with a special focus on the Hash Proof algorithm and its impact on
processing time and storage to obtain a proof of validity for the input data. The second test set is
aimed to evaluate data analysis on encrypted data. We set a simulated blockchain network and
run a FHE algorithm to extract information from an encrypted dataset with COVID-19 regis-
tries. Both experiments can provide a deep technical understanding of the practical applicability
of the MEPCA model for real healthcare use cases.

5.1 Methodology

The proposed model considers the following phases in data lifecycle: a) patient authorizes
a Data Steward to protect PHR in an off-chain IPFS network; b) Data Steward keeps a version
of encrypted PHR; c¢) Data Steward synchronize with IPFS network peers; d) Health Institu-
tion requests access to a set of PHR; e) patient formally authorizes or rejects the request; f) if
authorized, Data Steward creates a Shared Data Vault instance with a predefined duration. We
can divide these steps into two different moments, the first focused on setting up a new Data
Steward, as described in Algorithm 2, and the second focused on the request for PHR from a

Health Institution to a patient, as described on Algorithm 3.

Algorithm 2 starts with the patient P sending a transaction to the blockchain notifying
that the Data Steward D will hold their data for future requests. The method postPHR is
responsible for sending PHR to the authorized Data Steward. The first step consists on the
patient encrypting the data with using their private key. After the encryption, data is sent to the
Data Steward, that returns with the content identification hash from IPFS. With such a data, a
transaction is sent to the blockchain notifying that a new set of PHR data became available at
the Data Steward.

In Algorithm 3 we describe the process of PHR data request from a Health Institution /.
The request comes in the form of a blockchain transaction from the Health Institution H, with
the requested patient public key, the requested data scope and a duration ¢. If approved by
the patient, a Shared Data Vault will be created, containing the requested data encrypted with
the requester public key. The method returns the Universal Resource Identifier (URI), with the
location where the requested data can be accessed.

Here we present a methodology to analyze the proposed method in its main aspects, like
data management, process and calculations. We assume that such calculations need to process
millions of records in a matter of hours, even on encrypted data. To have a detailed evaluation

of the proposed model, some technical aspects are relevant, as described in Table 6.
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Algorithm 2 Procedure for access authorization for PHR sharing. It takes as input a Data
Steward and as output, shares encrypted PHR with Data Steward if authorized by patient

Patient P

Data Steward D

Blockchain B

PHR p

Blockchain Transaction tx

procedure AUTHORIZEDATASTEWARD(D) > Data Steward
tx <— P.authorize(D)
B.sendTransaction(tx)

return true > Data Steward authorized
end procedure
procedure POSTPHR(p, D) > PHR instance

encrypted Phr < P.encrypt(p)

pProof < P.signData(timestamp)

p < new PH R(encryptedPhr,pProof, P.publicKey)

cid < D.post Phr(p)

tx < P.signTransaction(p.proof,p.sig, p.pubKey,dProof, D.publicK ey)

B.sendTransaction(tx)

return [cid, tx] > CID and transaction hash
end procedure

Algorithm 3 PHR request from Health Institution to patient

Patient P
Data Steward D
Health Institution A
Shared Data Vault V'
Duration ¢
Blockchain Transaction tx
Requested data description d
procedure REQUESTPHR(tx)
[H,d,t] « tx.extractParams()
authorization < P.checkAuthorization()
if authorization = true then
CIDs < D.searchData(d)
while cid € CIDs do PHRs < D.getPhr(cid)
end while
rawPhr < P.decrypt(PH Rs, P.privateK ey)
encryptedPhr <— Encrypt(rawPhr, H.publicK ey)
V' < new SharedDataV ault(encrypted Phr, H, t)
return > Shared Data Vault
end if

end procedure
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Table 6: Evaluation aspects for the proposed model

Evaluation Aspect Evaluation Criteria

Hash data validation Proof calculation time; Proof size
End-to-end encryption Processing time; Algorithm profiling
Data Analysis on encrypted data Processing time

Storage occupation raw data compa- | Comparison analysis over a data set
red to encrypted data
Network performance Transactions per second (TPS)
Privacy protection during all steps Security analysis

5.1.1  On-chain data processing

To evaluate the practical applicability of blockchain solutions for on-chain management of
healthcare data, we propose a method that processes HL7 FHIR data on a Hyperledger Fa-
bric network (HYPERLEDGER, 2024a). Hyperledger is a solution for permissioned networks.
Each network can be constructed with a custom set of parameters that suits specific needs for
decentralized data processing, including the consensus algorithm (Practical Byzantine Fault
Tolerance or Raft) and the State Database for smart contracts (MongoDB or CouchDB). It sup-
ports Smart Contracts, also called chaincodes, in Go, Java or Javascript language. Participants
in the network are called organizations, and each organization can utilize its own Certification

Authority (CA) solution to generate key pairs for users.

A Hyperledger Fabric infrastructure has two types of processing units, called peers and
orderers. Peers are responsible for receiving and processing transactions, while orderers are
responsible for reaching consensus with other peers, with instant finality. After consensus is
reached, peers can run logic in Smart Contracts, update its State DB and return to the caller
with the requested data. We created a four-node Hyperledger Fabric 2.5 (HF) network and used
Hyperledger Caliper 2.0 (HYPERLEDGER, 2024b) to benchmark performance using the test
data set. Hyperledger Caliper is the official benchmarking solution for Hyperledger Fabric. It
supports multiple approaches to stress test networks.

To create the test data set, we used Synthea (WALONOSKI et al., 2018), a synthetic pati-
ent generator that models the medical history of random patients. We generated 10 thousand

synthetic patients. The files are in JSON format and have a file size ranging from 1M B to
5M B. The total data set size is 48G B.

Each node in the network has a 8 cores 3.00GHz Xeon E5-2600 processor, and 16GB of
memory, running HF peers and orderers using Docker containers. The network design is pre-
sented in Figure 8. It has two organizations (Orgl, Org2) with two servers each. Each server
runs a Hyperledger peer and observer. The experiment consisted in sending all registries in
the data set to the blockchain and then querying each registry by its identification number. We

configured Hyperledger Caliper in three different scenarios, as follows:
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* Fixed Rate: aims to reach a given TPS as much as possible. Might incur into pending

transactions

— Write Parameters:
+ TPS: 100
— Read Parameters:

x TPS: 1000

* Fixed Load: aims to keep a given number of transactions presented to the system by

adjusting the TPS during the test. Might incur into pending transactions.

— Write Parameters:

% Transaction Load: 40

% Starting TPS: 100
— Read Parameters:

+ Transaction Load: 500

% Starting TPS: 1000
* Maximum Rate: aims to reach the best TPS without pending transactions

— Write Parameters:

% Starting TPS: 100
+ TPS increase for each interval: 5

* Sample Interval (seconds): 20
— Read Parameters:

% Starting TPS; 1000
+ TPS incrase for each interval: 5

* Sample Interval (seconds): 20

We tested the Hash Proof algorithm using the same dataset, extracting patient registries from
each HL7 FHIR file, as the Synthea library generates bulk files by default. Then, each patient
record was submitted to test the Hash Proof algorithm using SHA-256 as the hash function,
varying the number of required fields from 1 to 14, to measure to processing time in millise-
conds and the storage occupation in Bytes, using the hash digest (64 Bytes) as baseline, and the

proof calculation in (WANG et al., 2021) as a reference value.
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Hyperledger Fabric Network
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Figure 8: Experiments network architecture using Hyperledger Fabric 2.5 and Caliper 2.0

5.1.2 Data analysis on encrypted data

End-to-end encryption is an important element in the proposed model, as it focuses on data
privacy throughout all phases of the PHR lifecycle. Data encryption, decryption and encrypted
calculations with Homomorphic Encryption consume more processing and storage area when
compared to raw data processing, so it is necessary to understand which step consumes more
resources and time (profiling). We will analyze the algorithm with multiple data sets to compare
its performance on different payloads and data format, such as HL7/FHIR, OpenEHR and plain

text format.

In terms of materials, we selected an open data set from the Centers for Disease Control and
Prevention (Centers for Disease Control and Prevention, COVID-19 Response, 2021)!. The
data set includes 22.5 million records of anonymized patient data. We chose a subset of data re-
lated to people between 60 and 69 years, which resulted in a total of 1.285 million records. For
development, we used the SEAL library (MICROSOFT SEAL , RELEASE 3.6), which imple-
ments the BFV (Brakerski, Fan, and Vercauteren) algorithm for FHE (FAN; VERCAUTEREN,
2012). The application code is written in Javascript, using Node.js version of SEAL Library,
and data is loaded from CSV files in raw data and encrypted during execution. The application
simulates a Blockchain node that calculates the number of infected patients from the data set.
For data compression, we used the standard zlib package from Node.js. To calculate block pro-
pagation time, we used a Blockchain Network Simulation tool called Simblock (AOKI et al.,
2019).

'The dataset is available on the CDC Website: https://data.cdc.gov/Case-Surveillance/COVID-19-Case-
Surveillance-Public-Use-Data/vbim-akqf
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5.2 Experiments and Results

We conducted 2 different test sets to evaluate different aspects of MEPCA model. In the
following, we present each experiment configuration and the obtained results. In Chapter 5.3

we discuss the obtained results.

5.2.1 Test Set 1: HL7 FHIR on-chain processing

After three rounds of testing with each configuration scenario, we collected results for read
and write process separately for Fixed Rate, Fixed Load and Maximum Rate approaches. We
compare the results for Transactions per Second (TPS), latency, error rate and pending transac-
tions in Table 7. Fixed Rate write reached highest TPS (around 83 transactions), and also the
highest latency (around 1.15s). It also had a 40 pending transaction average during the expe-
riments, and a percentage of 0.1% failed transactions. The fixed load resulted in a 12 pending
transaction average, with no failed transactions. Maximum Load method generated no pending

or failed transactions, as the method is designed to prevent such behaviors.

Table 7: Evaluation results for data write: Fixed rate reached best results, but with higher
number of pending transactions and some failing transactions. Fixed Load reached 64.3 TPS
with 12 pending transactions, while Maximum Rate generated no pending transactions, while
delivering 51.6 TPS.

Write TPS | Latency (s) | Error Rate | Pending Transactions
Fixed Rate 83.2 0.39 0.090% 40
Fixed Load 64.3 0.27 0.000% 12
Maximum Rate 51.6 0.15 0.000% 0

In Figure 9 we present TPS results for write and read operations, comparing the selected
strategies. Fixed Rate delivered 83 write and 987 read TPS, Fixed Load achieved 64 write and
1022 read, and Maximum Load achieved 51 write and 642 read TPS.

In Figure 10 we present the results for the evaluation of the Hash Proof algorithm. We
adopt the hash calculation as the baseline for our method, as it is the best performing technique,
achieving 0.009ms processing time. We use the work of (WANG et al., 2021) as reference
value with 0.68ms for the proof calculation, while our method achieved a processing time of
less than 1.7ms for the worst case (1 required field) and achieved 1.2ms for a higher number of
required fields. For storage occupation, we present the results in Figure 11. MEPCA demanded
384 Bytes in the worst case (1 required field), achieving better results than (WANG et al., 2021)
(192Bytes) for a higher number of required fields. In our model, as the number of required

fields increases, the processing time reduces, as well as the proof size in Bytes.
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Figure 9: Transactions per second for read and write. Fixed Rate delivered better results for
write, while Fixed Load delivered the best overall performance. Maximum Rate reached worst
result of the tree strategies. Fixed Rate resulted in failing transactions due to system overload.

5.2.2 Test Set 2: Fully Homomorphic Encryption

We evaluated the processing time performance on encrypted data to the plain data processing
as in (ALABDULATIF; KHALIL; YI, 2020), organized in groups of 100k, 300k, 600k, and
1.2M records. The encryption process analyzes different key sizes for Polynomial Modulus
n € {1024,2048,4096}, equivalent to (GHADAMYARI; SAMET, 2019), while security and
privacy scenarios are analyzed with a set of experiment scenarios as in (WANG et al., 2021;
SHE et al., 2019). The network simulation is based on (SHE et al., 2019) and simulates a
network with three different regions running 10, 30, and 100 nodes with block sizes varying
from 535KB to 2140KB. Also, all experiments were run on a 3.2 MHz 8 cores computer with
16 GB RAM.

In this chapter, we analyze the performance of the FHE algorithm in the context of the
proposed model. We aim to measure the required time to encrypt, process, and decrypt PHR
data. Thus, we set up a scenario where a node in the network needs to calculate over a whole
set of encrypted data.

BFV algorithm setting is as follows: Polynomial Modulus Degree n = 4096, Coefficient
Modulus ¢ = 109 (according to default recommendation in (MICROSOFT SEAL , RELEASE
3.6)) with 128 bits Security Level. Results comparing raw data and encrypted data processing
are presented in Table 8 and show that, for more than one million records, computation on

encrypted data executes in less than 3 minutes, even when processed by regular hardware.

The work of (JIANG et al., 2020) reached around 60s to query an encrypted dataset with
10 thousand registries, using FHE. Our results reached 1.3M registries in less than 30s. After
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Processing: Hash vs Wang, 2021 vs MEPCA

=
o

ms)
N
N B

Processing (

o o 9e
oMo o

1 2 3 4 5 6 7 8 9 10
Number of required fields

==@==hash e=@==\\ang, 2021 ==@==MEPCA

Figure 10: Hash processing in milliseconds compared to (WANG et al., 2021) and MEPCA.
As the number of required fields increases, the processing time reduces. The baseline hash
calculation for SHA-256 took 0.00993ms to calculate, and the reference value from (WANG
et al., 2021) took 0.68ms.

Table 8: Performance evaluation: FHE calculation on different dataset sizes comparing the raw
data to encrypted data (in seconds). The second and third columns show the overall calculation
time for addition in seconds comparing raw data and ciphertext respectively.

Records | Average Time Plain (s) | Average Time Encrypted (s)
100k 0,0130 11,158

300k 0,0404 33,079

600k 0,0774 65,826

1.3m 0,1673 138,559

applying FHE to reduce the dataset size for queries to 800 registries, (JIANG et al., 2020) was
able to run the calculation in 7s average time.

Table 9: Algorithm profiling: parameters n and g for Polynomial Modulus Degree and Coeffici-
ent Modulus respectively in BFV encryption. The steps of encryption, addition and decryption
are in the following rows.

n q | Encryption (ms) | Addition (ms) | Decryption (ms)
1024 | 27 | 2.367 0.011 2.579
2048 | 52 | 2.355 0.011 2.465
4096 | 86 | 2.435 0.011 2.662

We analyze storage consumption considering the same parameters as in Table 9 and for each
pair (n, q) we measured the string size in raw data, encrypted data, and compressed encrypted
data. For compression in Node.js, we used the library zlib. Each test round had 100k registries.
The results are presented in Table 10.

The total space necessary to store 100k registries in encrypted format could reach almost

7GB of storage with a higher level of encryption (n,q). We reached a compression rate of



Storage Occupation (Bytes)

448
384
320
256
192
128

()
o b

Storage in Bytes: Hash vs Wang, 2021 vs MEPCA

PP P e e e e e e e Y —)

1 2

3 4

5 6 7

8 9 10

Number of required fields

=@-—=hash e=@==\Wang, 2021 «=@==MEPCA

11 12 13

14

61

Figure 11: Hash storage compared to (WANG et al., 2021) and MEPCA. Proof calculation
takes 3648 for one required field and decreases as the number of required fields increases, as
the proof size requires less data for validation. It reaches better results compared to (WANG
et al., 2021) for higher number of required fields.

Table 10: Storage consumption: as the (n, q) pair increases, the ciphertext string size in KB
also increases. Each column S has the average size of each registry in plain, encrypted and
compressed format, while each column 7" has the total storage amount for a set of 100k registries

Plain Text Encrypted Compressed
n q S plain Tplain S, enc Tenc S comp Tcomp
1024 | 27 | 212B | 2IMB | 11.5KB | 1.12GB | 8.7KB | 851MB
2048 | 52 | 212B | 2IMB | 40.6KB | 3.96GB | 30.7KB | 3GB
4096 | 86 | 212B | 21MB | 71.5KB | 6.98GB | 54.2KB | 5.29GB
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Propagation Time for a 10k Registry Pool varying Block Size
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m 30 Nodes 25.898,25 19.617,33 67,09 13.431,41 10.173,99 34,79 8.309,81 6.294,49 21,53
100 Nodes ~ 26.247,79 19.882,11 68,00 13.447,29 10.186,02 34,84 8.643,23 6.547,05 22,39

Data formats with different Block Size (KB)

Figure 12: Blockchain Network Simulation: 10k pool size with S00B of block header and 5
seconds block time. Scenarios compare different block sizes (535KB, 1070KB, and 2140KB)
in three formats (raw data, encrypted cyphertext, and compressed encrypted cyphertext) with
10, 30, and 100 nodes distributed in 3 different regions. The chart summarizes the time in
seconds for 10k registries to propagate in the network.

~ 24%, which could reduce about 1.7GB of space consumption.

To estimate the time to propagate a given block pool size to a blockchain network, we
simulated a network using Simblock, a Blockchain Network Simulator (AOKI et al., 2019).
The network parameters are as follows: three different regions (North America. Europe, and
South America), a block time of 5 seconds, a blockchain header size of 500 Bytes, and an

average pool size of 10.000 registries.

We tested the network by varying the following parameters: the number of nodes in the
network n € {10, 30, 100}, the block size (in Bytes) b € {535,1070,2140} and the median
record size for an = 4096 encryption with 212B for raw data, 84,924B for encrypted ciphertext
and 64,328B for compressed encrypted ciphertext. Each simulation round generated 100 blocks
with each corresponding propagation time in seconds. In Figure 12 we demonstrate the results
for each scenario. With a pool size of 10 thousand transactions with 5005 of block header and
5s block time, scenarios compare different block sizes (535K B, 1070K B, and 2140K B) in
three formats (raw data, encrypted ciphertext, and compressed encrypted ciphertext) with 10,
30, and 100 nodes distributed in 3 different regions. Encrypted data require higher propagation
time, especially compared to plain text. Compressed encrypted format achieved a better result

compared to encrypted format.
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Table 11: Security and Privacy scenarios: comparison

Indicator | Compromised Data Format Extension Mitigation
Data
Exp-1 Single  patient’s | Encrypted/Plain | Patient’s history; | Two-factor authen-
PHR new records tication;  Trusted
Peers list
Exp-2 Data Stewards off- | Encrypted A group of pati- | Not necessary
chain data ents’” PHR
Exp-3 Medical Institu- | Encrypted/Plain | A group of pati- | Reduced Shared
tion’s  off-chain ent’s PHR Data Vault dura-
data tion
Exp-4 Consortium node | Encrypted Incoming transac- | Not necessary
tions; synchroni-
zed ledger

Our network is based on the work of She et al. (SHE et al., 2019) but, as the article does
not provide numbers regarding propagation time, it is not possible to compare the results. Ne-
vertheless, raw data data take a matter of seconds to propagate, while encrypted and compressed
encrypted ciphertexts take a matter of hours to propagate 10k registries. Larger block sizes pro-
vide more efficient propagation time, and compressed ciphertext provides a 20% to 25% time
reduction in block propagation.

Data security and patient privacy are critical to PHR interoperability. Based on (SHE et al.,
2019; YAZDINEJAD et al., 2020), we propose a set of vulnerability scenarios to analyze how
each scenario impacts each model building block from a security and privacy point of view. In
Table 11 we summarize the scenarios, highlighting the type of data at risk, the extension of the
risk, and the appropriate mitigation strategy for each scenario. In the following, we provide a

detailed description of each scenario.

1. Patient privacy is compromised when someone obtains unauthorized access to the pati-
ent’s key k. or any other means of communication with the Data Steward or any third-
party Health Platform (off-chain data). Considering: a) all PHR are encrypted with the
patient’s key; b) Requests for Shared Data Vault should provide a public key; c) One
given patient does not have access to other patient’s data. In this case, Data Stewards
could implement means of two-factor authentication (2FA) to mitigate access to sensitive
data, and requesters could demand Trusted Peers list participation in order to mitigate

unauthorized access;

2. Data Steward’s security compromised: occurs when off-chain records or private key k. of
a given Data Steward have unauthorized access. Considering: 1) all PHR are encrypted
with the patient’s key k.; 2) Data Stewards cannot create a Shared Data Vault without
authorization (signed transaction). In this case, there is no PHR exposition as they are

encrypted, and Data Stewards do not have access to the patient’s private key;



64

3. Medical Institution’s private key compromised: occurs when unauthorized access to key
k. requests Data Stewards for a Data Vault. Considering: 1) all PHR are encrypted by
each corresponding patient’s key k.; 2) Data Stewards cannot create a Shared Data Vault
without patient’s authorization (signed transaction); 3) Any open Shared Data Vault has a
limited duration. In this case, only data in open Shared Data Vaults is subject to exposition

for some time;

4. A node in the consortium compromised: occurs when the server running the node or
the private key suffers unauthorized access. Considering: 1) nodes receive transactions
with encrypted data; 2) its corresponding counterpart signs each transaction; 3) each node
synchronizes blocks with other peers with encrypted data; 4) nodes peer in a consortium.
In this case: all data available to the compromised node in data vaults become accessible
for a while; peered nodes in the consortium can ban the compromised node from the

network and remove access to data.

5.3 Discussion

The proposed model proved that it is possible to process a new PHR for a given patient in
less than 1 second to become fully encrypted, consuming less than 10KB of storage. This is
computed by a Data Steward and shared with a Blockchain Consortium with 100 institutions
across three different continents in less than 30 seconds. It is a significant benefit to the segment
because it protects individual records and supports interoperability among health institutions at
the same time without prohibitive technical limitations in performance or storage allocation.

Encryption, calculation, and decryption occur in different moments, considering how the
data flow works in the proposed model. Thus, we analyze the impact of Homomorphic En-
cryption for each situation. Encryption is the most time-consuming step and occurs whenever
a patient sends data to the Data Steward, or there is demand for data of a specific patient from
the health consortium. Decryption takes around half of the encryption process. This process
occurs whenever a node in the health consortium needs to obtain a result from a calculation
or receive encrypted data from a patient in a Shared Data Vault. Calculation tends to be the
most frequent operation in the model and is also the best performing cryptographic step. When
calculations run on high volumes of data, it takes less than 3 minutes to process more than one
million records.

The work of (JIANG et al., 2020) reached around 60s to query an encrypted dataset with
10 thousand registries, using FHE. Our results reached 1.3M registries in less than 30s. After
applying FHE to reduce the dataset size for queries to 800 registries, (JIANG et al., 2020) was
able to run the calculation in 7s average time. Such results demonstrate how FHE calculation
can support real use cases and improve performance with proper pre-processing.

Regarding security and vulnerability scenarios, our work offers a differentiation compared
to the related work of Yazdinejad et al. (YAZDINEJAD et al., 2020) and She et al. (SHE et al.,
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2019), where private keys are managed by health institutions and not by patients. This scenario
raises security issues where the institutions could generate transactions on the patient’s behalf
without consent.

Write requests demand more hardware, as transactions need to reach consensus among pe-
ers, and then persisted in the State Database, before returning to the requester. On the other
hand, reading requests only validate access permissions before returning the requested data.
It explains the fact that read requests throughput is more than 10 times faster than the write
requests.

In a practical scenario, health institutions are not able to keep incoming transactions at a
controlled level, as with fixed-load and maximum-load methods in Hyperledger Caliper. Thus,
it is important to consider that, with higher number of concurrent transactions, the system might
experience pending transactions, and even failed transactions, due to overload.

The results show that with 3 organizations, the system is able to reach an average of 83
TPS, which means that less than 28 transactions are made for each organization a second. As
the number of participating organizations grows, TPS tends to reduce due to latency or the
minimum required approvals for a transaction to reach consensus.

The Hash Proof algorithm demonstrated practical applicability, considering the benefit it
brings to hash-based models. To validate a hash digest on-chain, it requires 1.6ms off-chain
processing to calculate the proof and additional 384 B on-chain storage to keep it, which can be
acceptable in most use cases, considering its benefits.

Thus, to build a practical use case for health data that comply with existing standards such as
HL7 FHIR or OpenEHR, and supports higher TPS amount, one might consider strategies that
combine off-chain and on-chain strategies, having raw data in a different infrastructure, like
cloud storage, Directed Acyclic Graphs (DAG) such as the Interplanetary File System (IPFS)
and Arweave, and having a partial representation of the each registry on-chain.

Compared to (REEGU et al., 2023), the MEPCA model proposes different approaches to in-
teroperability. While the BCIF-EHR model adopts Hash Lock for interoperability, we propose
the creation of a Shared Data Vault, where data can be made available under patient approval.
Our model is more suited for PHR and IoHT use cases, where data is more granular. Granular
data in the BCIF-EHR model might become impossible to track, as a significant number of hash
locks would be necessary to fulfill a request, while in our model, an SDV will be created on de-
mand, including only the data scope from the requester. Nevertheless, for less granular data use
cases, the MEPCA model suggests adopting layer-2 blockchains, that can keep interoperability
with other networks with more scalability.

Compared to (WANG et al., 2021), our Hash Proof algorithm achieved a close performance,
with higher degree of validation, having values around 1ms for proof generation, compared to
0.68ms in the reference model. While in (WANG et al., 2021) they validate only if the provided
hash was really added to the IPFS, our model allows to verify if the given file has the required

fields and avoid invalid or malicious data entering the blockchain. The reference model lacks
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such a validation, thus we consider that an average higher performance cost around 0.3ms might
be acceptable for most cases, due to the benefit it generates.

We conducted the experiments using a permissioned blockchain (Hyperledger Fabric), but
the same model can also be implemented in public blockchains. However, with public block-
chains, some technical parameters, such as block size and consensus algorithms, cannot be
modified, which might imply into higher processing time. Transaction costs might also impact
public blockchain strategies although, we indicate adopting Layer-2 networks in our model to
reach higher performance and lower costs compared to Layer-1 networks.

It is important to discuss the impact of some elements and their impact on the test perfor-
mance. The adoption of container servers for the nodes makes it easier to manage a larger
infrastructure and run the experiments, but add a performance overhead to the processing time.
The adoption of NodelS for the chaincodes makes it easier to develop and test, but also might
add a performance overhead, when compared to other languages supported by Hyperledger Fa-
bric, such as Go. However, the strategy of storing data or metadata on the blockchain might
have no significant impact on the system performance. Metadata tends to require less storage
space, so the any impact will be perceived in the storage occupation, depending on each file

size.
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6 CONCLUSION

This work proposes the MEPCA model to improve the on-chain processing of EHR. We
propose a set of five principles for improved blockchain adoption for EHR, and introduce new
technical elements to support our model: a set of design principles and uses cases to drive block-
chain adoption for EHR, a hash proof algorithm for on-chain HL7 FHIR hash data validation,
Data Steward and Shared Vaults to segregate responsibilities related to patient data and. With
an end-to-end encryption model, it is possible to support the exchange and calculation of infor-
mation regarding healthcare without exposing individuals due to the Homomorphic Encryption
technique.

We explored different aspects regarding privacy, performance, and node communication on
the blockchain. A technical evaluation of Homomorphic Encryption algorithms demonstrate the
applicability of such techniques. The algorithm proved to calculate over more than one million
records in less than 3 minutes and allow sharing a new PHR entry in less than 30 seconds, which
could support calculations and publication of pandemic outbreak data in practical applications.
Homomorphic Encryption provides a set of techniques to support the calculation of statistics on
encrypted data as a mechanism to protect data privacy and provide public interest information
at the same time.

The results show that a fully on-chain strategy might not be viable in a practical scenario
with multiple health institutions generating and validating data, as the highest TPS is around
83, with a peak of 40 pending transaction. Such a scenario might have a direct impact on the
user experience (waiting lines, service time) and be not acceptable.

In Chapter 1.2 we presented the research hypothesis for the MEPCA model. In the fol-

lowing, we analyze each hypothesis against the observed results.

1. There is an opportunity to increase the adoption of on-chain strategies and cryptography
compared to the existing literature: the MEPCA model demonstrated that operations such
as data validation and data analysis can be performed on-chain, without exposing data

privacy;

2. A consistent set of design principles and a mapping between relevant use cases in health
care and key building-blocks in blockchain and cryptography can drive decision-making
and technology adoption: the MEPCA model provided a set of key requirements, design
principles and use case mapping to support decision-making. However, the model could
provide more decision-making tools, such as a data governance model and an assessment

tool;

3. The ability to add proofs to hash data for on-chain validation can improve auditability
of data existing in the network: the Hash Proof algorithm proved to be well-suitable to
validate required fields in HL7 FHIR JSON format. It can be improved to add support to

other rules in JSON schema validation, such as data format;
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4. End-to-end encryption techniques can support data analysis in an acceptable processing
time when compared to raw data processing and reduce the demand for unencrypted data:
the use of FHE algorithms for data analysis demonstrated great potential for data analysis,

with performance able to process more than 1 million registries in less than 30 seconds.

6.1 Scientific Contribution

The MEPCA model contributes in the healthcare segment with a combination of design gui-
delines and applied algorithms to improve on-chain EHR processing. We focus on giving full
control of data to Data Subjects, from origin to sharing, from interoperability to data monetiza-
tion, from permission to revocation, addressing current regulation, such as HIPAA, GDPR, and

LGPD. In the following, we summarize the specific contributions of this work.

1. The MEPCA model maps key requirements for blockchain and EHR to relevant use ca-
ses, with guidelines for decision-making. The five principles in the MEPCA model (Ma-
ximize, Encrypt, Prove, Comply, Adapt) have the potential to drive a consistent adoption
of on-chain EHR processing, reducing the risk of introducing invalid or malicious data

into blockchain nodes

2. The Hash Proof algorithm is a significant advance in the construction of cryptographic
tools to enhance on-chain data processing, by providing proofs of data instead of arbitrary

hash counterparts

3. An application of the MEPCA model for end-to-end data protection of PHR, adopting

FHE algorithms to allow data analysis on encrypted data, with proven performance

We strongly believe that our model can support decision making and promote an improved
adoption of blockchain and cryptography for EHR, by the providing of a profound analysis of
important use cases in the segment, with a technical analysis of key requirements and a technical
evaluation of the model building-blocks. We introduce a novel technique to validate HL7 FHIR
JSON files based on hash digest and a zero-knowledge proof, which promotes the auditability
of incoming data and prevent invalid or malicious data to enter the blockchain components.

We expect our work to raise awareness on end-to-end encryption, including key pair ge-
neration, as most related work propose a centralized agent to issue key pairs which, by design,
expose patient’s private key to unauthorized access. End-to-end encryption with HE can support
data analysis on encrypted data and support, at the same time, decision-making and privacy pro-
tection, which can motivate the sharing of public interest health information, such as pandemic
data, without exposing individuals.

With a well-structure technical model for on-chain EHR processing, the MEPCA model has
the potential of becoming a reference in terms of applying cutting-edge cryptography and distri-

buted network technologies to real use cases in healthcare, with a bottom-up strategy, where key
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requirements from stakeholders can drive technology adoption. The adoption of the MEPCA
model can bring an evolution to the healthcare industry, allowing society and institutions to

have a more secure and efficient digital infrastructure for EHR.

6.2 Publications

We published three articles and one book chapter in the course of the development of the
MEPCA model. The first entitled "A blockchain-based end-to-end data protection model for
personal health records sharing: a fully homomorphic encryption approach" (VANIN et al.,
2023), published in 2023 by the Multidisciplinary Digital Publishing Institute the Sensors Jour-
nal, in an special issue for Internet of Health Things. The article was produced in collaboration
with the Instituto Colaborativo de Blockchain and with Hospital de Clinicas de Porto Alegre,
proposing a model for end-to-end PHR protection, with the adoption of FHE for on-chain data
analysis.

Two articles were published in partnership with the Auto-ID Lab from the Korea Advan-
ced Institute of Science and Technology (KAIST). Both articles explore advancements with
the use of blockchain technology for version 2.0 of the Electronic Product Code Information
Services (EPCIS) and the Core Business Vocabulary (CBV). The article "Decentralized Led-
ger Technology for EPCIS 2.0: Utilizing NFTs for Enhanced Product Traceability" (VANIN
et al., 2024) was presented at the 7th IEEE International Conference on Blockchain in Cope-
nhagen, Denmark. The article "Enhancing Supply Chain Security and Interoperability with
GS1 ISO EPCIS/CBV Open Standards using Decentralized Ledgers" (TOLCHA et al., 2024)
was presented at the IEEE Global Blockchain Conference in Shanghai, China. All articles were
published in 2024.

The chapter "Internet of Things and Machine Learning for Smart Healthcare"was published
in the book "IoT and ML for Information Management: A Smart Healthcare Perspective" (NA-
MASUDRA, 2024). Covers the applicability of multiple technologies for Smart Healthcare,

including blockchain technologies, and the challenges related to its adoption. The book was
published in 2024.

6.3 Limitations and Future Work

Our work focuses on the application of blockchain and cryptography techniques in the he-
althcare segment, introducing new elements to separate data management responsibilities, and
improving on-chain data processing. To accomplish this, we introduce an element called Data
Steward, responsible for managing PHR outside the health institution’s environment, and an
element called Shared Data Vault to manage temporary access to fulfill requests. We also in-
troduced a novel model to allow the validation of HL7 FHIR data. In this chapter, we describe
limitations and future work in the MEPCA model.
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As Data Steward is not a traditional element in the health industry, companies need an
incentive to provide such a service. Patients must also enroll in a Data Steward to share their
data with health institutions. It could incur costs to patients or a demand to share their data as a
way to cover the infrastructure costs.

Another limitation is that Data Stewards must be part of each specific consortium to ex-
change data from patients with health institutions. It could result in situations where a given
patient needs to share their data with a health institution, but the Data Steward is not part of the
same consortium as the institution.

The data scope considers only numeric data in a format that supports the Homomorphic
Encryption calculations. It does not consider more complex data formats and standards like
HL7/FHIR. Data in this format are still suitable for sharing in encrypted format, but not for
calculations.

Some measures might positively affect the design for a better performance, such as the
use of physical servers instead of containerized ones. Hyperledger Fabric also perceives better
performance with Go-based chaincodes, instead of Javascript. However, a design with Wide
Area Network (WAN) communication can experience higher latency than the test results.

For future work, we recommend expanding the MEPCA model to more use cases in health
care, with the provision of data governance resources. The model can also provide program-
ming libraries to help developers create a solution in accordance with the five principles of the
model. The model can also provide a set of assessment criteria to help stakeholders measure
the maturity level of their solution according to the design principles of the model.

Extending the model to work with IoHT devices can provide more scalable and secure so-
lutions, with the adoption of Decentralized Physical Infrastructure (DePin) techniques, to use
smart devices as the infrastructure for on-chain data processing and validation. As more hetero-
geneous devices and data formats come to market, it increases the demand for data protection,
semantic interoperability, and data analysis, thus the MEPCA model can be extended to cover
this scenario with more design elements and technical building blocks.

The Hash Proof algorithm can be improved to provide complete on-chain support JSON
schema validation rules, extending models such as (ATTOUCHE et al., 2021) to the healthcare
industry. The addition of proofs to encrypted data is also a future work for the MEPCA model,

as it can increase transparency and relevance of blockchain components in the segment.
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