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“The supreme goal of all theory is to make the irreducible basic elements as simple and as
few as possible without having to surrender the adequate representation of a simple datum

of experience.”
— Albert Einstein
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ABSTRACT

BACKGROUND: Respiratory infectious diseases represent a major challenge in
modern society. We recently faced the most significant public health challenge of the
last century. Severe Acute Respiratory Syndrome Coronavirus 2 has overwhelmed
almost all health systems worldwide, highlighting pre-existing weaknesses. The
heterogeneity of COVID-19 clinical manifestations has made it challenging to
manage hospitalized patients, making it crucial to identify those at greatest risk,
especially for e�ciently allocating vital resources. Unlike past pandemics,
hospitalized patients are currently monitored continuously and through di↵erent
modalities. These data generate large longitudinal and multimodal datasets in health
institutions. In this context, data-driven solutions can support clinical decisions and
provide new tools for risk management of hospitalized patients during pandemics.
OBJECTIVE: Therefore, we propose integrating clinical, laboratory, and chest X-ray
imaging features into a survival analysis model for hospitalized patients with
COVID-19. With the model, we aim to combine multimodal and longitudinal data to
capture the dynamic nature of COVID-19 and provide an explainable hazard
function. METHODOLOGY: The methodology involves the proposition and
development of the model. The model is divided into five main components: (i)
pre-processing; (ii) feature encoders; (iii) temporal attention; (iv) CheXReport; and (v)
multitask networks. The pre-processing component is responsible for data cleaning,
outlier removal, variable selection, and image processing. In the feature encoders, the
categorical and continuous data are transformed into a vector of embeddings that
capture the complex and non-linear relationships between the variables. Then, based
on the embeddings up to the current time instant, we extract a temporal context
vector using temporal attention. The CheXReport component processes the patient’s
X-ray images using a fully-transformers architecture, which integrates visual features
with the textual elements of the reports. Finally, all feature vectors are concatenated
to be processed in the multitask networks, a set of neural networks that allow the
model to capture the specific characteristics of each risk. RESULTS: To evaluate the
model performance, we used an incremental ablation study. We use the public
datasets PBC2, MIMIC-CXR, Curated Dataset for COVID-19, and a private dataset.
Then, we compare the results of the MultSurv model with the state of the art. The
results obtained demonstrate that the MultSurv outperforms all reference
architectures, with a C-index of 0.723 ± 0.008 for t = 1 and �t = 1, and 0.695 ± 0.003
for t = 7 and �t = 7. CONCLUSION: The main scientific contribution of this study is
the proposal of a multimodal model for processing dynamic and longitudinal data in
survival analysis in the context of COVID-19. Furthermore, the MultSurv model
o↵ers a tool to support patient prioritization in pandemic scenarios. Finally, the
application of the model can be adapted to di↵erent clinical contexts, extending
beyond COVID-19.

Keywords: Survival Analysis. Pandemics. Multimodal Data. Deep Learning.
Artificial Intelligence.



RESUMO

CONTEXTO: As doenças infecciosas respiratórias representam um grande desafio na
sociedade moderna. Recentemente, enfrentamos o maior desafio de saúde pública do
último século. A Severe Acute Respiratory Syndrome Coronavirus 2 provocou uma
sobrecarga em quase todos os sistemas de saúde do mundo, evidenciando as
fragilidades preexistentes. A heterogeneidade das manifestações clínicas da
COVID-19 dificultou o manejo dos pacientes hospitalizados, tornando crucial a
identificação daqueles em maior risco, especialmente para a alocação de recursos
vitais. Diferentemente de pandemias passadas, os pacientes hospitalizados
atualmente são monitorados de forma contínua e por meio de diferentes
modalidades. Esses dados geram grandes conjuntos de dados longitudinais e
multimodais nas instituições de saúde. Nesse contexto, soluções baseadas em dados
podem apoiar as decisões clínicas e fornecer novas ferramentas para a gestão de riscos
dos pacientes hospitalizados durante pandemias. OBJETIVO: Deste modo, propomos
integrar características clínicas, laboratoriais e de imagens de Raio-X do tórax em um
modelo de análise de sobrevivência para pacientes hospitalizados com COVID-19.
Com o modelo, buscamos combinar dados multimodais e longitudinais para capturar
a natureza dinâmica da COVID-19 e fornecer uma função de risco explicável.
METODOLOGIA: A metodologia envolve a proposição e desenvolvimento do
modelo MultSurv. O modelo é dividido em cinco componentes principais: (i)
pre-processing; (ii) feature encoders; (iii) temporal attention; (iv) CheXReport; e (v)
multitask networks. O pre-processing é responsável pela limpeza de dados, remoção de
outliers, seleção de variáveis e processamento de imagens. Nos feature encoders, os
dados categóricos e contínuos são transformados em um vetor de embeddings que
captura as relações complexas e não-lineares entre as variáveis. Em seguida, com base
nos embeddings até o instante de tempo atual, extraímos um vetor de contexto
temporal utilizando a temporal attention. O CheXReport processa as imagens de
Raio-X do paciente utilizando uma arquitetura fully-transformers, que integra
características visuais com os elementos textuais dos laudos. Finalmente, todos os
vetores de características são concatenados para serem processados nas multitask
networks, um conjunto de redes neurais multitarefas que permite ao modelo capturar
as características específicas de cada risco. RESULTADOS: Para avaliar o desempenho
do modelo MultSurv, realizamos um estudo de ablação incremental. Utilizamos os
conjuntos de dados públicos PBC2, MIMIC-CXR, Curated Dataset for COVID-19 e um
conjunto de dados privado. Em seguida, comparamos os resultados do
modelo MultSurv com o estado da arte. Os resultados obtidos demonstram que o
modelo MultSurv superou todas as arquiteturas de referência, com um C-index de
0.723± 0.008 para t = 1 e �t = 1, e 0.695± 0.003 para t = 7 e �t = 7. CONCLUSÃO: A
principal contribuição científica deste estudo é a proposta de um modelo multimodal
para o processamento de dados dinâmicos e longitudinais na análise de sobrevivência
no contexto da COVID-19. Além disso, o modelo MultSurv oferece uma ferramenta
de apoio à priorização de pacientes em cenários de pandemia. Por fim, a aplicação do
modelo MultSurv pode ser adaptada para diferentes contextos clínicos, estendendo-se
além da COVID-19.

Palavras-chave: Análise de Sobrevivência. Pandemia. Multimodal data.
Aprendizado Profundo. Inteligência Artificial.
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1 INTRODUCTION

We recently faced the most significant healthcare challenge of the last
century (WENHAM et al., 2021; JAMES; MENZIES; RADCHENKO, 2021). In
December 2019, a cluster of pneumonia cases of unknown cause was
epidemiologically associated with a sea market in Wuhan province, China (HUANG
et al., 2020). The causative agent, a new betacoronavirus, has its probable origin in
the spillover between species from animals to humans (WU et al., 2021). The
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), presents flu-like symptoms that can become
severe in high-risk individuals (LI et al., 2020).

Over the past two decades, several infectious agents have emerged, including
COVID-19, Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV),
Middle East Respiratory Syndrome (MERS), and Mpox (PANEL et al., 2023). Some
studies suggest that due to globalization, climate change, and greater interactions
with animals, the probability of transmission of pathogens between species has
increased considerably (BENGIS et al., 2004; OSTERHOLM, 2005; RAHMAN et al.,
2020). Infectious diseases, especially zoonotic ones, promise to be one of the biggest
public health challenges in the coming decades (BEDFORD et al., 2019).

Despite the challenges posed by these infectious agents, the COVID-19 pandemic
has highlighted a series of weaknesses in all types of systems – be they healthcare,
food, economy, or governance (LEACH et al., 2021). Furthermore, problems related to
disinformation, governance strategies, and lack of coordination between countries in
the world worsened the scenario of the COVID-19 pandemic (BURSZTYN et al., 2020;
ANSELL; SØRENSEN; TORFING, 2020; LITEWKA; HEITMAN, 2020; ZEISER et al.,
2022). In addition, the pandemic has further highlighted the economic discrepancy
between countries worldwide. First, developing countries have su↵ered from a lack
of resources for e↵ective SARS-CoV-2 screening and diagnosis. The lack of tracking
resulted in a greater need for access to healthcare providers, which, even before the
COVID-19 pandemic, showed signs of inability to meet the demands in developing
countries. Furthermore, after the emergence of the first vaccines, low-income countries
again had late access and insu�cient quantities to promote an e�cient immunization
campaign (ACHARYA; GHIMIRE; SUBRAMANYA, 2021).

Digitalizing healthcare services, especially throughout the 21st century, has
allowed the recording of detailed information in Electronic Health Records (EHRs) of
patients infected by SARS-CoV-2 (WANG et al., 2021). A patient collects clinical data,
vital signs, and laboratory and imaging tests throughout hospitalization to
characterize the disease and current health status. In the context of COVID-19, these
records made it easier for the scientific community to share information to analyze,
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understand, diagnose, treat, and prevent the disease throughout the pandemic more
e�ciently (GRONVALL, 2020).

However, data related to COVID-19 are heterogeneous and complex, reflecting
variability in disease progression and clinical outcomes among di↵erent patients (HO
et al., 2024). Furthermore, data collection from hospitalized patients generally does
not follow a well-defined periodicity, which generates a considerable amount of
sparse data (WIEGREBE et al., 2024). This sparseness, combined with the
longitudinal nature of data, where information is recorded over time, and the
competition of risks, in which multiple health events can occur simultaneously or in
rapid succession, presents significant data analysis and interpretation
challenges (LEE; YOON; SCHAAR, 2019).

To e�ciently extract non-linear relationships from these heterogeneous data,
building Artificial Intelligence (AI) models is necessary. However, current literature
still has di�culties dealing with the data’s temporal nature, relying mainly on the last
measurement available for prediction (WIEGREBE et al., 2024). To address these
limitations, it is essential to develop techniques that can integrate temporal data
capturing the evolution of the disease over time. Additionally, utilizing multimodal
data, which includes medical images, vital signs, text records, and other types of data,
can provide a more complete picture of a patient’s health status (ZHONG et al., 2024).

In this sense, the main focus of this dissertation is to develop a survival analysis
model for hospitalized patients with COVID-19 to assist healthcare professionals and
provide patients with personalized care. In this sense, we propose a survival analysis
model with learning capacity on longitudinal and sparse data collected from EHRs.
These data are multimodal, with sociodemographic, clinical, laboratory, and imaging
information about the patients. The model can capture the temporal relationships of
data through a temporal attention network based on a Recurrent Neural Network
(RNN). Information from patients’ imaging exams is extracted by a fully Transformer
architecture, which can extract information from chest X-ray exams and suggest
findings in natural language. Finally, we provide healthcare professionals with
explainability information to aid decision-making.

1.1 Motivation

The COVID-19 pandemic has highlighted existing weaknesses in healthcare
systems around the world. Under normal conditions, these systems already operate
close to the limit of their capacity. Pandemics, such as COVID-19, where the rapid
spread of the virus and variability in disease progression among patients
exponentially increase the demand for medical care, further expose these
vulnerabilities, resulting in an extreme strain on healthcare resources and teams. The
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shortage of hospital beds, personal protective equipment, mechanical ventilators, and
the physical and mental exhaustion of healthcare professionals are just some of the
consequences of this scenario. Furthermore, the need for rapid and accurate
diagnoses becomes crucial for e↵ectively managing the disease, highlighting the
importance of clinical decision-support tools that can assist in screening and treating
patients e�ciently and reliably.

In this context, the need for e↵ective and accurate systems to predict patient
outcomes becomes a valuable decision-support tool to help define management
practices. Traditional survival analysis models, while helpful, often fall short when
confronted with the complex and multimodal data generated by modern healthcare
systems. Unlike previous pandemics, such as SARS-CoV in 2002 and MERS in 2012,
we currently have vast volumes of data stored in EHRs, which include
sociodemographic information, clinical records, laboratory tests, and imaging exams.
Each data type provides insight into a patient’s condition, but most existing models
are limited to analyzing a single modality or simplistic combinations of modalities.
This limitation prevents the model and, consequently, the outcomes from capturing
and representing, respectively, a complete view of the patient’s health status.

Furthermore, patients in critical care settings are continuously monitored, with
data being collected irregularly over time. For example, not all patients have
equivalent imaging data or laboratory records. This disparity contributes to the
heterogeneous and longitudinal nature of clinical data. Traditional survival models,
such as Cox Proportional Hazards (CoxPH) models, often assume that data are
collected at regular intervals or rely on static snapshots of patient data. This
assumption does not align with the reality of clinical practice, where the timing of
data collection can vary significantly, and missing data are expected. Failure to
account for these temporal dynamics can result in models that do not fully capture
the progression of a patient’s condition, leading to less accurate predictions.
Additionally, patients are also subject to multiple health risks throughout their
hospitalization.

The current literature has advanced in capturing complex and non-linear
relationships by combining the CoxPH model with neural networks (KATZMAN et
al., 2018). Furthermore, adopting multitask learning strategies has shown promise in
e�ciently modeling and capturing the distinct characteristics of the various risks to
which a patient may be exposed (FOTSO, 2018). For example, Dynamic-DeepHit
leverages RNNs and neural networks to capture temporal dependencies and
competing risks in longitudinal data (LEE; YOON; SCHAAR, 2019). However, despite
these advances, existing models face significant limitations, particularly their ability
to incorporate and process multimodal data e↵ectively.

Another gap identified in our review concerns healthcare data’s dynamic and
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evolving nature. To accurately assess patient risk, models must capture and analyze
temporal and historical relationships that reflect the progression of a patient’s health
status. This is particularly important in chronic and complex diseases, where a
patient’s condition can change rapidly. Furthermore, in high-risk clinical settings,
implementing explainability mechanisms is crucial. Providing clear and interpretable
insights into how models arrive at their predictions can increase the confidence and
adoption of these technologies in clinical practice. Without such transparency,
healthcare professionals may hesitate to rely on these models for decision-making,
limiting their practical utility and impact.

1.2 Research Question

The integration of AI into healthcare, particularly for survival analysis, has shown
considerable potential in improving patient outcomes by enabling more accurate
predictions of patient risk and prognosis. However, as highlighted in the previous
sections, the complexity of healthcare data presents significant challenges that must
be addressed to realize this potential fully. While increasingly sophisticated, current
models often fall short in handling clinical data’s multimodal and longitudinal
nature. In light of these gaps, our work aims to answer the following research
question:

How to develop a deep learning architecture that leverages dynamic multimodal data
to enhance survival analysis predictions while ensuring the explainability of the

model’s outputs?

The proposed methodology integrates multimodal and longitudinal data to
address this issue, o↵ering explainability mechanisms. We combine clinical,
laboratory, sociodemographic data, and X-ray images to view the patient’s health
status comprehensively. This is accomplished using a Deep Learning (DL)
architecture that uses embeddings to represent continuous and categorical variables
and a fully Transformer model for image analysis. To capture the temporal evolution
of patient data, we use an RNN-based temporal attention network. Additionally, we
incorporate techniques that enable the interpretation of model predictions, providing
insights into the variables that most influence patient survival analysis. Finally, the
model architecture is designed to simultaneously deal with multiple health risks,
sharing information between networks specialized in di↵erent health events. This
allows the model to capture complex relationships and improve the accuracy of
survival analysis. Together, these aspects aim to overcome the limitations of
traditional survival analysis models by providing a robust and interpretable tool to
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assist in patient management during pandemics and other critical public health
situations.

1.3 Objectives

The general objective of this dissertation is to develop and evaluate a survival
analysis model that integrates longitudinal and multimodal data to enhance the
diagnosis and prognosis of COVID-19 patients. With the model, we aim to provide
healthcare professionals with an explainable, accurate tool for prioritizing patient
care and optimizing resource allocation in hospital settings. By incorporating clinical,
laboratory, and imaging data, the model seeks to improve the understanding of the
influences of di↵erent variables on patient survival and support the implementation
of personalized treatment strategies. To achieve this objective, we have defined some
specific objectives:

• Perform a Rapid Literature Review (RLR) of the state of the art in DL models for
multimodal and longitudinal survival analysis;

• Propose a DL model that supports the integration of dynamic multimodal and
longitudinal data to fill the identified gaps in the literature;

• Define a mechanism to capture the characteristics of patients’ health status
evolution over time;

• Evaluate the applicability of embedding techniques to capture complex
interactions and relationships between categorical and continuous variables in
tabular data;

• Explore explainability techniques to improve the transparent and interpretable
predictions of the DL model.

1.4 Scientific Contributions

The main scientific contribution of this dissertation is the proposal of a survival
analysis model that can process multimodal and longitudinal data from patients
hospitalized with COVID-19. Tabular data is transformed into dense vector
representations that can capture complex non-linear relationships. The model
processes historical data using an RNN to capture information from di↵erent
temporal moments and generate a temporal contextual vector. Then, the model
extracts features from the X-ray images. A set of multitasking networks processes all
these contextual vectors to model multiple health risks simultaneously. The
secondary scientific contributions of this dissertation are listed below:
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• State of the art survey. We selected articles published over the last five years
using the RLR protocol (HARKER; KLEIJNEN, 2012; KHANGURA et al., 2012).
We analyze aspects of the methods in the current literature, divided into four
main topics: current techniques, how the di↵erent data fusion techniques impact
accuracy and reliability, how the literature handles longitudinal data, and the
challenges that involve the analysis of multimodal data with competitive risks.

• CheXReport architecture. We propose CheXReport architecture, a novel fully
transformer architecture pre-trained for generating radiological reports with
Swin Transformer blocks. CheXReport’s design integrates local and global
image features more e↵ectively. It employs Swin Transformer blocks that
dynamically adjust receptive fields, enhancing the model’s ability to extract and
correlate detailed visual features with report text.

• Embeddings for categorical and continuous variables. Our model introduces
embedding techniques for categorical and continuous variables, transforming
them into dense vector representations. This allows the capture of complex,
non-linear relationships within the data, improving the model’s ability to
integrate and interpret diverse types of patient information for more accurate
survival analysis.

• Multitask learning for competing risks. The model employs a multitask
learning approach to handle multiple competing health risks simultaneously.
This enables the identification and di↵erentiation of risk factors, providing a
comprehensive assessment of patient prognosis and facilitating treatment
strategies.

1.5 Project Context

This dissertation is linked to a larger project called MyDigitalHealth. MDH is a
consortium between Universidade do Vale do Rio dos Sinos (UNISINOS) and seven
institutions involved in the fight against COVID-19 in Rio Grande do Sul (RS): Grupo
Hospitalar Conceição (GHC), Hospital de Clínicas de Porto Alegre (HCPA), Hospital
Ernesto Dornelles (HED), Hospital Moinhos de Vento (HMV), Hospital Universitário
de Santa Maria (HUSM), Santa Casa de Misericórdia de Porto Alegre (ISCMPA), and
Unimed Central. The main objective of MDH is to develop an intelligent information
and communication model based on a Blockchain architecture with standardized
clinical data to link diverse health service providers and the patients of pandemics,
particularly COVID-19. Therefore, this dissertation proposes a multimodal survival
analysis model to provide healthcare professionals with a tool for aiding patient care
and optimizing resource allocation in hospital settings.
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Furthermore, this study was conducted following the Declaration of Helsinki.
This research was approved by the Research Ethics Committee (CAAE under number
33540520.6.3004.5327) to develop the project entitled "Modelo Inteligente de
Blockchain para Informações de Saúde e Interação com Pacientes no âmbito da
COVID-19", called MDH. The project was submitted to Platform Brazil and approved
by the GHC1, ISMCPA2, HED3, HCPA4, HMV5, HUSM6 hospital partners and
UNISINOS.

1.6 Text Organization

The remainder of the study is divided into seven chapters. Chapter 2 presents the
concepts related to the present work, introducing technologies and algorithms used to
develop the proposed model. Then, in Chapter 3, the related works are discussed to
present the state-of-the-art in the context of survival analysis with multimodal data.
Chapter 4 presents the proposed model and design decisions. Chapter 5 presents the
validation methodology and metrics for the model. Chapter 6 presents the results,
evaluation, and discussions for the proposed model. Finally, Chapter 7 presents the
final considerations regarding the findings and future work.

1Grupo Hospitalar Conceição <https://www.ghc.com.br/>
2Santa Casa de Misericórdia <https://santacasa.org.br/>
3Hospital Ernesto Dornelles <https://www.hed.com.br/>
4Hospital de Clínicas <https://www.hcpa.edu.br/>
5Hospital Moinhos de Vento <https://www.hospitalmoinhos.org.br/>
6Hospital Universitário de Santa Maria <https://www.gov.br/ebserh/pt-br/

hospitais-universitarios/regiao-sul/husm-ufsm>

https://www.ghc.com.br/
https://santacasa.org.br/
https://www.hed.com.br/
https://www.hcpa.edu.br/
https://www.hospitalmoinhos.org.br/
https://www.gov.br/ebserh/pt-br/hospitais-universitarios/regiao-sul/husm-ufsm
https://www.gov.br/ebserh/pt-br/hospitais-universitarios/regiao-sul/husm-ufsm
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2 BACKGROUND

The rapid evolution of human society and the interconnectedness of global
populations have significantly altered the infectious disease landscape. The terms
endemic, epidemic, and pandemic are fundamental to understanding the scope and
impact of disease outbreaks. Endemic diseases are localized with predictable
transmission rates, while epidemics represent a sudden increase in cases over a wider
area. Pandemics, the most worrying, spread globally and cause widespread health,
social and economic disruptions. This chapter investigates these definitions and the
factors contributing to the emergence and spread of infectious diseases in our modern
world.

Additionally, this chapter explores the role of AI and DL in managing and
mitigating the impacts of pandemics. AI, first conceptualized in 1956, encompasses
computational techniques designed to replicate human cognitive functions. Within
AI, Machine Learning (ML) focuses on developing algorithms that allow systems to
learn and make data-based decisions. Among them, DL, a subset of ML, employs
multi-layer artificial neural networks (often called deep neural networks) to model
complex patterns in high-dimensional data. These networks have demonstrated
competitive performace in several tasks, including computer vision and Natural
Language Processing (NLP), making them contemporary tools for analyzing clinical
and radiological data in COVID-19. This section investigates the technical
foundations of DL, which are essential for developing diagnostic and prognostic
models.

2.1 Endemic, Epidemic, and Pandemic

The definition of endemic, epidemic, and pandemic is directly related to the
disease’s transmission capacity and geographic scope. An endemic is a local disease
transmission with a predictable transmission rate. An epidemic is characterized by an
unpredictable increase in sick people over a larger geographic area. Finally, a
pandemic causes disease cases globally (GRENNAN, 2019; PIRET; BOIVIN, 2021). In
this sense, human evolution from gatherers to hunters, and now with extensive global
trade and greater interactions with ecological systems, favor the emergence of new
diseases (GRAHAM; SULLIVAN, 2018; BEDFORD et al., 2019; PIRET; BOIVIN,
2021). Finally, while the spread of bacterial or fungal pathogens is a global health
concern, its pandemic appears less likely (GRAHAM; SULLIVAN, 2018).

Climate change favors the expansion of zoonotic vectors, such as Aedes Aegypti
mosquitoes (CAMINADE; MCINTYRE; JONES, 2019). Furthermore, the constant
evolution of viruses such as influenza virus is a critical challenge these days (PIRET;
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BOIVIN, 2021). Viruses from zoonotic sources cause most human infectious diseases
and pandemics (HUGHES et al., 2010; GRAHAM; SULLIVAN, 2018). The animal
pathogen evolution to a human-specialized pathogen requires a combination of
multiple variables that are not yet fully understood (MEGANCK; BARIC, 2021). In
this sense, developing and identifying therapies and vaccines that can treat unknown
zoonotic viruses are necessary for the future to reduce problems for health and
economic systems (GRAHAM; SULLIVAN, 2018; SHANG; LI; ZHANG, 2021;
MEGANCK; BARIC, 2021).

Proposals for the zoonotic pathogens detection that may migrate to humans can be
divided into four categories: (i) surveillance and discovery of pathogens; (ii)
development of new reagents for serological tests; (iii) vaccines development for
viruses with migration potential; and (iv) vaccines fabrication and evaluation before
pathogen migration (GRAHAM; SULLIVAN, 2018). However, given the modern
research organization and the lack of an immediate market for a vaccine candidate, it
is an obstacle to advancing pandemic preparedness measures (MEGANCK; BARIC,
2021). For example, problems faced with the COVID-19 pandemic have already been
predicted in past studies, such as the health systems organization, priorities in access
to hospital resources, and how to increase antivirals, masks, and antibiotics
productions (OSTERHOLM, 2017). However, during the COVID-19 pandemic, many
platforms, protocols, and policies were based on foundations used during pandemics
with SARS-CoV, MERS, and avian flu (GRAHAM; SULLIVAN, 2018). In this sense, in
the next section, we present the main concepts regarding the behavior and diagnosis
of COVID-19.

2.2 SARS-CoV-2

The fear of other viruses emergence that cause infectious diseases with pandemic
potential has existed for decades (BENGIS et al., 2004; OSTERHOLM, 2005). Even
viruses similar to SARS-CoV-2 were found in bats in 2013 and could infect humans
without previous adaptation (GE et al., 2013). However, the SARS-CoV outbreak
demonstrated that despite the concern, the world was unprepared for the COVID-19
pandemic (PIRET; BOIVIN, 2021). SARS-CoV-2 was first o�cially identified in
hospitals in Wuhan, Hubei Province, China, using surveillance mechanisms
established after the SARS-CoV outbreak in 2003 (ZHU et al., 2020; LI et al., 2020).
The outbreak likely originates from a wholesale seafood market in Wuhan (ZHU et
al., 2020).

Despite a lower reported mortality rate than SARS-CoV and MERS-CoV,
SARS-CoV-2 is responsible for more deaths and cases (ZEISER et al., 2022). The
problems with the rapid and deadly spread of SARS-CoV-2 worldwide are related to
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the transmission rate and the possibility of transmitting the virus even in
asymptomatic individuals (EZHILAN; SURESH; NESAKUMAR, 2021). In SARS-CoV,
for example, the peak viral load is reached between 6 and 11 days after the onset of
symptoms, facilitating patient identification and isolation (PIRET; BOIVIN, 2021). In
MERS-CoV, at least what is known so far, transmission occurs only from animals to
humans (EZHILAN; SURESH; NESAKUMAR, 2021).

2.2.1 Symptoms

Despite high rates of asymptomatic cases, COVID-19 can lead to the development
of a broad spectrum of diseases, from mild symptoms to life-threatening
illnesses (WIERSINGA et al., 2020; ORAN; TOPOL, 2021). Some of the most common
symptoms are cough, myalgias, and headache. In addition, loss of taste or smell are
symptoms commonly associated with SARS-CoV-2 infection (BRANDAL et al., 2021).
However, no specific symptoms or signs can reliably diagnose COVID-19 (STRUYF et
al., 2021).

The evolution from mild to severe cases can happen quickly, sometimes in less
than a week (COHEN et al., 2020). The most frequent complications involve the
development of Severe Acute Respiratory Infections (SARI) (WANG et al., 2020).
SARI causes respiratory failure in critically ill patients and is defined by the acute
onset of noncardiogenic pulmonary edema, hypoxemia, and the need for mechanical
ventilation (MATTHAY et al., 2019). In addition, COVID-19 can cause cardiac,
thromboembolic, neurological complications and long-term sequelae (COHEN et al.,
2020; WANG et al., 2020; LEISMAN et al., 2020).

2.2.2 Diagnosis

COVID-19 can present a broad spectrum of symptoms, making a di↵erential
diagnosis based on clinical features complex due to similarity to other
diseases (DONIDA; COSTA; SCHERER, 2021; ZEISER et al., 2022). The gold standard
for diagnosis is Quantitative Reverse Transcription Polymerase Chain Reaction
(RT-qPCR) (PATEL; JERNIGAN et al., 2020). However, throughout the COVID-19
pandemic, at di↵erent times, the testing capacity of the health system proved to be
limited (BURKI, 2020; ZEISER et al., 2022). This limitation is mainly located in
regions far from large urban centers and socially more vulnerable
countries (MEHTAR et al., 2020).

One of the most critical findings of COVID-19 is pneumonia (XU et al., 2021). In
this sense, radiology exams play a fundamental role in diagnosing and monitoring
patients with COVID-19. The main chest X-ray findings are consolidation and
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ground-glass opacities, with bilateral, peripheral, and lower lung zone
distributions (WONG et al., 2020). Meanwhile, chest computed tomography scans in
COVID-19 patients most commonly demonstrate ground-glass opacification with or
without consolidated abnormalities, consistent with viral pneumonia (SHI et al.,
2020). However, X-ray or computed tomography findings cannot define with
complete certainty the COVID-19 infection (ACR; RADIOLOGY et al., 2020).
Therefore, the Radiological Society of North America (RSNA) recommends classifying
the radiological findings as typical, indeterminate, or atypical for
COVID-19 (SIMPSON et al., 2020). Despite this, radiological findings can be
identified even before the onset of symptoms and the ability to identify the
SARS-CoV-2 in samples from the upper respiratory tract (SHI et al., 2020). Finally,
radiological examinations are a key point in the screening and treatment definition of
patients (PANWAR et al., 2020).

2.2.3 Patient Flow in Hospitals During the Pandemic

The dynamics of the COVID-19 pandemic have overwhelmed most healthcare
systems globally. High transmission and hospitalization rates led health institutions
to adjust their service, management, and healthcare flows to meet demand (MCCABE
et al., 2020). However, this adaptation was challenging, especially in remote and
socially vulnerable regions, highlighting the lack of qualified professionals, medical
supplies, and supplementary oxygen (ZEISER et al., 2022). Furthermore, several
health institutions were not used to caring for patients with high-level isolation
needs, which led to adaptations with available resources (PANDEY et al., 2020). In
addition to this, chronic patients continued to place demands on healthcare
institutions at the same time as they were one of the main risk groups (ZEISER et al.,
2022). One of the measures adopted by many countries to reduce hospitalization
needs was the cancellation of elective surgeries and the adoption of telehealth
measures (MCCABE et al., 2020).

Di↵erences in healthcare systems and the clinical behavior of variants have
impacted in-hospital mortality rates (ZEISER et al., 2022). Despite the variations in
the scale of healthcare institutions, the flow of care for a patient is similar in all
hospitals and can be seen in Figure 1. With the COVID-19 pandemic, each of these
sectors needed changes to guarantee care, diagnosis, and treatment for patients and,
simultaneously, protect employees of healthcare institutions (PANDEY et al., 2020).
These decisions involved the adoption of digital flows to reduce contact, infection
control for cleaning facilities, clinical management, such as the moment of intubation
and extubation, admission to the Intensive Care Unit (ICU), daily communication
with family members and the team, and expansion of bed capacities (GRIFFIN et al.,
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2020). Despite a continuous e↵ort to define patient management and treatment
guidelines, these were constantly changed throughout the pandemic due to the
etiology of the disease and healthcare resources available (ZEISER et al., 2022).

Figure 1 – Flow diagram representing the journey of a patient within a hospital, from
admission to discharge. Arrows indicate possible paths between units.
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Due to the healthcare system’s capabilities, patients admitted to hospitals during
the COVID-19 pandemic were mainly severe cases (MACEDO; GONCALVES; FEBRA,
2021). These patients had access to di↵erent care and treatment structures due to the
unknown nature of the disease. Therefore, the prognosis of patients varies
considerably between regions and periods. Finally, management errors like those in
the North of Brazil may have worsened hospital mortality rates (ZEISER et al., 2022).

2.3 Artificial Intelligence

AI was first introduced in 1956 by John McCarthy, Marvin L. Minsky, Nathaniel
Rochester, and Claude Shannon at the Dartmouth Summer Research Project on
Artificial Intelligence (DICK, 2019). Historically, researchers have defined the AI
concept in several ways, mainly linked to human performance fidelity and the
definition linked to rationality (RUSSELL; NORVIG, 2020). The di�culty in
determining the AI concept is related to human intelligence understanding, which,
despite advances in recent decades, we are still far from fully understanding the
neurobiological mechanisms (BARBEY, 2018; CHOLLET, 2021). In this work, we
adopt the definition of intelligence from Legg, Hutter et al. (2007): "Intelligence
measures the agent’s ability to achieve goals in a wide range of environments".

Early AI techniques were primitive and mostly rule-based. However, these were
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only suited to a limited spectrum of tasks. A new concept within AI, ML, emerges
from this limitation. ML can be defined as the process of learning a function
f : X ! Y that maps an input X to an output Y (MITCHELL et al., 1997). However,
the learning process is not always linear, given the real-world complexity. In the ML
context, learning can be carried out in five main ways: supervised, unsupervised,
semi-supervised, weakly supervised, self-supervised, and reinforcement learning.

In supervised learning, models are constructed from a large number of training
examples, with each example containing a label indicating the ground truth (ZHOU,
2018). However, using supervised learning is not always possible in several areas,
given the need for problem-domain knowledge and the high costs for data
collection (ZHANG et al., 2020). An alternative is to use unsupervised learning. In
this paradigm, learning occurs without prior data knowledge, so there is no label for
each sample. The goal of unsupervised learning is to identify patterns in the input
without specific feedback (RUSSELL; NORVIG, 2020).

Semi-supervised and weakly supervised learning can be considered a mixture of
supervised and unsupervised learning. For the use of semi-supervised learning
techniques, only part of the data has labels (ENGELEN; HOOS, 2020).
Weakly-supervised learning is a problem defined as the learning process based on
partial labels, such as image-level labels (ZHANG et al., 2021). In self-supervised
learning, the model learns to generate its own labels from the data itself by defining
pseudo-labels based on the inherent structure or properties of the data (MISRA;
MAATEN, 2020). Unlike fully supervised learning, which requires extensive labeled
data, self-supervised techniques allow models to learn useful representations from
large amounts of unlabeled data. These learned representations can later be
fine-tuned with a smaller labeled dataset for specific downstream tasks (JING; TIAN,
2020). Finally, in reinforcement learning, the agent learns through rewards and
punishments (RUSSELL; NORVIG, 2020). Reinforcement learning techniques can be
characterized as agents who learn a policy from reward signs interacting with their
environment. The agent aims to find an ideal policy that maximizes its cumulative
reward (SUTTON; BARTO, 2018).

Recent advances in computing have allowed intelligent systems development for
specific tasks with human-like cognitive capacity (JANIESCH; ZSCHECH;
HEINRICH, 2021). The most recent advance, driven primarily by increased
computing power and massive amounts of data, has been the evolution of Artificial
Neural Networks (ANNs) towards ever-deeper architectures with enhanced
capabilities (GOODFELLOW; BENGIO; COURVILLE, 2017). These architectures are
part of studying a sub-area of AI defined as DL (LECUN; BENGIO; HINTON, 2015).
Concerning this focus, we discuss relevant DL details in the following subsections.



29

2.3.1 Deep Learning

A key aspect of DL is the ability to extract representations from the data using a
general-purpose learning process based on non-linear units (LECUN; BENGIO;
HINTON, 2015). The organization of these units takes place in tens or hundreds of
layers that learn the representations through artificial neurons (GOODFELLOW;
BENGIO; COURVILLE, 2017). Although several concepts were developed based on
the human brain understanding, the current mechanisms of DL cannot be considered
as artificial brains (CHOLLET, 2021). However, deep neural networks have been used
successfully for tasks such as computer vision (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012; SIMONYAN; ZISSERMAN, 2014; LECUN; BENGIO; HINTON, 2015;
HE et al., 2016; CHOLLET, 2017; TAN; LE, 2019; DOSOVITSKIY et al., 2021; LIU et
al., 2022a), speech recognition (NASSIF et al., 2019), NLP (OTTER; MEDINA;
KALITA, 2020), and reinforcement learning (YU et al., 2021). Next, we cover the
theoretical foundations of artificial neurons and ANNs necessary to understand the
methods related to this dissertation.

2.3.1.1 Artificial Neural Network

An ANN is organized into layers composed of several units, formally called
neurons. The artificial neuron design still follows the design proposed by McCulloch
and Pitts (1943). The first neuron was limited to binary inputs. Then, an evolution
came with the perceptron-like neuron definition (ROSENBLATT, 1958). The
perceptron’s main contribution lies in combining the inputs into a weighted sum, and
if the sum exceeds a certain threshold, the neuron produces a positive
output (RUSSELL; NORVIG, 2020). An activation function determines this limit. So
let y be the output, xi and wi the input and weight for the sample i, and � the
activation function, we have:

y = �

0
BBBBB@

nX

i=0

wi ⇤ xi
1
CCCCCA (2.1)

Activation functions determine how the neuron will activate (RUSSELL; NORVIG,
2020). There are some activation functions in the current literature that have di↵erent
uses. Below, we list some of the most important functions:

• Step: step function was the first activation function used. Currently, the step

function is not used in ANNs because it is not di↵erentiable (HAYKIN, 2009).
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The step function varies between -1 and 1 and is defined by:

↵(v) =

8>><>>:
1 if v � 0

�1 if v < 0
(2.2)

• Sigmoid: sigmoid outputs values between 0 and 1, making it the preferred for
probability prediction problems (RUSSELL; NORVIG, 2020). The sigmoid

function is defined by:

↵(v) =
1

1+ ev
(2.3)

• Tanh: the Hyperbolic Tangent (Tanh) is a sigmoid variation. The main advantage
compared to sigmoid is related to the function’s derivative, which presents larger
values that accelerate the finding of the global minimum (LECUN et al., 2012).
The Tanh function varies between -1 and 1 and is defined by:

↵(v) = tanh(v) (2.4)

• ReLU: e Rectified Linear Units (ReLU’s) main advantage over other activation
functions is that it usually does not su↵er from gradient
saturation (FUKUSHIMA, 1969). The ReLU function varies between 0 and 1 and
is defined by:

↵(v) =max(0, v) (2.5)

However, the perceptron neuron still had limitations related to the weights
optimization and the impossibility of application in nonlinear problems (MINSKY;
PAPERT, 1969). To deal with this limitation, the organization of neurons in
multilayers was proposed. This structure was called Multilayer Perceptron (MLP). In
addition to layering, MLP networks take advantage of three other concepts: (i)
nonlinear activation functions, (ii) weight optimization using gradient descent, and
(iii) backpropagation (COPPIN, 2010). A MLP network can be formally defined as:

yi = �

0
BBBBB@

nX

i=0

Wiyi�1 + bi
1
CCCCCA (2.6)

where yi is output from the layer i,Wi corresponds to the weights of the layer, yi�1 the
outputs from the previous layer, bi to the bias of the current layer, and � the activation
function (HAYKIN, 2009).

We can use an error-based methodology in MLP to carry out the weight
optimization process. The error is measured at the end of each epoch or iteration
using a loss function (RUSSELL; NORVIG, 2020). An epoch is the complete pass of
the training set. Meanwhile, an iteration is a partial pass of the training set. Loss
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functions measure the distance between the network predictions and the expected
outputs (CHOLLET, 2017). It is necessary to define the loss functions according to
the problem that the ANN will be proposed to solve (RUSSELL; NORVIG, 2020). This
need is linked to weight optimization, which depends on the loss function
output (GOODFELLOW; BENGIO; COURVILLE, 2017). Finally, it is essential to note
that the objective of the training process is to minimize the loss function output
value (CHOLLET, 2017).

Therefore, training an ANN consists of minimizing the loss (GOODFELLOW;
BENGIO; COURVILLE, 2017). Currently, gradient descent is used for this process.
Considering a scenario with two weights (w0,w1), the gradient descent computes the
loss function gradient. It moves the weights a little towards the gradient descent,
repeating the process until it finds a local or global minimum for the loss (RUSSELL;
NORVIG, 2020). Therefore, considering a simple neuron definition with a single
input (x,y), we have:

hw(x) = w1x +w0 (2.7)

To find the weights optimization direction, the loss function partial derivative is
calculated:

@hw(x) = w1x +w0 (2.8)

Considering a quadratic loss, the minimum is calculated by the partial derivative
of the function:

@
@wi

Loss(w) (2.9)

Applying the chain rule, we have:

@
@wi

(y � hw(x)))2 = 2(y � hw(x))⇥
@
@wi

(y � hw(x)) (2.10)

Applying Equation 2.10 to each of the weights w0 and w1, we have:

@
@w0

Loss(w) = �2(y � hw(x))

@
@w1

Loss(w) = �2(y � hw(x))⇥ x
(2.11)

Adding the ↵ learning rate, which is responsible for setting the step size when
updating weights (COPPIN, 2010). In this way, we have:
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w0 w0 +↵(y � hw(x))
w1 w1 +↵(y � hw(x))⇥ x

(2.12)

Finally, in a training set with N examples, we have:

w0 w0 +↵
X

j

(yj � hw(xj ))

w1 w1 +↵
X

j

(yj � hw(xj ))⇥ xj
(2.13)

This algorithm is called batch gradient descent (RUSSELL; NORVIG, 2020). Over
the years, several extensions have been proposed, such as Stochastic Gradient
Descent (SGD) (ROBBINS; MONRO, 1951), Adagrad (DUCHI; HAZAN; SINGER,
2011), RMSProp (HINTON; SRIVASTAVA; SWERSKY, 2012), Adam (KINGMA; BA,
2014), or Nadam (DOZAT, 2016). Despite Adam’s popularity, there is still no
universal weight optimization method applicable to any network or task (DOGO et
al., 2018).

To replicate this optimization process to all the weights of the layers of an ANN,
the backpropagation algorithm is used (RUSSELL; NORVIG, 2020). In the
backpropagation algorithm, the gradient is applied recursively by the chain rule,
updating the values of our weights (COPPIN, 2010). Finally, a problem in optimizing
weights in large networks using gradient descent happens when partial derivatives
are small or zero at some weights, updates not have significance in the output. This
issue is known as vanishing gradient (GOODFELLOW; BENGIO; COURVILLE, 2017).

2.3.1.2 Recurrent Neural Network

Several tasks are sequential, for example, in prediction any input can depend on
past inputs. In this sense, RNNs have a mechanism that allows a cycle in the inference
process. The loop consists of persisting the previous neuron output in the current
neuron inference (RUSSELL; NORVIG, 2020). Figure 2 shows a schematic of the basic
mechanism of an RNN.

Over time, several specialized RNNs were proposed (HOCHREITER;
SCHMIDHUBER, 1997; CHO et al., 2014; KRAUSE et al., 2016). For example, RNNs
have di�culties with long-term dependencies (BENGIO; SIMARD; FRASCONI,
1994). In this sense, Long Short-Term Memory (LSTM) uses a memory cell, which
essentially keeps a copy of important information from past entries (HOCHREITER;
SCHMIDHUBER, 1997). This cell has several gates, which are artificial neurons
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Figure 2 – Unrolled recurrent neural network. (a) Diagram of an RNN with a � delay.
(b) View of an RNN along three entries.

(a) (b)

Source: Adapted from Russell and Norvig (2020).

deciding what information is relevant or not for the memory cell (GOODFELLOW;
BENGIO; COURVILLE, 2017). A traditional LSTM has four gates: forget, input, cell
state, and output gate. The forget gate decides what information should be passed or
withheld.

Meanwhile, the input gate receives the previous state and the current input, which
are combined using an output multiplication of sigmoid and tanh functions to update
the cell state. The cell state is updated by the sum of the forget and input gates outputs.
Finally, the output gate combines the current input, the previous output, and the cell
state, determining the LSTM current output (RUSSELL; NORVIG, 2020).

2.3.1.3 Convolutional Neural Network

Human vision can identify patterns and objects in fractions of a second (GEIRHOS
et al., 2017). However, for ANNs, pattern detection in images su↵ers from some
limitations. The main one is the need to process an image in vector format,
eliminating the dependency relationship between image pixels (RUSSELL; NORVIG,
2020). In this context, Convolutional Neural Network (CNNs) showed significant
evolution in the pattern recognition field, especially in image
processing (KRIZHEVSKY; SUTSKEVER; HINTON, 2012; SIMONYAN; ZISSERMAN,
2014; LECUN; BENGIO; HINTON, 2015; HE et al., 2016; CHOLLET, 2017; TAN; LE,
2019; DOSOVITSKIY et al., 2021; LIU et al., 2022a). Generally, a CNN architecture is
made up of several layers. In Figure 3, we present a structure with the main layers of
a CNN architecture. In the following subsections, we present the CNN essential
components and some key ideas.
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Figure 3 – Illustration of the main layers of a Convolutional Neural Network.
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2.3.1.3.1 Convolutional Layer

An asterisk formally denotes the convolution operation and is traditionally used
in signal processing (GOODFELLOW; BENGIO; COURVILLE, 2017). A convolution
operation is defined by:

s(t) = (x ⇤w)(t) (2.14)

where x is the input, w the weights, t is the time, and s(t) is the output over time. For
the CNN domain, x is referred to the input image I , w to the kernel K , and the output
to the feature map S . Therefore, we can adapt the convolution process to the following
function:

S(i, j) = (I ⇤K)(i, j) =
X

m

X

n

I(m,n)K(i �m,j �n) (2.15)

The use of CNNs concerning ANNs is linked to two main aspects: sparse
connections and parameter sharing. Sparse connections reduce the connections
between layers, keeping the essential characteristics of each region (ALBAWI;
MOHAMMED; AL-ZAWI, 2017). Parameter sharing is related to the kernel’s ability to
identify a specific pattern across the entire image, unlike ANNs where each
parameter is used only once (GOODFELLOW; BENGIO; COURVILLE, 2017).

2.3.1.3.2 Pooling Layers

The pooling layer’s main objective is to reduce the image spatial dimension and
consequently the computation cost (LECUN; BENGIO; HINTON, 2015). The two
most popular pooling layers are max and average pooling. The max-pooling selects
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the maximum value in a neighborhood. Meanwhile, average pooling selects an
average value in the neighborhood (GOODFELLOW; BENGIO; COURVILLE, 2017).
In Figure 4, we present an example of the max-pooling process.

Figure 4 – 2x2 pixel max-pooling process with a 2 pixel stride applied to a 4x4 pixel
image, resulting in a 2x2 pixel image.
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2.3.1.4 Attentions-based Architectures

Attention-based architectures initially emerged for NLP, especially in text
translation (BAHDANAU; CHO; BENGIO, 2014). The attention mechanism solved a
common problem, the RNN’s inability to remember long sentences in the translation
process (CHAUDHARI et al., 2021). The main motivation for attention mechanisms is
human vision. Our view tends to selectively focus on specific regions, ignoring
irrelevant information (XU et al., 2015).

For example, an attention mechanism represents a word’s importance concerning
others in a sentence. This process is achieved through three arrays: query Q, key K ,
and value V . An attention function can generally be defined as a mapping of Q and
(K,V ) to output as a weighted sum of V , where the weight associated with each V

depends on Q and K . An Attention layer can be calculated as:

Attention(Q,K,V ) = sof tmax

0
BBBB@
QKT
p
dk

1
CCCCAV (2.16)

where dk are the dimensions of the queries and keys.
Attention mechanisms were initially proposed for NLP, particularly the

translation task (CHAUDHARI et al., 2021). Since then, several architectures have
emerged, such as Transformers (VASWANI et al., 2017), and Vision
Transformer (ViT) (DOSOVITSKIY et al., 2021). Another benefit of the attention
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mechanism is the increased interpretability by explicitly showing how much each
input element contributes to the prediction with the attention weights (CHAUDHARI
et al., 2021).

2.3.1.5 Dropout

A ML model mainly aims to maintain performance on previously unobserved
data. This ability is called generalization (GOODFELLOW; BENGIO; COURVILLE,
2017). In this sense, two key aspects are associated with generalization problems:
underfitting and overfitting. Underfitting occurs when the model performs poorly
during training, while in overfitting, the model has only learned patterns that apply
to the training set and does not perform well on new sets (ZHANG; ZHANG; JIANG,
2019). An alternative to prevent overfitting is the use of dropout layers. The main
idea is to turn o↵ a percentage of neurons during the training process, allowing each
iteration to use a new neural subnet (SRIVASTAVA et al., 2014). With neurons
deactivated randomly, the models are not dependent on a neuron or connection, thus
reducing overfitting. In addition, dropout layer processing is computationally
cheap (GOODFELLOW; BENGIO; COURVILLE, 2017).

2.3.1.6 Batch Normalization

Batch normalization is applied between layers of ANNs during the training and
testing process. Batch normalization accelerates the training process and helps to
decrease information loss due to very small weights (IOFFE; SZEGEDY, 2015;
RUSSELL; NORVIG, 2020). However, the reasons why it is e↵ective in these processes
are still not fully understood and are discussed in several recent
articles (SANTURKAR et al., 2018; LABATIE et al., 2021). Since H is a set of feature
maps of the layer to be normalized, we have:

H 0 =
H �µ
�

(2.17)

where µ is the average and � is the standard deviation of the feature maps of the
layer to be normalized. H 0 are normalized feature maps processed the same way as
if the network were processing H without normalization (GOODFELLOW; BENGIO;
COURVILLE, 2017).

2.4 Survival Analysis

Survival analysis, also known as time-to-event analysis, is an approach that seeks
to analyze the expected duration until one or more events occur (KAPLAN; MEIER,
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1958). The events of interest can vary widely depending on the context — ranging
from time to death, cancer recurrence, or time to failure of a mechanical
component (BRADBURN et al., 2003). Survival modeling assumes that observations
come from unknown distributions (COX, 1972). In this sense, the main objectives of
survival analysis are to estimate the survival times distribution, compare survival
experiences among di↵erent groups, and model the relationship between survival
time and covariates (BRADBURN et al., 2003).

Survival data are described and modeled in two key functions: the survival
function S(t), and the hazard function �(t) (CLARK et al., 2003). The survival
function S(t) gives the probability that the event of interest has not occurred by time
t. Mathematically, it is expressed as:

S(t) = P(T > t) (2.18)

where T is a random variable representing the time to event. The survival function
is a non-increasing function, and it ranges from S(0) = 1 to limt!1S(t) = 0. In other
words, the survival function decreases inversely as t, with the initial value being 1
when t is 0 (WANG; LI; REDDY, 2019).

On the other hand, the hazard function �(t) is also known as the instantaneous
death rate. The hazard function gives the rate that an individual under observation
at a time t will have an event at that time, given that it has not occurred until time
t (CLARK et al., 2003). The hazard function is defined as:

�(t) = lim
�t!0

P(t  T < t +�t|T � t)
�t

(2.19)

The hazard function is not a probability but rather a rate, and it provides insights
into the risk of the event occurring at time t, conditional on survival until that
time (WANG; LI; REDDY, 2019). The hazard function is particularly useful in
identifying high or low-risk periods. For example, the hazard function �(t) can reveal
critical periods when patients are at the highest risk of complications or
death (CLARK et al., 2003).

2.4.1 Censoring

A unique challenge in survival analysis is the presence of censored data (WANG;
LI; REDDY, 2019). Censorship occurs when the exact time of the event is not observed
for all subjects (KLEINBAUM et al., 2012). The most common types of censorship are:
(i) a patient has not yet experienced an event; (ii) the patient was not followed until
the end of the study; and (iii) the patient experienced an event di↵erent from those
observed in the study (CLARK et al., 2003).
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Censoring impact on the interpretation and analysis of survival data (WANG; LI;
REDDY, 2019). Without proper handling, censoring can lead to biased estimates and
incorrect conclusions (KLEINBAUM et al., 2012). For example, if right-censored
observations are not accounted for, estimated survival times may be artificially short
since the analysis would ignore that some individuals survived beyond the observed
times (LEE; YOON; SCHAAR, 2019).

Furthermore, the amount and type of censoring in a dataset can influence the
precision and reliability of estimates (KLEIN, 2003). High levels of censoring reduce
the e↵ective sample size, leading to wider confidence intervals and less precise
estimates (WANG; LI; REDDY, 2019). Therefore, careful consideration of censoring
mechanisms and appropriate statistical methods is essential for accurate survival
analysis (JIANG; GUTERMAN, 2024).

2.4.2 Survival Models

Several models are used to analyze survival data, with the Kaplan-Meier estimator
and the CoxPH model being among the most widely employed (WANG; LI; REDDY,
2019). Considering censored data, the Kaplan-Meier estimator provides a
non-parametric estimate of the survival function S(t) (KAPLAN; MEIER, 1958). It is
defined as:

Ŝ(t) =
Y

tit

 
1� di

ni

!
(2.20)

where di is the number of events at time ti and ni is the number of individuals at risk
just before time ti .

Kaplan-Meier is a non-parametric estimator that is particularly e↵ective in
handling censored data, which is common in survival studies where not all subjects
experience the event of interest during the observation period (WANG; LI; REDDY,
2019). However, the Kaplan-Meier estimator assumes that the probability of survival
is equal for all subjects (JIANG; GUTERMAN, 2024). This implies that it does not
consider possible heterogeneities or covariates that may influence the survival rate,
such as age, sex, or clinical condition of the individuals (KLEIN, 2003). Furthermore,
the method does not distinguish between di↵erent risk groups unless survival curves
are estimated separately for each group (CLARK et al., 2003).

On the other hand, CoxPH allows us to investigate the e↵ect of several variables
on the time until a specific event, such as death or disease recurrence. CoxPH, a semi-
parametric model, seeks to estimate the hazard function �(t|X), which describes the
instantaneous risk of the event occurring at time t, given that the subject survived
until that moment and is conditioned by a set of covariates X = (X1,X2, . . . ,Xp) (COX,
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1972). Therefore, the hazard function in the Cox model is expressed as:

�(t|X) = �0(t)exp(�1X1 + �2X2 + . . .+ �pXp) (2.21)

where the hazzard function �(t|X) depends on a set of p covariates X = (X1,X2, . . . ,Xp),
whose impact is measured by the size of the coe�cients � = (�1,�2, . . . ,�p) (BRADBURN
et al., 2003).

The central assumption of the CoxPH model is the proportional hazards
assumption, which states that hazard rates across individuals are constant over
time (WANG; LI; REDDY, 2019). This implies that the e↵ect of a covariate on risk is
multiplicative and does not change as time progresses (BRADBURN et al., 2003).
However, in many real-world situations, the impact of a covariate on risk can change
as time passes (KLEIN, 2003). When this assumption is violated, the results of the
CoxPH model can become misleading, leading to incorrect conclusions about the
relationship between covariates and survival times (LEE; YOON; SCHAAR, 2019).

2.5 Final Remarks

This chapter presented the fundamental concepts of endemic, epidemic, and
pandemic diseases, emphasizing their transmission capabilities and geographic
scope. Understanding these distinctions is crucial for the global health community to
develop e↵ective surveillance, prevention, and response strategies. The COVID-19
pandemic has highlighted the need for preparedness and adaptability in managing
infectious diseases and the importance of continued research and development in
zoonotic pathogens.

Finally, we analyze the main aspects related to AI and DL that are involved in
defining the model of this dissertation. In this sense, survival analysis models can
contribute to health systems in times of overload, providing support mechanisms for
patient care. Integrating multimodal data is essential for a complete patient’s health
status analysis and assertive predictions. In the next chapter, we analyze, through an
RLR, the works considered state-of-the-art for survival analysis in multimodal data.
We also investigate the current methods used in the literature, challenges, and research
opportunities that guided this dissertation.
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3 RELATEDWORK

The multimodal nature of modern medicine is complex, with unstructured texts,
di↵erent image modalities, and tabular data, such as laboratory tests. This complexity
makes it challenging to extract underlying patterns from healthcare data e�ciently.
When we analyze data from hospitalized or intensive care patients, this data has even
greater degrees of dimensionality. Despite recent architectural advances, particularly
in generative AI, the timelessness and longitudinality of data represent considerable
challenges for model development. Furthermore, individuals are subject to competing
risks, which may lead the individual to experience other outcomes or influence the
patient’s outcome in a non-linear manner.

Therefore, for most healthcare applications with these data characteristics, the
primary goal is to estimate the risk or predict the time to the event of interest for the
patient in the future. This type of problem is also known in statistics as survival
analysis. Although, over the years, several statistical models have demonstrated
significant results for predicting the time of an event of interest, modeling
multimodal data is still a challenge for purely statistical models. In this sense, current
literature uses models based on ML and DL architectures for survival analysis in
multimodal health data.

The primary purpose of this chapter is to provide a comprehensive and structured
investigation of survival analysis in multimodal data from hospitalized patients. We
demonstrate an overview of traditional statistical models compared to current
literature based on ML and DL. Furthermore, we explore how longitudinal and
timeless characteristics of data are incorporated into current methods. Finally, we
discuss the open challenges and gaps, outlining opportunities for future work.

This chapter is divided into three main parts. The first defines the methodology
adopted for the search and selection of articles. Afterward, we discuss and analyze
the selected studies, focusing on their applications and challenges. Finally, we
analyze the literature’s challenges and open research problems, indicating future
research directions.

3.1 Methodology

To carry out the analysis of current literature, we used the RLR methodology. The
RLR is a simplified approach to synthesizing evidence (HARKER; KLEIJNEN, 2012).
The Systematic Literature Review (SLR) is the reference method in healthcare for
mapping patient decision aids, clinical practice guidelines, or public policy
summaries (TRICCO et al., 2015). Unlike SLRs, which are comprehensive but
resource-intensive, RLRs are quicker to conduct and more focused in scope, o↵ering a
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timely synthesis of relevant evidence when immediate insights are needed. While not
as exhaustive as SLRs, the RLR provides su�cient evidence for informed
decision-making in time-sensitive healthcare contexts. It is beneficial when the
volume of available literature is manageable or when the required insights are
specific and do not require a comprehensive review.

Furthermore, the RLR methodology can help identify research gaps that guide
future reviews or original studies, making it a practical complement to SLRs in the
evidence synthesis landscape. Therefore, considering the objective of the work, we
realized a RLR of the challenges and research opportunities in multimodal survival
analysis. The methodology adopted in this bibliographic survey follows the principles
and steps defined in previous studies (HARKER; KLEIJNEN, 2012; KHANGURA et
al., 2012; TRICCO et al., 2015). Briefly, the steps for executing an RLR are:

• Definition of research questions;

• Selection of keyword and literature databases;

• Article filtering and selection;

• Result analysis and discussion.

3.1.1 Research Questions

We aim to survey the state-of-the-art survival analysis techniques applied to
multimodal data fusion in healthcare and biomedical contexts, including
time-to-event and competing risk models. Specifically, we are interested in the role of
AI, ML, and DL methods in addressing challenges related to hospitalized patients,
particularly those hospitalized or in ICUs. To guide our RLR, we divided our research
questions into Main Question (MQ) and Specific Questions (SQ). Below, we present
our MQ and SQ for this RLR.

• MQ - What is the current state of the art on multimodal data survival analysis
for hospitalized patients?

• SQ1 - How are di↵erent data fusion techniques used in survival analysis?

• SQ2 - How do AI-driven models integrate with traditional statistical methods in
the analysis of time-to-event data?

• SQ3 - How does the current state of the art handle the complexities of
longitudinal data?

• SQ4 - How are competing risks incorporated and impact the decision-making for
hospitalized patients?
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3.1.2 Search Strategy

We need to select a set of relevant studies to identify the answers to the previously
proposed questions. In this sense, we defined a set of keywords. The strings were
determined based on the author’s knowledge and with validation from health
professionals. Keywords were grouped using boolean operators, thus forming a
search string. At this first moment, we used Google Scholar to search for articles. In
Figure 5, we present our search strings. We searched the literature on April 24, 2024.

Figure 5 – Search string used for database query.

("survival analysis" OR "time-to-event" OR "competing risks")
("multimodal data" OR "data fusion")

("health" OR "healthcare" OR "medical" OR "biomedical")
("artificial intelligence" OR "machine learning" OR "deep learning") 

("hospitalized" OR "ICU" OR "hospitalization")

Search String

Source: Elaborated by the author.

3.1.3 Article selection

The next step is to define the criteria to filter the raw corpus. The study filtering
process comprises a series of steps that aim to select only the works relevant to the
RLR objective (ZEISER et al., 2021b). For our survey, the selection criteria were:

• Publication date: the corpus should include articles published in the last five
years (2019 to 2024) to limit the review to the most recent work in the area;

• Impurity removal: removal of duplicate and non-English articles;

• Filter by title and abstract: provides an initial screening to remove those not
directly related to the RLR;

• Filter by full text: complete analysis of the works, selecting only the articles that
presented proposals and architectural methods corresponding to our research.

3.2 Findings

In this section, we present the RLR results and discussion regarding survival
analysis techniques. Specifically, we focus on applying AI, ML, and DL to multimodal
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data fusion in healthcare and biomedical contexts, particularly involving hospitalized
patients or in ICU care. Our findings show how these advanced methodologies
manage time-to-event and competing risk analyses.

3.2.1 Article Selection

The process of selecting corpus articles is detailed in Figure 6. Our search returned
210 articles. After removing impurities, 157 articles remained. In the second stage,
we analyzed titles and abstracts, removing studies unrelated to the RLR theme and
the remaining 26 articles. Finally, we fully analyzed the articles, analyzing the criteria
defined in Section 3.1.3. Finally, our final corpus is composed of 8 articles. Table 1
presents our corpus detailing the publication journal/conference and the h5-index.

Figure 6 – Article selection process.

Google Scholar

210

Initial
Search

157

Impurity
Removal

81

Filtered by
Title

26

Filtered by
Abstract

Filtered by
Full Text

8 Final Selection

Source: Elaborated by the author.

3.2.2 Literature Analysis

This section analyzes the literature corpus collected using the described
methodology. First, we explore studies identifying the current state of the art in
multimodal data survival analysis for hospitalized patients, answering MQ1. Then, to
address SQ1, we assess the impact of di↵erent data fusion techniques on the accuracy
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Table 1 – Final corpus of articles published in journals.
Article Journal/Conference h5-index

(ZHONG et al., 2024) IEEE Journal of Biomedical and Health Informatics 91
(SAEED et al., 2024) ArXiv -
(TONG; ZHU; LING, 2023) Heliyon 105
(FU et al., 2023) Heliyon 105
(YAMGA et al., 2023) Frontiers in Digital Health 22
(PHILIPP et al., 2022) Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD)
31

(WAN; ZHOU; ZHANG, 2021) npj Digital Medicine 96
(LEE; YOON; SCHAAR, 2019) IEEE Transactions on Biomedical Engineering 75

and reliability of survival predictions. For SQ2, we evaluate how AI-driven models
integrate with traditional statistical methods in analyzing time-to-event data.
Subsequently, for SQ3, we analyze how current methods handle the complexities of
longitudinal data. In addressing SQ4, we examine how competing risk models are
incorporated and impact decision-making for hospitalized patients. Finally, we
highlight the main challenges and open research opportunities in multimodal data
survival analysis for hospitalized patients.

3.2.2.1 MQ - What is the current state of the art on multimodal data survival for
hospitalized patients?

Historically, survival analysis is based on statistical models, such as the CoxPH
model, which assumes a constant hazard rate over time and may not deal with
complex nonlinear interactions between covariates (LEE; YOON; SCHAAR, 2019;
SAEED et al., 2024). Furthermore, using multimodal data, with interactions between
di↵erent types of data, is ine�cient in traditional statistical models (ZHONG et al.,
2024). In this sense, ML models, such as Random Survival Forests and Gradient
Boosting Machines, can capture the nonlinear relationships of high-dimensional data
with greater e�ciency (TONG; ZHU; LING, 2023). However, these ML models may
have di�culty dealing with censored data (WANG; LI; REDDY, 2019).

One of the challenges in survival analysis is competing risks. Our corpus deals
with competing risks in di↵erent ways. The work with greater focus on this issue uses
a set of fully connected subnets for each risk and allows the model to learn specific
characteristics of each risk (LEE; YOON; SCHAAR, 2019). We also identified hybrid
approaches, using DL models for feature extraction and data fusion for processing in
Piecewise Exponential Models. This approach allows the model to capture
interactions between di↵erent risk factors that might influence the likelihood of one
event occurring over another (PHILIPP et al., 2022). Adjustments to loss functions to
help models deal with competing risks e↵ectively, such as Rank-N-Constrast, which
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classifies survival times and applies a contrastive loss function to optimize the correct
ordering of these times in the context of competing risks can improve the
performance of models (SAEED et al., 2024). A loss function with a similar objective
is used in the DynamicDeepHit model (LEE; YOON; SCHAAR, 2019).

Although most ML and DL models can handle temporal data, health data does not
have well-defined temporal intervals. In this way, our corpus generally uses the latest
observations of specific signals, genomics, or imaging to perform survival analysis.
Data integration aims to provide a more holistic view of patient health and disease
progression, leading in environmental terms to personalized medicine approaches,
where treatment plans are tailored based on patients’ individual risk profiles,
assessed through survival models (PHILIPP et al., 2022; TONG; ZHU; LING, 2023).
However, the loss of context from the patient’s health history may decrease the ability
to identify the true risk of adverse events and future consequences. The
DinamicDeepHit model uses a RNN or LSTM to extract an internal state, allowing the
model to maintain an internal state that reflects the historical information of a
patient’s health status. This state is updated as new data points are processed,
allowing the model to dynamically incorporate longitudinal information (LEE;
YOON; SCHAAR, 2019).

The interpretability of AI models in healthcare continues to be a significant
concern, especially given the complexity of model structures and the critical nature of
clinical decision-making. Using clustering techniques, AI models can delineate
patient data into distinct clinical phenotypes, thereby increasing inherent insights’
transparency and applicability, crucial for developing targeted treatment
protocols (YAMGA et al., 2023). Additionally, the integration of Piecewise
Exponential Models in DeepPAMM facilitates granular interpretation of hazard
assessments at specific time intervals, providing clinicians with a nuanced
understanding of risk dynamics over the course of a disease (PHILIPP et al., 2022).
Reducing views on survival projections is essential for real clinical applicability.
Adopting training mechanisms that isolate the influence of biased environmental
characteristics, such as race and gender, from those that are purely predictive can
minimize or correct biases (ZHONG et al., 2024). Such methodologies highlight the
fundamental attempts to reconcile assistance in stratifying patient risks using AI with
the pragmatic needs of medical practice. These techniques aim to ensure that AI tools
achieve adequate predictive results and adhere to standards of clarity and practicality
required in clinical settings.
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3.2.2.2 SQ1 - How are di↵erent data fusion techniques used in survival analysis?

To answer this question, we will focus on how articles address the complexity of
multimodal data, its heterogeneity, and longitudinal characteristics—most studies in
our corpus focus on embedding fusion. Although there is no consensus in the current
literature, the way data fusion occurs can be early, intermediate, or late. Di↵erent
data modalities are aggregated in early fusion before being processed in the
models (YAMGA et al., 2023; TONG; ZHU; LING, 2023). The main advantage of this
processing is the ability to model correlations and interactions between multimodal
data. However, these characteristics also make models susceptible to high
dimensional space and, consequently, to more dispersed data.

Another alternative is late data fusion, where expert models extract features,
which are aggregated to generate the final decision (SAEED et al., 2024; ZHONG et
al., 2024). This method allows the extraction of the most important characteristics of
each data domain. Nevertheless, late fusion makes extracting interactions between
di↵erent data modalities di�cult. An alternative is a hybrid or intermediate merger.
In this fusion modality, data is processed in separate pipelines for a more abstract
representation, which are combined and fed into a final learning model (LEE; YOON;
SCHAAR, 2019; WANG et al., 2021; PHILIPP et al., 2022; ZHONG et al., 2024). This
method balances between maintaining modality-specific information and taking
advantage of intermediate information (LEE; YOON; SCHAAR, 2019).

The e↵ectiveness of data fusion also impacts clinical decision-making by
providing clinicians with more detailed and accurate predictions, which are crucial
for personalized patient management. For example, integrating genetic data with
clinical and imaging data can help predict patient drug responses and disease
progression more accurately, leading to better-tailored therapeutic
strategies (PHILIPP et al., 2022). In dynamic environments like intensive care units,
the ability to integrate and analyze data in real-time can significantly influence
patient outcomes. Data fusion techniques incorporating real-time data streams from
monitors and sensors into survival models are becoming increasingly important, as
demonstrated in studies focused on critical care patient environments (PHILIPP et
al., 2022; ZHONG et al., 2024).

3.2.2.3 SQ2 - How do AI-driven models integrate with traditional statistical methods
in the analysis of time-to-event data?

In time-to-event analysis, traditional statistical models such as the CoxPH and
Kaplan-Meier estimators are applied to datasets where disease progression or
treatment e�cacy is monitored over time. For example, the CoxPH model can be
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used to determine the e↵ect of genetic markers on post-diagnosis survival. In
contrast, Kaplan-Meier curves can be used to display the proportion of patients who
survive after receiving a new treatment (TONG; ZHU; LING, 2023). Furthermore, the
Fine-Gray model is designed to handle cases where di↵erent types of events
(competing risks) may prevent the primary event of interest from occurring. It
provides a way to model subdistribution risk, o↵ering an alternative to the
cause-specific risk approach in traditional CoxPH (FU et al., 2023) models.

When we evaluate the integration of these traditional statistical models into our
corpus methodologies, the integration of AI-based models occurs mainly as feature
encoders (FU et al., 2023; TONG; ZHU; LING, 2023; YAMGA et al., 2023; ZHONG et
al., 2024). Feature extraction mainly occurs on high-dimensional data, such as images
and patient records (FU et al., 2023; ZHONG et al., 2024). These AI-driven feature
extraction techniques can capture complex patterns in data that may not be
discernible through manual feature engineering or traditional statistical methods
alone. For example, CNNs have been used to extract meaningful features from image
data. These are then used as inputs in CoxPH models to more accurately predict
patient outcomes (TONG; ZHU; LING, 2023).

Despite advances, the integration of AI and traditional methods presents
challenges. Issues such as data heterogeneity, the need for large datasets, and the
computational demands of complex models need to be managed (ZHONG et al.,
2024). Additionally, there are concerns about the black-box nature of some AI
models, which may impede clinical trust and accessibility (TONG; ZHU; LING,
2023). Loss of interpretability of decisions is another significant concern, as clinical
adoption requires transparent decision-making processes. Techniques such as
Shapley (SHAP) values or partial dependence plots can be integrated to interpret
complex ML models (YAMGA et al., 2023). Furthermore, improving the robustness of
these models against overfitting, particularly in high-dimensional environments, and
validating their performance in diverse situations are crucial steps (LEE; YOON;
SCHAAR, 2019).

3.2.2.4 SQ3 - How does the current state of the art handle the complexities of
longitudinal data?

One of the main complexities in longitudinal data is the presence of censored or
incomplete observations, common in survival analyses (LEE; YOON; SCHAAR, 2019).
Most of our corpus does not address the incorporation of longitudinal data, focusing
only on the patient’s current state (WAN; ZHOU; ZHANG, 2021; FU et al., 2023;
YAMGA et al., 2023; ZHONG et al., 2024). This oversight can lead to a lack of
dynamic understanding since changes in patient status over time and interactions
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between time-varying covariates are crucial for accurate predictions in survival
models.

Most statistical methods assume a linear relationship between the covariates and
the logarithm of the hazard function (PHILIPP et al., 2022). In models that use DL,
this modeling is performed by extending the traditional CoxPH model using a deep
neural network to approximate the hazard function in a non-linear way, optimizing the
CoxPH partial probability for censored data with regularization techniques to avoid
overfitting (KATZMAN et al., 2018). DynamicDeepHit, on the other hand, models
survival and event times directly through a shared network architecture that feeds
cause-specific subnetworks, employing a loss function that combines log probability
for event time and a loss to address competing risks (LEE; YOON; SCHAAR, 2019)
e↵ectively.

Furthermore, RNNs and attention mechanisms can be used to model time-varying
covariates in survival analysis (LEE; YOON; SCHAAR, 2019). Another alternative is
to extend piecewise exponential additive mixed models to handle complex hazard
functions and time-varying e↵ects, allowing the model to learn adaptively from
longitudinal data with evolving covariate values over time (PHILIPP et al., 2022).

3.2.2.5 SQ4 - How are competing risks incorporated and impact the decision-making
for hospitalized patients?

Competing risks in a hospital setting refer to the possibility of a patient
experiencing one of several di↵erent events, such as death, discharge, or a specific
medical complication, with each risk potentially excluding the others (LEE; YOON;
SCHAAR, 2019). Understanding these risks is crucial for accurate prognoses and
e↵ective patient management (SAEED et al., 2024). Incorporating competing risks
into decision-making for hospitalized patients involves understanding and
addressing the complexity of potential outcomes that may compete to be the first
event to occur (WAN; ZHOU; ZHANG, 2021). This integration has significant
implications for prognosis and patient management (LEE; YOON; SCHAAR, 2019).

Techniques such as the cause-specific risks model and the Fine-Gray model are
commonly used to estimate the incidence of specific outcomes while considering
competing events (FU et al., 2023). These models help understand how di↵erent
covariates influence the risk of specific outcomes in the presence of competing risks.
DL models have introduced sophisticated methods for dealing with competing risks
by learning complex data representations that can distinguish between di↵erent types
of events. For example, models like DeepPAMM use structured additive risk models
to flexibly adjust the base risk of each competing event, thereby improving the
granularity of risk assessment over time (PHILIPP et al., 2022). Another approach is



49

to update survival probabilities based on longitudinal data dynamically. This model
predicts time-to-event data and adjusts its predictions as patients’ health status
changes, considering the risk of multiple competing events (LEE; YOON; SCHAAR,
2019).

Incorporating competing risks into survival analysis models has increased their
predictive accuracy (LEE; YOON; SCHAAR, 2019). However, integrating competing
risks introduces greater complexity in constructing, interpreting, and validating these
models (PHILIPP et al., 2022). This complexity can obscure the interpretability of
model results, presenting challenges in e↵ectively conveying results to both clinicians
and patients, which can, in turn, mitigate the clinical applicability of these analytical
tools (YAMGA et al., 2023).

3.2.3 Research Opportunities

Studying survival analysis using multimodal data for hospitalized patients
presents challenges and highlights opportunities for future research. One of the main
obstacles is integrating diverse data types, such as clinical notes, medical images, and
laboratory results, which are often heterogeneous. E↵ectively incorporating large
volumes of unstructured data poses a methodological challenge due to the complexity
and variability of the information.

A major concern in this field is the interpretability of models used in multimodal
survival analysis. While DL models often achieve high accuracy, their “black box”
nature can hinder clinical adoption. Healthcare professionals require models that
predict outcomes and provide insights into the underlying mechanisms and factors
influencing patient survival, ensuring that predictions are transparent and reliable.

Bias in multimodal datasets is another critical issue that can arise from several
sources, including uneven data quality, missing information, and imbalanced patient
representation. Addressing these biases is essential to developing fair and reliable
predictive models. Current research focuses on developing techniques to mitigate
these biases and create robust models to address such issues.

The dynamic nature of patient health data introduces additional challenges.
Because a patient’s health status can change rapidly, there is a need for models that
can update predictions in real-time or near real-time. Incorporating time-varying
e↵ects and developing dynamic modeling approaches that adjust predictions as new
data become available is crucial for e↵ective clinical decision-making.

Validating and testing multimodal survival analysis models in clinical settings is
essential and challenging. The clinical trials or prospective studies required for
validation are often time-consuming and expensive. Furthermore, these models must
be tested in diverse patient populations and settings to ensure their generalizability
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and e↵ectiveness in real-world scenarios. Addressing these challenges is critical to
advancing the field and improving patient outcomes.

3.3 Final Remarks

This chapter highlights the complexities and challenges in applying survival
analysis to multimodal health data, particularly for hospitalized patients. Traditional
models often struggle to integrate multiple data types—such as clinical notes,
laboratory results, and imaging—leading to incomplete or less accurate predictions.
Furthermore, the dynamic nature of longitudinal patient data, with its irregular time
intervals and frequent instances of missing information, further complicates e↵ective
modeling.

These challenges, which include integrating multiple data modalities, handling
longitudinal information, and ensuring the interpretability of predictive models, are
essential to improving the accuracy and utility of survival analysis in clinical settings.
Furthermore, interpretability remains a critical concern, as many AI-based models
operate as “black boxes,” making it di�cult for clinicians to understand the logic
behind predictions. Thus, this dissertation focuses on the challenges of competing
risks with longitudinal and multimodal data to propose an interpretable survival
analysis model. The next chapter will explore the architecture in detail, focusing on
the design decisions and techniques used to compose the model.
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4 MULTSURVMODEL

The COVID-19 pandemic has posed significant challenges to healthcare systems
globally (BETTHÄUSER; BACH-MORTENSEN; ENGZELL, 2023). Despite public
policy e↵orts, social isolation practices, and strengthening the capabilities of health
systems, medical teams often needed to prioritize patient care (ZEISER et al., 2022).
The need to prioritize treatment has challenged ethical and humanitarian principles
in broad and profound ways during the pandemic. On several occasions, screening
protocols were necessary to optimize resource allocation to patients with a better
prognosis and greater potential for maintaining a good quality of life (VERGANO et
al., 2020). However, patients’ complexity and clinical instability made it extremely
di�cult to define which patients should be prioritized. Furthermore, the multimodal
nature of data in modern healthcare can hide patterns of behavior that are not easily
detectable through unimodal analyses.

In this context, adopting survival analysis models to define treatment strategies
can contribute to identifying patients at higher risk (LEE; YOON; SCHAAR, 2019).
Nevertheless, several open research questions are raised in Chapter 3. In this way, the
MultSurv model seeks to address the problems of incorporating longitudinal and
multimodal data using explainability mechanisms that provide a clearer
understanding of the influences of di↵erent variables on patient survival. In Figure 7,
we present an overview of MultSurv model. It is possible to observe the
MultSurv model capability to integrate clinical, laboratory, and imaging data to create
a more comprehensive picture of a patient’s health status. It allows healthcare
professionals to more accurately interpret predictions and underlying risk factors,
resulting in management, personalized strategies, and e↵ective treatment.

The name MultSurv was obtained by generating the acronym of the phrase
MULtimodal SURVival analysis (MultSurv). The model’s design was conducted by
observing the research gaps identified in the RLR and the needs identified with
partner health institutions. Therefore, the model’s main focus is to provide a tool to
assist in the screening and follow-up of patients suitable for the hospital routine. This
chapter details all the parts that make up the MultSurv model, starting with an
overview and explaining each architecture module. Section 4.1 presents the design
decisions for the proposed model. Section 4.2 describes an overview and the
functionalities of each MultSurv module.

4.1 Project Decisions

One of the current limitations of the traditional survival analysis methods is that
they cannot incorporate longitudinal multimodal records. Furthermore, a hospitalized
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Figure 7 – MultSurv model overview. The patient can perform di↵erent analyses
(represented by the colored circles) over the period of interest (t). The red bar
represents the patient’s outcome. These data may have multimodal natures and are
processed in the MultSurv model. Using mechanisms to capture historical context and
the current state of tabular and image data to provide risk prediction in a multitask
learning architecture.
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patient is constantly monitored for biomarkers and risk factors. In this sense, the
design of the MultSurv model considers these factors to incorporate sociodemographic
data, biomarkers, laboratory tests, and X-ray images.

Traditional neural network models typically rely on one-hot encoding for
categorical variables, treating each category as an independent entity. This approach
doesn’t capture the inherent relationships or similarities between categories (HUANG
et al., 2020). Tabular embeddings, however, allow the model to learn dense vector
representations for each category, where similar categories can be positioned closer in
the embedding space. This allows the model to implicitly capture relationships and
interactions between categories that a traditional neural network model might
miss (GORISHNIY et al., 2021). In this sense, for the MultSurv model, we adopted a
layer of contextual embeddings for continuous and categorical variables.
Furthermore, biomarkers and imaging exams are frequently collected at di↵erent
periods. To achieve this, MultSurv model has mechanisms to deal with missing data
information in the inference process.

Regarding the challenges of image processing in neural networks, adjustments are
needed in three main aspects: (i) image size, (ii) noise, and (iii) annotations. First,
neural networks need inputs with a standard size, so in our model, we limit the size
of images to 224 ⇥ 224 pixels. Therefore, we resized all images, and to avoid
distortions in the images, we added padding to the shortest axis of the original image.
Finally, regarding the annotations of the images, we used the X-ray report information
already available in the health providers’ EHRs or Picture Archiving and
Communication System (PACS). In this way, spending human or financial resources
to assemble the datasets will not be necessary. In this sense, the MultSurv model
findings capability for images will be limited to the information in the X-ray report.

4.2 MultSurv Model Architecture

In this section, we introduce the components of the MultSurv model. In Figure 8,
we provide an overview of the MultSurv model components. The MultSurv model is
designed to capture information from clinical, laboratory, and imaging data, allowing
the temporal and multimodal nature of the information to be captured in the
inference process. In Section 4.2.2, we present the definition of the feature encoders
used to transform tabular data into dense vector embeddings, which are then used to
represent the patient’s clinical and demographic information. The temporal attention
mechanism, presented in Section 4.2.3, allows the model to focus on the most
relevant historical data points, contextualizing the patient’s health trajectory.
Features from chest X-rays are extracted by the CheXReport architecture
(Section 4.2.4). CheXReport uses a fully transformer-based architecture to process
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chest X-ray images. This module allows for extracting visual features and integrating
them with textual data. The outputs of these components are concatenated and
passed through a set of multitask networks (Section 4.2.5). This multitask learning
approach allows the model to capture complex relationships between di↵erent risk
factors. In the following sections, we will explore each component of the
MultSurv model, explaining its functionality and role in the overall architecture.

Figure 8 – MultSurv model. Feature encoders process the tabular data, generating
a vector of embeddings econcat . Patient i has the samples up to time t processed in
Temporal Attention, which generates a contextual vector ci,t . The chest X-ray exam
is processed by CheXReport, which produces a latent space vector vi,t with the main
features identified. The vectors are concatenated zi and processed in the multitask
networks to generate the probability for each time t and event k.
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Finally, we created the Table 2 with the summary of the main notations of each
section to support the chapter reading process.
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Table 2: Summary of Notations by Section

Notation Description

Section 4.2.1 - Pre-processing

�1 Value assigned to missing data

Ba,b Block in CLAHE process

Ci Set of categorical and continuous covariates for patient i

J(cat) Set of categorical covariates

J(cont) Set of continuous covariates

Mi Mask representing missing data for patient i

N Number of patients

T Maximum time value of the study

Xi Tuple (Ci,Mi, Ii)

↵ Clipping factor in CLAHE

ci,j Patient characteristics of patient i

Ii Image vectors and report for patient i

t Time instant

⌧ Set of time instants

� Event experienced by the patient

� Padding size for resizing images

 Clip limit in CLAHE

⇢i Vector of survival times for patient i

! Dimension of the image after resizing

Section 4.2.2 - Feature Encoders

Qj Set of quantiles for continuous variable j

Wj Weight matrix for categorical variable j

d Dimension of the embedding vector

e(cat),j Embedding vector for categorical variable j

e(concat) Concatenated embedding vector

e(per),j Periodic embedding for continuous variable j

e(piece),j Piecewise linear embedding for continuous variable j

e(cont),j Continuous embedding for variable j

Table continues on the next page
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Table 2 continued from previous page

Notation Description

Section 4.2.3 - Temporal Attention

Hi Sequence of hidden states over time for patient i

hi,t Hidden state of the GRU at time t for patient i

q Trainable parameter vector for attention mechanism

yi,t+1 Prediction at time t +1 for patient i

Section 4.2.4 - CheXReport

C Number of channels in the input image

H Height of the input image

K Number of tokens in the report

LN Linear normalization layer

M Size of non-overlapping windows in Window Multi-head Self-
attention

MLP Multi-layer perceptron

Q,K,V Query, key, and value matrices in self-attention

Sd Number of Swin Transformer blocks in the decoder

SW Shifted Window Multi-head Self-attention

W Width of the input image

w Report to be tokenized

yi BERT multilanguage embedding of the report tokens

x̂l Output of W -MSA layer at layer l

xl Output of MLP layer at layer l

⌦(HMSA) Computational complexity of traditional Multi-head Self-
attention

⌦(H(S)W–MSA) Computational complexity of Window and Shifted Window
Multi-head Self-attention

Attention(Q,K,V ) Computation of self-attention mechanism

B Relative position bias matrix

d Dimension of the query and key in self-attention

hbosi Start token for report generation

Table continues on the next page
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Table 2 continued from previous page

Notation Description

Section 4.2.5 - Multitask Networks

O Concatenated output of all multitask networks

P Normalized probability of risk at di↵erent time intervals

e(concat),i,t Embeddings from the last collection for patient i at time t

vi,t Latent space vector from CheXReport for patient i at time t

zi Input vector to multitask network for patient i

o Output of multitask network

p Dropout rate

Section 4.2.6 - Model Optimization

Ii Indicator function for event observation for patient i

L1 Binary cross-entropy loss function for observed events

L2 Mean squared error for continuous predictions

L3 Cross-entropy loss for the CheXReport network

L(total) Total loss function

⇥ Model parameters

↵ctdl Attention weights for image regions in CheXReport

mi,t Mask indicating missing variables at time t for patient i

xi,t Predicted value at time t for patient i

yi,t Actual value at time t for patient i

Source: Elaborated by the author.

4.2.1 Pre-processing

Most of the time, an institution’s data is stored in several systems. Clinical data is
stored in Clinical Information Systems (CIS), images in a PACS, and biomarker data
in a Laboratory Information System (LIS). However, the nature and format of data
storage varies from system to system and institution to institution. Furthermore, the
data collected is subject to di↵erent protocols and measurement units.

In this sense, a data pre-processing module is essential for DL models. Concerning
the problem addressed in this dissertation, each patient i has a set c of biological
marker samples and sociodemographic and clinical characteristics. Furthermore, a
patient may have undergone several imaging exams ◆ and have their respective
reports ✏ at di↵erent moments of time t. It is essential to highlight that these
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collection periods are not regular between each other and among patients.
Furthermore, the dataset may be sparse and not have all covariates collected at all
time points t. Therefore, for each covariate j missing from patient i, we assign a value
�1.

Therefore, each patient i has a datasetDi = {(Xi,⇢i ,�i)}Ni=1, whereN is the number of
patients, Xi is composed of a tuple (Ci,Mi, Ii) collected at an instant of time t, where t 2
⌧ = {1,2, . . . ,T } and T is the maximum time value of the study. Ci = {ci,1, ci,2, . . . , ci,j } is
the set of categorical covariates J(cat) 2 J and continuous J(cont) 2 J variants and statistics
over time T . To incorporate information into the MultSurv model regarding missing
data, we provide the model with a mask M = {mi,1,mi,2, . . . ,mi,j }, where:

mi,j =

8>>><>>>:

1, if xi,j = �1
0, if xi,j , �1

(4.1)

Furthermore, the model is provided with the set I = {◆,✏}, which represent image
vectors ◆ and report ✏ for each patient i with time instants t. For time instants t without
image collection Ii,t is defined as �1. Finally, ⇢ 2 ⌧ is the vector of patient survival
times and � is the event experienced by the patient, where:

� =

8>>>>>><>>>>>>:

k, if the individual ith was not censored and the event

occurred due to a cause k 2 K = {1,2, . . . ,K}
0, if the ith individual was censored

(4.2)

We adopted a normalization of continuous covariates J(cont) to prevent the model
from being susceptible to di↵erent magnitude units. In this sense, for each covariate
j 2 J(cont), we apply normalization by standardization, given by:

J(cont),z =
cz �uz
�z

(4.3)

where Jcont represents the set of continuous covariates, z represents the variable z of
the set of covariates, uz the mean and �z the standard deviation of the covariate.

The set of images I generally comprises ◆ images of varying dimensions. In this
sense, for each image with a height h and width w, we resize the image by a size !⇥!.
To avoid distortions, we add a padding of size � = max(h,w) �min(h,w) for the axis
with the smallest size in pixels. Therefore, the final dimensions h0,w0 of an image ◆ are
equal to:

(h0,w0) =

8>>>>>><>>>>>>:

(h+� ,w) if h < w

(h,w+�) if h > w

(h,w) otherwise

(4.4)
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Furthermore, collecting chest X-ray images is subject to variations in contrast. The
literature commonly applies contrast normalization to images to minimize these
variations and assist in the model learning process (ZEISER et al., 2020; JEONG;
SUNG, 2022). In this sense, we apply Contrast Limit Adaptive Histogram
Equalization (CLAHE), which, first, divides an image ◆ into smaller blocks B of size
u ⇥ v, where u < h and v < w. For each block Ba,b, the histogram Ha,b(z) is calculated,
where z is the pixel intensity level. Then, the clip-limit  is calculated:

 = ↵
u ⇥ v
L

(4.5)

where, ↵ is a clipping factor and L is the number of image intensity levels.

Then, the histogram is clipped:

H 0a,b(z) =min(Ha,b(z), ) (4.6)

The pixels are then evenly distributed across:

H 00a,b(z) =
H 0a,b(z) +

P
z(Ha,b(z)� )
L

(4.7)

Then a transformation function Fa,b(z) is calculated:

Fa,b(z) =
L� 1
u ⇥ v

zX

l=0

H 00a,b(l) (4.8)

Finally, we apply the transformation function to each p pixel in the block:

p0 = Fa,b(p) (4.9)

Furthermore, for each pixel p on the edge of the blocks, a bilinear interpolation of
the transformed values of adjacent blocks is applied to smooth the transition between
blocks.

4.2.2 Feature Encoders

In terms of performance, DL models still struggle to process tabular data
compared to tree-based models (HUANG et al., 2020). In this context, we use
embeddings to represent categorical and continuous data in the MultSurv model. The
use of embeddings allows transforming categorical and continuous variables into
dense vector representations and helps capture complex non-linear relationships
between variables (HUANG et al., 2020; GORISHNIY et al., 2021). In Figure 9, we
present an overview of the embedding generation process for the MultSurv model.
The embedding generation process combines two inputs: categorical and continuous
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variables. The output of these embeddings are concatenated and passed through a
linear layer to produce the final embedding vector.

Figure 9 – Illustration of the MultSurv model embedding generation process for
categorical and continuous variables. Each of the variables, categorical C(cat),j or
continuous C(cont),j , goes through the embedding generation process. These vectors
are concatenated and form the input embedding vector econcat of MultSurv model.

A

B

C

2.3

43.0

-2.1

Periodic embedding

Dense Vector

Piecewise linear
embedding

Linear Layer

Source: Elaborated by the author.

In this sense, for each variable j in the set J(cat), we map a dense vector ej 2 Rd :

e(cat),j =Wj ·Cj (4.10)

whereWj 2 R!⇥d is the weight matrix for the categorical variable j , ! is the number of
unique categories in the variable j and d is the dimension of the embeddings vector.

Meanwhile, we use two embedding techniques for continuous variables: periodic
embedding and piecewise linear embedding. For each variable j in the set J(cont) we
calculate a periodic embedding e(per)j , which is given by:

e0(per)j = 2⇡W(per)Cj

e(per)j =
h
sin(e0(per)j ), cos(e

0
(per)j )

i (4.11)

where e(per)j 2 RN⇥2d and W(per) is the weight matrix of the linear layer.
Additionally, we apply piecewise linear embedding to the set of continuous

variables for a set of quantiles Qj = {qj,0, qj,1, . . . , qj,⇧}, where ⇧ is the total of quantiles.
To calculate the piecewise linear embedding, it is given by:
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e(piece),j =
max(min(Cj,qj,l)� qj,l�1,0)

qj,l � qj,l�1
for l = 1, ...,m (4.12)

The embeddings for the continuous variables are then combined using a linear layer:

e(cont),j =W(cont),j
h
e(piece),j , e(per),j

i
+ b(cont) (4.13)

where W(cont) 2 RN⇥3d are the weights and b(cont) is the bias of the linear layer.
Finally, we concatenate the categorical and continuous embeddings into a single
vector:

e(concat) =
h
e(cat), e(cont)

i
2 RN⇥J⇥4d (4.14)

4.2.3 Temporal Attention

Longitudinal data collected from patients throughout their hospitalization
provides historical information on health status over time. In this sense, we adopted a
temporal attention network similar to the one proposed in DynamicDeepHit (LEE;
YOON; SCHAAR, 2019). In Figure 10, we illustrate the temporal attention
mechanism of the MultSurv model. We use a Gated Recurrent Unit (GRU) for the
temporal attention mechanism to process the embedding sequences. The hidden state
of the GRU is updated at each time step. This way, for each time step t = 1, ...,T �1 the
GRU cell processes the embedding vector e(concat),i,t and the previous hidden state
hi,t�1, generating a new hidden state hi,t :

hi,t = GRU(e(concat),i,t ,hi,t�1) (4.15)

We then compute a context vector from the hidden states generated by the GRU
over time. To calculate the context vector, we use an attention mechanism to weigh
each hidden state’s importance. The sequence of hidden states over time is given by
Hi =

⇥
hi,1,hi,2, . . . ,hi,T

⇤ 2 RT⇥d(hidden) . Therefore, the calculation of the context vector is
given by:

Ci =
TX

t=1

&i,thi,t (4.16)

where Ci is the context vector of patient i, &i,t is given by a softmax function:

&i,t =
e(ei,t)

PT
t=1 e

(ei,t)
(4.17)

and ei,t is a similarity between each hidden state hi,t and a vector of trainable
parameters q, given by:
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Figure 10 – The MultSurv model temporal attention mechanism for categorical and
continuous variables. The embedding vector econcat and the previous hidden state hi,t�1
are input into an RNN network to extract an attention-based temporal vector ci,t . The
current state of the RNN network serves as input to a linear layer that predicts the next
value of each variable of interest.

RNN Cells
RNN Cells FC Layer

Temporal Attention

Source: Elaborated by the author.

ei,t = qT hi,t (4.18)

The context vector’s goal is to provide the MultSurv model with a compact
representation of the relevant temporal information. The temporal attention network
generates a longitudinal prediction yi,t+1. The prediction is generated by:

yi,t+1 =Wci + b (4.19)

This prediction aims to allow the regularization of temporal network information
in a way that keeps relevant information for predictions one step ahead (LEE; YOON;
SCHAAR, 2019).

4.2.4 CheXReport

The CheXReport is composed of an encoder-decoder architecture. However,
unlike most architectures adopted in the literature, we propose a fully transformer
architecture. Adopting a fully transformer architecture with Swin Transformer blocks
allows CheXReport to extract better intrinsic visual features and relationships in
X-ray images, with improved integration of these visual insights with textual
elements. We adopted an encoder with SwinTransformer blocks that extract refined
features and intra-relate the features to capture radiological findings from chest X-ray
images. The decoder comprises a block of word embeddings connected with Sd Swin
Transformer blocks, responsible for merging visual and textual resources. In
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Figure 11, we present in detail the CheXReport architecture.

Figure 11 – Overview of the proposed CheXReport network. (a) The text and image
encoders are trained together to predict the report suggestion. The X-ray is fed into
the Swin Transformer encoder, which extracts the relevant visual features. The text
decoder incorporates the visual characteristics, which also receives the text left shifted
by one token. (b) We present an organization of the Swin Transformer blocks. Each
block is formed by a set of Linear Normalizations (LN), two Multi-Layer Perceptron,
oneWindowMulti-head Self-attention (W–MSA), and one ShiftedWindowMulti-head
Self-attention (SW–MSA).
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<bos>The heart size is mildly ... infiltrate
cannot be excluded.

Word Embedding

Positional
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Masked Self-Attention

Add & Layer Norm

Cross Attention
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4.2.4.1 Encoder

We adopted Swin Transformer blocks (LIU et al., 2021) to reduce the
computational cost of an encoder based purely on a ViT model (DOSOVITSKIY et al.,
2021). Swin Transformer models can build a set of hierarchical feature maps, merging
the intermediate tensors between layers (LIU et al., 2021). The Swin Transformer
architecture can progressively reduce the spatial dimension, similar to convolutional
networks (LIU et al., 2022b). The reduction is possible by merging patches
incorporating a factor s and concatenating the features into a group of s ⇥ s

patches (LIU et al., 2021). Compared to ViT’s Multi-head Self-attention (MSA)
architecture, the spatial constraints added by the Swin Transformer architecture
significantly reduce the computational complexity of the layers (LIU et al., 2022b).
Traditional MSAs have their computational complexity defined by:

⌦(HMSA) = 4HWC2 + 2(WC)2C (4.20)

where H , W , and C represent the height, length, and number of channels of the input
image. Meanwhile, the Window Multi-head Self-attention (W–MSA) and the Shifted
Window Multi-head Self-attention (SW–MSA) (LIU et al., 2021) have their
computational complexity defined by:

⌦(H(S)W–MSA) = 4HWC2 + 2M2HWC (4.21)

Reducing computational complexity is possible for the (S)W–MSA layers by the
attention calculation process that is performed locally by dividing a RH⇥W⇥C feature
map into non-overlapping windows of size M ⇥M ⇥ C. However, this process limits
the Swin Transformer to acquire global context over the windows and the loss of
connection between the di↵erent windows (LIU et al., 2021). To overcome this, the
architecture combines alternating W–MSA and SW–MSA layers to connect the
feature map’s di↵erent regions. In SW–MSA, the window settings are shifted by⇣
bM2 c,bM2 c

⌘
pixels of the windows partitioned in W–MSA (LIU et al., 2021). The

computation of self-attention is given by:

Attention(Q,K,V ) = sof tmax

 
QKT
p
d

+B

!
V (4.22)

where Q,K,V 2 RM2⇥d are the query, key, and value, respectively; d is the dimension
of the query and key; M2 is the number of patches; and B 2 RM2⇥M2

is the relative
position bias (LIU et al., 2021).

The final block of a Swin Transformer can be defined as:
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x̂l =W–MSA(LN (xl�1)) + xl�1

xl =MLP(LN (x̂l)) + x̂l

x̂l = SW–MSA(LN (xl)) + xl

xl =MLP(LN (x̂l+1)) + x̂l+1

(4.23)

where x̂l and xl are the outputs of W–MSA and MLP for layer l. LN is a linear
normalization layer.

4.2.4.2 Decoder

The decoder receives the chest X-ray report with a start token hbosi. The report w
first goes through a tokenizer that divides the w report into K tokens. We represent
one of the report tokens with a BERT multilanguage embedding of 512–D vector, with
yi 2 R512 (DEVLIN, 2018). We add a positional embedding passed to a masked self-
attention layer. The output of the Masked self-attention layer goes through a layer
addition and normalization process to be sent to a cross-attention layer to correlate
textual information with the image’s visual characteristics, thus producing the report
suggestion (LIU et al., 2021). Finally, the last layer of our model is a linear layer with a
vocabulary size.

4.2.5 Multitask Networks

We used a multitask learning structure to define the specific risk k that each
patient i was subject to at each time point t. Although each network specializes in a
particular risk, sharing intermediate information allows the MultSurv model to
capture underlying relationships between di↵erent risks. Furthermore, each network
can specialize in learning specific patterns associated with a type of event and focus
on the characteristics most relevant to its event without interference from patterns in
other events. In this sense, in the MultSurv model, the multitask networks combine
the context vector, the embeddings of the last temporal sample, and a vector from the
CheXReport latent space. Each multitask network is a dense neural network that
processes this information to estimate the probability of events at di↵erent time
intervals. We present an overview of how MultSurv model multitask networks work
in Figure 12.

The input to each multitask network is the concatenation of the context vector ci
up to time instant t, the embeddings from the last collection e(concat),i,t , and a latent
space vector from CheXReport vi,t , formally represented by:

zi =
h
ci,t , e(concat),i,t , vi,t

i
(4.24)
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Figure 12 – The multitask networks receive contextual vectors, embeddings, and
the CheXReport architecture. Each network predicts a risk k. For each risk k, the
MultSurv model generates an extracted output for each time instant t.

Dropout Dropout

Softmax Layer

FC LayerFC Layer

......Event 1 Event K...

......

Event Probability

FC LayerFC Layer

Source: Elaborated by the author.
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Each multitask network consists of an input layer, several dense hidden layers, and
an output layer with nonlinear activation and dropout functions for regularization.
The input layer is defined by:

h(0) = ReLU(W (0)zi + b(0)) (4.25)

For each l = 1, . . . ,L, where L is the number of hidden layers, we have:

h(l) = ReLU(W (l)h(l�1) + b(l)) (4.26)

After each layer, we apply a dropout for regularization:

h(l) =Dropout(h(l),p) (4.27)

where p is the dropout rate. The last layer is given by:

o =W (L+1)h(L) + b(L+1) (4.28)

The outputs of all multitask networks are then concatenated to form the final output
of the MultSurv model.

O = [o1, o2, . . . , ok] (4.29)

The concatenated output is then passed to obtain the normalized probabilities of each
risk at di↵erent time intervals:

P = sof tmax(O) (4.30)

4.2.6 MultSurv Model Optimization

To optimize the MultSurv model, we adopt a combination of loss functions. With a
composition of loss functions, we can balance the modeling of survival events with the
capture of temporal information and chest X-ray images features. In this sense, L(total)
is given by the equation:

L(total) = L1 +L2 +L3 (4.31)

where L1 is a binary cross entropy function adapted to capture the probability of
observed events and is given by:

L1 =
1
N

NX

i=1

2
666664Ii log2

0
BBBBB@

KX

k=1

mi,koi,k

1
CCCCCA+ (1� Ii)log2

0
BBBBB@

KX

k=1

mi,koi,k

1
CCCCCA

3
777775 (4.32)
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Meanwhile, L2 is given by a variation of the mean squared error and is given by:

L2 =
1
N

NX

i=1

TX

t=2

mi,t(1�mi,t)(yi,t � xi,t)2 (4.33)

For L2, we adopted a strategy of not considering missing variables in the error
calculation to induce themodel to understand that a variable with the value �1 should
not influence the extraction of information (LEE; YOON; SCHAAR, 2019).

Finally, L3 aims to optimize the MultSurv model in relation to feature extraction
by the CheXReport network. Therefore, given a sentence y⇤1:T with size T and the
prediction y⇤t from the model with parameters ⇥, we minimize the cross-entropy loss
added from double stochastic attention regularization (XU et al., 2015). With the
weights

P
t ↵ctdl ⇡ 1, we force the model to pay equal attention to each part of the

image throughout the generation of chest X-ray report suggestions. Therefore, the loss
function can be defined as:

L(⇥) = �
TX

t=1

log2 (p⇥(y⇤t |y⇤t�1)) +
LX

l=1

1
L

0
BBBBBB@

DX

d=1

M2X

i=1

0
BBBBB@1�

TX

c=1

↵ctdl

1
CCCCCA

1
CCCCCCA (4.34)

where D is the number of heads and L is the number of layers.

4.3 Final Remarks

In this chapter, we introduce the MultSurv model. By incorporating longitudinal
and multimodal data, the MultSurv model aims to improve the accuracy and
interpretability of survival predictions, thereby assisting healthcare professionals in
making more informed decisions.

We detail the architecture of the MultSurv model, emphasizing its ability to
integrate diverse data types, including clinical, laboratory, and imaging data. The
model employs contextual embeddings for tabular data, contrast normalization for
images, and a temporal attention mechanism to handle longitudinal data. These
components work together to understand a patient’s health status over time.

Furthermore, integrating the CheXReport component demonstrates the model’s
ability to generate detailed and interpretable radiological reports utilizing a fully
transformer-based architecture. The next chapter details the implementation and
performance evaluations of the MultSurv model.
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5 MATERIALS ANDMETHODS

This chapter presents the methodology used to evaluate the MultSurv model and
the technical characteristics and hyperparameters of the developed modules. To
evaluate each model, we use public datasets and data from partner institutions. We
present in Section 5.1 the details of each dataset. Then, in Section 5.2, the evaluation
metrics are detailed. Next, the implementation of the modules and networks are
detailed in Section 5.3. Finally, the partial considerations of the chapter are carried
out in Section 5.4.

5.1 Materials Description

For training and validation of the MultSurv model, we used the public datasets
Curated Dataset for COVID-19, MIMIC Chest X-ray (MIMIC-CXR), and Primary
Biliary Cirrhosis (PBC2). In addition, we collected a private dataset at the HCPA. In
Table 3, we present an overview of the characteristics of these datasets. Then, in the
following subsections, we present a sample and explore each dataset in detail.

Table 3 – Datasets used in the MultSurv model.
Dataset Num. of images Finding types Patients Image

Annotation

MDH Dataset 1.066 COVID-19 treatment process,
including detailed information
on diagnoses, treatments,
admissions, ICU admissions,
laboratory results, chest X-ray
image and report

1,815 Patient and
image-level

Curated Dataset
for COVID-
19 (SAIT et al.,
2020)

5,181 Chest X-Ray - Image-level

MIMIC-
CXR (JOHNSON
et al., 2019)

377,110 Chest X-ray and report 65,379 Image-level

PBC2
(MURTAUGH et
al., 1994)

- Primary biliary cirrhosis
treatment process, including
detailed information on
diagnoses, treatments, and
laboratory results

362 Patient-level

Source: Elaborated by the author.
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5.1.1 MyDigitalHealth Dataset

Since the beginning of the COVID-19 pandemic, several datasets with clinical and
imaging exams have been publicly available. However, in some situations, this data
did not have authorizations for sharing, was shared on social networks, has diagnostic
restrictions, or is duplicated in the datasets (ZEISER et al., 2021a). In this sense, MDH
focused on building a qualified dataset representing a real pandemic scenario. The
MDH dataset was collected at HCPA and covers the period from 03/20/2020 to
06/02/2022. Sociodemographic, clinical, laboratory information, imaging exams, and
unstructured electronic medical records were collected from 1,815 patients with
COVID-19 confirmed by RT-qPCR.

It is important to highlight that HCPA data collection was conducted
retrospectively and longitudinally. In other words, we collected all events of interest
to the study throughout the period. Furthermore, as this is a retrospective cohort, we
did not control the sampling periods of the variables. Therefore, collection intervals
have intra- and inter-patient di↵erences. In Figure 13, we present a sample of data for
a study patient. The reports were obtained in a semi-structured format and
anonymized. All texts contained only the information from the findings field, without
the radiologist’s signature or patient’s name.

Figure 13 – Ilustration of the MDH survival dataset.

Id Label Survival
Time Sex Age UCI Sp02 Heart Rate Potassium X-Ray

179200 Death 9 F 74 No 94 79 43.0 2394837-
1.jpeg

16526097 Discharged 46 F 61 Yes 97 68 - -

16362873 Death 42 F 30 No 94 132 - 2580243-
0.jpeg

16365637 Death 30 M 24 Yes - - - 2580420-
1.jpeg

infiltrado intersticial nas bases de
ambos os pulmões. tênues
opacidades na língula. quadro
radiológico do tórax não apresenta
outra alteração relevante em
relação ao exame anterior, de
28/10/20

Report

Tabular Data X-ray Data

Source: Elaborated by the author.

5.1.2 Curated Dataset for COVID-19

The dataset is a combination of chest X-ray images from di↵erent sources. The
dataset has X-rays for normal lung, viral pneumonia, bacterial pneumonia, or COVID-
19. The authors performed an analysis of all images to avoid having duplicate images.
In addition, for the final selection of images, the authors used a CNN to remove images
with noise, such as distortions, cropped, and annotations (SAIT et al., 2020). In Table 4,
we present the dataset number of images.
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Table 4 – Public dataset of chest X-rays used in this article.
Pathology Number of images

COVID-19 1,281
Normal 1,300
Viral 1,300

Bacterial 1,300

Source: Sait et al. (2020)

5.1.3 MIMIC-CXR

The MIMIC-CXR dataset is one of the largest public X-ray image datasets. Images
were collected at Beth Israel Deaconess Medical Center in Boston, MA. The dataset is
anonymized and comprises a set of 65,379 patients with 227,835 studies and 377,110
images and their respective reports. The images were extracted from the Radiology
Information System at Beth Israel Deaconess Medical Center in DICOM format. The
metadata anonymization process was carried out using Orthanc. The reports made
available by MIMIC-CXR were extracted from Radiology Information System in XML
format. Areas of the report that corresponded to the institution’s header and the
professional’s signature were excluded from the XML. Furthermore, the free texts of
the report were processed to remove sensitive data using a set of regular expressions.
In Figure 14, we present a sample of a case from the MIMIC-CXR dataset.

Figure 14 – Example of MIMIC-CXR study with two chest X-ray projections and the
report.

Frontal View Lateral View

FINAL REPORT
 HISTORY:  Shortness of breath.  
 
 TECHNIQUE:  PA and lateral views of the chest.  
 
 COMPARISON:  Multiple chest radiographs the most recent on ___.  
 
 FINDINGS:
 
 The lung volumes are low. There is a subtle opacity in the left upper lung and
 right lung base. The cardiomediastinal silhouette and hilar contours are
 normal.  The pleural surfaces are normal without effusion or pneumothorax. 
 The pulmonary vasculature is normal.  
 
 IMPRESSION:
 
 Non-specific left upper and right lower lung consolidation. Consider repeat
 with improved inspiratory effort.

Report

Source: Johnson et al. (2019)
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5.2 Evaluation Metrics

For the development and evaluation of the MultSurv model, we adopted several
performance validations on di↵erent learning tasks. Therefore, we present the
performance metrics and their characteristics in the following subsections.

5.2.1 Classification Metrics

One of the most common classification model evaluating methods is to organize
the predictions in a table format, known as a confusion matrix (SOKOLOVA;
LAPALME, 2009). Table 5 presents a confusion matrix example for a binary
classification. With the confusion matrix we computed four classes: (i) True Positives
(TP), number of correctly classified positive examples; (ii) True Negatives (TN),
number of correctly classified negatives; (iii) False Positive (FP), number of wrongly
classified negatives; and (iv) False Negative (FN), number of misclassified negatives.

Table 5 – Confusion Matrix
Labeled

Predicted

Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Source: Adapted from Sokolova and Lapalme (2009)

We can obtain di↵erent performance metrics from these crude rates evaluating
di↵erent aspects of a classification model (RUUSKA et al., 2018). In Table 6, we
present the main metrics derived from the confusion matrix for a binary classification
scenario.

The typical radiological findings of COVID-19 are presented in several diseases.
Therefore, following the RSNA recommendation to classify the findings into typical,
indeterminate, or atypical for COVID-19, it is necessary to use multi-class
architectures for detection. In this sense, we can generalize the confusion matrix so
that Ck , an array of size k ⇥ k, is defined for each class. For each cell, [i, j] represents
the frequency of the real class Ci and the inference class Cj . This process will result in
a binary confusion matrix for each of the Ck classes (RUUSKA et al., 2018).

A visual way of evaluating the classifier performance is through the Receiver
Operating Characteristic (ROC) curve. The ROC curve is obtained by plotting the
sensitivity (true positive rate) on the y-axis and the 1-specificity (false positive rate)
on the x-axis for a continuous threshold range (HOO; CANDLISH; TEARE, 2017).
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Table 6 – Performance metrics derived from the confusion matrix.
Measure Formula Goal

Accuracy TP+TN
TP+TN+FP+FN Overall e↵ectiveness of a classifier

Precision TP
TP+FP Fraction of positive instances classified correctly

Recall or Sensitivity TP
TP+FN E↵ectiveness of a classifier to identify positive labels

Specificity TN
TN+FP E↵ectiveness of a classifier to identify negative labels

F1-score 2⇤TP
2⇤TP+FN+FP Harmonic measure between precision and sensitivity

Source: Elaborated by the author.

The main objective of the ROC curve is to find an optimal threshold that optimizes
sensitivity and specificity. Therefore, the higher and to the left the cut-o↵ point, the
better the performance of the classifier (RUUSKA et al., 2018). Finally, we can obtain
the Area Under the ROC Curve (AUC) through the ROC curve, which measures the
area below the points obtained by the ROC. The value varies between 0 and 1, and the
closer to 1, the better the classifier’s ability to distinguish the dataset
classes (CARTER et al., 2016).

5.2.2 Image Captioning Metrics

To quantitatively evaluate the performance of the CheXReport network, we used
the metrics Bilingual Evaluation Understudy (BLEU) (PAPINENI et al., 2002), Metric
for Evaluation of Translation with Explicit Ordering (METEOR) (BANERJEE; LAVIE,
2005), Google BLEU (GLEU) (WU et al., 2016), and Recall-Oriented Understudy for
Gisting Evaluation (ROUGE) (LIN, 2004). Due to the radiological report’s
characteristics, the models’ performance is evaluated using the natural language
generation metrics. The BLEU-n metrics quantify the similarity between the
generated and ground truth reports using n-grams, which are continuous sequences
of n words. Firstly, BLEU calculates the precision between the ground truth
� = {�1,�2,�3, . . . ,�k} and predicted �̂ = �̂1, �̂2, �̂3, . . . , �̂k}, with k being the length of
the ground truth sentence, and w the size of the expected sentence. The calculation of
precision between the n-grams of the sequences is given by:

Pn =
X

k

min(dk(�̂,max(dk(�)P
k dk(�̂)

(5.1)
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where dk(·) is the number of occurrences of an n-gram, and k is the maximum possible
n-grams. To prevent short sentences from having high precision and influencing final
performance, BLEU adds a brevity penalty:

BrevityPenalty =

8>><>>:
1 if r < c

e(1�
r
c ) if r � c

(5.2)

where c is the cumulative size of the predicted sentence, and r is the set of ground
truth. Therefore, the final BLEU equation is given by:

BLEUn =

0
BBBBB@min

✓
1� r

c
,0

◆
+

NX

n=1

wn log(pn)

1
CCCCCA (5.3)

where wn is a constant value, defined as 1
N .

METEOR considers multiple facets of fact generation quality, including precision,
recall, stemming, and synonymy (BANERJEE; LAVIE, 2005). The METEOR calculation
is given by:

METEOR = Fmean (1� p)

Fmean =
10PR
R+9P

(5.4)

where P is the precision, and R is the recall of the unigrams of the predicted sentence
in relation to the ground truth. The value p is a penalty for situations where the
predicted and ground truth sentences have all unigrams but do not have the same
semantic organization. The penalty p is given by:

p = 0.5
 
c
um

!3
(5.5)

where c is the number of chunks in the sentence, and um is the number of unigrams
matched.

Then, we evaluate the performance of CheXReport in terms of GLEU. GLEU
measures the quality of the suggestion prediction for chest X-ray reports regarding
fluency and grammaticality of the text (WU et al., 2016). GLEU calculates the
precision and recall of unigrams and bigrams by penalizing occurrences that contain
specific n-grams not found in the text. GLEU can be calculated as:

GLEU =min(R,P) (5.6)

with the recall R being calculated as the ratio between the total mn of predicted n-
grams and the total tn of ground truth n-grams.
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Recall =
mn

tn
(5.7)

Meanwhile, precision P is the ratio between the quantitymn of n-grams predicted with
the total gn n-grams produced by the model.

Precision =
mn

gn
(5.8)

In addition, we utilized the ROUGE metric to assess the quality of the generated
reports, particularly focusing on the recall aspect of the n-grams, which is critical for
capturing the completeness of the generated text in comparison to the ground truth.
ROUGE primarily evaluates the overlap of n-grams between the generated and
reference texts, thus providing a measure of how much of the relevant content is
retained in the generated report (LIN, 2004). The ROUGE-N score is defined as:

ROUGE �N =

P
S2Reference Texts

P
gramn2S Countmatch(gramn)P

S2Reference Texts
P

gramn2S Count(gramn)
(5.9)

where Countmatch(gramn) is the maximum number of n-grams co-occurring in the
generated and reference texts, and Count(gramn) is the total number of n-grams in
the reference text (LIN, 2004). ROUGE, therefore, complements the
precision-oriented BLEU metric by ensuring that the generated reports cover all
relevant aspects of the ground truth as completely as possible.

5.2.3 Survival Analysis Metrics

Risk prediction for each event monitored in survival analysis models helps
healthcare professionals develop personalized treatments for patients (PENCINA;
D’AGOSTINO, 2015). In this sense, the Concordance index (C-index) is the most used
metric to evaluate the performance of survival analysis models (PARK et al., 2021).
The C-index is obtained by the proportion of correct pairs ordered about the event
time. The C-index ranges from 0.5 to 1.0, with 0.5 indicating the randomness of the
model and 1.0 perfect discrimination. Mathematically, the C-index is obtained by:

C � index =

P
i,j I(hi > hjI(ti < tj )'iP

i,j I(ti < tj )
(5.10)

where, hi and hj are the risk values predicted by the model for observations i and j ,
ti and tj are the observed survival times. I is an indicator function, which returns 1 if
the condition is true and 0 otherwise. 'i represents whether the event occurred (1) or
was censored (0).

While the C-index is a metric that measures the ability to discriminate between
di↵erent time points of events, the Brier score can measure the global performance of
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the model (PARK et al., 2021). The Brier score measures the mean squared error
between probabilistic predictions and expected results. Mathematically, the Brier
score is given by:

Brierscore =
1
N

NX

n=1

(pi ,oi)2 (5.11)

where N is the total number of observations, pi is the predicted event probability for
observation i, and oi is the observed value (0 or 1) for observation i. The Brier score
ranges from 0 to 1, with 0 indicating perfect prediction and 1 indicating random
behavior of the model.

5.3 MultSurv Model Study Design

We adopted an ablation study to validate the MultSurv model proposed in
Chapter 4. To this end, we trained a series of additional architectures to use
throughout model validation. In Table 7, we present the characteristics of each model
and architectures used. The ablation process followed an incremental strategy. Firstly,
we assessed whether the adoption of embeddings (Model B) for categorical and
continuous variables represented a performance gain about the baseline (Model A).
Next, we evaluate the best architecture for extracting features from X-ray images. To
this end, we evaluated a convolutional classification architecture (Model C) and a
chest X-ray report suggestion architecture as a feature extractor (MultSurv model). In
the following subsections, we present the characteristics used to train the models.

Table 7 – Main characteristics of the evaluated models.
Model Embeddings Image Temporal Multitask Datasets References

Model A No No Yes Yes PBC2 and MHD (LEE; YOON;
SCHAAR, 2019),
(MURTAUGH et al.,
1994)

Model B Yes No Yes Yes PBC2 and MHD (MURTAUGH et al.,
1994)

Model C Yes Yes Yes Yes Curated Dataset for
COVID-19 and MHD

(SAIT et al., 2020)

MultSurv model Yes Yes Yes Yes MIMIC-CXR and
MHD

(JOHNSON et al.,
2019)

5.3.1 Model A

The choice of DynamicDeepHit (LEE; YOON; SCHAAR, 2019) as a baseline for
validation is based on the architecture’s ability to deal with censored data and
multiple types of events. DynamicDeepHit models the distribution of time until the
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event of interest. Through a RNN, the architecture is capable of capturing temporal
dependencies of data and aggregating it with patients’ current clinical information.
Furthermore, the model adopts a missing data handling mechanism. We train the
DynamicDeepHit model with two datasets. The first is PBC2 to compare the results
from the DynamicDeepHit with the MultSurv model in a public dataset. The second
is to assess the performance of DynamicDeepHit with tabular data from MDH
dataset. Both models were optimized using a Random Search strategy, following the
methodology proposed by the authors (LEE; YOON; SCHAAR, 2019). In Table 8, we
present the range of values of the DynamicDeepHit training hyperparameters.

Table 8 – Network hyperparameter search space for Model A.
Hyperparameter Value Space

Batch size 32
Dense layers activation ReLU, eLU, tanh
RNN activation ReLU, eLU, tanh
Dense output activation ReLU, eLU, tanh
Dense dropout 0.2, 0.4, 0.6
RNN dropout 0.2, 0.4, 0.6
RNN cell GRU, LSTM
RNN hidden size 25, 50, 100, 150, 200
Dense hidden size 25, 50, 100, 150, 200
Dense number layers 1, 2, 3
RNN dense number layers 1, 2, 3
Attention number layers 2, 4, 6, 8, 10
Learning rate 1e-3, 1e-4, 1e-5

Source: Elaborated by the author.

5.3.2 Model B

The model B is composed only of the part of MultSurv model responsible for
processing tabular data. This way, we can compare the performance of the models
fairly since they were trained on the same dataset. The model B hyperparameter
optimization process was carried out using a Random Search. In Table 9, we present
the ranges of values used to optimize model B.

5.3.3 Model C

For model C, we evaluated whether adding a convolutional architecture for
classifying typical COVID-19 findings would improve the model’s performance. In
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Table 9 – Network hyperparameter search space for Model B.
Hyperparameter Value Space

Batch size 32
Dense layers activation ReLU, eLU, tanh
RNN activation ReLU, eLU, tanh
Dense output activation ReLU, eLU, tanh
Dense dropout 0.2, 0.4, 0.6
RNN dropout 0.2, 0.4, 0.6
RNN cell GRU, LSTM
RNN hidden size 25, 50, 100, 150, 200
Dense hidden size 25, 50, 100, 150, 200
Dense number layers 1, 2, 3
RNN dense number layers 1, 2, 3
Attention number layers 2, 4, 6, 8, 10
Learning rate 1e-3, 1e-4, 1e-5
Embeddings Dropout 0.2, 0.4, 0.6
Embeddings size 8, 16, 32, 64

Source: Elaborated by the author.

this sense, we pre-train six convolutional architectures on the Curated Dataset for
COVID-19. To train these architectures, we perform pre-processing and data
augmentation of the images. All images have been resized to a size of 224 ⇥ 224
pixels. To avoid distortions, we adopted the methodology defined in Section 4.2.1. In
this way, a proportional reduction is applied to each axe, and zero padding is added
to the smallest dimension. Additionally, we apply CLAHE contrast normalization.
For data augmentation, we use horizontal flips, rotations of up to 20 degrees, and
shear for the training set.

We use K-fold cross-validation as a method to evaluate the performance of the
architectures, with a K=10. Next, we train each of the six convolutional architectures
according to the hyperparameters defined in Table 10, with pre-trained weights for
the ImageNet dataset. To measure the error of each architecture, we use categorical
cross-entropy. We optimize the weights of the architectures with the Adam algorithm.

Then, we aggregate the features of the last dense layer of the best convolutional
architecture with the temporal characteristics and embeddings of the tabular data.
This set of characteristics serves as input to the MultSurv model’s causal networks.
Model B training is carried out for 100 epochs usingMDHdata. To optimize themodel,
the losses L1 and L2 defined in Section 4.2.6 were adopted, and Adam was optimized
with a learning rate of 1e�4.
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Table 10 – Parameters used for each of the CNN architectures.
Architecture Learning Rate Batch Size Trainable Params Non-trainable Params Depth

DenseNet121 (HUANG et
al., 2017)

5⇥ 10�7 16 11 149 444 83 648 121

InceptionResNetV2
(SZEGEDY et al., 2017)

5⇥ 10�7 4 57 816 420 60 544 572

InceptionV3 (SZEGEDY et
al., 2016)

5⇥ 10�7 4 26 488 228 34 432 159

MovileNetV2 (SANDLER
et al., 2018)

5⇥ 10�7 4 7 468 036 34 112 88

ResNet50V2 (HE et al.,
2016)

1⇥ 10�6 16 31 909 252 45 440 50

VGG16 (SIMONYAN;
ZISSERMAN, 2014)

5⇥ 10�7 16 48 231 684 38 720 23

Source: Elaborated by the author.

5.3.4 MultSurv Model

Finally, we evaluate MultSurv model with the complete pipeline. In this sense, we
trained the MultSurv model architecture using the entire MDH dataset. The
hyperparameters for the MultSurv model component that deals with tabular data
followed those obtained for model B. For the CheXReport network, we carried out an
architecture evaluation process using the MIMIC-CXR dataset. We evaluate
pre-trained Swin-T, Swin-S, and Swin-B encoder architectures for the ImageNet
dataset. For the encoder, we use a fixed value of 2 as the number of layers Nd . We set
the CheXReport set of visual embeddings to 256 for all encoder architectures. BERT
multilingual word embeddings were frozen for 10 epochs to ensure that the X-Ray
image encoder had already been minimally tuned to capture domain-relevant
features. We use the search beam of size five to generate the report suggestions during
inference. The generation will stop when the < eos > token is generated, or the
sentence reaches the token limit.

Furthermore, to properly evaluate the capability of CheXReport, we compared the
performance of traditional feature extraction architectures for image captioning. We
compared the ResNet50-v2 and ResNet101-v2 architectures using two di↵erent
decoder models. The first is composed of the fusion of visual features with BERT
textual embeddings. The second decoder is composed of an architecture identical to
the CheXReport decoder. These architectures were pre-trained for 100 epochs with a
learning rate of 1e�4 using an Adam optimizer. We reduced the learning rate by 25%
every 10 epochs with no improvement for BLEU-4 on the validation set. The batch
size was set to 64 images.

We used the Python language, OpenCV, and PyTorch libraries to conduct the
experiments. We perform the experiments described in this chapter on a system that
contains a 24GB Quadro RTX 6000, Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz,
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and 64 GB of RAM.

5.3.5 Baselines

Finally, we evaluate the final performance of the MultSurv model compared with
the established architectures in the current literature: CoxTime, CoxCC, DeepSurv,
PCHazard, DeepHit, and N-MTLR. CoxTime extends the CoxPH model by
incorporating neural networks, allowing it to capture non-linear e↵ects over
time (KVAMME; BORGAN; SCHEEL, 2019). On the other hand, CoxCC combines
case-control sampling with neural networks to increase both computational e�ciency
and predictive accuracy (KVAMME; BORGAN; SCHEEL, 2019). DeepSurv uses deep
neural networks based on the CoxPH model and is specifically designed to predict the
time to occurrence of events (KATZMAN et al., 2018). PCHazard takes a di↵erent
approach, dividing time into intervals and estimating the hazard function piecewise
through neural networks, which facilitates the capture of temporal variation in
risk (KVAMME; BORGAN, 2021). Furthermore, DeepHit uses a multi-class approach
to directly predict the time-to-occurrence distribution of multiple events (LEE et al.,
2018). Finally, N-MTLR employs neural network-based multi-task logistic regression
to model the survival function, addressing both temporal dependence and complex
interactions between covariates (FOTSO, 2018).

5.4 Final Remarks

This chapter presented the methodology used to evaluate the MultSurv model,
detailing the technical characteristics, datasets, and evaluation metrics applied. We
describe the specific datasets used. The evaluation metrics section detailed the
performance metrics employed to evaluate the model’s e↵ectiveness, including
classification, image captioning, and survival analysis metrics. These metrics ensure a
complete assessment of the MultSurv model’s capabilities. Furthermore, we detail the
MultSurv model configuration and the incremental ablation study to validate the
model performance. In the next chapter, we present the results obtained from the
experiments, providing an analysis of MultSurv model’s performance.
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6 RESULTS AND DISCUSSIONS

This chapter explores the MultSurv model performance, analyzing its quantitative
metrics and qualitative observations. We start with a detailed description of the MDH
dataset analysis and the specific implementation details of the MultSurv model. In
the sequence, we present an ablation study analyzing the impact of di↵erent
architectural components on the MultSurv model performance. We then present an
analysis and comparison with state-of-the-art models. Finally, we provide a
qualitative analysis, o↵ering visual and textual comparisons that underscore the
MultSurv model capabilities. This comprehensive exploration aims to validate the
MultSurv model e↵ectiveness for survival analysis.

6.1 MyDigitalHealth Dataset Analysis

Between March 20, 2020, and June 02, 2022, 1,891 cases, including 1,815 unique
patients, were collected from the HCPA. All patients were treated by the SUS and had
a positive RT-qPCR test at the time of hospitalization. During hospitalization, 1,266
were admitted to the ICU. Of the 1,891 cases, 36.57% died, and 13.27% were censored.
By censoring, we consider patients who abandoned treatment or were transferred to
other hospitals.

The main origin of the cases is the Brazilian state of RS (1,884 cases). The other
cases are from Santa Catarina (SC) (3 cases), São Paulo (SP), Rio de Janeiro (RJ),
Rondônia (RO), and Amazonas (AM) (with 1 case each). Concerning the city of origin,
most cases are from Porto Alegre (1,193 cases). This behavior is a characteristic of the
healthcare regionalization in Brazil and the HCPA’s reference for the RS capital. In
Figure 15, we present a stratification by patients’ city of origin in RS for the cases
collected at HCPA.

Table 11 presents the characterization of our data. The mean population age was
59.15 years (Interquartile Range (IQR) 48.0 - 71.0). Cases were distributed among
seven age groups, with a slight predominance of cases in the age group 60 to 69 years
(483 (25.54%)). In all groups, the number of males hospitalized by COVID-19 was
higher than females. Male patients represented 51.51% of the patients, with 276
deaths and 124 censored cases. In-hospital mortality rates were slightly higher for
males than for females during the whole pandemic (28.34% vs. 27.58% of deaths,
respectively).

There was a predominance of hospitalized White individuals, representing
82.21% of the patients, followed by the Black population (14.07%). The mortality rate
was higher among Asian people (45.46%) and decreased inversely to the educational
level. Furthermore, the mortality rate is 15% higher among illiterate people
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Figure 15 – Patients stratified by city of origin in the state of Rio Grande do Sul.

Source: Elaborated by the author.

compared to those with a college degree. Most cases were admitted at the Very Urgent
level (46.06%). The highest mortality rates were observed for patients admitted as an
emergency (45.00%).

Regarding laboratory tests, were made available to only 776 patients. These make
up 15,289 di↵erent collection records. A collection may contain the results of
multiple laboratory tests. The tests with the highest collection percentages are
routine blood tests, such as potassium, sodium, serum creatinine, urea, Chronic
Kidney Disease Epidemiology Collaboration (CKDEPI), and Modification of Diet in
Renal Disease (MDRD). In Table 12, we present a stratification of the percentage of
results completed for each laboratory test.

In addition, 1,066 chest X-ray images were collected from 677 patients during
hospitalization. Two Carestream DRX-1 (202 images) and DRXPLUS3543C (561
images) detectors were used to collect the chest X-ray exams. For 303 images, there
was no detector record in the DICOM metadata. Regarding the collection position,
987 images were collected in the AP position, 66 in the PA position, and 13 in the
lateral position. In Figure 16, we present a size distribution of the images.

Regarding the variability of findings, as chest X-ray reports are composed of free
text, we used a word cloud to summarize the findings identified by radiologists. In
Figure 17, we present the word cloud resulting from the HCPA X-ray reports. It is
possible to observe that there arementions of findings of pulmonary, cardiac, digestive,
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Table 11 – Patient characteristics stratified by outcome.

General Discharged Death Censored

Age, in years
Min 18 18 21 20
Max 102 95 102 94
Mean 59.15 56.22 65.00 59.94
Median 61 57 67 61
Standard deviation 15.94 15.65 15.12 15.45
Interquartile range 48.0 - 71.0 44.0 - 67.0 57.0 - 75.0 50.0 - 70.0
Age groups, in years
18 to 29 74 (3.91%) 50 (4.46%) 15 (2.84%) 9 (3.72%)
30 to 39 181 (9.57%) 138 (12.32%) 27 (5.10%) 16 (6.61%)
40 to 49 261 (13.80%) 194 (17.32%) 35 (6.62%) 32 (13.22%)
50 to 59 373 (19.73%) 232 (20.71%) 85 (16.07%) 56 (23.14%)
60 to 69 483 (25.54%) 275 (24.55%) 141 (26.65%) 67 (27.69%)
70 to 79 330 (17.45%) 154 (13.75%) 137 (25.90%) 39 (16.12%)
80 < 189 (9.99%) 77 (6.88%) 89 (16.82%) 23 (9.50%)
General 1 891 1 120 (59.23%) 529 (27.97%) 242 (12.80%)
Sex
Female 917 (48.49%) 546 (48.75%) 253 (47.83%) 118 (48.76%)
Male 974 (51.51%) 574 (51.25%) 276 (52.17%) 124 (51.24%)
Self-reported race
Asian 11 (0.58%) 4 (0.36%) 5 (0.95%) 2 (0.83%)
White 1 548 (82.21%) 910 (81.61%) 432 (81.82%) 206 (85.83%)
Brown 59 (3.13%) 38 (3.41%) 15 (2.84%) 6 (2.50%)
Black 265 (14.07%) 163 (14.62%) 76 (14.39%) 26 (10.83%)
Scholarity
Illiterate 61 (3.23%) 24 (2.14%) 24 (4.54%) 13 (5.37%)
Elementary School 580 (30.67%) 331 (29.55%) 186 (35.16%) 63 (26.03%)
Middle School 407 (21.52%) 236 (21.07%) 115 (21.74%) 56 (23.14%)
High School 497 (26.28%) 341 (30.45%) 101 (19.09%) 55 (22.73%)
College / University 117 (6.19%) 75 (6.70%) 29 (5.48%) 13 (5.37%)
Without information 229 (12.11%) 113 (10.09%) 74 (13.99%) 42 (17.36%)
Condition at admission
Emergency 20 (1.06%) 10 (0.89%) 9 (1.70%) 1 (0.41%)
Very urgent 871 (46.06%) 589 (52.59%) 182 (34.40%) 100 (41.32%)
Urgent 124 (6.56%) 96 (8.57%) 20 (3.78%) 8 (3.31%)
Less urgent 7 (0.37%) 6 (0.54%) 0 (0.00%) 1 (0.41%)
Not classified 869 (45.95%) 419 (37.41%) 318 (60.11%) 132 (54.55%)

Source: Elaborated by the author.
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Table 12 – Percentage of patients exams results available in the HCPA sample.
Exam % Exam % Exam %

Potassium 25.51 Sodium 25.84 Serum creatinine 30.37
Urea 30.46 CKD-EPI 30.52 MDRD 30.54
Magnesium 57.96 Leukocytes 68.98 Monocytes % 68.98
Absolute monocytes 68.98 Absolute segmented

neutrophils
68.98 Segmented neutrophils % 68.98

Hematocrit 68.98 Hemoglobin 68.98 Absolute lymphocytes 68.98
Lymphocytes % 68.98 Absolute eosinophils 68.99 Absolute basophils 68.99
Basophils % 68.99 Eosinophils % 68.99 MCV Failace 68.99
MCH 68.99 MCHC 68.99 Erythrocytes 68.99
RDW 69.00 Erythroblasts 69.02 C-reactive protein result 72.08
H obs1 blood count 80.70 APTT control 81.39 APTT seconds 81.39
Blood count observation
neutrophil bands

83.12 Calcium VR 88.42 Corrected calcium 88.44

Absolute band neutrophils 88.59 Band neutrophils % 88.59 Absolute myelocytes 89.52
Myelocytes % 89.52 H obs2 blood count 89.68 PT control 91.75
PT INR 91.75 PT seconds 91.75 PT activity 91.75
H D-dimers 93.03 Serum chloride 93.09 Direct bilirubin 93.37
Indirect bili result 93.37 Total bilirubin 93.39 CK 93.43
Metamyelocytes % 93.81 Absolute metamyelocytes 93.81 GPT 94.38
GOT/AST result 94.42 Plasma lactate 94.72 H obs3 blood count 95.08
Troponin-T 95.70 LDH VR 96.08 STA compact fibrinogen 97.32
H obs4 blood count 97.90 Albumin 98.16 Observation 98.26
Estimated average glucose 98.79 A1C 98.79 Plasma cells % 98.86
Absolute plasma cells 98.86 Ferri result 99.18 H obs5 blood count 99.29
Absolute promyelocytes 99.30 Promyelocytes % 99.30 Minor/major indicator 99.37
Triglycerides 99.44 Sample creatinine 99.48 Absolute reticulocytes 99.57
Reticulocytes 99.57 Urine sample sodium 99.62 H obs6 blood count 99.67
Biochemical observations 99.67 E170 signal 99.69 Indicator seconds 99.74
Obs 99.76 Sample urea 99.84 CKD-EPI alpha 99.86
Urine sample potassium 99.88 C3 result 99.89 C4 result 99.89
Rheumatoid factor result 99.91 Result 99.93 CD3 value 99.95
H IF CD45/UL 99.95 H CD8 % 99.95 H CD4 % 99.95
CD4/CD8 ratio 99.95 CD4 value 99.95 CD8 value 99.95
H CD3 % 99.95 CSF lactate 99.95 Urine sample chloride 99.95
IgG result 99.95 Mean fluorescence index (MFI) 99.97 Thrombin time numeric 99.97
H obs7 blood count 99.97 IgM result 99.97 CSF ADA support 99.97
Urine volume 99.98 CSF LDH 99.98 Iron 99.99
24h creatinine 99.99 Urine alpha calcium 99.99 Magnesium result 99.99
24h calcium 99.99 ADA support 99.99 Urine alpha creatinine 99.99
CEA result 99.99 Ascites albumin 99.99 Absolute blasts 99.99
Blasts % 99.99 Urine sample calcium 99.99 Urinary urea 99.99
APTT obs 99.99 Activity indicator 99.99 INR indicator 99.99
Total ascites bili 1 99.99 CD4 observation 99.99 Total potassium volume 99.99
Urine alpha sodium 99.99 Serous fluid ADA 99.99 Thrombin time signal 99.99
Biochemical results outside
measurement range

99.99 Urine alpha urea 99.99 Urine alpha potassium 99.99

24h urine sodium 99.99 Calcitonin result 100.00 Antithrombin result 100.00
FO urea 100.00

Source: Elaborated by the author.
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Figure 16 – Size distribution of patients’ chest X-ray images.

Source: Elaborated by the author.

and support device changes.

Figure 17 – Most frequent words in the chest X-ray reports.

Source: Elaborated by the author.

We temporally align all patients based on their hospital admission date.
Therefore, time instant 0 for all patients was the date of hospitalization. Throughout
hospitalization, patients experienced events at di↵erent moments in time. The
minimum time until the event was 0 days, and the maximum was 209 days (±18.46
IQR [5.0� 23.0] ). Analyzing the frequency of patients’ time-to-event, we observed
that there are few samples with time-to-event greater than 50 days (Figure 18).
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Figure 18 – Time-to-event histogram of patients in the dataset.

Source: Elaborated by the author.

6.2 Data Preprocessing

We consider the set of possible survivals up to 50 days, with intervals of 1 day.
Therefore, Tmax = 50, based on this filter, we considered 1,655 unique patients with a
time-to-event of less than 50 days. We use stratified K-fold cross-validation to
evaluate the models, with K=10. With a 10-fold, we train the models 10 times each.
At the end of the training, we calculated the mean and standard deviation of the
results for the defined metrics. For sociodemographic, clinical, and laboratory data,
we only considered data with more than 50% completeness for the final dataset.
Columns with continuous data were normalized using the standardization technique.
The textual categorical columns were transformed into numerical categories. Finally,
we generate the mask for the missing data samples.

We preprocess the X-ray images to enhance the architecture’s training (Figure 19).
Firstly, we apply CLAHE (ZUIDERVELD, 1994) to highlight the anatomopathological
structures projected on chest X-ray images. Then, given the di↵erent dimensions of the
images, we resized the images to 224⇥224 pixels. The reduction was proportional to
the image width and height, with zero padding for the smallest axis. The use of the pre-
trained encoder limited the image resolution. For the MIMIC-CXR and the Curated
Dataset for COVID-19, we used the original dataset split suggestion for training and
testing.
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Figure 19 – (a) Original chest X-ray image. We can see that the dimensions of the image
are not proportional. Therefore, in (b), a reduction proportional to the width and
height of the image is applied, with zero padding for the shortest axis. Furthermore,
in (b), we sought to highlight di↵erences in image contrast with the application of
CLAHE.

(a) Original X-ray (b) Preprocessed X-ray

Source: Elaborated by the author.

6.3 Ablation Study

We evaluate each part of the MultSurv model for its purpose and, in general, for
its survival analysis capacity. We used temporal prediction points for survival
analysis of 1, 3, 5, and 7 days. We evaluated the model’s performance over these same
time intervals, using the C-index and the Brier Score metrics to measure the
discrimination and calibration of predictions, respectively. These time periods were
chosen to capture the short-term dynamics of the event of interest, allowing detailed
analysis of the model’s e↵ectiveness in predicting survival at di↵erent temporal
stages.

6.3.1 Model A

First, we evaluate the Model A performance based on DynamicDeepHit on the
PBC2 public dataset. PBC2 is the databaset available from the DynamicDeepHit
repository. DynamicDeepHit is a dynamic survival analysis model that deals with
temporal data and simultaneous risk events. We implemented the DynamicDeepHit
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following strictly the original implementation1.
In Tables 13 and 14, we present the performance of Model A in terms of C-index

and Brier score at di↵erent time points of prediction (t) and evaluation (�t). We
observed that the performance of the C-index varies depending on the prediction and
evaluation time. For t = 52, the model achieves its best performance at �t = 12 with a
C-index of 0.975 ± 0.01, indicating the ability to discriminate short-term risks.
However, there is a drop at �t = 36, followed by a recovery at the �t = 60 and
�t = 120 intervals. For t = 156, the initial performance is low at �t = 12 but
progressively improves, reaching the highest value at �t = 120 (0.868 ± 0.04). For
t = 260, the model shows stable and robust performance across all �t, with C-index
ranging from 0.822 ± 0.03 to 0.842 ± 0.03, reflecting consistent reliability for
long-term prediction terms.

Table 13 – Comparison ofModel A performance for di↵erent prediction and evaluation
time points for the C-index (mean and ± standard deviation) in the PBC2 dataset. The
bigger, the better.

Prediction Time �t = 12 �t = 36 �t = 60 �t = 120

t = 52 0.975± 0.01 0.803± 0.00 0.910± 0.03 0.915± 0.03
t = 156 0.518± 0.00 0.577± 0.05 0.639± 0.01 0.868± 0.04
t = 260 0.842± 0.03 0.822± 0.03 0.825± 0.00 0.840± 0.01

Source: Elaborated by the author.

Regarding the Brier score (Table 14), which measures the model’s calibration, the
results indicate that Model A presents a good experience for short predictions,
especially at t = 52 and �t = 12, with a Brier score of 0.016± 0.00. However, the score
increases as the evaluation interval extends, reaching 0.077 ± 0.00 at �t = 120. For
t = 156, the Brier score values range from 0.047 ± 0.00 at �t = 12 to 0.90 ± 0.00 at
�t = 120. At t = 260, performance is relatively constant across all �t, with scores
ranging from 0.089 ± 0.00 to 0.115 ± 0.00, establishing an acceptable clause for
long-term predictions.

Next, we evaluate the performance of Model A for the MDH tabular dataset. To
ensure the model was optimized for our specific dataset, we performed
hyperparameter optimization through RandomSearch over 100 epochs.
RandomSearch is an e�cient technique for exploring the hyperparameter space,
helping to find the combination that maximizes model performance (BERGSTRA;
BENGIO, 2012). Table 15 presents the best set of hyperparameters identified for
DynamicDeepHit.

This evaluation aims to verify how DynamicDeepHit, with its ability to model the
temporal evolution of health data and consider multiple risks simultaneously,

1https://github.com/chl8856/Dynamic-DeepHit
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Table 14 – Comparison ofModel A performance for di↵erent prediction and evaluation
time points for the Brier score (mean and ± standard deviation) in the PBC2 dataset.
The smaller, the better.

Prediction Time �t = 12 �t = 36 �t = 60 �t = 120

t = 52 0.016± 0.00 0.021± 0.00 0.030± 0.00 0.077± 0.00
t = 156 0.047± 0.00 0.059± 0.00 0.068± 0.00 0.90± 0.00
t = 260 0.089± 0.00 0.089± 0.00 0.093± 0.00 0.115± 0.00

Source: Elaborated by the author.

Table 15 – Model A network hyperparameters.
Hyperparameter Value

Batch size 32
Dense layers activation ReLU
RNN activation Tanh
Dense output activation ReLU
Dense dropout 0.2
RNN dropout 0.2
RNN cell GRU
RNN hidden size 100
Dense hidden size 100
Dense number layers 2
RNN dense number layers 2
Attention number layers 8
Learning rate 1e-3

Source: Elaborated by the author.
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behaves in a realistic scenario, such as the one represented by the MDH dataset. This
analysis allows us to compare the e↵ectiveness of DynamicDeepHit with the
MultSurv model, highlighting the potential improvements provided by the new
techniques and approaches incorporated in our proposed model. In this sense, the
performance of Model A was evaluated in two main aspects: C-index and Brier score,
at di↵erent time points of prediction (t) and evaluation (�t). The following
Tables 16 e 17 presents the average results and the respective standard deviations for
these metrics.

Table 16 – Comparison ofModel A performance for di↵erent prediction and evaluation
time points for the C-index (mean and ± standard deviation) for the MDH dataset. The
bigger, the better.

Prediction Time �t = 1 �t = 3 �t = 5 �t = 7

t = 1 0.666± 0.02 0.622± 0.02 0.629± 0.01 0.648± 0.01
t = 3 0.584± 0.04 0.635± 0.03 0.639± 0.02 0.633± 0.02
t = 5 0.605± 0.02 0.617± 0.03 0.614± 0.02 0.611± 0.02
t = 7 0.584± 0.03 0.613± 0.02 0.611± 0.02 0.618± 0.02

Source: Elaborated by the author.

Analyzing the results for the C-index, we can observe that the model’s
performance varies depending on the time points of prediction and evaluation. The
best performance is observed for t = 1 and �t = 1, with a C-index of 0.666 ± 0.02. As
we increase �t, performance decreases but remains relatively stable. At t = 3, the
model achieves its best performance at �t = 3 with a C-index of 0.635± 0.03. For t = 5
and t = 7, the model presents a more uniform performance between the di↵erent �t.

Table 17 – Comparison ofModel A performance for di↵erent prediction and evaluation
time points for the Brier score (mean and ± standard deviation) for the MDH dataset.
The smaller, the better.

Prediction Time �t = 1 �t = 3 �t = 5 �t = 7

t = 1 0.060± 0.00 0.092± 0.00 0.130± 0.00 0.163± 0.00
t = 3 0.097± 0.00 0.136± 0.00 0.168± 0.00 0.186± 0.00
t = 5 0.143± 0.00 0.174± 0.00 0.192± 0.00 0.195± 0.00
t = 7 0.185± 0.00 0.202± 0.00 0.202± 0.00 0.212± 0.00

Source: Elaborated by the author.

The results for the Brier score indicate that Model A presents better performance
for predictions closer to the initial instant (t=1), with a Brier score of 0.060 ± 0.00 for
�t = 1. As the prediction time (t) increases, the Brier score values increase, indicating
a worsening model calibration. This is especially evident in t = 7 and �t = 7, where
the Brier score reaches 0.212± 0.00.
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The Tables 16 and 17 results demonstrate that Model A performs satisfactorily in
terms of discrimination (C-index) and calibration (Brier score) in short periods of
prediction and evaluation. Performance decreases as the prediction and evaluation
intervals increase, especially for the Brier score. This suggests the model may be more
reliable for short-term predictions.

6.3.2 Model B

Model B is composed only with the MultSurv model components responsible for
processing tabular data. In this sense, Model B evaluates the impact of categorical
and continuous embeddings. Hyperparameters (Table 18) were selected using
RandomSearch (BERGSTRA; BENGIO, 2012).

Table 18 – Model B network hyperparameters.
Hyperparameter Value

Batch size 32
Dense layers activation ReLU
RNN activation Tanh
Dense output activation ReLU
Dense dropout 0.2
RNN dropout 0.2
RNN cell GRU
RNN hidden size 50
Dense hidden size 50
Dense number layers 4
RNN dense number layers 2
Attention number layers 10
Learning rate 1e-4
Embeddings Dropout 0.4
Embeddings size 64

Source: Elaborated by the author.

We first evaluate Model B for the PBC2 dataset. When we compare the Model A
results for the PBC2 dataset (Table 13) with the results obtained with Model B
(Table 19) we realize that model B achieves better predictions in short-term, with a
C-index of 0.978± 0.02 at t = 52 and �t = 12, surpassing Model A (0.975± 0.01). This
superiority persists at �t = 36, where Model B achieves 0.934 ± 0.02, compared to
0.803 ± 0.00 for Model A. For medium-term predictions (t = 156), Model B continues
to demonstrate better performance, with a higher C-index across all �t evaluated. At
t = 260, both models exhibit a more balanced performance, but Model B maintains a
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slight advantage, suggesting more consistent discrimination over time.

Table 19 – Comparison of Model B performance for di↵erent prediction and evaluation
time points for the C-index (mean and ± standard deviation) in the PBC2 dataset. The
bigger, the better.

Prediction Time �t = 12 �t = 36 �t = 60 �t = 120

t = 52 0.978± 0.02 0.934± 0.02 0.886± 0.02 0.884± 0.02
t = 156 0.705± 0.01 0.831± 0.02 0.885± 0.03 0.913± 0.00
t = 260 0.842± 0.01 0.866± 0.04 0.847± 0.01 0.877± 0.03

Source: Elaborated by the author.

Regarding calibration, measured by the Brier score, Model B (Table 20) also
presents superior results at various time points. For t = 52, the Brier score of Model B
at �t = 12 is 0.007 ± 0.00, indicating better calibration compared to Model A
(0.016± 0.00). This advantage remains at �t = 36 and �t = 60, with Model B showing
lower scores and better calibration. In the long run, specifically at t = 260, Model B
exhibits a slightly better calibration, with scores ranging from 0.081 ± 0.00 to
0.98 ± 0.00, while Model A varies from 0.089 ± 0.00 to 0.115 ± 0.00. These results
suggest that Model B o↵ers superior discrimination and a more stable and accurate
calibration.

Table 20 – Comparison of Model B performance for di↵erent prediction and evaluation
time points for the Brier score (mean and ± standard deviation) in the PBC2 dataset.
The smaller, the better.

Prediction Time �t = 12 �t = 36 �t = 60 �t = 120

t = 52 0.007± 0.00 0.011± 0.00 0.018± 0.00 0.040± 0.00
t = 156 0.040± 0.00 0.038± 0.00 0.051± 0.00 0.070± 0.00
t = 260 0.081± 0.00 0.085± 0.00 0.081± 0.00 0.098± 0.00

Source: Elaborated by the author.

Next, in Tables 21 e 22, we present the results of model B for the MDH test set. The
results for the C-index show that Model B presents superior performance compared to
Model A, especially for higher prediction times. For t = 1, Model B achieves a C-index
of 0.693 ± 0.02 at �t = 1, which is slightly lower than Model A (0.666 ± 0.02). Besides,
as the prediction time increases, the performance of Model B improves considerably.
For t = 3, the C-index of Model B is 0.740 ± 0.01 at �t = 1, compared to 0.584 ± 0.04 of
Model A, demonstrating an advantage in discriminating future events. Furthermore,
Model B maintains more consistent performance at longer prediction times, such as
t = 5 and t = 7, where the C-index values are better than those of Model A. This may
suggest that embeddings help the model better capture complex relationships between
variables, improving the ability to predict events over time.
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Table 21 – Comparison of Model B performance for di↵erent C-index prediction and
evaluation time points (average and ± standard deviation). The bigger, the better.

Prediction Time �t = 1 �t = 3 �t = 5 �t = 7

t = 1 0.693± 0.02 0.708± 0.02 0.702± 0.02 0.701± 0.01
t = 3 0.740± 0.01 0.720± 0.02 0.728± 0.02 0.714± 0.02
t = 5 0.722± 0.02 0.728± 0.01 0.720± 0.01 0.706± 0.02
t = 7 0.694± 0.03 0.696± 0.02 0.695± 0.01 0.688± 0.01

Source: Elaborated by the author.

In terms of the Brier score, which evaluates the calibration of predictions, Model B
also outperforms Model A. For t = 1, Model B has a Brier score of 0.066 ± 0.00 at
�t = 1, while Model A presents 0.060 ± 0.00. Although Model B presents a slightly
higher value, indicating a slightly worse calibration for immediate predictions, it
compensates for this di↵erence in longer prediction times. For example, for t = 3,
Model B’s Brier score is 0.094 ± 0.00 at �t = 1, compared to 0.097 ± 0.00 for Model A.
This trend continues with an increase of t, where Model B consistently presents better
Brier scores than Model A. This indicates that Model B can better maintain prediction
accuracy over time, benefiting from embeddings to capture and represent variables
more e↵ectively.

Table 22 – Comparison of Model B performance for di↵erent prediction and evaluation
time points for the Brier score (mean and ± standard deviation). The smaller, the
better.

Prediction Time �t = 1 �t = 3 �t = 5 �t = 7

t = 1 0.066± 0.00 0.074± 0.00 0.102± 0.00 0.147± 0.00
t = 3 0.094± 0.00 0.141± 0.00 0.172± 0.00 0.191± 0.00
t = 5 0.134± 0.00 0.194± 0.00 0.190± 0.00 0.203± 0.00
t = 7 0.165± 0.00 0.200± 0.00 0.208± 0.00 0.211± 0.00

Source: Elaborated by the author.

Analysis of the results shows that using embeddings in Model B provides
advantages in terms of performance, especially for longer prediction times. Model B
improves event discrimination (C-index) and maintains a more stable calibration
(Brier score) over time. These improvements can be attributed to the ability of
embeddings to transform categorical and continuous variables into dense vector
representations, capturing complex non-linear relationships that traditional tabular
analysis methods may not be able to identify. In summary, Model B ablation analysis
highlights the importance of incorporating embeddings in tabular data processing,
improving the ability to identify underlying patterns and predict risk more
accurately.
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6.3.3 Model C

One of the objectives of this dissertation was to evaluate the impact of using
multimodal data in survival analysis. In this sense, one of the first hypotheses was
using architectures for classifying typical findings of pneumonia, COVID-19, and
normal findings in chest X-ray images as feature extractors and concatenating them
with the tabular embeddings of Model B. In this way, we trained six convolutionary
architectures: DenseNet121 (HUANG et al., 2017), InceptionResNetV2 (SZEGEDY et
al., 2017), InceptionV3 (SZEGEDY et al., 2016), MovileNetV2 (SANDLER et al.,
2018), ResNet50V2 (HE et al., 2016), and VGG16 (SIMONYAN; ZISSERMAN, 2014)
by 100 epochs for each fold. We evaluate each model in the validation set at the end
of training. The best set of weights was chosen automatically based on the error for
the validation set. Figure 20, presents the confusion matrices for each model.

Figure 20 – Confusion matrices of each model for the best test fold set. Dark colors
represent a greater number of cases. Light colors represent a smaller amount of cases.

Source: Elaborated by the author.

Analyzing the confusion matrices (Figure 20), we see that all classifiers could
correctly classify most cases. We can highlight the tendency to classify cases of viral
pneumonia as bacterial and bacterial pneumonia as viral. This trend may indicate
that the number of viral and bacterial pneumonia cases was insu�cient for an
optimized generalization for these two classes. As for the normal cases classification,
the ResNet50V2 model had the highest misclassification rate. The classification of
pneumonia due to COVID-19 showed similar success rates. The highest
false-negative rate for COVID-19 was presented by the InceptionResNetV2 model,
with 4 cases. The InceptionV3, ResNet-50, and VGG16 models presented the lowest
rate of false negatives, with 1 case.

From the confusion matrix, we can calculate the model’s performance metrics
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(RUUSKA et al., 2018). Table 23 presents the values obtained for the evaluation
metrics in the test fold based on the confusion matrices presented in Figure 20.

Table 23 – Results for the test fold for each model. For each column, the bold values
denote the best results.

Model Accuracy Sensitivity Specificity F1-score AUC

DenseNet121 81.28±2.27% 81.40±2.23% 81.33±2.26% 81.22±2.32% 0.9620
InceptionResNetV2 84.16±1.42% 83.49±1.52% 84.10±1.47% 84.16±1.42% 0.9707

InceptionV3 83.14±1.01% 83.34±1.09% 83.20±1.00% 83.22±1.04% 0.9704
MovileNetV2 82.04±1.33% 82.55±1.34% 82.10±1.39% 82.21±1.28% 0.9655
ResNet50V2 85.08±1.62% 85.36±1.54% 85.12±1.61% 85.06±1.60% 0.9748

VGG16 85.11±1.30% 85.25±1.27% 85.16±1.30% 85.03±1.42% 0.9758

Source: Elaborated by the author.

After analyzing the results, it is clear that there was relative stability in the
performance metrics for each model. The largest standard deviation for accuracy was
±2.27%, and the largest di↵erence between the models was 3.83% (VGG16 and
DenseNet121). These results indicate an adequate generalization of each model for
detecting pneumonia due to COVID-19. As for sensitivity, which measures the ability
to classify positive classes correctly, the models di↵er by 3.96%. The maximum
variation between models for specificity was 3.83%.

In general, the ResNet50V2 and VGG16 models showed the best results for the
chest X-ray classification. This better performance can be associated with the
organization of the models. For ResNet50V2, we can highlight the residual blocks
that allow an adaptation of the weights to remove filters that were not useful for the
final decision (HE et al., 2016). As for VGG16, the performance may indicate that
classifying X-Ray features from lower levels, such as more basic forms, is better for
di↵erentiating viral pneumonia, bacterial pneumonia, COVID-19, and normal.
However, the VGG16 is computationally heavier and requires more training time.
Also, VGG16 has a vanishing gradient problem.

Figure 21 presents the ROC curves for each fold and model in the test fold. The
AUC showed the greatest stability when comparing the accuracy, sensitivity,
specificity, and F1-score metrics, with a variation of only ±0.80%.

Regarding convolutional models, we assessed the impact of using multimodal data
in survival analysis with the ResNet50V2 architecture, integrating features extracted
from chest X-ray images with tabular embeddings from Model B. Below, in the
Tables 24 e 25 we discuss the results obtained by Model C in comparison with Models
A and B.

The results for the C-index indicate that Model C presents improvements in
relation to Model A. For t = 1, Model C achieves a C-index of 0.695 ± 0.01 in �t = 1,
compared to 0.666 ± 0.02 for Model A and 0.693 ± 0.02 for Model B. This small
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Figure 21 – Classification performance for each fold andmodel in terms of ROC curves
in the test fold.

Source: Elaborated by the author.

improvement over Model B suggests that the integration of multimodal data can
contribute to discrimination slightly better. As we increase the prediction time,
Model C presents a C-index slightly higher than Model A but very close to Model B.
For t = 3, the C-index of Model C is 0.742 ± 0.012 in �t = 1, compared to 0.584 ± 0.04
for Model A and 0.740 ± 0.01 for Model B. This pattern holds for t = 5 and t = 7,
where the di↵erences are minimal. This indicates that although adding multimodal
data has some positive e↵ect, this impact is not significantly greater than that already
observed with Model B tabular embeddings.

Table 24 – Comparison of Model C performance for di↵erent C-index prediction and
evaluation time points (average and ± standard deviation). The bigger, the better.

Prediction Time �t = 1 �t = 3 �t = 5 �t = 7

t = 1 0.695± 0.01 0.711± 0.02 0.701± 0.01 0.703± 0.01
t = 3 0.742± 0.01 0.718± 0.01 0.730± 0.01 0.715± 0.01
t = 5 0.725± 0.01 0.729± 0.01 0.721± 0.01 0.709± 0.01
t = 7 0.692± 0.02 0.698± 0.01 0.696± 0.01 0.690± 0.01

Source: Elaborated by the author.

For the Brier score, the results also show a small improvement with Model C
compared to Models A and B. For t = 1, the Brier score for Model C is 0.065 ± 0.00 at
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�t = 1, compared to 0.060 ± 0.00 for Model A and 0.066 ± 0.00 for Model B. Although
Model C presents a slightly lower value than Model B, the di↵erence is small. At t = 3,
Model C’s Brier score is 0.094 ± 0.00 at �t = 1, compared to 0.097 ± 0.00 for Model A
and 0.094 ± 0.00 for Model B . This trend of subtle improvements continues for t = 5
and t = 7, where the di↵erences between Model C and Model B remain marginal.

Table 25 – Comparison of Model C performance for di↵erent prediction and evaluation
time points for the Brier score (mean and ± standard deviation). The smaller, the
better.

Prediction Time �t = 1 �t = 3 �t = 5 �t = 7

t = 1 0.065± 0.00 0.073± 0.00 0.103± 0.00 0.146± 0.00
t = 3 0.094± 0.00 0.142± 0.00 0.171± 0.00 0.190± 0.00
t = 5 0.133± 0.00 0.193± 0.00 0.189± 0.00 0.202± 0.00
t = 7 0.164± 0.00 0.199± 0.00 0.206± 0.00 0.209± 0.00

Source: Elaborated by the author.

The results indicate that using multimodal data in Model C provides subtle
improvements over Model B but without a significant increase in overall
performance. The C-index and Brier score of Model C are slightly better compared to
Model B, especially for shorter prediction times. However, these improvements are
insu�cient to conclude that adding multimodal data has a decisive impact. These
findings suggest that, although integrating features extracted from X-ray images with
tabular embeddings may o↵er some advantages, the main improvement in the
performance of predictive models still comes from using embeddings for categorical
and continuous variables.

6.4 MultSurv model

This section investigates the contribution of the CheXReport architecture in
MultSurv to survival analysis. Firstly, in Section 6.4.1, we evaluate the performance of
the CheXReport architecture for suggesting chest X-ray image reports. Then, in
Section 6.4.2, we evaluate and discuss in detail the results of the MultSurv model for
survival analysis.

Specifically, the CheXReport is composed of an encoder-decoder architecture.
However, unlike most architectures adopted in the literature, we propose a fully
transformer architecture. Adopting an improved full transformer architecture with
Swin Transformer blocks allows the CheXReport architecture to extract better
intrinsic visual features and relationships in X-ray images, integrating these visual
features with textual elements. We adopted an encoder with SwinTransformer blocks
that extract refined features and intra-report the features to capture radiological
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findings from chest X-ray images. The decoder comprises a block of word
embeddings connected with Nd Swin Transformer blocks, which are responsible for
merging visual and textual resources.

6.4.1 CheXReport

This section investigates the contributions of the encoder and decoder in
CheXReport. In Table 26, we present the results for the models based on
ResNet101-V2, ResNet50-V2, and Swin Transformer as encoders and LSTM and
Transformer as decoders.

Table 26 – Ablation study for the contributions of the encoder and decoder in
CheXReport performance in the MIMIC-CXR dataset. Higher is better in all columns.
For each column, the bold values denote the best results.
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 GLEU-4 METEOR ROUGE

ResNet101-V2 + LSTM 0.227 0.119 0.012 0.007 0.023 0.109 0.235
ResNet101-V2 + Transformer 0.243 0.126 0.084 0.019 0.035 0.123 0.237
ResNet50-V2 + LSTM 0.230 0.120 0.080 0.020 0.030 0.115 0.238
ResNet50-V2 + Transformer 0.248 0.135 0.093 0.032 0.043 0.128 0.245
CheXReport Swin-T 0.339 0.212 0.143 0.105 0.122 0.139 0.270
CheXReport Swin-S 0.344 0.215 0.149 0.116 0.123 0.147 0.280
CheXReport Swin-B 0.354 0.225 0.145 0.127 0.130 0.147 0.284

Source: Elaborated by the author.

6.4.1.1 Transformer decoder e↵ect

Comparing the results of the models with LSTM-decoders and models with
Transformers-decoders in Table 26, it is possible to see a substantial increase in model
performance across all metrics. The increase may be related to the already known
capacity of Transformer-based networks to capture long-term information, which
may reflect a greater ability of the Transformer decoder to transform visual
characteristics into more coherent and contextually accurate reports. Additionally,
the Transformer decoder’s ability to process input sequences of arbitrary length can
generate longer captions that provide more detail about the image, leading to higher
BLEU scores. Overall, the results suggest that incorporating a Transformer decoder
can improve the accuracy and coherence of generated subtitles.
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6.4.1.2 Swin Transformer encoder e↵ect

The results in Table 26 for the models based on CheXReport demonstrate the
impact of using a Swin Transformer as encoder and decoder in a
sequence-to-sequence model for generating chest X-ray reports. Compared to the
baseline model that uses a ResNet101-V2 or ResNet50-V2 backbone and an LSTM
encoder-decoder architecture, replacing the encoder with a Swin Transformer
(CheXReport Swin-T) improves all evaluation metrics. This suggests that the Swin
Transformer e↵ectively encodes visual information from medical images into a latent
representation that can be used for captions.

Furthermore, increasing the encoder (CheXReport Swin-S and Swin-B) also leads
to better performance than the base model. This indicates that Swin Transformer is
suitable for generating coherent and accurate natural language descriptions of
medical images. Notably, the most improvement is seen in the BLEU-4 score, which
measures the fluency and coherence of generated subtitles. This suggests that Swin
Transformer is particularly e↵ective at generating longer and more detailed captions
that accurately describe the content of the input image. We hypothesize that this
behavior may be related to the Swin Transformer’s ability to capture information
hierarchically and gradually merge neighboring patches, allowing local
representations to flow into deeper layers. This behavior favors detecting small
changes common in chest X-ray images. These results suggest that using a Swin
Transformer as an encoder and decoder in a sequence-to-sequence model can
improve the quality of medical image captions.

6.4.1.3 Model Complexity

When considering the full complexity of the models, evaluating both the
computational e�ciency and the performance outcomes is essential. ResNet50-V2,
while providing better performance than the ResNet101-V2 as indicated in Table 26,
does not match the superior results of Swin Transformers. The ResNet50-V2 model,
although less computationally intensive than ResNet101-V2, falls short in generating
detailed and coherent reports, as seen in its lower BLEU-4 and ROUGE scores.

On the other hand, the hierarchical representation learning in Swin Transformers
allows for better capture of local and global features, leading to more accurate and
contextually relevant descriptions. In conclusion, while ResNet50-V2 o↵ers a baseline
performance, the Swin Transformer models, especially the Swin-B variant, provide the
best balance of computational e�ciency and high-quality report generation, making
them the preferred choice for chest X-ray report generation.
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6.4.1.4 Qualitative Analysis

In Table 27, we present randomly selected representative test samples to
qualitatively compare the methods from the MIMIC-CXR test set for the
ResNet101-V2 + LSTM base model and the CheXReport Swin-B model. Analyzing the
results of the ResNet101-V2 + LSTM model concerning the ground truth, we can see
the model’s tendency to produce a smaller number of tokens. Furthermore, the
ResNet101-V2 + LSTM model has di�culties in identifying small changes present in
the images, such as the presence of coronary calcifications or the presence of surgical
clips. Moreover, the ResNet101-V2 + LSTM model produced hallucinations compared
to the ground truth, as for the fourth case in Table 27 where the model indicates the
presence of a catheter not in the X-ray image of the case.

When we compare the CheXReport Swin-B model with the ground truth, we can
see a greater similarity of the sentences and with greater detail. This process indicates
that the CheXReport Swin-B model can extract visual information and synthesize it
into text more e�ciently and close to the language adopted by radiologists.
Furthermore, the model could also detect elements not reported in the ground truth,
as in the first case that presents the presence of surgical clips. Finally, compared to
the base model ResNet101-V2 + LSTM, the suggested report produced by the
proposed CheXReport Swin-B model demonstrates greater accuracy, covering
essential radiological findings in the X-ray image. The observations show the ability
of our proposed method to provide accurate radiological reports with less tendency to
present hallucinations like the reference model.

6.4.1.5 Comparison of CheXReport with the State of the Art

We compared the CheXReport with several state-of-the-art models for generating
chest X-ray reports for the MIMIC-CXR dataset: Competence-based Multimodal
curriculum learning framework (CMCL) (LIU; GE; WU, 2022), Contrastive attention
(CA) (MA et al., 2021), Meshed-memory transformer (M2 TR) (NOORALAHZADEH
et al., 2021), Prior guided attention (PGA) (YAN et al., 2022), Cross-modal memory
networks (CMN) (CHEN et al., 2022), Relational memory and memory-driven
conditional layer normalization (RM+MCLN) (CHEN et al., 2020), Medical vision
language learner MedViLL (MOON et al., 2022), and knowledge graph with dynamic
structure and contrastive learning (DCL) (LI et al., 2023). Furthermore, our
comparison against state-of-the-art takes into account models of di↵erent approaches
to generating chest X-ray reports, such as contrastive learning (MA et al., 2021),
knowledge graph (LI et al., 2023), and curriculum learning (LIU; GE; WU, 2022).

In Table 28, we present the results reported by the original studies for the
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Table 27 – Comparison of ground truth reports with reports generated by the
ResNet101-V2 + LSTM and CheXReport Swin-B models for chest X-ray images
randomly selected from the MIMIC-CXR test set.

Image Ground Truth ResNet101-V2 + LSTM CheXReport Swin-B Attention Map †

As compared to the previous
radiograph, the patient has
received a nasogastric tube. The
tip projects over the middle
parts of the stomach. No
complications, notably no
pneumothorax. The apical lung
regions are not included on the
image.

There are no indications
of complications observed
on this image. No signs of
pneumothorax.

No pneumothorax is identified.
Possible pleural e↵usion.
Presence of a nasogastric tube.
The tube’s tip is projected over
the middle part of the stomach.
Heart in normal size. Surgical
clips project over the patient
spine.

There is no pneumothorax.
Small-to-moderate right pleural
e↵usion is stable. There is
more consolidation in the
right lung outside the entirely
consolidated right middle
lobe, and suggestion of new
consolidation at the base of the
left lung which might be due to
spillover pneumonia originating
in the obstructed right middle
lobe. Extensive mediastinal
and right hilar adenopathy
unchanged. No left pleural
e↵usion. No cardiomegaly.

Pneumothorax detected in the
left lung. Small pleural e↵usion
on the right lung. There is
no left pleural e↵usion, and
cardiomegaly is not present.

There is no pneumothorax.
No left pleural e↵usion. No
cardiomegaly. Presence of a
small-to-moderate right pleural
e↵usion. Consolidation is
observable in the right and
left lung, extending beyond
the already consolidated
right middle lobe. Extensive
mediastinal and right hilar
adenopathy.

The heart size and mediastinal
contours are prominent but
similar to prior studies.
The lungs are clear. There
is no pleural e↵usion or
pneumothorax.

No changes in the lungs. No significant findings in
the lungs. No presence
of pleural e↵usion or
pneumothorax. Enlarged
heart and mediastinum size.
Surgical clips project over the
patient spine.

Prominent interstitial markings
are again seen, not significantly
changed. There is no overt
pulmonary edema. There
is no pleural e↵usion.
Cardiomediastinal silhouette
is stable. Coronary artery
calcifications and/or stents are
noted. Chronic compression
deformity in the lower thoracic
spine.

Unchanged prominent
interstitial markings. No
pneumothorax or pleural
e↵usion. There is no evidence
of pulmonary edema. Catheter
in normal position.

Prominent interstitial markings
with no significant changes.
No evident signs of pulmonary
edema or pleural e↵usion. The
cardiomediastinal silhouette is
stable. There are findings of
coronary artery calcifications or
stents. There is a chronic
compression deformity in the
lower thoracic spine.

The cardiac, mediastinal and
hilar contours appear stable.
The heart is normal in size.
There is no pleural e↵usion
or pneumothorax. The lungs
appear clear. The patient
is status post anterior cervical
fusion. Surgical clips project
over the left upper quadrant.
There has been no significant
change.

No changes in the lungs. The
heart is abnormal size

The lung volumes are low
and clear. Specifically no
evidence of pneumotórax or
pleural e↵usion. Osseous
structures are normal. Cardiac
and mediastinal are normal.
Catheter in normal position.
Surgical clips project over the
left upper quadrant.

† Aggregated Attention Map for the Encoder Last Layer.

Source: Elaborated by the author.
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MIMIC-CXR dataset. It is possible to see that the CheXReport achieves results similar
to state-of-the-art results for generating chest X-ray reports for the MIMIC-CXR for
the performance metrics analyzed. The CheXReport outperforms the state-of-the-art
for the BLEU-4 and ROUGE metrics. For other metrics, the model achieves results
close to state-of-the-art models. These results demonstrate the e↵ectiveness of the
CheXReport in extracting features from chest X-ray images to construct suggested
findings in radiological reports.

Table 28 – Comparison with state-of-the-art methods on MIMIC-CXR dataset. All
metrics for the state-of-the-art are directed cited from the original paper. Higher is
better in all columns. For each column, the bold values denote the best results.
Model Backbone BLEU-1 BLEU-2 BLEU-3 BLEU-4 GLEU-4 METEOR ROUGE

CA (MA et al., 2021) ResNet-50 0.350 0.219 0.152 0.109 - 0.151 0.283
M2 TR (NOORALAHZADEH et al., 2021) DenseNet 0.378 0.232 0.154 0.107 - 0.145 0.272
PGA (YAN et al., 2022) ResNet101 0.356 0.222 0.151 0.111 - 0.140 0.280
CMN (CHEN et al., 2022) ResNet101 0.353 0.218 0.148 0.106 - 0.142 0.278
CMCL (LIU; GE; WU, 2022) ResNet-50 0.344 0.217 0.140 0.097 - 0.145 0.272
RM+MCLN (CHEN et al., 2020) ResNet101 0.353 0.218 0.145 0.103 - 0.142 0.277
MedViLL (MOON et al., 2022) ResNet-50 - - - 0.126 - - -
DCL (LI et al., 2023) ViT - - - 0.109 - 0.150 0.284
ASGMD (XUE et al., 2024) ResNet-101/Resnet152 0.372 0.233 0.154 0.112 - 0.152 0.286
CheXReport (Ours) Swin-B 0.354 0.225 0.145 0.127 0.130 0.147 0.286

Source: Elaborated by the author.

The CheXReport performances in terms of BLEU-1 (0.378 vs. 0.354), BLEU-2
(0.233 vs. 0.225), BLEU-3 (0.154 vs. 0.145), and METEOR (0.152 vs. 0.147) are
mainly inferior toM2TR. This performance may be related to the two-phase method
adopted to generate the report suggestions. In the M2 TR, high-level context
information is extracted and refined by a language model to generate the final Chest
X-ray report suggestions (NOORALAHZADEH et al., 2021). This process can favor
the model’s performance for shorter text sequences due to the use of base sentences
similar to those found in radiological reports to signal the presence or absence of a
finding in high-level context information. This is not replicated in longer sentences
and corroborated for the BLEU-4, METEOR, and ROUGE metrics, which do not
present such a variation in relation to state-of-the-art metrics.

Meanwhile, we can see from the performance metrics of Table 28 that the
CheXReport presents a superior result, especially when evaluating anagrams with
long sentences. This performance may be related to the capabilities of networks based
on Transformer architectures to capture long-term features and produce long
sentence sizes (VASWANI et al., 2017). In terms of semantic characteristics of the
report produced by CheXReport, we captured the fluency and semantics of the report
generated in relation to the ground truth according to ROUGE’s performance. This
characteristic can be directly related to the embedding model used, which favors
understanding standard linguistic characteristics and can incorporate the visual
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characteristics extracted by the Swin Transformer encoder throughout the inference
process.

The CheXReport’s slightly lower scores in shorter anagram metrics (BLEU-1 to
BLEU-3) do not necessarily diminish its e�cacy or applicability in clinical settings. In
fact, the superior performance in BLEU-4 and ROUGE suggests that the CheXReport
generates more extensive, coherent, and contextually rich reports. This aspect is
crucial in medical report generation, where detail and accuracy are paramount. The
ability to construct longer sentences that accurately encapsulate the nuances of a
medical image can be more beneficial than mere brevity. It is also important to
mention that despite small advances in current literature, the suggestion of findings
on chest X-rays is complex and presents relative stability in related studies.
Furthermore, this complexity is also reflected in models with more significant
numbers of parameters, directly influencing the explainability of these models.

Moreover, the Transformer architecture’s prowess in capturing long-term
dependencies and producing coherent, longer sentences aligns well with the typical
requirements of medical report writing. This capability is reflected in CheXReport’s
performance in the ROUGE metric, which assesses the fluency and semantic
alignment of the generated reports with the ground truth. The e↵ective integration of
visual characteristics extracted by the Swin Transformer encoder throughout the
report generation process further enhances the model’s ability to produce
contextually rich and medically relevant reports.

6.4.2 Survival Analysis Results

Incorporating the contextual vectors of the CheXReport architecture in
MultSurv model can better extract the intrinsic visual characteristics and
relationships of the X-ray images and combine them with the textual resources. In
this sense, combining visual embeddings with clinical and laboratory data
embeddings aims to explore the complex interactions of variables describing the
patient’s current health status. In Tables 29 and 30, we present the results for the
MultSurv model in the test set.

The results presented in Table 29 indicate that the MultSurv model exhibits robust
performance in survival analysis, particularly compared to previous models (Model
A, Model B, and Model C). The MultSurv model demonstrated superior performance,
especially in the early prediction days. For t = 1, MultSurv model achieved a C-index
of 0.723±0.08 at �t = 1, compared to 0.666±0.02 for Model A, 0.693±0.02 for Model
B and 0.695 ± 0.01 of Model C. As the prediction time increases, the C-index
performance of MultSurv model remains consistently higher. This suggests that
integrating CheXReport’s visual and textual features with clinical and laboratory data
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Table 29 – Comparison of MultSurv model performance for di↵erent C-index
prediction and evaluation time points (average and ± standard deviation). The bigger,
the better.

Prediction Time �t = 1 �t = 3 �t = 5 �t = 7

t = 1 0.723± 0.08 0.735± 0.01 0.711± 0.02 0.706± 0.01
t = 3 0.742± 0.00 0.729± 0.03 0.735± 0.00 0.726± 0.00
t = 5 0.726± 0.06 0.731± 0.01 0.722± 0.03 0.714± 0.04
t = 7 0.725± 0.01 0.715± 0.02 0.702± 0.03 0.695± 0.03

Source: Elaborated by the author.

provides a more comprehensive view of a patient’s health status, enabling better
survival predictions.

Table 30 – Comparison of MultSurv model performance for di↵erent prediction and
evaluation time points for the Brier score (average and ± standard deviation). The
smaller, the better.

Prediction Time �t = 1 �t = 3 �t = 5 �t = 7

t = 1 0.071± 0.00 0.024± 0.01 0.097± 0.00 0.147± 0.00
t = 3 0.088± 0.01 0.112± 0.00 0.152± 0.00 0.180± 0.00
t = 5 0.117± 0.00 0.161± 0.01 0.182± 0.01 0.199± 0.01
t = 7 0.150± 0.00 0.168± 0.00 0.186± 0.00 0.193± 0.01

Source: Elaborated by the author.

The results in Table 30 demonstrate that the MultSurv model maintains a relatively
low Brier score throughout the di↵erent prediction time points. For t = 1, the Brier
score is 0.071 ± 0.00 at �t = 1, higher than 0.060 ± 0.00 for Model A, 0.066 ± 0.00 for
Model B and 0.065±0.00 of Model C. Although the MultSurv model presents a slightly
higher value than Model A for immediate predictions, this di↵erence is compensated
by the superiority in longer prediction times.

Therefore, compared to Models A, B, and C, the MultSurv model showed
improvements in the discrimination and calibration of survival predictions,
especially for short and medium-term prediction periods. These advances are
particularly relevant to the clinical context, where data-driven decisions can improve
patient care and optimize the allocation of healthcare resources.

6.4.3 Qualitative Analysis

In this section, we present a qualitative analysis of the MultSurv model results.
First, we evaluated the ability to predict independent risks for death and discharge for
patients in the test set (Figure 22). Patients were randomly selected from the subgroups
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of censored, death, discharge, and one patient with prediction error. Next, we assessed
the global SHAP values to verify the importance of the variables for predicting patient
survival. Finally, we evaluate which regions of the X-ray images the MultSurv model
is capturing with greater importance for making the prediction.

Figure 22 – Independent risks for discharge and death for patients in the test set over
the 50 days. In purple is the risk for discharge, and in red is the risk for death. The
star indicates when and what event happened.

Patient A Patient B

Patient C Patient D
Source: Elaborated by the author.

Patient A demonstrates the risk over time of a hospitalized patient who was
discharged at the end of hospitalization, indicating that the MultSurv model was
correct. It is also possible to observe that as the discharge event approached, the
model increased the risk associated with discharge, indicating that the
MultSurv model can possibly identify an improvement in the patient’s health
condition. It is also important to highlight a standard behavior of the model of
maintaining a higher risk of death for all patients in the first days of hospitalization,
which may be a direct reflection of the health condition of hospitalized patients, who
were mainly in severe cases.

Meanwhile, patient B demonstrates the risks over time until the patient’s right
censoring. In other words, the patient was transferred or gave up treatment at the
hospital, and it was impossible to observe what happened after this period. If we
analyze the graph (Figure 22), we can see that the risk of discharge was considerably
higher during the period in which the patient was censored, which may indicate a
possible transfer to a less complex hospital to free up places for patients with severe
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conditions.

When we analyze the risk prediction behavior for patient C, we can see that the
model does not associate the highest risk with the observed event. Initially, the model
identifies a high risk of death, which decreases over time, while the risk of discharge
increases inconsistently in relation to the observed event. We observed intersections
between these curves over the days, indicating changes in the model’s risk perception.
It is worth noting that despite the global error, the model still predicted a relative risk
of death of around 20% and with a slight upward trend.

Finally, analyzing the risks associated with patient D, we can see that there is a
fluctuation in relation to the patient’s risk of death. The fluctuations in the risk curves
suggest that patient D’s health status may have fluctuated during the observed period,
which may have influenced the model’s predictions. These fluctuations indicate the
importance of continuously monitoring the patient’s health status to adjust treatment
and ensure a more e↵ective intervention.

In Figure 23, we present the global SHAP values for the model’s tabular variables.
Positive values contribute to an increase in the patient’s risk of death, and negative
values decrease the patient’s risk. Analyzing the impact of variables on model results
reveals critical insights into the determinants of patient outcomes during the
COVID-19 pandemic. Variables such as ICU Admission and CKDEPI have positive
impacts, highlighting the importance of intensive therapy and renal function in
patient survival. Sp02 and potassium levels underline the relevance of vital signs in
determining the prognosis of patients with COVID-19. These results suggest that
continuous monitoring of these clinical parameters may be critical in making timely
and informed decisions about patient care.

On the other hand, the model indicates that sociodemographic factors such as
educational level, profession, and race have a negative impact on patient outcomes,
reflecting broader social inequalities in access to and quality of healthcare. The
negative influence of these variables suggests that disparities in socioeconomic status
and racial origin a↵ect health outcomes, potentially due to underlying systemic issues
such as access to health care, pre-existing health conditions, and social determinants
of health.

SHAP also allows you to evaluate the impact of each variable for each model
prediction. In Figure 24, we present an example of SHAP values for a specific
observation from the test set. The positive impact of respiratory and heart rates
suggests that these vital signs are associated with a worse prognosis, possibly
reflecting the severity of the patient’s clinical condition. On the other hand,
socioeconomic variables such as Race and Profession have negative impacts,
indicating that, for this patient, these factors are associated with a lower chance of
death. Diastolic pressure and scholarity also show negative impacts, suggesting that
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Figure 23 – Global SHAP of each tabular feature on the MultSurv model.
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Source: Elaborated by the author.

better socioeconomic conditions and lower diastolic pressure can positively influence
the patient’s health, reducing the risk of death.

Figure 24 – Local SHAP for a specific observation.

Health Insurance

Source: Elaborated by the author.

When we analyze the attention of the CheXReport architecture on the specific
patient’s X-ray image (Figure 25), we can see that the model gives greater attention to
the upper areas of the lungs, as indicated by the darker regions in the attention scale.
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This distribution suggests that the model identifies these areas as critical for assessing
the patient’s health status. Focusing attention on these regions may be associated with
the detection of common anomalies in cases of COVID-19, such as lung opacities or
infiltrations, which are often observed in the upper part of the lungs.

Figure 25 – Attention over the image for the last layer of the CheXReport.

Source: Elaborated by the author.

6.5 Discussion

In this section, we discuss and compare the MultSurv model with the
state-of-the-art methods for survival analysis. A detailed discussion of the
state-of-the-art in multimodal survival analysis for hospitalized patients is presented
in Chapter 3. One of the main challenges of current survival analysis methods is
capturing information from multimodal data. In this sense, for methods based purely
on data, we only use sociodemographic, clinical, and laboratory data for training. All
methods were trained with the same data set. In Tables 31 e 32, we compare the
results obtained by Models A, B, C, and MultSurv in terms of C-index and Brier Score.

Cox-based methods such as CoxTime, CoxCC, and DeepSurv are widely used in
survival analysis due to their simplicity and interpretability. However, we observed
that the Cox methods perform worse than the MultSurv model in terms of C-index
(Table 32). For example, at forecast time t = 1, CoxCC achieves a C-index of
0.463 ± 0.07 for �t = 1, while DeepSurv and CoxTime have 0.361 ± 0.01 and
0.377 ± 0.08, respectively. These methods are limited by the assumption of
proportionality of risks, which may not hold in clinical contexts, where risk factors
can interact in complex ways and change over time. In terms of Brier score, for t = 1,
CoxCC, DeepSurv, and CoxTime present Brier scores of 0.010±0.00, 0.010±0.00, and
0.10± 0.00, respectively, for �t = 1, while MultSurv model has a slightly higher value
of 0.071 ± 0.00. The advantage of Cox methods in immediate predictions can be
attributed to their simplicity and the fact that they are designed for scenarios with
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Table 31 – Comparison of MultSurv model in relation to various methods for the C-
index (average and ± standard deviation). The bigger, the better.

Algorithms �t = 1 �t = 3 �t = 5 �t = 7

Prediction Time t = 1
CoxTime† 0.377± 0.08 0.312± 0.01 0.380± 0.01 0.406± 0.04
CoxCC† 0.463± 0.07 0.340± 0.01 0.400± 0.01 0.436± 0.02
DeepSurv† 0.361± 0.01 0.326± 0.07 0.378± 0.09 0.410± 0.02
PCHazard† 0.555± 0.08 0.552± 0.01 0.506± 0.03 0.524± 0.03
DeepHit† 0.533± 0.01 0.462± 0.01 0.480± 0.06 0.456± 0.07
N-MTLR† 0.453± 0.01 0.452± 0.06 0.465± 0.03 0.453± 0.05
Model A† 0.666± 0.02 0.622± 0.02 0.629± 0.01 0.648± 0.01
Model B† 0.693± 0.02 0.708± 0.02 0.702± 0.02 0.701± 0.01
Model C 0.695± 0.01 0.711± 0.02 0.701± 0.01 0.703± 0.01
MultSurv model 0.723± 0.08 0.735± 0.01 0.711± 0.02 0.706± 0.01

Prediction Time t = 3
CoxTime† 0.282± 0.07 0.388± 0.09 0.418± 0.07 0.420± 0.03
CoxCC† 0.362± 0.01 0.435± 0.01 0.461± 0.02 0.463± 0.05
DeepSurv† 0.340± 0.01 0.404± 0.01 0.430± 0.02 0.439± 0.04
PCHazard† 0.541± 0.04 0.492± 0.03 0.503± 0.03 0.476± 0.04
DeepHit† 0.472± 0.01 0.534± 0.06 0.510± 0.06 0.495± 0.06
N-MTLR† 0.410± 0.07 0.452± 0.05 0.447± 0.05 0.460± 0.04
Model A† 0.584± 0.04 0.635± 0.03 0.639± 0.02 0.633± 0.02
Model B† 0.740± 0.01 0.720± 0.02 0.728± 0.02 0.714± 0.02
Model C 0.742± 0.01 0.718± 0.01 0.730± 0.01 0.715± 0.01
MultSurv model 0.742± 0.00 0.729± 0.03 0.735± 0.00 0.726± 0.00

Prediction Time t = 5
CoxTime 0.387± 0.09 0.420± 0.01 0.423± 0.02 0.396± 0.02
CoxCC† 0.359± 0.01 0.438± 0.04 0.451± 0.06 0.441± 0.04
DeepSurv† 0.362± 0.08 0.425± 0.05 0.437± 0.03 0.438± 0.03
PCHazard† 0.454± 0.04 0.487± 0.05 0.480± 0.04 0.486± 0.04
DeepHit† 0.547± 0.04 0.526± 0.03 0.512± 0.06 0.523± 0.03
N-MTLR† 0.457± 0.01 0.451± 0.06 0.467± 0.04 0.475± 0.04
Model A† 0.605± 0.02 0.617± 0.03 0.614± 0.02 0.611± 0.02
Model B† 0.722± 0.02 0.728± 0.01 0.720± 0.01 0.706± 0.02
Model C 0.725± 0.01 0.729± 0.01 0.721± 0.01 0.709± 0.01
MultSurv model 0.726± 0.06 0.731± 0.01 0.722± 0.03 0.714± 0.04

Prediction Time t = 7
CoxTime 0.371± 0.08 0.404± 0.05 0.382± 0.03 0.358± 0.02
CoxCC† 0.420± 0.06 0.443± 0.07 0.437± 0.04 0.430± 0.03
DeepSurv† 0.396± 0.06 0.432± 0.06 0.440± 0.04 0.422± 0.03
PCHazard† 0.494± 0.09 0.478± 0.09 0.496± 0.08 0.479± 0.08
DeepHit† 0.563± 0.01 0.510± 0.07 0.520± 0.04 0.533± 0.07
N-MTLR† 0.420± 0.01 0.467± 0.05 0.476± 0.04 0.452± 0.03
Model A† 0.605± 0.02 0.617± 0.03 0.614± 0.02 0.611± 0.02
Model B† 0.694± 0.03 0.696± 0.02 0.695± 0.01 0.688± 0.01
Model C 0.692± 0.02 0.698± 0.01 0.696± 0.01 0.690± 0.01
MultSurv model 0.725± 0.01 0.715± 0.02 0.702± 0.03 0.695± 0.03

† Trained only with tabular data.

Source: Elaborated by the author.
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less temporal variability. However, its e↵ectiveness decreases in long-term
predictions, where data complexity and temporal variability play a more significant
role.

Adopting mechanisms based on neural networks can reduce the dependence on
the assumption of risk proportionality in Cox models. For example, the N-MTLR
presents a competitive C-index at di↵erent time points. For t = 1, the N-MTLR
C-index is 0.453 ± 0.01 for �t = 1, which already demonstrates an improvement over
traditional methods such as CoxCC and CoxTime. Meanwhile, PCHazard
demonstrated intermediate performance with better results for short-term
predictions for the C-index and Brier score. However, PCHazard’s performance
deteriorated faster than MultSurv model in long-term predictions.

A considerable improvement in performance metrics is obtained with the DeepHit
model, which can model time-dependent covariates and deal with competing risks,
which traditional models struggle with. However, DeepHit could not incorporate the
patient’s health history into the model (LEE; YOON; SCHAAR, 2019). In this sense,
it is possible to observe that Model A achieves substantially better performance by
incorporating contextual information from health history through an RNN.

However, based on the results obtained for Model B, it is possible that
incorporating a temporal context of the patient’s health status may not capture all the
relationships in the data. In this sense, Model B incorporates embeddings for tabular
data, capturing non-linear relationships and improving the discrimination and
calibration of predictions compared to Model A. For example, if we have a categorical
variable "disease type" with values such as "diabetes", "hypertension", and "asthma",
each of these categories would be represented by a vector of real values that can
capture the similarity between "diabetes" and "hypertension" more e↵ectively than a
binary representation.

At first, Model C incorporation of visual characteristics did not present a
considerable performance improvement. The stabilization in performance indices
may be related to the complexity of the radiological findings present in the images,
which may not be captured with simple classification models. In this sense, adopting
architectures, such as CheXReport, that can correlate reports with visual features can
represent a more detailed description of radiological findings.

Although MultSurv model’s main performance gain is related to using
embeddings for tabular data, incorporating the CheXReport architecture allows for a
more comprehensive analysis of patient health, capturing nuances that unimodal
approaches might miss. The performance of MultSurv model on the C-index metric
highlights its superiority over existing methods, especially in the context of
short-term and medium-term predictions. As shown in Table 31, MultSurv model
achieves a C-index of 0.723± 0.08 for t = 1 and �t = 1, which is higher than the scores
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Table 32 – Comparison of MultSurv model in relation to various methods for the Brier
(mean and ± standard deviation). The smaller, the better.

Algorithms �t = 1 �t = 3 �t = 5 �t = 7

Prediction Time t = 1
CoxTime† 0.010± 0.00 0.023± 0.00 0.037± 0.00 0.056± 0.00
CoxCC† 0.010± 0.00 0.023± 0.00 0.038± 0.00 0.057± 0.00
DeepSurv† 0.010± 0.00 0.023± 0.00 0.037± 0.00 0.056± 0.00
PCHazard† 0.028± 0.07 0.054± 0.05 0.066± 0.04 0.071± 0.03
DeepHit† 0.012± 0.00 0.026± 0.00 0.041± 0.00 0.061± 0.00
N-MTLR† 0.011± 0.00 0.026± 0.00 0.043± 0.00 0.066± 0.00
Model A† 0.060± 0.00 0.092± 0.00 0.130± 0.00 0.163± 0.00
Model B† 0.066± 0.00 0.074± 0.00 0.102± 0.00 0.147± 0.00
Model C 0.065± 0.00 0.073± 0.00 0.103± 0.00 0.146± 0.00
MultSurv model 0.071± 0.00 0.024± 0.01 0.097± 0.00 0.147± 0.00

Prediction Time t = 3
CoxTime† 0.036± 0.00 0.051± 0.00 0.072± 0.00 0.098± 0.00
CoxCC† 0.037± 0.00 0.052± 0.00 0.073± 0.00 0.073± 0.00
DeepSurv† 0.036± 0.00 0.051± 0.00 0.072± 0.00 0.097± 0.00
PCHazard† 0.080± 0.02 0.082± 0.01 0.081± 0.01 0.107± 0.00
DeepHit† 0.040± 0.00 0.056± 0.00 0.077± 0.00 0.104± 0.01
N-MTLR† 0.042± 0.00 0.060± 0.00 0.085± 0.00 0.117± 0.01
Model A† 0.097± 0.00 0.136± 0.00 0.168± 0.00 0.186± 0.00
Model B† 0.094± 0.00 0.141± 0.00 0.172± 0.00 0.191± 0.00
Model C 0.094± 0.00 0.142± 0.00 0.171± 0.00 0.190± 0.00
MultSurv model 0.088± 0.01 0.112± 0.00 0.152± 0.00 0.180± 0.00

Prediction Time t = 5
CoxTime† 0.068± 0.01 0.092± 0.00 0.119± 0.00 0.139± 0.01
CoxCC† 0.069± 0.01 0.094± 0.00 0.120± 0.00 0.140± 0.00
DeepSurv† 0.068± 0.01 0.092± 0.00 0.118± 0.00 0.137± 0.00
PCHazard† 0.087± 0.01 0.099± 0.01 0.136± 0.01 0.151± 0.01
DeepHit† 0.073± 0.01 0.098± 0.01 0.126± 0.01 0.149± 0.01
N-MTLR† 0.080± 0.00 0.109± 0.01 0.144± 0.01 0.174± 0.01
Model A† 0.143± 0.00 0.174± 0.00 0.192± 0.00 0.195± 0.00
Model B† 0.134± 0.00 0.194± 0.00 0.190± 0.00 0.203± 0.00
Model C 0.133± 0.00 0.193± 0.00 0.189± 0.00 0.202± 0.00
MultSurv model 0.117± 0.00 0.161± 0.01 0.182± 0.01 0.199± 0.01

Prediction Time t = 7
CoxTime† 0.117± 0.01 0.146± 0.01 0.163± 0.01 0.177± 0.01
CoxCC† 0.119± 0.01 0.147± 0.01 0.164± 0.01 0.178± 0.00
DeepSurv† 0.117± 0.01 0.144± 0.00 0.161± 0.00 0.175± 0.00
PCHazard† 0.133± 0.01 0.161± 0.01 0.180± 0.02 0.203± 0.01
DeepHit† 0.124± 0.01 0.154± 0.01 0.175± 0.01 0.191± 0.01
N-MTLR† 0.140± 0.01 0.178± 0.02 0.206± 0.02 0.231± 0.02
Model A† 0.185± 0.00 0.202± 0.00 0.202± 0.00 0.212± 0.00
Model B† 0.165± 0.00 0.200± 0.00 0.208± 0.00 0.211± 0.00
Model C 0.164± 0.00 0.199± 0.00 0.206± 0.00 0.209± 0.00
MultSurv model 0.150± 0.00 0.168± 0.00 0.186± 0.00 0.193± 0.01

† Trained only with tabular data.

Source: Elaborated by the author.
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of other models trained only with tabular data, such as DeepHit (0.533 ± 0.01) and
PMF (0.490 ± 0.01). Even state-of-the-art models like DynamicDeepHit (Model A)
achieve lower C-index values (0.666± 0.02).

Finally, the results demonstrate that embeddings and incorporating multimodal
data are strategies that can improve the performance of survival analysis models.
Although still relevant, traditional techniques show limitations in capturing the
complexities inherent in digital health data, especially when compared to models that
use DL. By capturing a more comprehensive view of a patient’s health status, the
MultSurv model allows healthcare professionals to adjust their treatment strategies
more accurately and e↵ectively, potentially improving patient outcomes and
optimizing healthcare resources.

6.6 Final Remarks

In this chapter, we present and discuss the results for MultSurv model. We started
with the evaluation of the dataset collected in the MDH Consortium. We then
performed an ablation study to evaluate the impact of di↵erent modules on the
survival analysis of patients hospitalized for COVID-19. Our data were limited to
patients admitted to the HCPA. Finally, we compared the results obtained with
state-of-the-art methods for survival analysis.

The main scientific contribution of this dissertation was the proposal of a survival
analysis model with the capacity to process multimodal and longitudinal data from
patients hospitalized with COVID-19. The model can serve as a second opinion in the
context of scarcity of hospital resources, prioritization of care, or improvements in
patient treatment for healthcare professionals. Furthermore, this model can be
adapted and serve as a basis for survival analysis in other contexts involving
multimodal and longitudinal data.

Finally, the results demonstrate that the MultSurv model surpasses current
methods in the literature in survival analysis in terms of discriminative performance.
Furthermore, we support decision-making with local and global interpretable
analyses of the MultSurv model. Although the results are promising, there are several
directions for future research. Generalization of the model to di↵erent populations
and geographic contexts should be explored, as well as the incorporation of new types
of multimodal data, such as genomic data. Furthermore, integration with real-time
healthcare systems and assessment of the clinical impact of the MultSurv model in
daily practice are important steps towards validating and improving the model’s
utility.
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7 CONCLUSION

This dissertation was guided by the research question: "How to develop a deep
learning architecture that leverages dynamic multimodal data to enhance survival
analysis predictions while ensuring the explainability of the model’s outputs?". In
this sense, in Chapter 3, we investigate the di↵erent aspects involving survival
analysis for multimodal data from hospitalized patients. The RLR aimed to evaluate
key methods and identify current research gaps. Current literature still has gaps in
incorporating multimodal data and treating competing risks e↵ectively.

Therefore, to answer the research question and the gaps in the literature, in
Chapter 4, we present a proposal for the MultSurv model, a multimodal model for
survival analysis with the capability to deal with competing risks. The model uses an
architecture that can extract temporal information and concatenate representations of
di↵erent modalities in multitask networks. Furthermore, we adopted a strategy for
generating embeddings for categorical and continuous data in vector representations,
allowing the model to capture non-linear relationships between variables. Finally,
MultSurv model extracts the visual characteristics of X-ray images using the
CheXReport architecture, which seeks to improve the representation of radiological
findings for predicting patient risks.

When analyzing the results obtained by MultSurv model, we can highlight that
using tabular and visual embeddings, combined with the CheXReport architecture,
allowed the capture of more complex relationships between clinical, laboratory, and
imaging data. This integrated approach resulted in better survival predictions,
especially in short and medium-term periods. The results demonstrated that the
MultSurv model outperformed traditional models (Model A) and those that use only
tabular data (Model B) or multimodal data without the CheXReport architecture
(Model C). The superior C-index and Brier score suggests the e↵ectiveness of
MultSurv model in discriminating events and maintaining a stable calibration over
time.

Despite the complexity of the MultSurv model architecture, it is still possible to
identify the influences of variables on survival predictions. The global analysis of
SHAP values and regions of attention in X-ray images can provide transparency in
model decisions and improve confidence in the practical application of predictions.
Furthermore, the possibility of visualizing the independent risks of death and
discharge over time allows us to understand the evolution of patients better. This
possibility enables supporting clinical decisions in hospital environments to manage
critical patients.

We envision that using a survival analysis model, such as the MultSurv model for
pandemics, can assist in e�ciently allocating resources essential during periods of
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high demand. With the ability to predict clinical outcomes based on patient-specific
data, such as clinical, laboratory, and imaging information, the model assists in risk
stratification and prioritization of treatments. This prediction enables more accurate
clinical decisions and can improve patient triage and optimize the use of ICU beds
and ventilators, reducing the burden on healthcare systems and potentially increasing
survival rates.

In conclusion, this dissertation presented the MultSurv model for survival
analysis in COVID-19 patients, combining multimodal data, explainability
mechanisms, and a competing risks architecture. MultSurv model was designed to be
integrated into hospital routines, helping to triage and monitor patients. Its practical
application goes beyond COVID-19, o↵ering a scalable and adaptable solution for
various clinical scenarios. The model’s ability to predict independent risks of
discharge and death and its detailed interpretability provide actionable insights to
improve patient management and outcomes. The contributions from this dissertation
and the multidisciplinary collaboration throughout the doctorate resulted in several
publications detailed in Section 7.1. Finally, in Section 7.2, the limitations of the
study and directions for future work are presented.

7.1 Publications

In this section, we present the publications made throughout the research of this
dissertation. The following publications are directly related to the theme of this work:

• ZEISER, F. A. ; COSTA, C. A. ; RAMOS, G. O. ; MAIER, A. ; RIGHI, R. R. .
CheXReport: A transformer-based architecture to generate chest X-ray reports
suggestions. EXPERT SYSTEMS WITH APPLICATIONS, 2024.

• ZEISER, F. A. ; SANTOS, I. ; BOHN, H. ; COSTA, C. A. ; RAMOS, G. O. ; MAIER,
A. ; ANDRADE, J. R. M. ; BACELAR, A. . Pleural E↵usion Classification on
Chest X-ray Images with Contrastive Learning. In: 19th International
Conference on Web Information Systems and Technologies, 2023, Rome, Italy.
19th International Conference on Web Information Systems and Technologies,
2023.

• ZEISER, F. A.; DE MATOS, H. V. ; SCHMITT, A. B. ; COSTA, C. A. ; RAMOS, G.
O. . Integration of Epidemiologic, Socioeconomic, and Sociodemographic
Indicators to Predict Early COVID-19 In-Hospital Outcomes. In: 20th Encontro
Nacional de Inteligência Artificial e Computacional (ENIAC 2023), 2023, Belo
Horizonte. 20th Encontro Nacional de Inteligência Artificial e Computacional
(ENIAC 2023), 2023.
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• ZEISER, F. A. ; COSTA, C. A. ; RAMOS, GABRIEL ; BOHN, HENRIQUE ;
SANTOS, ISMAEL ; DONIDA, B. ; BRUN, A.P.O. ; ZARICHTA, N . Generating
X-ray Reports Using Global Attention. In: XIX Encontro Nacional de
Inteligência. Artificial e Computacional, 2022, Campinas. XIX Encontro
Nacional de Inteligência. Artificial e Computacional, 2022.

• ZEISER, F. A.; DONIDA, B.; DA COSTA, C. A.; RAMOS, G. O.; SCHERER, J. N.;
BARCELLOS, N. T.; ALEGRETTI, A. P.; IKEDA, M. L. R.; MULLER, A. P. W. C.;
BOHN, H.; SANTOS, I.; BONI, L.; ANTUNES, R. S.; RIGHI, R. R.; RIGO, S. J.
First and second COVID-19 waves in Brazil: A cross-sectional study of patients’
characteristics related to hospitalization and in-hospital mortality. The Lancet
Regional Health - Americas, v. 6, p. 100107, 2022.

• ZEISER, F. A.; COSTA, C. A.; RAMOS, G. O.; BOHN, H.; SANTOS, I.; RIGHI,
R. Evaluation of Convolutional Neural Networks for COVID-19 Classification
on Chest X-Rays. In: 10th Brazilian Conference on Intelligent System (BRACIS
2021), São Paulo, 2021.

• ZEISER, F. A.; COSTA, C. A. ; RAMOS, G. O. Convolutional Neural Networks
Evaluation for COVID-19 Classification on Chest Radiographs. In: LatinX in AI
(LXAI) Research at ICML 2021, 2021.

In addition, several publications were developed in the context of the project and
in collaboration with other researchers. The following list presents the other
publications:

• Published articles:

– GUBERT, L. C. ; ZEISER, F. A. ; COSTA, C. A. ; KUNST, R. . Classification
and Prediction of Hypoglycemia in Patients with Type 2 Diabetes Mellitus
Using Data from the EHR and Patient Context. In: 9th International
Conference on Internet of Things, Big Data and Security, 2024, Angers,
France. 9th International Conference on Internet of Things, Big Data and
Security, 2024.

– BERTONI, A. P. S. ; VALANDRO, C. ; BRASIL, R. A. ; ZEISER, F. A. ;
WINK, M. R. ; FURLANETTO, T. W. ; DA COSTA, C. A. . NT5E DNA
methylation in papillary thyroid cancer: Novel opportunities for precision
oncology. MOLECULAR AND CELLULAR ENDOCRINOLOGY, v. 570, p.
111915, 2023.

– RODRIGUES, V. F. ; RIGHI, R. ; DA COSTA, C. A. ; ZEISER, F. A. ;
ESKOFIER, B. ; MAIER, A. ; KIM, D. . Digital health in smart cities:
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Rethinking the remote health monitoring architecture on combining edge,
fog, and cloud. HEALTH AND TECHNOLOGY, v. 1, p. 1, 2023.

– LIMA, G. ; ZEISER, F. A. ; DA SILVEIRA, A. ; RIGO, S. ; RAMOS, G. O. . An
encoder-decoder deep neural network for binary segmentation of seismic
facies. COMPUTERS & GEOSCIENCES, v. 1, p. 105507, 2023.

– KUHN, G. ; ZEISER, F. A. ; ROEHE, ADRIANA ; COSTA, C. A. ; RAMOS,
G. O. . Aprendizado profundo para assistência histopatológica: um estudo
de classificação de micrometástases em câncer de mama. In: Simpósio
Brasileiro de Computação Aplicada à Saúde, 2023, São Paulo. XXIII
Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023), 2023.

– GOLDSCHMIDT, G. ; ZEISER, F. A. ; RIGHI, R. ; COSTA, C. A. .
ARTERIAL: A Natural Language Processing Model for Prevention of
Information Leakage from Electronic Health Records. In: XIII Brazilian
Symposium on Computing Systems Engineering, 2023, Porto Alegre. XIII
Brazilian Symposium on Computing Systems Engineering, 2023.

– ZONTA, T. ; COSTA, C. A. ; ZEISER, F. A. ; RAMOS, G. O. ; RIGHI, R. R.
; KUNST, R. . A Predictive Maintenance model for Optimizing Production
Schedule using Deep Neural Networks. JOURNAL OF MANUFACTURING
SYSTEMS, v. 626, p. 450-462, 2022.

– FREITAS, S. A. ; ZEISER, F. A. ; RAMOS, G. O. ; COSTA, C. A. .
DeepCADD: a Deep Learning Architecture for Automatic Detection of
Coronary Artery Disease. In: International Joint Conference on Neural
Networks (IJCNN), 2022, Padua. 2022 International Joint Conference on
Neural Networks, 2022.

– ZEISER, F. A.; COSTA, C. A.; RAMOS, G. O.; BOHN, H.; SANTOS, I.;
ROEHE, A. V. DeepBatch: A hybrid deep learning model for interpretable
diagnosis of breast cancer in whole-slide images. Expert Systems With
Applications, v. 185, p. 115586, 2021.

– ZEISER, F. A.; COSTA, C. A.; ROEHE, A. V.; RIGHI, R.; MARQUES, N. M.
C. Breast cancer intelligent analysis of histopathological data: A systematic
review. Applied Soft Computing, v. 113, p. 107886, 2021.

– LIMA, G. ; RAMOS, G. O. ; RIGO, S. J. ; ZEISER, F. A.; SILVEIRA, A. . Binary
Segmentation of Seismic Facies Using Encoder-Decoder Neural Networks.
In: LatinX in AI Workshop @ NeurIPS 2020, 2020, Online. Proc. of LatinX
in AI Workshop @ NeurIPS 2020, 2020.

• Articles under review::
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– RODRIGUES NETO, J. ; KUHN, G. ; ZEISER, F. A. ; ROEHE, A. V. ; COSTA,
C. A. ; RAMOS, G. O. Deep learning for histopathological assistance: a
classification-segmentation model to detect micrometastases in breast
cancer. 2024.

– ZONTA, T.; COSTA, C. A.; ZEISER, F. A.; RAMOS, G. O.; RIGHI, R. R.;
KUNST, R. A Degradation Index Model for Maintenance Prediction Run-to-
failure in Production Systems. Computers & Industrial Engineering, 2024.

• Published book chapters:

– COSTA, C. A. ; ZEISER, F. A. ; RIGHI, R. R. ; ANTUNES, R. S. ;
ALEGRETTI, A. P. ; BERTONI, A. P. ; RAMOS, G. O. ; MELLO, B. H. ;
VANIN, F. ; BERTOLETTI, O. A. ; RIGO, S. J. . Internet of Things and
Machine Learning for Smart Healthcare. 2024.

– BERTONI, A. P. S. ; RODRIGUES, V. F. ; ZEISER, F. A. ; MELLO, B. H. ;
COSTA, C. A. ; DONIDA, B. ; RIGO, S. J. ; RIGHI, R. R. . Internet das Coisas
de Saúde: aplicando IoT, interoperabilidade e aprendizado de máquina com
foco no paciente. Minicursos do XXII Simpósio Brasileiro de Computação
Aplicada à Saúde. 1ed.: , 2022, v. , p. 1-.

• Published abstracts:

– BOHN, HENRIQUE ; ZEISER, F. A. ; COSTA, C. A. . Classificação de
Derrame Pleural em Radiografias do Tórax com Contrastive. In: XXX
Mostra Unisinos de Iniciação Científica e Tecnológica, 2023, São Leopoldo.
XXX Mostra Unisinos de Iniciação Científica e Tecnológica, 2023.

– SANTOS, I. ; ZEISER, F. A. ; COSTA, C. A. ; RAMOS, G. O. . Atenção
Global para Sugestão de Achados em Radiografias de Tórax. In: XXX
Mostra Unisinos de Iniciação Científica e Tecnológica, 2023, São Leopoldo.
XXX Mostra Unisinos de Iniciação Científica e Tecnológica, 2023.

– SCHMITT, A. B. ; DE MATOS, H. V. ; ZEISER, F. A. ; COSTA, C. A. .
MODELO PARA PREDIÇÃO DE ÍNDICE DE MORTALIDADE
HOSPITALAR DE COVID-19. In: XXX Mostra Unisinos de Iniciação
Científica e Tecnológica, 2023, São Leopoldo. XXX Mostra Unisinos de
Iniciação Científica e Tecnológica, 2023.

– DE MATOS, H. V. ; SCHMITT, A. B. ; ZEISER, F. A. ; COSTA, C. A. .
MODELO DE MACHINE LEARNING PARA PREVISÃO DE
SOBREVIVÊNCIA DE PACIENTES. In: XXX Mostra Unisinos de Iniciação
Científica e Tecnológica, 2023, São Leopoldo. XXX Mostra Unisinos de
Iniciação Científica e Tecnológica, 2023.
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– HENTZ, R. ; ZEISER, F. A. . DETECÇÃO DE MINERAÇÃO ILEGAL EM
FLORESTAS COM RESNET50: UMA ABORDAGEM COM REDE NEURAL
CONVOLUCIONAL.. In: XVI Seminário De Iniciação Científica E
Seminário Integrado De Ensino, Pesquisa E Extensão, 2023, Chapecó. XVI
Seminário De Iniciação Científica E Seminário Integrado De Ensino,
Pesquisa E Extensão, 2023.

– BOHN, H. C. ; ZEISER, F. A. ; COSTA, C. A. . Primeira e Segunda Onda da
COVID-19 no Brasil: Um Estudo Restrospectivo de Pacientes
Hospitalizados. In: XXIX Mostra Unisinos de Iniciação Científica e
Tecnológica, 2022, São Leopoldo. XXIX Mostra Unisinos de Iniciação
Científica e Tecnológica, 2022.

– BONI, L. ; SANTOS, ISMAEL ; ZEISER, F. A. . Estratégias dos serviços de
atenção primária no Brasil para manejo e controle da infecção COVID-19.
In: VII Congresso Sul-Brasileiro de Medicina de Família e Comunidade,
2022, Porto Alegre. VII Congresso Sul-Brasileiro de Medicina de Família e
Comunidade, 2022.

– BOHN, H. C. ; ZEISER, F. A. ; COSTA, C. A. ; ROEHE, A. V. . Sistema
de Apoio à Decisão baseado em Aprendizado Profundo para Interpretação
e Diagnóstico de Câncer de Mama em Imagens Histológicas. In: XXVVIII
Mostra Unisinos de Iniciação Científica e Tecnológica, 2021, São Leopoldo.
Anais da XXVVIII Mostra Unisinos de Iniciação Científica e Tecnológica.
São Leopoldo: Casa Leiria, 2021. p. 332-333.

7.2 Limitations and Future Work

The MultSurv model has some limitations, as described below. First, the data used
in this study were derived from a single healthcare institution, the HCPA, limiting the
generalizability of the findings. The homogeneity of the dataset, particularly
concerning the demographic and regional characteristics of the patient population,
might restrict the applicability of the MultSurv model to other settings with di↵erent
patient demographics and healthcare practices. Second, the study relies on the
quality and completeness of EHRs and imaging data. Missing or inconsistent data
could adversely impact the model’s performance. Although techniques to handle
missing data were employed, the inherent uncertainties associated with such data
could lead to biases in the model’s predictions.

Third, the MultSurv model’s reliance on chest X-ray images and associated clinical
data may not fully capture the complex and multifactorial nature of COVID-19 and
its progression. While integrating multimodal data enhances the model’s predictive
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capabilities, the absence of additional modalities, such as computed tomography
scans not included in the dataset and comprehensive patient histories, could limit the
model’s e↵ectiveness in real-world clinical scenarios. Moreover, the interpretability of
DL models remains a challenge. Although the MultSurv model incorporates
explainability mechanisms, the complexity of the underlying algorithms can make it
di�cult for clinicians to fully trust and understand the model’s predictions. This
black-box nature of DL models can be a barrier to their adoption in clinical practice.

The evaluation of the MultSurv model was conducted retrospectively. Prospective
validation in diverse clinical settings is essential to confirm the model’s utility and
reliability in real-time decision-making processes. Additionally, the impact of the
MultSurv model on clinical outcomes, resource allocation, and patient management
was not assessed and warrants future investigation. Lastly, while the model
demonstrated robustness in short to medium-term predictions, its performance for
long-term predictions was not thoroughly evaluated. The dynamic nature of patient
health status and the evolution of COVID-19 treatments over time necessitate
continuous model updates and validations to maintain accuracy and relevance.

Future work should focus on addressing these limitations. To improve the
generalizability of the MultSurv model, future research should incorporate data from
multiple healthcare institutions across diverse geographic regions. Expanding the
dataset to include other types of medical imaging, such as computed tomography
scans, patient histories, and genomic data, can provide a more comprehensive view of
a patient’s health status. Also, conducting prospective validation studies in diverse
clinical environments is crucial for assessing the real-world performance of the
MultSurv model. Such studies will help determine the model’s impact on clinical
decision-making, patient outcomes, and healthcare resource management.

Enhancing the transparency of the MultSurv model will help build trust among
clinicians, facilitating its integration into routine clinical practice. Given the evolving
nature of pandemics, incorporating mechanisms for adaptive and continual learning
into the MultSurv model is important. This will enable the model to update itself
with new data and emerging trends, helping to maintain its accuracy and relevance
over time. Techniques such as transfer learning and online learning could be
employed to achieve this goal. Future work should also address the ethical and
privacy concerns of using AI in healthcare. Ensuring the protection of patient data
and addressing potential biases in the model is critical for its responsible
deployment. Developing guidelines and frameworks for the ethical use of AI in
clinical settings will support the broader acceptance of such technologies.
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