Resumen:
O reconhecimento das línguas de sinais visa permitir uma maior inserção social e digital das pessoas surdas através da interpretação da sua língua pelo computador. Esta trabalho apresenta um modelo de reconhecimento de dois dos parâmetros globais das línguas de sinais, as configurações de mão e seus movimentos. Através da utilização de uma tecnologia de captura de infravermelho, a estrutura da mão foi reconstruída em um espaço tridimensional virtual e a Rede Neural Perceptron Multicamadas foi usada para fazer a classificação das configurações de mão e de seus movimentos. Além do método de reconhecimento de sinais, esta trabalho visa disponibilizar um conjunto de dados representativos das condições do cotidiano, constituído por uma base de dados de configurações de mão e de captura de movimento validadas por profissionais fluentes em línguas de sinais. Foi usada como estudo de caso a Língua Brasileira de Sinais, a Libras, e obteve-se como resultados uma precisão de 99.8% e 86.7% de acertos das redes neurais que classificavam as configurações de mão e seus movimentos, respectivamente.