Abstract:
O uso de recursos tecnológicos para auxiliar nas tarefas de ensino e aprendizagem é uma realidade. A disseminação de ambientes virtuais de aprendizado, como meio de promover a realização de cursos on-line, demonstra franca expansão. Além de tarefas que propiciam a ampliação dos meios de ensino, tais sistemas permitem o registro completo de todas as interações dos alunos no decorrer da realização de disciplinas. Essa gama de informação produzida pode ser utilizada para predição de estudantes em situação de risco enquanto a disciplina ocorre, o que para instituições de ensino pode representar redução nos índices de reprovação e evasão. Entretanto o número elevado de variáveis envolvidas, ainda mais quando várias disciplinas são consideradas, dificulta a construção de modelos computacionais eficientes. Desta forma, este trabalho visa investigar a construção de modelos generalistas – treinados com dados de diversas disciplinas disponíveis – contrapondo a construção de modelos
individualizados – treinados individualmente com dados de cada disciplina. Para isto um amplo conjunto de dados educacionais foi extraído, obtido de uma instituição de ensino superior, composto de diferentes cursos, disciplinas e períodos letivos, não sendo utilizadas variáveis que invadissem a privacidade dos estudantes. Uma vez definidas as características e transformações dos dados que contribuíam à identificação de insucesso acadêmico no decorrer da disciplina então foram aplicados algoritmos clássicos de Mineração de Dados seguindo ambas as abordagens, generalista e individualizada, e a cada unidade de conteúdo das disciplinas. Os
resultados obtidos demonstram vantagens e desvantagens de ambas as abordagens e que dadas as circunstâncias os modelos individualizados podem ser melhores, obtendo taxas de acerto maiores, e que em outras circunstâncias modelos generalistas apresentam um custo menor para a obtenção e manutenção dos modelos preditivos, mesmo com uma queda nos índices de acerto.