Abstract:
De acordo com a Organização Mundial de Saúde, a tuberculose (juntamente com a AIDS) é a doença infecciosa que mais causa mortes no mundo. Estima-se que em 2014 cerca de 1,5 milhão de pessoas infectadas com o Mycobacterium Tuberculosis morreram, a maior parte delas nos países em desenvolvimento. Muitas destas mortes poderiam ter sido evitadas caso o diagnóstico ocorresse nas fases iniciais da doença, mas infelizmente as técnicas mais avançadas de diagnóstico ainda têm custo proibitivo para adoção em massa nos países em desenvolvimento. Uma das técnicas mais populares de diagnóstico da tuberculose ainda é através da radiografia torácica frontal, entretanto este método tem seu impacto reduzido devido à necessidade de radiologistas treinados analisarem cada radiografia individualmente. Por outro lado, já existem pesquisas buscando automatizar o diagnóstico através da aplicação de técnicas computacionais às imagens radiográficas pulmonares, eliminando assim a necessidade da análise individual de cada radiografia e diminuindo grandemente o custo. Além disso, aprimoramentos recentes nas Redes Neurais Convolucionais, relacionados também à área de Deep Learning, obtiveram grande sucesso para classificação de imagens nos mais diversos domínios, porém sua aplicação no diagnóstico da tuberculose ainda é limitada. Assim o foco deste trabalho é produzir uma
investigação que promova avanços nas pesquisas, trazendo três abordagens de aplicação de Redes Neurais Convolucionais com objetivo de detectar a doença. As três propostas apresentadas neste trabalho são implementadas e comparadas com a literatura corrente. Os resultados obtidos até o momento mostraram-se sempre competitivos com trabalhos já publicados na área, obtendo resultados superiores na maior parte dos casos, demonstrando assim o grande potencial das Redes Convolucionais como extratoras de características de imagens médicas.