Resumen:
Neste estudo, foi desenvolvida uma ferramenta computacional baseada em metaheurísticas para a otimização do sequenciamento de produção em Flow Shop permutacionais aplicados à montagem de placas eletrônicas que operam em ambientes High-Mix, Low-Volume. O ambiente High-Mix, Low-Volume exige a realização de um grande número de setups para atender à flexibilidade exigida. Esse elevado número de sucessivos setups para a produção de pequenos lotes impacta negativamente nos custos operacionais da empresa. Uma das formas de se obter vantagem ao lidar com um grande mix de produção é explorando características similares entre os produtos, de forma que, através de um sequenciamento adequado, seja possível reduzir o tempo total de parada para setup e, por consequência, reduzir também o tempo total de processamento (makespan). A literatura apresenta muitos exemplos de sucesso na aplicação de
técnicas de otimização para o sequenciamento da produção como forma de ganho de vantagem competitiva. Porém, a complexidade e o grande esforço computacional exigidos na solução deste problema, por muitas vezes, inviabilizam sua aplicação na rotina das indústrias. Neste contexto, as metaheurísticas emergem como uma opção para a viabilização de ferramentas para otimização do sequenciamento de produção. Dentre as abordagens metaheurísticas existentes, destacam-se as abordagens híbridas que combinam estratégias de busca local com algoritmos evolutivos como opções para a geração, de forma rápida, de boas soluções para o problema de sequenciamento, ainda que estes métodos não possam garantir a otimalidade da solução. A ferramenta desenvolvida, baseada no uso combinado das metaheurísticas Busca Tabu e Algoritmo Genético, busca a melhor sequência possível dentro do tempo computacional disponível de forma a reduzir os tempos gastos com operações de tempo de setup, e consequentemente o makespan. O Algoritmo Hibrido foi avaliado utilizando instâncias da literatura e instâncias advindas de um caso real. Os resultados dos testes indicam a superioridade da abordagem híbrida sobre as abordagens canônicas do algoritmo Genético e Busca Tabu. Os resultados obtidos na avaliação de instâncias reais indicam a aplicabilidade da ferramenta em ambientes reais, obtendo bons resultados na otimização dos tempos de setup, mesmo para o sequenciamento de grandes quantidades de produtos diferentes.