Resumen:
A seleção de bovinos leiteiros, através da utilização do sistema de classificação com características lineares de tipo, reflete no ganho de produção, na vida produtiva do animal, na padronização do rebanho, entre outros. Esta pesquisa operacional obteve suas informações através de pesquisas bibliográficas e análise de base de dados de classificações reais. O presente estudo, objetivou a geração de um modelo de classificação de bovinos leiteiros baseado em “true type”, para auxiliar os avaliadores no processamento e análise dos dados, ajudando na tomada de decisão quanto a seleção da vaca para aptidão leiteira, tornando os dados seguros para futuras consultas. Nesta pesquisa, aplica-se métodos computacionais à classificação de vacas leiteiras mediante a utilização mineração de dados e lógica fuzzy. Para tanto, realizou-se a análise em uma base de dado com 144 registros de animais classificados entre as categorias boa e excelente. A análise ocorreu com a utilização da ferramenta WEKA para extração de regras de associação com o algoritmo apriori, utilizando como métricas objetivas, suporte / confiança, e lift para determinar o grau de dependência da regra. Para criação do modelo de decisão com lógica fuzzy, fez-se uso da ferramenta R utilizando o pacote sets. Por meio dos resultados obtidos na mineração de regras, foi possível identificar regras relevantes ao modelo de classificação com confiança acima de 90%, indicando que as características avaliadas (antecedente) implicam em outras características (consequente), com uma confiança alta. Quanto aos resultados obtidos pelo modelo de decisão fuzzy, observa-se que, o modelo de classificação baseado em avaliações subjetivas fica suscetível a erros de classificação, sugerindo então o uso de resultados obtidos por regras de associação como forma de auxílio objetivo na classificação final da vaca para aptidão leiteira.