Resumen:
Esta pesquisa teve como objetivo investigar a aplicação de uma técnica de aprendizado de máquina supervisionado afim de reduzir as atualizações e modificações do modelo de design paramétrico voltados para análise de radiação solar em edificações. Inicialmente, foi criada uma geometria complexa por meio da programação paramétrica, visando a versatilidade do modelo para diferentes situações. A análise da radiação solar incidente foi realizada para compreender o desempenho energético do projeto arquitetônico, verificando-se os dados de entrada e saída do modelo paramétrico para garantir a precisão das análises. Em seguida, foi proposta uma técnica de aprendizado de máquina supervisionado que aprimorou e acelerou a análise de radiação solar, automatizando parte do processo e reduzindo o tempo necessário para obter os resultados desejados. Por fim, foram comparados os tempos de execução entre os métodos propostos e os resultados, utilizando novos conjuntos de dados, a fim de avaliar a eficiência da técnica de aprendizado de máquina em comparação com o método tradicional de programação paramétrica. Os resultados obtidos contribuem para o avanço das práticas de projeto arquitetônico com foco na eficiência energética, proporcionando percepções importantes sobre a aplicação do aprendizado de máquina na otimização dos fluxos de trabalho
paramétricos para análise de radiação solar em edificações.