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RESUMO

Processadores embarcados sdo utilizados cada vez mais na industria e em aplicagdes
civis, como em dispositivos de aplicagdes criticas em seguranca. O parametro critico dos
processadores, anteriormente performance, foi substituido pela necessidade da garantia de
confiabilidade do sistema. Esta mudanca de paradigma acarreta na utilizacdo de técnicas para
desenvolvimento de dispositivos tolerantes a falhas. Aplicagdes aeroespaciais e, mais
recentemente, automotivas, sdo mais suscetiveis a falhas causadas pela incidéncia de radiacao
nos circuitos integrados que compdem os sistemas, devido a redu¢ao do tamanho do transistor
e aumento da complexidade dos dispositivos. Neste contexto, o uso de FPGA (do inglés Field
Programmable Gate Array) ¢ atraente a indUstria para implementacdo de sistemas seguros,
devido a versatilidade e customizacdo de designs nos dispositivos. Porém FPGA resistentes a
radiacdo possuem alto custo de aquisicao, além de serem desenvolvidas com tecnologia de
circuitos integrados atrasada em relacdo a FPGA COTS (Commercial Off The Shelf). A fim de
aumentar a confiabilidade e seguranca de sistemas implementados em FPGA COTS, este
trabalho implementa uma arquitetura de Lockstep dual core (do termo inglés Dual Core
Lockstep - DCLS) para processadores de arquitetura open-source RISC-V, utilizando o core
RISCY. Acreditamos que este ¢ o primeiro trabalho que implementa uma arquitetura DCLS
com CPUs RISC-V, executa uma rotina de inje¢ao de falhas via software e avalia o overhead
em software e hardware. Um framework de injecdo de falha ¢ proposto e implementado
utilizando uma ferramenta aberta de simulagdo. O sistema ¢ implementado em FPGA e o
overhead em hardware do sistema ¢ pequeno, chegando a 5.18% de utilizacdo de area
comparado com a darea utilizada por um Unico core. O sistema alcanga uma reducgdo de
frequéncia de clock de 18,5%, ao ser implementado em uma Kintex KC705. Os resultados da
injecdo de falhas indicam que o sistema ¢ eficaz na deteccdo de falhas nas saidas de cores,
onde todos os erros visiveis foram detectados. Os testes de inje¢do de falha mostram a
discrepancia entre a inje¢do de falha transitoria e permanente no Design Under Test - DUT
devido a diferenca de erros visiveis.

Palavras-Chave: Lockstep, tolerancia a falhas, injecdo de falhas, RISC-V, dual-core,
processadores embarcados, FPGA.






ABSTRACT

Embedded processors are increasingly being used in every industry and consumer
segment, including critical-safety applications. The critical parameter of the processors,
previously performance, was replaced by the need to guarantee the reliability of the system.
This paradigm shift leads to the use of techniques for the development of fault-tolerant
devices. Aerospace and, more recently, automotive applications are more susceptible to
failures caused by the incidence of radiation in the integrated circuits that make up the
systems, due to the reduction in the size of the transistor and the increase in the complexity of
the devices. In this context, the use of FPGA (Field Programmable Gate Array) is attractive to
the industry for implementing secure systems, due to the versatility and customization of
designs on the devices. However, radiation-resistant FPGA has a high acquisition cost, in
addition to being developed with legacy integrated circuit technology if compared with FPGA
COTS (Commercial Off the Shelf). To increase the reliability and security of systems
implemented in FPGA COTS, this work implements a dual-core Lockstep (DCLS) system for
open-source processors architecture RISC-V, using the RISCY core. We believe that this is
the first work that implements a DCLS architecture with RISC-V cores, performs a fault
injection routine via software, and evaluates its hardware and software overhead. A fault
injection framework is proposed and implemented using an open-source simulation tool. The
system is implemented in FPGA and the hardware overhead is small, reaching just over
5.18% compared to a single RISCY core. The maximum clock frequency reduction achieved
by the system implemented in a Xilinx Kintex KC705 reached 18.5%. Fault injection results
indicate that the system is effective in detecting faults at the outputs of colors, where all
visible errors were detected. Fault injection tests shows the discrepancy between transient and
permanent fault injection in the Design Under Test due to the difference between visible
errors.

Keywords: Lockstep, fault tolerance, fault injection, RISC-V, dual-core, embedded
processors, FPGA.
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1INTRODUCTION

Embedded systems with programmable logic devices - Field Programmable Gate
Array - FPGA are widely used for several critical safety applications. Tasks involving these
systems are becoming increasingly complex and critical in terms of safety, such as medical
applications, trains, planes (aircrafts), satellites and aerospace vehicles, etc. In this way,
embedded systems play a crucial role in ensuring the integrity of data and human security.

These devices’ hardware is susceptible to the occurrence of failures due to the
incidence of radiation or other environmental factors, such as high voltage spikes, abrupt
temperature changes or electromagnetic interference, which may generate logic and control
errors in the device. The occurrence of errors caused by radiation is called Single-Event-
Effect - SEE, which can cause irreparable errors in the logic implemented in the FPGA. One
of the challenges in implementing these secure systems is ensuring functional safety using
Commercial-of-The-Shelf - COTS components. Although these components do not have
radiation tolerance levels suitable for the use of safe systems in applications exposed to harsh
environments, they are cheaper and deliver greater performance compared to hardened
devices.

One of the key factors to ensure safety in integrated circuits for critical applications is
the ability to detect errors during operations, which can cause catastrophic losses depending
on the application used. Central processing units - CPUs are sensitive elements within the
system, since they are composed of various elements of memory and control, primarily made
of sequential logics, which are more susceptible to failures than combinational ones (Iturbe;
Venu; Ozer, 2016). Therefore, there is a need to implement devices capable of detecting
failures during the operation in CPUs for secure applications in programmable logic, due to
the cost of implementation and flexibility of integration with other systems.

Solutions implemented at the architectural level are used to enable the usage of unsafe
cores in security-critical applications (VENU; OZER; ROBINSON, 2016), allowing for a
quick integration of hard-cores CPUs with the desired solution in the safe system. These
solutions check the output data of cores, as they are the only accessible interfaces within hard -
cores. Soft-core CPUs enable wider system customization approaches since it is possible to
modify the intellectual property (IP) design with more flexibility, allowing more complex and
fully customized designs. This flexibility can be explored in fault-tolerance techniques, where
multiple fault-tolerance methodologies can be combined and result in a system with a greater
safety level.

1.1 Main Objective and Motivation

A classical fault tolerance technique is the replication of the target hardware, where
the same application is executed in multiple instances at the same time, and the outputs are
compared to check for divergences during the operation. This technique is called lockstep,
where the number of replication is defined by the target application specifications and
complexity. In this work, a dual-core lockstep (DCLS) design is presented as fault-tolerant
architecture, to increase system reliability and enable complex applications in a harsh
environment. Its main objective is to enable COTS FPGA utilization in critical -safe missions,
while keeping the area and clock timing overhead at low overhead factor. An open-source
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soft-core IP is used as a target hardware replication module. We believe that this is the first
work that approaches DCLS architecture with open-source CPU ISA RISC-V as a fault-
tolerance design technique, and in this work, the proposed design architecture is shown, both
in hardware and software approaches overview. A fault injection methodology is proposed, to
evaluate the design’s fault-tolerance capability with applications used in the literature. An
implementation analysis is also shown, along with the fault injection analysis and hardware
and software overhead overview.

1.2 Work Structure

This work is organized as follows: in chapter 2, a background review is shown, where
key concepts regarding system design and functional safety are approached. In chapter 3, the
literature is revised, showing works that implements fault tolerance design solutions. Chapter
4 shows the proposed dual-core lockstep solution, where the proposed hardware architecture
and functional specifications are described. In chapter 5 the fault injection methodology is
shown, used to evaluate the proposed DCLS design, explaining the fault injection routines
and error detection rules. Chapter 6 presents the results obtained from the proposed fault
injection methodology, as well as the implementation and the system reliability analysis.
Chapter 7 concludes the dissertation and future works proposals are presented.
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2 BACKGROUND REVIEW

This chapter reviews themes related to the dissertation, regarding the central theme of
the work. Concepts on the use of embedded systems in industry will be reviewed, as well as
the application of devices with programmable logic. Radiation effects on integrated circuits,
impact of these phenomena on systems with safety criticality, and fault-tolerant systems
design will be discussed. Common failures in CPUs and their effects in applications will be
presented.

2.1 Embedded Systems

Advances in processor architectures made possible its usage in applications that
require high computational performance and low cost. The available architectures range from
processors with a single core to multiple cores within the same chip. With the increase in
performance and the amount of resources available in these processors, safe-critical
applications could be implemented using these devices, given that more robust programs with
a greater number of security elements can be implemented in the systems without
compromising time restrictions (FLORIDIA; SANCHEZ, 2018).

The implementation approach of these processors depends on the specifications of the
system to be developed and the design restrictions, as processors manufactured on a chip
(hard-core), or intellectual property IP (soft-core) can be used, by implementing in FPGA.
Although the CPU’s hard-core lead to lower integration and testing costs in the system (given
that the device meets the manufacturer’s specifications), they do not have customization
flexibility for specific implementations that require changes in the core, such as modifications
to achieve greater system safety, for example. In terms of performance in soft-core, it depends
on the technological node of the FPGA to be implemented, which may result in lower
performance and higher energy consumption compared to hard-core processors.

2.2 Programmable Logic Devices

As the industry needed to deploy more complex and higher performance systems,
FPGA appeared as solutions for integration and flexibility, as they have a lower development
cost compared with application-specific integrated circuits - ASIC. Modern FPGAs are
composed of programmable logic, as well as embedded components, such as hard-core CPUs,
high capacity memories, dedicated processing blocks, bus structures inside the chip, analog
interfaces and peripherals for specific applications.

FPGAs have high flexibility, the ability to integrate into complexer systems and allow
for rapid project development. However, FPGA Commercial-Off-The-Shelf - COTS, which
have higher performance and competitive prices, are not developed for fault-tolerant
applications caused by radiation, such as radiation-resistant (rad-hardened) FPGAS. FPGAs
use Static Random Access Memories - SRAM for configuring the programmable logic, and
are more vulnerable to faults caused by radiation (ITURBE et al., 2016). This factor limits the
use of FPGA in applications with safety criticality.
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Usually, rad-hardened devices use proprietary technologies to manufacture the
devices, such as radiation-resistant standard cells and specialized architectures to mitigate
faults. Companies like Xilinx have specialized FPGAs in environments with a high level of
radiation (SPACE-GRADE RAD - HARD VIRTEX-5QV FPGA), for missions in space and
in applications that require a high level of availability. These devices have a high cost of
implementation, being an impacting factor in the decision of projects with safety criticality,
besides being some generations outdated with the state-of-the-art technology of COTS
devices (ASADI; TAHOORI, 2005). Due to these factors, the industry has been looking for
solutions that allow the usage of COTS devices in fault-tolerant systems, to increase the
performance and flexibility of these devices (TAMBARA et al., 2015). The next section
reviews radiation effects into embedded systems using FPGA.

2.3 Radiation Issues in Integrated Circuits

The incidence of radioactive particles in integrated circuits leads to unwanted behavior
on these devices. In this section, concepts about the causes of radiation in these devices will
be reviewed, in addition to their effects.

2.3.1 Causes

Due to the scalability of integrated circuits in recent years, they are more susceptible
to faults caused by radiation. The usage of more complex designs in sensitive applications,
such as in the aerospace and avionics industry resulted in an increase in the occurrence of
faults in the integrated circuits used in these systems (NORMAND, 1996). The effect of
ionizing particles on integrated circuits was first discovered in the 60 (Wallmark; Marcus,
1962) decade, being then an important study area for reliability engineering and fault
tolerance. Since then, techniques and methods have been developed to mitigate the unwanted
effects of radiation on integrated circuits, since these systems have become less reliable and
could cause billion-dollar losses to the industry.

The radiation effects present in integrated circuits (ICs) implemented in space can also
be observed in terrestrial applications, caused by the incidence of radioactive particles in ICs
inciding from space, due to the exposure of radioactive materials or ionized environments
(Dodd; Massengill, 2003). Shortly after the discovery of the effects of radiation on integrated
circuits implemented in space, several techniques were developed to reduce the impact of
radiation on these systems, to increase their reliability, safety and availability. The
vulnerability of ICs has become a mainstream product reliability metric across the
semiconductor industry, due to the scalability of the number of transistors integrated in the
same CI and the need for system availability (SEMICONDUCTOR. . ., 1999). The incidence
of ions in ICs generates a nuclear interaction between the particle and the silicon atoms,
resulting in the creation of a pulse of transient current, which can be interpreted as altering the
logical state of the device and eventually causing system failures (CHIELLE et al., 2016).
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2.3.2 Radiation Effecton ICs

The exposure of ICs into radioactive environments causes the bombardment of
ionizing particles in these devices. The action of energetic particles on silicon results in the
transfer of energy in its tracks. The absorption of this energy creates a charge that can cause a
spurious current pulse in the affected device, causing a fault. The current caused by the energy
charge effect is defined as Single Event Effect - SEE (BAUMANN, 2005). The main effects
of the SEE can be defined in two groups, Single Event Upset - SEU and Single Event Latchup
- SEL.

SEU represents the logical change of a memory element value, which can result in
unexpected behavior of the device (ASADI; TAHOORI, 2005), from a bit-flip in registers to
errors in the program execution control, due to the change in the executed instruction by the
CPU. SELs are short-circuits between the power signal and the ground, caused by the effect
of SEE on the parasitic thyristors present in CMOS. These events generate hardware faults

known as stuck-at, as the signal value remains constant at logic level 1 or 0 (VELAZCO;
FAURE, 2007).

In logic circuits, memory cells are more susceptible to logic inversion due to the
effects of radiation. Random Access Memory - RAM are more sensitive devices due to the
higher density and number of registers, being a crucial factor in the usage of FPGA for
systems implementation, as these devices uses Configuration RAM - CRAM as to implement
the target design.

CRAMs are used to configure the logical elements - LE available in the FPGAs, to
implement the programmed logic. These CRAMs define the signal routing paths, the values
stored by the Look Up Table - LUTs, DSP elements, and user RAMs. The impact of a particle
on a CRAM causes a permanent error in the design mapped in the FPGA (ASADI;
TAHOORI, 2005). This type of fault is called a permanent fault since the only way to
eliminate it 1s by reconfiguring the FPGA. When a SEU occurs at a user registry, the error is
eliminated after several interactions. This type of fault is called a transient fault.

Transient faults can cause soft-errors in the system, which in turn are naturally
eliminated from the device over time. Permanent faults cause hard-errors in the system, which
need more specialized analysis to determine if the error is recoverable or if the device has
suffered a fatal error (OZER et al., 2018). The propagation time of faults within the hardware
depends on the type of fault (transient or permanent), and the region in which the fault
originates. Depending on the fault type, it can take hundreds of thousands of clock cycles to
be detected on the system output, being a critical factor for the development of safe systems
using ICs. The next section introduces the concept of functional safety, explaining the central
idea about the technique, and addressing its relationship with ICs project.

2.4 Functional Safety

The usage of electronic devices in safety-critical applications creates the need to
ensure the reliability of these systems. Functional safety is used as a basis for the development
of these systems, defined to create rules and metrics to guarantee the absence of unacceptable
risks during the operation of the devices (CHONNAD; IACOB; LITOVTCHENKO, 2018). In
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this section, definitions on functional safety and safety requirements in integrated circuits are
reviewed.

2.4.1 Definitions

Due to the susceptibility of IC faults, techniques were developed to increase the
reliability of the systems. Fault tolerance has become an important criterion in the industry,
due to the increased use of integrated circuits in safety-critical applications (automotive,

avionics, military). Failure of these systems can result in injury to people, equipment and the
environment (WALKINGTON; SUGAVANAM; NUNNS, 2013).

There is also a need for applications that require a high level of reliability that pose no
risk to humans in the event of failure, but to economic factors, such as high availability
servers. To reduce risks and create standards in the industry, safety integrity levels - SIL were
created, which are used to measure the level of risk for a safety measure used by the system.
SIL levels are defined according to fault coverage within a secure system. Table 1 shows the
statistical definitions for the different levels of security integrity, with the security level
defined based on the quantification of the probability of failures and risk reduction of the
device (IEC, 2020).

Table 1: Safety Integrity level Definitions.

Safety Integrity Level | Safety Level Probability of Failure on Demand | Risk Reduction Factor
SIL 4 >99.99% 0.001%1t0 0.01% 100.000to 10.000
SIL3 99,9% 10 99.99% | 0.01%to 0.1% 10.000to 1.000

SIL 2 99%to 99.9% 0.1% to 1% 1.000a 100

SIL1 90% to 99% 1% to 10% 100a 10

Source: From the author.

There are SIL definitions for different critical applications (automotive - ASIL,
avionics - DAL, rail - SIL, etc.), each having its specifications and functional safety
requirements. These definitions classify systems into levels of criticality concerning the
potential damage they could cause in the event of failure (CHONNAD; IACOB;
LITOVTCHENKO, 2018).

2.4.2 Security Requirements for Error Detection

Any safety mechanism in a critical system must ensure that it reaches a safe state to
prevent risks in the event of error detection. More complex systems require greater effort to
achieve the desired SIL certification. When a fault manifests as an error, the security
mechanism must detect it and report the occurrence to the system. The time interval between
the fault occurring and the error detection is defined as the error detection time. Once the error
is detected, the security mechanism must ensure that the system reaches a safe state before
risks arise. The error reaction time is defined as the time interval between error detection and
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change to a safe state, being used as an important metric in critical security systems (OZER et
al., 2018). Figure 1 shows the timeline between events in the event of a fault.

Figure 1: Error time reaction.

Fault
Occurred
Error Safe
7 Detection State
H : : >
Normal : i Time
Operation : : :

H " L » o
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Error Detection Time Error Reaction Time

Source: (OZER et al., 2018).

The safe state must be reached within the system’s safe time limit. Delaying the time
limit can be fatal, depending on the application. Therefore, the reaction time to errors is
defined based on the system’s ability to act in the worst case of error, and is a critical
parameter of the system, and cannot be violated. However, any reduction in the error reaction
time is safe and increases the availability of the system (WALKINGTON; SUGAVANAM,;
NUNNS, 2013). An example of a system with SIL is the Anti-Lock Braking System - ABS,
which uses Fuzzy logic and PID controllers implemented an Electronic Control Unit (ECU).
These devices have strict functional safety requirements, as a possible system failure can be
fatal. The next section shows fault tolerance design techniques in ICs, used to increase the
safety factor of a system (SABBELLA; ARUNACHALAM, 2019).

2.5 Fault-Tolerant Integrated Circuit Design

To guarantee the desired SIL in safe embedded systems, techniques have been
developed to ensure that the system reaches the safe state regardless of the type of error that
occurs during its operation (OZER et al., 2018). The techniques used to develop safe
embedded systems are based on redundancies of software and hardware. The redundancy of
hardware implies a higher cost of implementation, due to the overhead necessary for the
implementation of these systems, however, they present a higher error detection rate. The
technique is transparent to the application, not presenting overhead in software. In the
software redundancy approach is expected a lower cost of implementation concerning
hardware overhead, however, they may lead to a great system performance penalty.

The strategy to be implemented in the system must take into account the effects of
errors in the system, by identifying the most vulnerable components. Based on the
information collected, it is possible to define the appropriate methodology to protect the
system with the highest critical factor. Solutions based on software and hardware are
implemented to determine the occurrence of errors in hardware, and have different problems
and specifications. As CPUs are complex circuits, a fault within a can take several clock
cycles before manifesting as errors in the device outputs. The time between the occurrence of
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the fault and the detection of the error must be minimized to increase the reliability and safety
of the device.

In case of fault detection, the secure system can initiate a series of internal tests (Built
in Self-Test - BIST) to determine the source of the fault and if possible, correct them. If the
error is transient, it is possible to perform the rollback operation of the system to a known
state, and restart the application. In the event of permanent fault, the secure system can
provide the user or the system manager with a risk warning and initiate a security protocol to
ensure the integrity of the system and users. The next section introduces the concept of fault
characterization in ICs, used to guide fault-tolerant system designs and techniques.

2.6 Fault Characterization in ICs

To determine the fault tolerance of integrated circuits, it is necessary to apply
techniques to predict the fault rate caused by SEUs in these devices. Fault injection is the
approach used by researchers and industry to validate the mechanisms for detecting and
mitigating failures in the device under test (Device Under Test - DUT), by producing
unwanted behaviors. The advancement of semiconductor technology and the increase in the
complexity of the devices creates the need to use robust fault injection techniques to
guarantee the coverage of the devices to determine their level of security.

Fault injection is the technique for validating dependence on fault tolerance of
systems, which consists of controlled experiments in which the behavior of the system is
observed under faulty environment (ARLAT, 1990). Fault injections techniques are
categorized by (ZIADE; AYOUBI; VELAZCO, 2004):

a) Fault Injection in hardware: Disturbances are inserted into physically
implemented devices, with environmental interference (ionizing radiation,
electromagnetic fields), through the injection of current and voltage surges in the
power distribution tracks of the devices or by application of single values on the
IC pins. Additional hardware is used to inject faults in the system hardware.
Depending on the faults and their location, fault injections in hardware can be
defined as follows:

— Fault Injection with contact: They are defined as injection with contact, in
which the injector has direct physical contact with the system, producing
the type of fault desired on the chip;

— No contact fault injection: The injector has no direct physical contact with
the system, using external sources to produce physical disturbances to
produce faults in the system under test.

b) Simulation Fault Injection: Faults are injected at the coding level (Verilog,
VHDL), making changes in the design of the DUT to determine the fault tolerance
of the system. The system’s behavior is simulated using specific tools (Modelsim
- MentorGraphics, Incisive Simulator - Cadence, etc.) to collect the results
obtained by the fault injection, making it possible to analyze the occurrence and
distribution of the faults present in the system. This approach is used when only
the behavioral model of the system is available.

¢) Emulation Fault Injection: FPGA is used to evaluate the design in programmable
logic, increasing the speed of the fault simulation. It is possible to study the
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behavior of the circuits in the application environment, increasing the
effectiveness of the fault tolerance tests of the project. The fault injection device is
implemented using programmable logic resources (such as bit inverters or data
scramblers), or resources of the FPGA itself, such as primitives that changes
implemented logic at run time, such as the internal configuration access port
(Internal Configuration Access Port - ICAP) of the Xilinx FPGA devices.

d) Hybrid Fault Injection: Use of mixed techniques for fault injection controlled by
software and results analysis via hardware. Hybrid solutions use two or more fault
injection techniques to achieve higher levels of DUT excitation, increasing the
effectiveness of tests, simplifying parts of the test definition from fault injection
via software, in addition to increasing the accuracy from monitoring hardware.

This section reviewed the available fault injection technique types used to perform a
failure characterization. The next section explains the faults that may happen in CPUs under
harsh environmental conditions.

2.7 Faults in CPUs

As the processor architecture becomes more complex, the susceptibility to errors
increases proportionally, requiring more advanced safety mechanisms. The characterization of
errors caused by SEU in data elements and control of CPUs is necessary to increase the
resilience to errors in these devices. The main effects of soft-errors found in CPU’s are
presented, based on (CHO, 2018):

a) Silent Data Corruption: The application runs normally without any error
indication, however, there are divergences between the faulty program outputs and
the error-free program outputs. Due to the complexity of the applications, errors
are analyzed at different levels, to facilitate the analysis of error propagation.

b) Unexpected Termination: The device ends the execution of the application
indicating the occurrence of an exception in hardware, due to an improper action
performed by the program, such as reading protected memory or writing outside
the memory region, arithmetic exception or kernel crash.

¢) Suspension: The application does not produce any results or forces the application
to terminate after the predetermined time limit expires.

Part of the errors that propagate to the CPU outputs do not impact the behavior of the
application, due to its intrinsic masking. However, an error can cause incorrect values to be
written to an element in memory. If subsequent instructions perform write operations to the
corrupt location before the application uses its data, the error will not result in unexpected
behavior or erroneous application execution (SAGGESE et al., 2005). The result of the failed
application is equivalent to the result of the application without errors, as the error present
during the execution of the application was masked or overwritten during the execution.
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At the physical architecture level, faults can generate errors in each step of the
processor pipeline, due to changes in the flow control, in addition to the incorrect execution of
instructions. Faults in the data write/read stage can lead to erroneous data in the application
output. The propagation of faults from their source to the processor outputs can take hundreds
of cycles of clock, resulting in greater latency for detecting errors in systems that only check
the system outputs.

In general, combinational logic is less susceptible to soft-errors (Seifert et al., 2012)
compared to sequential logic, making it necessary to use techniques for detecting errors in
memory elements. This chapter presented the key concepts about embedded systems, FPGA
utilization in harsh environment, system safety, and IC fault characterization. The next
chapter presents the fault tolerance enhancements related works, where multiple techniques
are shown.
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3 RELATED WORKS

The necessity to guarantee the functional safety of electronic circuits leads to the
development of techniques for fault detection and validation of safe systems. In this chapter,
related works reviews will be presented about fault-tolerant CPU design techniques, and fault
injection methodologies used in the literature, to validate the security requirements on these
devices.

3.1 Fault Tolerant CPU Design

Fault-Tolerant CPU designs are crucial to enable high-performance devices into high
risk environments. This section shows the fault tolerance enhancement designs applied in the
literature.

3.1.1 Designs Based on Hardware

Fault detection solutions based in hardware are implemented in the product design
stage at the physical level, using specific hardware for monitoring the execution of
instructions on the processor and memory access, to increase the reliability of the devices and
the functional safety factor. Of the techniques used, the most explored in radiation-tolerant
devices is the modular redundancy of sensitive elements (usually registers). The levels of
redundancy can be double, triple, or multi-modular (Dual Modular Redundancy - DMR,
Triple Modular Redundancy - TMR, and Multi Modular Redundancy - MMR, respectively).
The redundancy of hardware allows fault detection on similar devices, avoiding critical
system failures, and allows for uninterrupted execution (in cases of triple or greater
redundancy) until the failure is mitigated or eliminated from the system.

Radiation resistant devices have Register Transfer Level - RTL level redundancy,
through the implementation of error detectors, register redundancy, majority voters, and parity
checkers (COBHAM, 2019). These additional components result in higher energy
consumption, area utilization, and reduced CPU performance (ITURBE et al.,, 2016). In
CPUs, these techniques are applied at multiple levels of abstraction, from RTL (register
redundancy) to the architectural level (processor redundancy), where failures are detected by
comparing the CPUs outputs at each clock cycle. Hardware redundancies designs are shown
in the following. It is possible to obtain greater fault-tolerance factor through the triple
redundancy (TMR) of all registers, as demonstrated by (GHAHROODI; OZER; BULL, 2016)
in a core ARM CORTEX-R4. In this work, all flip-flops and latches have been replaced with
TMR versions in netlist at gate-level. Figure 2 shows the TMR circuit implemented in the
processor registers. The clock decreased by 30% compared to the original clock, while the
overhead of area and dynamic power increased by 100%.
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Figure 2: TMR with flip-flops majority voter.
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In multi-core systems, the design techniques of fault-tolerant systems involve the
implementation of redundancies of RAMs, CACHES, controllers, and other elements, in
addition to the use of ERROR CORRECTION CODE - ECC, for detecting and mitigating
errors on servers with high availability requirements, as demonstrated by (AGGARWAL;
RANGANATHAN, 2007). In this work, two-processor clusters are defined for running
applications so that possible errors are isolated from the system, ensuring the delivery of the
server task.

At the architectural level, one of the solutions used is through the redundancy of CPUs
on the same device, in a discreet fashion, or on the same chip (INFINEON, 2012), to increase
the reliability of the system. The detection of divergences between redundant CPUs can be
performed by comparing the outputs of the devices at each clock, using lockstep structures.
These structures will be covered in more detail in the later sections.

3.1.2 Software Based Designs

Solutions based on software implies in the redundancy of applications, variables, and
memory regions used by the system. These techniques protect the processor in the execution
of instructions and the data flow, to guarantee the reliability of the delivered results and
detection of execution errors caused by failures in the hardware. These techniques are called
Software Implemented Hardware Fault-Tolerant - STHFT.

These strategies use specific modifications in the source code of the application, with
the inclusion of routines that performs memory integrity tests periodically, being possible to
obtain the result of the comparison only after the final processing of the variables. Memory
signature verification techniques can be used to verify the reliability of program execution.
Since the verification occurs in variables that control the execution of the program, these
techniques have a higher error detection rate when compared to programs that only verify the
program variables (BENSO et al., 2005).

It is possible to develop secure code using source-to-source compilers, as
demonstrated by (RENNER, 2003). The author created a compiler capable of generating safe
codes, in which variables are kept in memory and verified by monitoring applications,
through the insertion of routines in the source code to compare the variables and perform
actions in case of error detection.
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Another technique used to increase the security of application execution is through the
concept of composability, introduced in secure systems by (RESCH; STEININGER;
SCHERRER, 2013). The authors introduce the concept of software composibility together
with TMR, in which a framework is defined to manage the sets of secure functions, operating
in a software triple modular redundancy (TMR) fashion. The control of the execution of the
functions and validation of the results of the operations is done by the layer of composibility,
being necessary only one instance of hardware for execution of the secure application. Figure
3 shows the architecture in the software proposed in the work.

Figure 3: TMR implementation via software.
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In the operating systems safety level, hypervisors are used to manage the interface
between the secure application and hardware, where operating systems (OS) run concurrently
on the same hardware, so that the existence of the system response checker is transparent to
the OS’s (BRESSOUD; SCHNEIDER, 1995). Backup’s reservations are maintained and
verified by the hypervisor to ensure usability in the event of an available OS failure. The
advantage of using hypervisors is the reduction of the need to implement secure applications,
however, they have a high cost of overhead, as they run multiple OSs on the same system.

3.1.3 Hardware and Software Based Designs

Solutions based on software cannot fully detect errors in the system, due to errors in
the control of instruction execution (AZAMBUIJA et al., 2011)]. In this way, mixed fault-
tolerant system solutions benefit from the speed and accuracy of hardware error detection with
the flexibility and configurability of software error detection technique, achieving fault
tolerance at all layers of the system. Hardware devices are integrated into applications more
efficiently, ensuring greater performance and reliability in the secure system, using
frameworks to create sets of rules for interoperability of the layers.

The work presented by (CHENG et al., 2016) proposes a framework for fault detection
using resilience techniques, with a design that has a fault tolerance coverage from the physical
circuits to the application layer of the system. The hardware layer uses radiation-resistant flip-
flops, so that they have greater tolerance to SEE. In the logical layer, parity checkers are used
in the inputs and outputs of flip-flops. The heuristic used by the system has no significant
impact on the clock frequency of the system, performing the grouping of flip-flops based on
time parameters and the creation of logic verification pipelines. At the architecture level,



30

algorithms were implemented to check data flow and control (Data Flow Checking and
Control Flow Checking, respectively) in order to validate the execution of instructions and
memory access functions. At the software level, techniques for verifying software signatures
were implemented by modifying compilers to verify static control flow diagrams. The impact
of the implementation on energy consumption reached 6% in the worst case, while the system
obtained a 50x higher error detection rate.

The design presented by (TIWARI et al., 2011) uses a CPU with external architecture
for low-level control of hardware, that allows a microkernel to access device properties and
information at gate-level. The microkernel is responsible for validating the steps of the system
pipeline and running a basic operating system, used by other layers of software used to run the
secure application. The external processor architecture allows explicit control of software in
the implemented hardware.

The work published by (AZAMBUJA et al., 2011) uses a non-intrusive watchdog to
detect variations in the flow control of a soft-core MIPS and decode application instructions,
along with rules to generate additional instructions to control the additional hardware module.
In this manner, it is possible to manage hardware and software signatures generated by the
systems to detect failures in the execution of instructions. The error detection capability
reached 100% coverage, with a runtime overhead of up to 153%.

Another strategy is to use hardware redundancies in specific vulnerable locations, to
reduce the total technique overhead, along with compilers that perform variable redundancy
and control of execution flows, such as demonstrated by (AMUTHA; RAMYA;
SUBASHINI, 2012). The proposed architecture reached about 90% error detection coverage.

In this section, fault-tolerance processor design techniques were reviewed, with
methodologies based on software and hardware for fault detection. In this work, the failure
detection technique based on hardware will be implemented. Table 2 shows a comparison
between the techniques covered in this section. The choice of technique during the
development of the system must be made considering the cost of implementation and the
impact of the technique on the project, both in terms of performance reduction (overhead in
software), as well as consumption increase in power and device area (overhead in hardware).

Table 2: CPU robust design techniques.

Design Type Pros Cons
Hardware - High detection rate; - It presents overhead in hardware,
- Have no overhead of software. increasing energy consumption and area;

- Increase in the physical device
developmentcost.

Software - Lower detection rate; - High overhead in performance;
- Doesn’thave overhead in hardware; - May not detect failures due to CPU control
- High tolerance design flexibility. errors.

Hardware and - High detection rate; - Needs more developmenttime;

Software - Combining the speed of hardware with | - High overhead in hardware and software.

the flexibility of software.

Source: From the author.
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This section has shown the literature approach concerning robust CPU design
techniques. The next section introduces CPUs fault injection methods, to allow designers to
validate their fault-tolerant systems.

3.2 CPUs Fault Injection

Fault injection experiments can be executed to evaluate the fault-tolerance factor of
CPUs, checking the design vulnerability, and the error observation rate obtained during fault
injection testing. The fault injection is performed to generate observable errors in the outputs
of the device, which are possible to be detected through conventional fault detection
techniques. Figure 4 shows the propagation of faults within the processor to the outputs of the
system, and shows the general architecture of a lockstep, a term that will be covered later.
One of the challenges while performing fault injection is to produce observable errors to test
the fault detection capacity of locksteps, due to the time to propagate faults from the fault
origin to system output.

Figure 4: Fault propagation in a lockstep system.
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Access to internal components is limited on hard-core CPUs, due to the device
construction and manufacturer specifications, and it is not possible to access the internal CPU
registers (VELAZCO; REZGUI; ECOFFET, 2000). Thus, it is necessary to use specific
techniques for fault injection, by manipulating elements of external memories and processor
interfaces. Soft-core CPUs presents greater flexibility for fault injection, since the availability
of the high-level hardware description (HDL) allows the manipulation of internal variables.

Only a fraction of the faults injected into CPUs are observed as errors in the outputs of
the systems, in which a large part is masked by the dynamics of the processor itself. The
errors that are propagated to the outputs are generally generated in the injection of faults in
specific register zones of the processor, which can be exploited to increase the most
vulnerable parts of the device, as described by (MANSOUR; VELAZCO, 2012).

In this session, a bunch of fault injection in CPUs works will be reviewed, which
approaches tolerance tests and fault vulnerability of soft and hard-core CPUs, in addition to
the creation of techniques and systems for fault detection and error mitigation. Fault injection
techniques via CEU and radiation exposure are implemented in the work developed by
(VELAZCO; REZGUI; ECOFFET, 2000), in which the authors compared fault injection
techniques in hard-core devices, such as the 80C51 microcontroller and module DSP 320C50,
making changes to the contents of the memories external to the components and causing
unwanted interruptions to observe the effect of these experiments on the system responses.
The tests carried out indicated that the rate of observable errors in the system outputs was
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higher during fault injection via CEU, demonstrating the need to use memory protections in
safe applications exposed to radiation.

The technique proposed by (WANG et al, 2004) performs fault injection via
simulation on AMD Athlon and Alpha 21264 commercial processors. The analyzed
experiment indicated that approximately 15% of the injected faults generated visible errors in
the CPUs outputs. Applying low-cost redundancy techniques in these known regions, there
was a 75% reduction in failures compared to the initial tests.

Another technique for fault injection through emulation in FPGA’s is presented by
(KASTENSMIDT; FILHO; CARRO, 2006), in which a tool for fault injection was developed
by modifying the FPGA’s configuration file (.bitstream), being possible define the fault
injection region directly through the application. In this way, it was possible to change the
routing configuration of the implemented logic and user registers.

Fault injection can be performed by modifying LUT’s from the FPGA, as shown in
(KENTERLIS et al., 2006). The approach performs the analysis of the LUT’s used to map the
design in programmable logic, modifying its configuration to result in execution failures in
the system output.

The work done by (VALDERAS et al, 2007) implements complementary fault
injection techniques by emulating code upsets and by emulating LEON processors on FPGA.
Faults injected via code fault emulation (as known as Code Emulated Upset - CEU) were
performed via alteration of memory elements external to the CPU (such as SRAM, for
example), generating the execution of erroneous codes and asynchronous activation of
interrupts. The result of the operations generated corrupted data in the memory elements of
the processor. Faults injected via FPGA were implemented by replacing the original flip-flops
with versions with fault injection control, as described in Figure 5. The application was
initially executed with golden flip-flops to collect the fault-free results. Then, the faults were
injected by changing the mux in the output of the flip-flops to produce faulty results. The
responses were then analyzed using a computer. Failures injected via CEU resulted in a
greater number of device failures observed at the system outputs.

Figure 5: Hardware Fault Injection.
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The effects of SEUs on CPUs memories soft-core are emulated in (MANSOUR;
VELAZCO, 2012), using the Direct Fault Injection - DFI technique, changing the architecture
of the internal registers to inject faults during the clock cycle time execution. Additional
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hardware is added in the CPU implementation, where muxes and selectors are used to control
the fault injection.

There are also techniques based on the injection of faults through heavy ions to assess
the sensitivity to radiation of the system components. (TAMBARA et al., 2015) performs
tests with a radioactive ion injector on a Zynq-7000, to measure the effects of radiation on the
elements of the FPGA, such as configuration RAMs, RAM blocks available to the user and
CPU cache memories hard-core ARM Cortex-A9. It is possible to perform fault injection
using logic reconfiguration modules, available in some FPGA’s on the market.

The work performed in (KESH; ASAMI, 2018) performs fault injection using the
ICAP module in a FPGA KINTEX 7. The module is controlled remotely through an
application developed in MATLAB, which performs communication with the module through
an interface UART. The work proposes a methodology to optimize the failure injection time,
in which only the essential design configuration bits are changed, in contrast to the traditional
methods, which perform fault injection in all configuration bits, including those not used for
the design mapping in the FPGA.

In this section, works that developed and implemented techniques for the injection of
failures in processors were reviewed. Table 3 compiles the main techniques explored. The
choice of the fault injection technique must be made taking into account the time available for
developing and applying the tests, the complexity of the system to be tested and the resources
available. In this work, fault injection techniques will be used via simulation, for initial
system testing, and fault injection via emulation, making changes to the design configuration
in the FPGA, to carry out the final validation of the device’s effectiveness. The next section
shows the lockstep technique, with its definitions and literature examples.

Table 3: Fault injection techniques.

Injection Type

Pros

Cons

CEU

- Rapid implementation strategy, can be
performed without the need to change
the hardware and obtain good coverage
of failures;

- Faster implementation methodology

only needs to change the instruction
memory toimplementthe failures.

- It does not have the flexibility to inject
faultsin specific regions of the core;

- Limitation on the types of injectable
failures.

Simulation - It has greater flexibility for| - Consumes more time for validation
implementing failures and system tests; | compared to other techniques, due to the
- Greater practicality of implementation, | need forcomputational capacity;
due to the use of resources from the
simulation tools.

Emulation —| - It has greater speed and error | - Needs more development time, due to the

Alteration of
design

validation range, making it possible to
carry out internal modifications to the
devices;

- The fault injecton test can be
performed on any device;

need to change the design;

- It can resultin overhead in hardware of the
device, limiting the practical application;

Emulation -
Changing the
design
configuration
on the FPGA

- It has a high speed of error checking;
- Uses intemal modules of the
programmable logic device, without the
need to change the design;

- Needs the implementation of control logic
for faultinjection;
- Fault injection is exclusive to devices, not
having portability.

Source: From the author.
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3.3 Lockstep

Lockstep is an error detection technique, by running copies of programs on redundant
hardware, comparing devices at each cycle of clock. Applications with lockstep are popular
on ultra-availability servers (JEFFERY; FIGUEIREDO, 2012) and secure systems due to their
ease of implementation, high error coverage, transparency in software and performance
(OZER et al., 2018). There are three main types of implementation of lockstep: systemic, sub
systemic and CPU only:

a) Systemic: CPU, CACHE and RAM control signals and buses;
b) Sub-systemic: CPU and CACHE control buses and signals;
¢) CPU: Only the CPU buses will be analyzed by the lockstep.

Systems with application criticality may benefit from CPU lockstep implementation,
due to greater error coverage and lower implementation cost compared to the systemic level
lockstep. In lockstep of CPUs with dual modular redundancy (DMR), it is not possible to
indicate which CPU originated the error, since lockstep detects discrepancies only in the
outputs of the devices, making the hardware reliability analysis necessary. In triple or multiple
redundancies (TMR or MMR, respectively), the lockstep can identify the CPU that originated
the error, using majority voting logic. In this way, specific tests can be performed on the
faulty device. Although it is possible to detect the faulty core in TMR or MMR techniques, its
downside is the increased hardware overhead compared to the DMR technique. Thus, a trade-
off between fault origin detection and area and timing overhead is presented on choosing the
appropriate fault tolerance technique. Depending on the application, the CPU with errors can
be disabled until the identified error is corrected, increasing the availability of the system
(GHAHROODI; OZER; BULL, 2016). In any case, the checker cannot predict whether the
error type is transient or permanent, and it is necessary to alert the system controller and the
user in case of hardware failures.

Most of the lockstep architectures use only the external buses to the core (non-
intrusive method), to make the system more generic, facilitating its integration in more
complex systems with greater ease. However, the time to propagate failures from their source
to the CPU outputs can be magnitude of thousands of cycles of clock (OZER et al., 2018).
Since error detection in lockstep is not immediate due to fault propagation, a permanent fault
can spread to multiple CPU outputs compared to transient faults. Thus, the use of signals
internal to the core (intrusive method) allows a higher rate of failure detection and an increase
in the speed of action of the safe system in the event of errors in the device.

When an error is detected, lockstep signals the secure system controller that the event
has occurred and puts the processor in a safe state to reduce hazards. The system controller
can then initiate a series of internal tests (BIST) to identify the source and type of the error,
whether it is transient or permanent. In the event of a transient error, a rollback can be
performed to reset the current state of the processor to a known safe state. In case of fatal
errors, the system controller can change the system to a definite safe state and indicate a fatal
system failure. The challenge of implementing the lockstep technique is to ensure that all
redundant CPUs produce the same output in each execution cycle without errors, since all
internal CPU variables must be initialized in the same way at system reset, as described by
(OZER et al., 2018). CPUs registers initialized with different values can lead to divergences
during normal operation, resulting in false positives during error detection. In this way,
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Lockstep implementations need a meticulous design to guarantee the equivalence of the CPUs
internal state in the system reset. In the following, some works from the literature on
implementing lockstep are shown.

3.3.1 Lockstep Implementation Review

A non-invasive architecture of lockstep is developed by (ABATE et al., 2009),
implementing the design in two IBM Power PC 405 hard -core embedded in a Xilinx Virtex 11
Pro FPGA, so that the verification of the processor’s execution parity is carried out after the
execution of the application. In cases of divergence, checkpoints are used to perform a
rollback of the previous processor context, saving time in clock cycles and increasing system
availability. In the fault injection experiments, about 70% did not result in changes in the
outputs of the processors, exemplifying the theory that ASIC’s are more resistant to radiation
compared to programmable logic, and such must have more complex mechanisms for fault
detection and mitigation.

The lockstep developed by (Iturbe; Venu; Ozer, 2016) has dual CPU redundancy
architecture ARM CORTEX-RS5. The CPUs share cache memory and peripheral access ports,
performing redundancy only at the CPU level. The clock of the primary CPU operates two
cycles ahead of the secondary, to minimize the possibility of transient errors at the same time.
Signals from the internal stages of the CPU pipeline were used to increase the speed of fault
detection in the system and the response time to the error, to mitigate the propagation of errors
to elements external to the CPUs. The work categorizes the most critical parts to core failures,
injecting failures in the regions, and accounting for the propagation of visible errors in the
outputs. In the tests performed, 70% of the errors observed in the outputs were caused by
failures in about 10% of the core registers. These metrics demonstrate the sensitivity of the
sequential elements inside the processor, allowing the implementation of redundancy
techniques in a smaller number of elements, increasing the overall reliability of the system.

The lockstep architecture shown in (VENU; OZER; ROBINSON, 2016) implements a
triple redundancy in soft-cores ARM CORTEX-R for detecting and correcting individual
errors. The structure was developed with a flexible design to be used in any ARM CPU, to
reduce costs and implementation time. The error detection and correction systems are isolated
from the CPUs’ power and clocks nets, in addition to using a robust coding technique to
protect the verification logic, defined in [SO-26262. The implementation of lockstep resulted
in a 30% reduction in clock compared to the system operating without lockstep, with a single
CPU.

The work carried out in (ITURBE et al, 2016) builds a non-intrusive triple-core
lockstep architecture with ARM CORTEX-RS soft-cores for critical security applications,
where each CPU has its clock tree and share instruction and data caches, which are protected
by error correction codes - ECC. A majority voting structure was implemented, to allow the
secure code execution in case of failure of only one CPU, increasing the availability of the
system. The error detection logic works along with the CPUs re-synchronization logic in case
of transient failure. The CPUs re-synchronization time was completed in less than 2 us, using
a 1 GHz clock.

An invasive lockstep architecture in two soft-cores ARM CORTEX-RS5 is
implemented in (OZER et al., 2018), using internal CPU signals to create a divergence status
map between CPU outputs. At work, 62 categories of signals internal to the CPUs used were
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compared, to enable the prediction of the source of the error injected into the system. The
predicted error site was then used as a basis for choosing internal tests for detecting transient
or permanent failures. The manifestation of transient errors in the outputs of the system was
about 5%, while the rate of permanent errors was 40%. The prediction of error location
reached 86% for transient errors, while the accuracy of the prediction of permanent failures
was equal to 49%.

In the work shown in (RODRIGUES et al., 2019), a lockstep framework called
xLockstep was proposed, embedded in a Zync FPGA. The system is composed of a hard -core
ARM Cortex-A9 built in the hard processor portion of the FPGA and a RISC-V soft-core,
implemented in the programmable logic. In the proposed work, the application is executed in
a loosely-coupled fashion in both cores, and an IP implemented in the programmable logic
checks for divergences between code execution and synchronize its operation. The lockstep
design modules were connected via an AXI bus. The proposed xLockstep resource usage was
extremely lightweight, with an order of nearly 2% area consumption in comparison with the
RISC-V soft-core implementation.

In this section, techniques for fault detection in CPUs were presented. Table 4 presents
the main articles used as the basis for this research. They are used to implement lockstep of
processors for secure systems.

Table 4: Review of major works.

Authors Description

(ABATE etal., 2009) Authors used a IBM Power PC 405 hard core in a Xilinx Virtex Il Pro FPGA
to implementa DCLS system.

(Iturbe; Venu; Ozer, 2016) Work shown a DCLS implementation with ARM CORTEX-R5 soft-core
CPUs. The most critical parts of the core are characterized, in a way to
deploy a design with higher reliability.

(VENU; OZER; ROBINSON, [ TCLS architecture using an ARM CORTEX-R soft-core triple redundancy
2016) scheme for1ISO-26262 compliance and flexible design.

(ITURBE et al., 2016) TCLS with ARM CORTEX-R5 soft-core in non-intrusive design, for safety
critical applications. The design includes EEC and presents a low latency
re-synchronization.

(OZER etal., 2018) DCLS with ARM CORTEX-R5 soft-core focused on estimating the source
region of the failure, increasing the error prediction rate in order to
decrease error correction time and increase system availability.

(RODRIGUES etal., 2019) Heterogeneous DCLS with an ARM CORTEX-A9 hard-core and a RISC-V
soft-core. The authors shows a programming framework called LOCK-V,
which is intended to deliver a quick solution for both ARM and RISC-V
application development.

Source: From the author.

Although there are major works relating to lockstep techniques, both in hard and soft-
core implementations, we have not yet seen a work that approaches a fault-tolerance design
exclusively with RISC-V soft-cores. Thus, we believe that this is the first work that explores a
dual-core lockstep architecture with 32-bit RISC-V soft-core processors as a fault-tolerance
technique. In this work, the DCLS is shown, where its architecture, functional specification,
and design flow is presented. The next chapter shows the presented DCLS architecture.
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4 PROPOSED DUAL-CORE LOCKSTEP SOLUTION

The DCLS solution proposed in this work is presented in this chapter. The lockstep is
a hardware and software technique aimed to increase a system’s fault tolerance. In the
hardware part, both core’s outputs are compared at each clock cycle, and any divergence
between its output indicates an error in the system. In the software part, the core context may
be saved and restored when a correctable error is detected. The technique downside is an
overhead in the system, both in the hardware part due to the core replication and additional
modules to control and detect the lockstep operation, and in the software part due to the
necessity to handle the core backup/restore operation. This chapter explores the proposed
DCLS hardware architecture and functional specifications.

4.1 DCLS Hardware Architecture

The DCLS hardware architecture is composed of multiple specific modules and the
core replication. In this work, a 32-bit 4 stage RISC-V core (named RI5SCY) is used as the
target CPU replication. It is a soft-core developed by ETH Zurich, used in the PULP project
(CONTI et al., 2016). Additional hardware components were used to evaluate the DCLS, such
as instruction and data memory, interconnection buses, and peripherals. Figure 6 shows the
proposed DCLS system architecture and its components. It features 32 KB instruction, data,
and secure data memory, used to store the application’s execution context. A custom DMA
handles the secure data memory read/write operation, and it is accessible by the user.

An AXI bus is used to enable the interconnection between system components. A
Dedicated bus in the DCLS control unit handles the interface with the external system control,
allowing DCLS command assertions. Lastly, a GPIO module enables I/O in the system. All
DCLS sub-modules are designed using a one-hot registers technique and uses mostly
combinational logic, due to the susceptibility of registers to failures. The DCLS sub-modules
functionality description are listed below:

a) DCLS control unit: Controls DCLS modules operation at hardware level, and is it
slave of the external system control. Users may pause and resume applications in a
transparent fashion using the DCLS system;

b) Synchronizer: Injects core signal controls and define its execution status;

¢) Comparator: Compare cores output buses at clock cycle; forwards valid signals to
the AXI bus. It is always enabled to avoid mismatch under-reporting;

d) DCLS interface: It’s accessed as a peripheral; allow users to trigger a context
backup.
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Figure 6: DCLS architecture.
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4.2 DCLS Functional Specification

The DCLS system implements both software and hardware solutions. The hardware
behavior must follow a flow according to the software requirements, and vice-versa. In the
hardware portion, the main features of the DCLS system is the bus comparator to detect
errors. In the software portion, it is the context backup and restore the main addition of the
DCLS system. Thus an execution flow is designed to integrate both hardware and software
solutions. By using a RISC-V soft-core, it is possible to change the design as needed, enabling
a flexiblity factorin the design process.

4.2 .1 Overview

Figure 7 shows the DCLS execution flow. Figure 7 (a) shows the unhardened
execution flow of an application, and Figure 7 (b) shows the fault-tolerant application
execution, with the addition of an error occurrence to illustrate the execution flow. In the
unhardened flow, the application is executed without error detection and context
backup/restore, whereas the hardened flow has additional features, such as segmented
application code execution and context save, to increase the application fault-tolerance level.
In case of an error, as illustrated by Figure 7 (b), the last valid context is loaded back into the
cores and the application is resumed. The safe application must include routines and be
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segmented conveniently to allow context backup operations during its execution. The safe
application is defined as a time-finite application, that has a beginning and an end, as
illustrated by Figure 7 (b). All context backup and restore operations are executed within its
time execution window. The DCLS can be used in loop-applications, but this case will not be
evaluated in this work.

Figure 7: DCLS application execution flow.
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The main objective of the DCLS is to detect errors and be able to perform a rollback
of the core’s context to a prior know safe state. During the execution of the safe application,
the user may trigger a context save operation to allow a rollback operation when an error is
detected. The safe state is composed of the following components:

a) General purpose registers - GPR: All application data handled by the core are
stored in the GPRs, including stack pointer, return address, temporary and saved
registers, function arguments, and return values;

b) Control and status registers - CSR: Stores core configuration values, such as
machine and user program counter, interruption vector configuration, and other
control parameters;

c) Data memory: It’s the application RAM, used to store program data and the stack,
where the core context is saved.
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The context save routine is triggered at the user level by accessing the DCLS interface
peripheral, using an interruption request. The user must include the checkpoints in the
application code to execute the context backup operations. The data memory content
management must be evaluated during the interrupt handling. Only the external system
control may trigger the context restore, due to the necessity to evaluate the error type
(transient, permanent, correctable, uncorrectable). The context backup flow is described as
follows:

User application write into DCLS interface register;
An interruption request is generated at gate-level;
The specified interruption handler copies core’s context into the stack;

The whole data memory RAM is copied via DMA to a secure memory;

A

When the copy operation is done, the application may resume its execution.

After detecting an error and evaluating whether it’s a correctable one, the DCLS
application context may be restored. Its context restoration flow is described below:

1. The external system control asserts a reset and context restore flag into the DCLS
control unit;

Both cores are re-initialized;
An interruption request is generated at gate-level;
The secure memory content is copied to the data memory via DMA;

The specified interruption handler restore core’s context from the stack;

AN

Resume application execution.

4.2.2 DCLS Control Unit

The DCLS features a control unit, shown in Figure 6, which is responsible for
controlling other modules during the execution flow at the hardware level. It is controlled via
a dedicated bus, which only the external system control may access. It is transparent to the
user application, and it has the following functionality:

a) Enable/stall cores;
b) Internal core reset;

¢) DCLS Modules enable control.
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Figure 8: DCLS control unit execution flow.
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Its state machine execution flow is designed to handle the context restore and system
execution control. Figure 8 shows the DCLS control unit execution flow. After both cores are
initialized, the DCLS system may perform a context restore. If there is an available context to
be restored, the DCLS may restore it and resume the application from the point where it was
saved. If not, the application will be initialized and executed.

There are two main exceptions in the DCLS state machine context: one is the user
request to save the current execution context, and the other one is error detection. The user
request to save the execution context is performed by accessing the DCLS interface, which is
available as an APB peripheral, as shown in Figure 8. After accessing the peripheral and
writing into the control register, an interruption request is generated to both cores, and after
the context backup, the application resumes its execution. In case of a detected error, the
DCLS system enters a safe state, where both cores are stopped and the external system control
is alerted. If the exception is solved, the external system control must assert a solved flag into
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the DCLS, as the system may perform a core reset, load the last saved context and resume the
application execution.

4.3 DCLS Solution Overview

The DCLS is designed to detect divergences between core’s output at any execution
point, and indicate to an external system control that an error has been found. It must
synchronize both core’s input with timely-correct instructions, to ensure its tightly-coupled
execution, and a local controller supervises its operation and ensures that every module is
working properly. User may configure target application to include checkpoints, which
triggers context save operations, that can be restored after an error is detected and cleared.

The external control system is the master of the DCLS system, and may perform
context restore operations at will. The context backup/restore scheme allows an application to
be paused, saved into a safe memory, have the whole system reset/reconfigured, and resume
the application execution after performing a context restore operation. The downside of the
technique are the software and hardware overhead, needed to deploy the fault- tolerance
addition to the system. As there is no extra core to check which core propagated the detected
error, it is necessary to perform an external system check, and take the needed action to
ensure the system reliability. The next section explains the built fault injection methodology,
to evaluate the proposed DCLS design.
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5 FAULT-INJECTION METHODOLOGY

A fault-injection methodology is needed to evaluate the DCLS error detection
capability and backup/restore features. This chapter describes the fault injection framework,
error type, and the tool used to evaluate the fault injections.

5.1 Introduction

Fault injection methodologies are applied to test and evaluate a Design Under Test —
DUT fault-tolerance capabilities. A majority of techniques are shown in the literature, as
explained in section 3.2. All methodologies pursue the objective of applying controlled fault
injections to the system and expect output changes due to the injected fault. The fault
injection method is selected based on the project’s budget, resource availability, and desired
fault coverage. In this work, a simulated fault injection framework is presented to evaluate the
DCLS system fault-tolerance features. Its details are presented in section 5.2.

An open-source simulation tool, called Verilator is proposed as the fault injection
implementation software. The Verilator is a SystemVerilog simulation tool, that works by
transforming the HDL files into object-oriented C++ code. It allows the construction of
complex testbenches using the C++ power, as well as simulating multiple threads. It is
available in the industry since the ’90s and is used by the largest silicon industry companies,
such as AMD, Intel, ARM, NXP, and others. It is also used in the academy as simulation tool
(AHMAD; CIESIELSKI, 2014), (PETRISKO et al., 2020). It allows users to probe inside a
design’s registers using high-level functions, allowing a high fault injection coverage without
additional hardware modification. Also, it allows multiple simulation instances executions,
without the need for additional licenses and tool support.

5.2 Fault Injection Framework

A fault injection framework was developed to inject faults into the DCLS architecture
shown in 6. The main objective of the fault injector is to successfully flip bits at the DUT,
according to the injected fault type. The flipping of bits inside the core may produce output
errors at the core’s output buses, representing an error. There are two fault injections type:

a) Transient fault injection: A bit is inverted during one clock cycle;

b) Permanent fault injection: A bit is stuck at a logical value (HIGH or LOW) during
the whole execution run.

The fault injection diagram is shown in Figure 9. The DCLS architecture shown in
Figure 6 is fully implemented in the Verilator, and the Figure 9 is simplified due to illustration
purposes. The fault injector framework accesses the faulty core internal registers, allowing it
to read and modify its values at any simulation execution time. The fault injector framework
controls the DCLS system simulation, using the Verilator’s programming interface. It uses the
DCLS system I/O to determine the application execution phase, to correctly inject faults, and
observe the system’s response. The fault injector framework also works as the external system
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controller, as shown in the Figure 6. It manages both fault injection and safe state
management of the DCLS system.

Figure 9: Fault Injector Framework.
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A single core is the main target of the fault injector, called faulty core, and all its
pipeline’s internal registers are prone to fault injection. The fault injection is implemented
using an exhaustive fashion, where all internal registers experience a bit flip during the fault
injection campaign. This may result in an expanded fault coverage, considering that not all
internal modules are used in the application (i.e. debugging unit and performance checker)
and would not be excited during a regular application execution. All fault injection runs flips
only a single bit at a time, meaning that a single n-bit wise register may result in multiple fault
injection candidates, as each bit is considered an independent variable. The remaining core is
considered the golden one, where it runs fault-free. There are a total of 2857 registers bits
inside the RISCY pipeline, and a fault injection campaign is defined as the execution of fault
injection in all available bits inside the core within target application execution.

The objective of the fault injection is to produce errors at the faulty core, to evaluate
the DCLS error detection capability and the system’s safe state management. The target
application is executed multiple times, where a single fault is injected at each execution run.
The fault injection framework controls the fault injection routine and the results processing.
The fault injection flow is shown in Figure 10.
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Figure 10: Fault Injector Execution Flow.
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At each FI run, new parameters must be defined, such as target fault injection type,

injection time, and selected registers. These parameters are listed in Table 5:

Table 5: Fault Injection Parameters.

Parameter Description

Faultinjection type Defines Fl implementation. It can be a soft-fault (transient) or a hard fault
(permanent).

Faultinjectiontime Defines Fl time. It is defined randomly.

Fault injection register bit Defines target Fl bit. As the Fl uses an exhaustive fashion, a bit is flipped
only once given a Fl type.

Source: From the author.

After the injection of the fault, the fault injector framework watches for any
divergence in the DCLS cores via a virtual comparer, shown in Figure 9. If an output
mismatch is observed by the virtual comparer but not corresponded by the DCLS comparer,
an error flag is asserted and the simulation is stopped. If both virtual and DCLS comparer
detects an error, its type is processed and logged for report generation. The Verilator can
modify any bit value at any time, but its value may be updated by the bit’s netlist during the
simulation run. To avoid incorrect fault injections, a bit watcher is implemented in the fault
injector framework, where it is always evaluated before the simulation’s clock update. In
transient fault injection runs, it checks if the target bit register was updated after the fault
injection operation. In a permanent fault injection run, it re-injects the target fault if necessary.
The error reports are generated after executing the fault injection campaign. It follows a set of
rules shown in Figure 11.
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Figure 11: Error Type Rules.
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Table 6 shows further explanations about error types, indicating each peculiarity and

explaining its practical effects on the Design Under Test during the fault-injection campaign.

Table 6: Error Types Explanation.

Error Type Description

Bus error Is true whenever the DCLS comparator detects an error. It may be at any
core’s output buses.

UNACE Is true when the injected fault was on a register Unnecessary for

Architecturally Correct Execution — UNACE.

Masked Is true when an injected transient fault did not propagate to the outputs and
was over written during application execution.

Source: From the author.

This section exhibited the proposed fault injection framework. It consists of an
application built on the Verilator simulation tool, and uses object-oriented programming
language C++ to create, evaluate and generate reports upon the fault injection routines
simulations. The next section explains the target applications used to evaluate the fault
tolerance capability of the DCLS system during the proposed fault-injection campaign.



47

5.3 Application

This section shows the target applications for evaluating the DCLS system. The
applications are intended to use as much as possible of the core’s processing power, to
increase the register utilization and therefore increasing its susceptibility to faults. DSP
applications are selected as test cases, as they are used widely in the literature. A matrix
multiplication and an IIR filter are used to evaluate the DCLS system. Different application
sizes are used in the fault injection campaigns. As the application size differs, the
susceptibility and result of fault injections may change. The matrix multiplication is evaluated
using a 7x7 and a 3x3 matrix sizes, both using a single-precision data type. The compiler was
configured to emulate all float points operations, as the target core doesn’t include a hardware
float point unit. The IIR filter is evaluated with a 10 and 100-point input vector, and uses a
fixed point C library to perform its operations. Both DSP operations are heavy CPU
consuming, as it both emulates float and fixed-point operations. This increases even further
the register file utilization, increasing the system susceptibility to faults. A total of 3 contexts
backup checkpoint are added to all applications, to evaluate the DCLS software overhead and
allow context restoration after an error detection. Table 7 resumes each application case used
to evaluate the DCLS system.

Table 7: Application Cases.

Application Case | Description

Matrix 7 x 7 Matrix multiplication application using emulated floating point operations.
Each matrixis a 7x7 square one.

Matrix 3 x 3 Matrix multiplication application using emulated floating point operations.
Each matrixis a 3x3 square one.

IIR 100 IR filter application thatuses fixed-pointlib. Filters 100 points of data.

IIR 10 IIR filter application that uses fixed point lib. Filters 10 points of data.

Source: From the author.

This chapter explained the fault injection specifications, as the target applications to
evaluate the DCLS fault-tolerance capability. In the next chapter, the results of the proposed
system are presented.
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6 RESULTS

This chapter shows the obtained results of the DCLS system, in terms of hardware
utilization, fault injection results and software overhead. The DCLS system hardware
description was designed and validated using ModelSim, a commercial Verilog simulator.
The DCLS system then was implemented in the Verilator simulation tool, building the fault
injection framework. The system then was re-validated to ensure all expected behavior and
hardware interfaces worked correctly, and that the design features work as intended. The
Verilator implementation was seamless and didn’t require any HDL modification.

6.1 Implementation Results

The DCLS enhances a system’s reliability and fault tolerance at a hardware and
software with an overhead cost. This section shows the implementation results of the DCLS,
both in terms of hardware consumption in an FPGA synthesis and on additional clock cycles
needed to implement its software features.

6.1.1 FPGA Synthesis

The DCLS design was implemented in a Xilinx Kintex 7 KC705 FPGA evaluation
board, using its programmable part to evaluate the system’s area, and timing performance.
The Vivado Design Suite was used to synthesize the design. As this work’s objective is to
evaluate the DCLS solution overhead, only the core replication and additional DCLS modules
are analyzed. All other SoC components shown in Figure 6 are not evaluated in this section
analysis, as they are considered external components, and can be customized according to the
user need.

The total DCLS resource consumption (duplicated core + additional DCLS modules)
uses 4492 Flip-Flops (FFs) and 12317 Look-Up Tables (LUTs). Considering that a single
RISCY core unit consumes 2241 FFs and 6003 LUTs, the hardware overhead to implement
the additional DCLS modules is at 0.44% in FF and 5.18% of LUT utilization compared to a
single RISCY core. The DCLS additional modules reach a summed resource utilization of
only 10 FFs and 311 LUTs.

In terms of clock speed, the unhardened system reached a maximum of 80 MHz,
where the clock frequency of the DCLS system archived a maximum of 65 MHz. This
represents a reduction of 18.75% of its clock performance, and the resulting performance of
the system may decrease even further when adding the context save operation, which may
take several clock cycles to execute. The frequency reduction is due to the net delay in both
clock and data path, and the critical path is inside the second core. The total power utilization
of the DCLS system in the target FPGA board reached 0.363 W, where the unhardened
system reached a total of 0.356 W. The power difference is not relevant, and the similar
values can be explained primarily due to the FPGA’s board base power usage. An ASIC
implementation may increase the power consumption difference.
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In contrast with other authors with different implementation architecture and results, in
(OLIVEIRA et al., 2018), the authors implemented an ARM Cortex-A9 hardcore dual-core
lockstep in a Xilinx Zync FPGA, and reached a hardware overhead reached up to 275%.
Iturbe et al. ITURBE et al., 2016) present an ARM Cortex-R5 triple-core lockstep (TCLS),
and its TCLS assist unit consumes nearly 18% of the ARM Cortex-R5 area. A lockstep
framework using RISC-V is proposed by (RODRIGUES et al., 2019). The proposed lockstep
resource usage was extremely lightweight, with an order of nearly 2% area consumption if
compared with the RISC-V area utilization.

6.1.2 Software Overhead

The software overhead is the additional execution time needed to perform context
backup operations. The greater the number of context backups in an application, the greater
the software performance penalty. The RAM size used in the application also has a major
impact on the execution time overhead, and must be taken into account when projecting the
system. In this work, a 32 KB RAM was used as main memory data, and all its content is
copied during a context backup operation. Table 8 shows application cases execution time in
clock cycles, both on unhardened and DCLS execution results. The application may suffer a
great performance penalty if is not balanced, of it its application size is small if compared
with the time needed to perform a context backup operation. Both cases Matrix 3 x 3 and IIR
10 have a great overhead if compared with its counterparts’ applications. Besides the
hardware overhead, which may increase system power consumption and reduce clock
frequency as shown in the subsection 6.1.1, it may also increase the needed clock cycles to
execute the application. Although the performance penalty is greater in smaller applications,
no memory management optimization was performed to reduce such penalty, opening a gap
for future works.

Table 8: Software Overhead.

Application | Total clock cycles | Total clock cycles DCLS with | Overhead
Case unhardened 3 checkpoints

Matrix 7 x7 | 287,791 511,837 77.85%
Matrix 3x3 | 14,065 238,111 1592,93 %
IIR 100 206,106 430,152 108,7 %
IR 10 25,566 249,614 876,35 %

Source: From the author.

This section exhibited the implementation results, both in terms of hardware
implementation and software overhead analysis. The next section presents the fault injection
experiments executed in the DCLS system.
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6.2 Fault Injection Experiments

This section shows the results of the fault injection methodology presented in section
5.2. The fault injection campaigns are performed with the application cases explained in
section 5.3. The main objective of the fault injection in this work is to provoke errors at the
faulty core outputs, to evaluate the DCLS error detection capability. Each application case
was used in an exhaustive fault injection campaign, where each core’s pipeline register
experienced a soft and a hard fault injection.

6.2.1 FaultInjection Results Overview

Table 9 shows a resumed fault injection statistic. In the same application case, soft
faults were harder to propagate to the core’s output as an error, whereas hard faults produced
more errors during the fault injection campaign. The similar statistics in the error
manifestation results may appear from the exhaustive fault injection approach. As hard faults
are forced until the end of the simulation run, its corrupted data value can be kept underused
for a long time, resulting in a later error propagation, and produce a later detection time as
seen in the Table 9.

Table 9: Fault Injection Global Statistics.

Statistic Min Mean Max
Hard Error detection time (clock cycles) 1 92 56678
Soft Error detection time (clock cycles) 1 37 305
Hard Error detection manifestation 3959% | 4165% | 44,31 %
Soft Error detection manifestation 16,56% | 16,85% | 17,64 %

Source: From the author.

Figure 13 shows the statistic results of error type detected during the fault injection
campaign. As hard fault injections cannot produce masked faults, due to its physical nature, it
is not present in the figure. Although there are no masked faults in hard faults, errors
manifestation at the bus output is considerably superior than the soft fault counterpart. The
majority of the injected soft faults didn’t produce errors at the core’s output, and the corrupt
data was overwritten during the fault injection run, masking the fault.
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Figure 12: Fault Injection Error Types Statistics.
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6.2.2 Application Cases Analysis

The results collected from fault injection campaigns in the application cases is show in
this subsection. Figure 13 a compilation of all application cases used to validate the DCLS
system. The overall results are similar, despite being shown in distinct application types and
size. All soft fault injection campaigns presented a small error propagation, and therefore
error detection by the DCLS system, if compared with the hard fault injection type.

Figure 13: Fault Injection Application Cases Results.
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As the proposed DCLS architecture in this work is designed in a tightly-coupled
fashion, all faults that propagate to the core’s output buses will be detected and the system
will enter a safe state. All detected errors during the fault injection run resulted in the stopping
of the DCLS operation and wait until the external system control signal to trigger a context
backup or application reset. The system can be considered safe due to the detection of all
visible errors, as shown in the results in this section, and in addition to the fact that all
modules where designed with one-hot codification, increasing the system fault tolerance
factor. Though affected registers by SEE that do not propagate, they will either be present in
the system until a masking or a signal propagation occurs.

Other authors implement DCLS systems in a loosely-coupled fashion, where the
system’s output is compared asynchronously, thus opening space for posterior error detection.
In the work done in (OLIVEIRA et al., 2018), an ARM Cortex-A9 hardcore dual-core
lockstep in a Xilinx Zync FPGA is implemented, using a loosely-coupled fashion. The
lockstep system compared the system’s output only after both cores executed the target
application. Up to 78% of propagated errors were detected by the system during fault-
injection emulation runs. The design fault-tolerance increased by 80%. The results shown by
Abate et al. (OZER et al., 2018), which implemented a dual-core lockstep with an ARM
CORTEX-RS, indicates that the design detected 100% of the observable errors during the
fault-injection campaign.

The discrepancy between soft and hard faults manifestation is similar to the literature.
In (OZER et al., 2018), the manifestation of transient errors in the outputs of the system was
about 5%, while the rate of permanent errors was 40%. In this work, the transient error
manifestation was about 16%, while the permanent errors manifested at a rate of about 40%.
Although the discrepancy was greater in the related work, it shows the distinct quality
between transient and permanent errors manifestation.

Another important topic is the common-mode error, where both cores experience the
same fault at the same register at the same time, propagating the common error and producing
a false negative at the DCLS comparator interface (FLORIDIA; SANCHEZ, 2018). This issue
can be solved by adding delay registers in the design, in different core’s inputs and outputs, or
changing the physical implementation of the design in the ASIC or FPGA, changing then the
common exposed area. To increase further the system reliability, a watchdog may be added in
the design, and may be configured to trigger a context restore if the DCLS does not respond
within the target time limit.
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7 CONCLUSION

In this work, a DCLS system was presented. An architecture, functional specification
was shown. The DCLS is presented as a technique to increase a system’s fault tolerance
capability, offering a lower hardware overhead if compared with other fault-tolerant solutions,
such as triple modular redundancy. Although it doesn’t indicate which core originated the
fault, making necessary another fault correction technique, its low overhead and cost can be a
great addition to a project, depending on its specification and budget. The usage of open soft-
cores opens a plethora of possibilities, due to its capability of creating customized
applications, which can be integrated into safer applications, and increase the system’s value.
Although the system was designed with the RISCY as target core, it can be adapter to other
soft-core implementations, opening areas of study for future researchers.

A fault injection framework was proposed, to allow system validation and check the
DCLS fault tolerance detection and response. A fault injection flow and an error type
definition to create metrics upon the injected fault also was presented. An open-source tool
was proposed as the simulation environment both for the DCLS architecture as the proposed
fault injection framework. The DCLS system was tested under a fault injection environment
with DSP applications, a matrix multiplication, and an IIR filter. The fault injection was
evaluated and its results explored, showing the discrepancy between fault propagation
between soft and hard faults.

The DCLS system proved capable of detecting faults that propagate at the core’s
output as errors, and responded with a good time response at every observable error. The
design implementation has a very small area overhead, reaching up to 5.18% of LUT
utilization compared to a single RISCY core. Though its maximum frequency decreased
18.5% compared to the unhardened design, and the addition of checkpoints to perform context
backups may result in performance penalty, depending on the number of added checkpoints
and application size.

The proposed DCLS system reached its objective defined in the beginning of this
work, as the system was capable of detecting the observable errors at the system output, as
validated through simulation and fault injections. It is capable to enable a fault-tolerant
system within a FPGA or ASIC design implementation. The area overhead is lightweight, and
its clock timing reduction reached a tolerable factor. The software overhead was analyzed,
where the application size and checkpoints number is a critical factor to determine overall
performance penalty.

7.1 Future Work

As future works, the assessment of the fault susceptibility of the RISCY core can be
evaluated, exploring the architecture processing capability, using the proposed DCLS
architecture and the fault injection framework. Future researches may also include RTOS fault
tolerance analysis using the proposed system in this work, including routines, multiple threads
and operating system features that may increase the system’s vulnerability. A memory
management may also be implemented as future work, to reduce the software performance
penalty when executing smaller applications. A more complete statistical analyses of fault



56

injection may also be performed in future works, showing statistical distribution and
parameters with a more insightful investigation.

Little modification is necessarily to use 64-bit versions of the RISCV ISA in the DCLS
architecture designed in this work, and a fault-tolerance comparison can be made with the 32-
bit version. Future researches may develop a system reconfiguration routine module for
FPGA applications, and integrate it with the DLCS system shown in this work. A TMR
version with the same core as used in this work may also be done, to compare the
performance and overhead penalties. A fault injection using radiation with an implemented
DCLS system in an FPGA can be performed and its results compared with the ones shown in
this work.

In the application part, a software built-in-self-test (SBIST) design is proposed as
future work, where the target SBIST may detect which core originated the fault, by forcing all
its internal registers to be exposed to a system controller. The fault correction may then be
evaluated re-implementing only the detected faulty core, and its performance can be analyzed
compared to the traditional fault correction approach, where the whole system is reconfigured.
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