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ABSTRACT

CONTEXT: The advances in the Health Information Technology (HIT) brought many ben-
efits to the health care area, especially to the digital storage of patients’ health records. How-
ever, it is still a challenge to have a unified viewpoint of patients’ health history, because typ-
ically, health data is scattered among different health organizations. Furthermore, there are
several standards for these records, some of them open and others proprietary. Usually, health
records are stored in databases within health organizations and generally do not have external
access. This situation applies mainly to cases where health care providers maintain patients’
data, known as EHR (Electronic Health Record). In the case of PHR (Personal Health Record),
in which patients by definition can manage their health records, they usually have no control
over their data stored in health care providers’ databases. Even with adopted standards, patients
often need to explain over and over their health information when they are taken care at differ-
ent locations. This problem hinders the adoption of PHR. OBJECTIVE: Thereby, we envision
two main challenges regarding PHR context: first, how patients could have a unified view of
their scattered health records, and second, how health care providers can access up-to-date data
regarding their patients, even though changes occurred elsewhere. The scientific contribution
is to propose an architectural model based on Blockchain to support a distributed PHR, where
patients can maintain their health history in a unified viewpoint, from any device anywhere.
Likewise, the scientific contribution for health care providers seeks to promote the possibil-
ity of having their patients’ data interconnected among health organizations. METHOD: The
methodology consists in proposing and prototyping an application model named OmniPHR
(’Omni’ comes from omnipresent) as a distributed model to integrate PHRs. The method to
evaluate the model includes assessing the network performance, interoperability, and semantic
integration of different health standards, using a real database from anonymized patients. RE-
SULTS: The evaluations demonstrate the feasibility of the model in maintaining health records
distributed in an architecture model that promotes a unified view of PHR with the scalabil-
ity of the solution. As a result, we evaluated the health data processed in different standards,
represented by openEHR and HL7/FHIR. OmniPHR demonstrated the feasibility to provide se-
mantic interoperability through a standard ontology and machine learning with NLP (Natural
Language Processing). Although 12% of health records still required manual intervention in
conversion, we present a way to obtain the original data from different standards on a single
format. We evaluated our model implementation using the data set of more than 40,000 adult
patients anonymized from two hospital databases. We tested the distribution and reintegration
of the data to compose a single view of health records. Moreover, we profiled the model by
evaluating a scenario with ten superpeers and thousands of concurrent sessions transacting op-
erations on health records simultaneously, resulting in an average response time below 500 ms.
The Blockchain implemented in our prototype achieved 98% availability. CONCLUSION: As
contribution, OmniPHR presents a unified, semantic, and up-to-date vision of PHR for patients
and health providers. The results were promising and demonstrated the possibility of subsi-
dizing the creation of inferences rules about possible patients’ health problems and preventing
future problems.

Keywords: Health Record. Blockchain. Semantic Interoperability. Natural Language Pro-
cessing. Distributed Systems. Health Informatics.



RESUMO

CONTEXTO: Os avanços na Tecnologia da Informação trouxeram muitos benefícios para
a área da saúde, especialmente para o armazenamento digital dos registros de saúde dos paci-
entes. No entanto, ainda é um desafio ter um ponto de vista unificado do histórico de saúde dos
pacientes, porque normalmente os dados de saúde estão espalhados por diferentes organizações
de saúde. Além disso, existem vários padrões para esses registros, alguns deles abertos e outros
proprietários. Normalmente, os registros de saúde são armazenados em bancos de dados dentro
das organizações e raramente se têm acesso externo. Essa situação se aplica principalmente aos
casos em que os dados dos pacientes são mantidos pelas organizações de saúde, conhecidos
como EHR (Electronic Health Record). No caso do PHR (Personal Health Record), no qual
os pacientes podem gerenciar seus registros de saúde, eles geralmente não têm controle sobre
seus dados armazenados nos bancos de dados das organizações. Mesmo com padrões de dados
de saúde adotados, os pacientes muitas vezes precisam explicar diversas vezes suas informa-
ções de saúde quando são atendidos em locais diferentes. Esse problema dificulta a adoção do
PHR. OBJETIVO: Desse modo, vislumbramos dois desafios principais no contexto de PHR:
primeiro, como os pacientes podem ter uma visão unificada de seus registros de saúde dispersos
e, segundo, como os profissionais de saúde podem acessar dados atualizados sobre seus pacien-
tes, mesmo que as mudanças ocorram em outros lugares. A contribuição científica consiste em
propor um modelo de arquitetura baseado em Blockchain para suportar um PHR distribuído,
onde os pacientes possam manter seu histórico de saúde unificado, a partir de qualquer dis-
positivo e em qualquer lugar. Da mesma forma, a contribuição científica para os profissionais
de saúde busca promover a possibilidade de interconexão dos dados dos pacientes entre as or-
ganizações de saúde. METODOLOGIA: A metodologia consiste em propor e prototipar um
modelo de aplicativo chamado OmniPHR (Omni de onipresente) como um modelo distribuído
para integrar os PHRs. Para avaliar o modelo, o método inclui avaliar desempenho da rede,
interoperabilidade e integração semântica de diferentes padrões de saúde, usando um banco de
dados real de pacientes anonimizados. RESULTADOS: As avaliações demonstram a viabili-
dade do modelo na manutenção de registros de saúde distribuídos em um modelo de arquitetura
que promove uma visão unificada do PHR com escalabilidade da solução. Como resultado,
avaliamos os dados de saúde processados em diferentes padrões, representados por openEHR
e HL7/FHIR. O OmniPHR demonstrou a viabilidade de fornecer interoperabilidade semântica
através de uma ontologia padrão e PLN (Processamento de Linguagem Natural). Embora 12%
dos registros de saúde ainda precisem de intervenção manual na conversão, apresentamos uma
maneira de obter os dados originais de diferentes padrões em um único formato. Avaliamos
a implementação do nosso modelo usando o conjunto de dados de mais de 40.000 pacientes
adultos anonimizados de dois bancos de dados de hospitais. Testamos a distribuição e reinte-
gração dos dados para compor uma única visão dos registros de saúde. Além disso, analisamos
o modelo avaliando um cenário com 10 super nós e milhares de sessões concorrentes transa-
cionando operações em registros de saúde simultaneamente, resultando em um tempo médio
de resposta abaixo de 500 ms. O Blockchain implementado em nosso protótipo atingiu a dis-
ponibilidade de 98%. CONCLUSÃO: Como contribuição, o OmniPHR apresenta uma visão
unificada, semântica e atualizada de PHR para pacientes e profissionais de saúde. Os resultados
foram promissores e demonstraram a possibilidade de subsidiar a criação de inferências sobre
possíveis problemas de saúde do paciente e a prevenção de problemas futuros.

Palavras-chave: Registro de Saúde. Blockchain. Interoperabilidade Semântica. Processa-
mento de Linguagem Natural. Sistemas Distribuídos. Informática em Saúde.
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1 INTRODUCTION

Information and Communication Technology (ICT) has transformed the health care field

worldwide. One of the main drivers of this change is the Electronic Health Record (EHR) (RA-

JKOMAR et al., 2018). However, there are still open issues and challenges because the EHR

usually reflects the partial view of a health care provider. Besides, by definition, EHR does not

address patients’ ability to control or interact with their data (ISO, 2005). Furthermore, with the

growth of mobile and ubiquitous computing, the number of records regarding personal health

is increasing exponentially. This movement we characterize as the Internet of Health Things

(IoHT), including the widespread development of wearable computing technology and assorted

types of health-related sensors (COSTA et al., 2018). This area leads to the need for an inte-

grated method of storing health-related data, defined as the Personal Health Record (PHR) (ISO,

2012), which could be used by health care providers and patients (ROEHRS et al., 2017). This

approach could combine EHRs with data gathered from sensors or other wearable computing

devices (ROEHRS; COSTA; ROSA RIGHI, 2017; ROEHRS et al., 2018). This unified view of

patients’ health could be shared with providers, which may not only use previous health-related

records but also expand them with data resulting from their interactions (ROEHRS et al., 2019).

Another PHR advantage is that patients can interact with their health data since their data are

under their control (ISO, 2012).

The Health Information Technology (HIT) has evolved greatly, but even now, we generally

have not our entire patient health history in a unified view (SARIPALLE; RUNYAN; RUSSELL,

2019). We still have different health records with assorted health care providers (i.e., health

care professionals and health care organizations) that we interacted lifelong (VAN GORP; CO-

MUZZI, 2014) (BOURGEOIS; NIGRIN; HARPER, 2015). At every medical appointment,

patients must tell their whole health history again, losing time and accuracy. In addition, there

are technical issues with health records, since there are several health data standards for differ-

ent purposes, as can be seen in Table 1. The standards aim to systematize the patients’ clinical

datasets and define protocols to standardize health information. These are usually dedicated to

standardize the storage and to regulate the clinical and demographic data about patients. Health

records typically incorporate data regarding vital signs, laboratory exams results, evolution, and

diagnosis. However, in some cases, the standards are guidelines designed to address health

records in some regions or countries, such as standards CEN (LOZANO-RUBÍ et al., 2016) in

Europe or xDT in Germany (MILSTEIN; BLANKART, 2016). Patient’s health data are col-

lected throughout life and can receive data from several sources, including health professionals

records from laboratories, clinics or hospitals, including data from sensors that monitor the

patient’s health (HEINTZMAN; KLEINBERG, 2016) (MIHAJLOVIĆ et al., 2015).

The area of health information technology has evolved in the application of standards for

health record definition, through the adoption of EHR (SHORTLIFFE; CIMINO, 2013). The

purpose of EHR is to standardize health data, but without determining or specifying which
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Table 1 – Standards for health records storage and communication.

Acronym (Reference) Short Description
ASC X12N (ASC, 2017) Accredited Standards Committee X12N
CCR (CCR, 2017) Continuity of Care Record
CEN/TC 251 (CEN, 2017) European Committee for Standardization
DICOM (DICOM, 2017) Digital Imaging and Communic. in Medicine
HL7/CDA/FHIR (DOLIN et al., 2015) Health Level-7 / Fast Health. Interop. Res.
HIPAA (HIPAA, 2017) Health Insur. Portab. and Account. Act
ICD/ICF/ICHI (ICD, 2017) Family of International Classifications
ICPC (ICPC, 2017) International Classification of Primary Care
IHE (IHE, 2017) Integrating the Healthcare Enterprise
ISO/TC 215 (ISO, 2017a) International Organization for Standard
LOINC (LOINC, 2017) Logical Observ. Identif. Names and Codes
openEHR (OPENEHR, 2017) Open Electronic Health Records
SNOMED-CT (SNOMED, 2017) Systematized Nomenclature Of Medicine
xDT (MILSTEIN; BLANKART, 2016) Germany Family of Data Exchange Formats

Source: Prepared by the author

standard to adopt. Another way to obtain patients’ health data in an electronic and equalized

format is through the PHR (TANG et al., 2006; ARCHER et al., 2011). The ISO TR14639-

2:2014 indicates that PHR is the “representation of information regarding or relevant to the

health, including wellness, development, and welfare, of a subject of care, which may be stand-

alone or integrating health information from multiple sources” (ISO, 2014).

The adoption of the EHR has evolved as a consolidated technology for recording patient

health data (JAMOOM; YANG; HING, 2016; YADAV et al., 2018). A key difference between

EHR and PHR is that PHR enables patients to access and control their data (ISO, 2017b). PHR

is an emerging trend with growth potential in the health care domain (WASS; VIMARLUND,

2018). Improving the management and sharing of health records is a key focus of our work

reported in this study. Although initiatives to adopt PHR have evolved in recent years, they

face barriers to adoption (NEW et al., 2018). One barrier faced by both EHR and PHR is

the distribution and limitations of health record integration. Other barriers relate to security

issues, such as confidentiality and privacy of health records (FORD; HESSE; HUERTA, 2016;

ALYAMI; SONG, 2016).

In this sense, Blockchain technology has come up with a strong appeal to the financial area,

especially in the use of virtual currencies, also known as crypto-coins (NAKAMOTO, 2008).

However, after a few years, potential uses of this technology began to emerge in other business

areas (MCGHIN et al., 2019). Due to the premise of implementation based on data distribution

in Peer-to-Peer (P2P) networks, Blockchain has opened up possibilities for use in other fields,

such as health area (METTLER, 2016). Regarding this area of business, the particular highlight

is the possibility of use for the integration of patients’ health records (MCGHIN et al., 2019). In

other words, as chained blocks can store records of transactions with electronic money, it was

seen that the health records of patients could also be chained (AZARIA et al., 2016).
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1.1 Motivation

The physician-patient relationship traditionally consists of the patient’s dependence on the

physician’s recommendations (OROM et al., 2018). Physicians need to keep accurate record

systems to store information about patients and use the records to make diagnoses and rec-

ommendations (RATHERT et al., 2019). In this sense, one significant milestone is the use of

the EHR. Health records are collections of patient health data, and the EHR is defined as a

digital repository of the health status of patients (SCHINASI et al., 2018). The EHR evolved

from several electronic methods of storing patients’ health data that became a structured and

interoperable approach (CASTILLO; MARTÍNEZ-GARCÍA; PULIDO, 2010; ISO, 2005).

However, EHRs have some limitations because their records are based entirely on data re-

ported by health care providers (BRENNAN; DOWNS; CASPER, 2010). One trend is allow-

ing patients to have access to their health data, making them the owner of such data (MEIER;

FITZGERALD; SMITH, 2013). Therefore, PHR arose from the EHR and is defined as a health

record related to patient care, which is controlled by the patient. (SPIL; KLEIN, 2015; TANG

et al., 2006). The PHR can also be defined as a representation of the health information, well-

ness, and development of a person (ISO, 2012). The main advantages of the PHR refer to the

ability of patients to maintain data on their health. However, many challenges need to be over-

come to promote widespread PHR adoption, including how to achieve interoperability using the

EHR, implementation costs, privacy, security, and the assessment of the effective benefits that

the patient may have (BAIRD; NORTH; RAGHU, 2011).

The PHR works as a platform for patients’ and health care providers’ use, enabling the ex-

change of information with health care systems (YAO et al., 2018). PHR has also emerged as

a mechanism for patients to make appointments with their health care providers. The aim is to

address patients’ evolving needs by using specific methods to improve their care and foresee

health issues. The technologies used to process health-related data include machine learning,

pattern recognition, applied mathematics, statistics, expert systems, data sharing, and artifi-

cial intelligence algorithms (ANDREU-PEREZ et al., 2015). Moreover, advances in ICT have

allowed both the storage and easy access of large amounts of data, allowing the release of phys-

ical space, facilitating research and the correlation of data within hospitals (YAO et al., 2018).

However, the increasing number of patients who need care, especially with the increased life

expectancy of people in several countries, has been an obstacle to managing huge databases of

medical records. The health community is constantly facing global epidemics and issues that

transcend countries, such as cancer, influenza, AIDS, diabetes, and obesity. Patients who mi-

grate or travel from one country to another could make use of their PHR to obtain faster and

more efficient health services. With the increase in the adoption of wireless technology and

mobile devices, this creates opportunities to deliver health care services to patients through a

world-standard PHR, although many challenges remain in achieving these benefits (WELLS

et al., 2014).
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In this way, Blockchain technologies (NAKAMOTO, 2008; ZHANG et al., 2017) are a

promising means to address the barriers with distributed PHRs described above by forming a

unified view of PHRs. Blockchain technology has been researched and implemented in various

domains, initially in the financial domain with virtual currencies and more recently in the health

domain (RANDALL; GOEL; ABUJAMRA, 2017; DAGHER et al., 2018). Various approaches

to applying Blockchain to health data have been proposed, centered mostly around composing

a distributed ledger of health records (KUO; KIM; OHNO-MACHADO, 2017) and providing

useful tools to preserve patient privacy (GOLDIM; GIBBON, 2015). The performance of dis-

tributed PHRs and integration of health data among health organizations are crucial factors for

ensuring the adoption of Blockchain technologies.

The main feature of the distribution of patient records, forming a complete and unique his-

tory, fits in Blockchain model since many health providers attending to a patient over a lifetime

(CHEN et al., 2019). A data-chained distribution model facilitates the application of this tech-

nology to the model of patient health records and can form a single view of these data. Another

factor that fits the Blockchain technology model is the fact that health records do not follow

a centralized model, and in this sense, health records can actually belong to the patient, shap-

ing the concept of PHR (PUTHAL et al., 2018). Another aspect of the use of Blockchain,

especially regarding health records, is that these data are the fundamental basis for making it

possible to expand medical use. In this case, Blockchain intends to form the patient’s complete

history, allowing for the distributed processing of any manipulation or query of the data. In

addition, Blockchain technology allows adding security features, given its resilient nature of

data validation across all network nodes and the encryption capabilities to meet confidentiality

assumptions (CACHIN; VUKOLIĆ, 2017).

PHRs allow patients to maintain information on their medical conditions, drugs, and behav-

iors related to self-care and self-monitoring of their health (CUNNINGHAM; AINSWORTH,

2018). Nevertheless, access controlled by the patients represents an ever-present concern be-

cause it requires a free but safe balance between system customization, privacy, and security

controls (LIU; HUANG; LIU, 2015). In particular, without the application of security prac-

tices, no privacy is available for the data (OZOK et al., 2014). Another possibility is that the

PHRs accept data obtained from health-related equipment, such as accelerometers, gyroscopes,

wireless scales, wristbands, and smartwatches. The proliferation of these technologies is called

the Internet of Things (IoT) (LI; DA XU; ZHAO, 2015). Among IoT application domains,

health care is one of the most attractive, giving rise to many health-related devices (ISLAM

et al., 2015). Data collected from these objects can complement the PHRs and help detect risks

to the patients’ health (GUBBI et al., 2013). Nonetheless, existing PHRs have limited intelli-

gence and can only inform a small subset of users’ health care needs (LUO; TANG; THOMAS,

2012). Besides, processing PHR data automatically and combining data from sensors with

stored records for transformation into useful knowledge is another challenge (BLAKE, 2015).

In conjunction with Blockchain technology, and to compose the patient’s medical record, we
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have the Internet of Health Things (IoHT) concept (COSTA et al., 2018). IoHT aims to aggre-

gate to the patient’s record the collection of data in real-time of the patient’s health, such as

data of online monitor of the health status. In this way, Health Information Systems (HIS) can

collect patients’ health data in several places and HIS can feed the patient’s record constantly

with up-to-date data. Therefore, with the formation of the complete and constant history of the

patient’s records, new possibilities open to analyze these data, helping in the formation of the

Big Data of the patient’s health records (WANG; KUNG; BYRD, 2018).

1.2 Problem

There are several health data standards (FRAGIDIS; CHATZOGLOU, 2018). Many health

care providers adopt proprietary standards without integration with others. In some countries,

there are recommendations for adopting recognized health data standards. One of the main goals

of using standards is to provide interoperability among health care organizations. Nevertheless,

using open and internationally recognized standards does not guarantee interoperability because

many of them are incompatible with each other (MANDEL et al., 2016). In this sense, the

patients’ data are difficult to integrate (EDEN et al., 2016; CANTOR; THORPE, 2018). Even

with the evolution of open specifications and attempts to promote the use of the standards, the

adoption of EHR/PHR is still challenging (FORD; HESSE; HUERTA, 2016). In the PHR case,

which can also aggregate data from wearable devices of the patient, the integration can be more

complex. This is because the PHR aims to gather all the patient’s health data, regardless of

the health care provider (FRICTON; DAVIES, 2008). Besides, the syntactic standards have

limited benefits because their overall purpose is only to structure or standardize the format and

terminologies used in the health records (VUOKKO et al., 2017). In summary, the problem

statement of this work is regarding the difficulty to integrate the several existing standards of

patient health data.

Many health systems use databases in proprietary formats. These databases are structured to

be accessed exclusively by those systems, with little or no interoperability with others (KRAAN

et al., 2015). Usually, legacy systems in many health organizations preserve proprietary data

structures. In general, these databases are hosted in a data center inside the health organizations,

with restricted access to internal health professionals. In some cases, e.g., laboratory exams re-

sults, patients and health care providers can have external access to health records in a restricted

manner, only to be viewed or printed. Another factor is that health data is becoming increasingly

larger. Several studies bring out crucial points as getting this mass data about patients’ health,

such as standardization of data, storage capacity, location, safety, and how to filter, analyze and

quickly obtain such data (O’DRISCOLL; DAUGELAITE; SLEATOR, 2013). Allied to these

issues, health organizations maintain the patient’s EHR indefinitely, even outdated. This is re-

quired for legal reasons, depending on the country (BOURGEOIS; NIGRIN; HARPER, 2015).

PHRs have a problem of health data distribution since, in many cases, health care providers do
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not share their patients’ data. Hence, they do not have these data up-to-date when other health

care providers assist their patients (DYE et al., 2016). Moreover, these records are usually

stored in different standards on different health organizations, which bring difficulties for ex-

change health records between organizations (BHARTIYA; MEHROTRA; GIRDHAR, 2016).

Besides, there are several health standards for different purposes and initiatives to mitigate some

integration problems among health systems (MARCOS et al., 2015).

Other problems arise from the potential existence of health records duplicated within the

health organizations due to the ambiguity or repetition of some patient’s names (MCCOY et al.,

2013) (KRAAN et al., 2015). Furthermore, from the patients’ viewpoint, they do not have an

integrated view of their health records. Although there are consolidated standards to structure

the patient’s health data, the adoption and implementation of EHR, particularly PHR, is still a

challenge (SIMPSON, 2015). Much of the obstacles come from the fact that health records are

sensitive and have complex management for owners and users (LI et al., 2013) (ISTEPHAN;

SIADAT, 2016). There are concerns in PHR adoption from health care providers and patients

because users are afraid to share their data, as there are concerns about where data will be stored

and who will have access to it (TONG et al., 2014). Other barriers include concerns from health

care providers regarding the management and validity of records registered in PHR since pa-

tients are the owner and can manage their records (KRAAN et al., 2015). In addition, because

of the high cost of datacenters, many PHR services have migrated to third party providers using

cloud computing architectures (LI et al., 2013). However, according to Mxoli (MXOLI; GER-

BER; MOSTERT-PHIPPS, 2014) “access management, security issues, legal issues and loss of

data are some of the risks that negatively affect the storing of PHRs in the Cloud" (MXOLI;

GERBER; MOSTERT-PHIPPS, 2014).

Patient health data are conventionally stored in health care provider repositories (HEART;

BEN-ASSULI; SHABTAI, 2017; GARDIYAWASAM PUSSEWALAGE; OLESHCHUK, 2017).

Often, however, these data are not shared between providers or with patients. Moreover, even

where there is an intention to share data, there are barriers to achieving this goal (SHOWELL,

2017), including

(a) Interoperability stemming from the lack of common health data standards (ALYAMI;

SONG, 2016).

(b) The difficulty of integrating large amounts of data contained in medical records (KAUR;

RANI, 2015).

As a consequence, patients must often re-inform their health history, repeat laboratory ex-

ams, or even perform unnecessary tests when they are attended by different health providers

(KRASOWSKI et al., 2015). Although some countries have initiatives to integrate personal

health history, this integration often occurs only at the organizational level, without patients

having access to their digital records (FRAGIDIS; CHATZOGLOU, 2017). In such cases, there-

fore, only the data reported in the health organizations are integrated, regardless of factors like
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patient wellness data, nutrition, data collected on wearables, or collected on monitoring equip-

ment at home (CHIAUZZI; RODARTE; DASMAHAPATRA, 2015). Moreover, patient care

often comes from health providers who are not part of an integrated network of health organiza-

tions, e.g., if patients are treated in a foreign country (GARDIYAWASAM PUSSEWALAGE;

OLESHCHUK, 2017).

Since its inception in the past decade, Blockchain’s technology-driven field of patient health

records has shown potential (PARK et al., 2019). Since then, various initiatives, proposals, and

use models have emerged. At the same time, various tools are emerging to facilitate the imple-

mentation of Blockchain technology for general purposes. However, even with this evolution, in

fact, still a few solutions have implemented Blockchain applied to health records in production

environments (PARK et al., 2019).

1.3 Research Question

We researched the recent scientific literature to identify issues and barriers regarding PHR.

The objective was to identify gaps and opportunities about PHR, as well to determine the main

research question that underlies our study. Considering the issues, barriers and challenges facing

the adoption of PHR previously presented, specifically regarding problems with interoperability

and health data distribution, the research goal underlying this study is to answer the following

main research question:

How would it be possible to have a single view of a PHR being distributed, up-to-date,

and semantic interoperable to patients and health care providers use?

As explained throughout this study, our focus is on addressing problems related to the dis-

tribution and semantic interoperability of patient health data. In this sense, we consider as

distribution problems the fact that the patients’ health data are spread in several health organi-

zations. We consider semantic interoperability problems the fact that several standards of health

data are incompatible with each other, which prevents the extraction of knowledge from them.

Moreover, we consider as a problem of updating the health data, the consequent fact that, be-

sides to the problems cited above, patients do not have a unified and up-to-date view of their

data, as well many health organizations do not share their patient data.

1.4 Scientific Contributions

To identify the technology for the PHR and to discuss the main open issues, this work started

surveying the main contributions of the scientific community over the last decade. The purpose

was to review the PHR literature and describe the existing models. As a way of mapping this

scenario, we used the Systematic Literature Review (SLR) methodology to choose the stud-

ies (KITCHENHAM; CHARTERS, 2007), (KITCHENHAM; BRERETON, 2013), (GARCÍA-
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BORGOÑON et al., 2014). As a contribution of this first part of the study, we propose an

updated and wide taxonomy for PHRs and indicate further directions for study (ROEHRS et al.,

2017).

The main scientific contribution is to provide a distributed and interoperable architecture

model using the Blockchain technology for PHR, which addresses a unified viewpoint for both

patients and health care providers. Patients can take advantage of maintaining their health his-

tory in a single view, as well as health care providers have these data up-to-date, regardless of

where the patient was treated. To answer the research question, we propose a model named Om-

niPHR, where the prefix ’Omni’ comes from omnipresent, meaning that is present everywhere

(ROEHRS; COSTA; ROSA RIGHI, 2017).

A key aspect of our work involves evaluating a model for distributed PHR integration based

on Blockchain technology (NAKAMOTO, 2008; TAPSCOTT; TAPSCOTT, 2016). The re-

search gap that our work addresses involves determining how to develop a distributed and inter-

operable PHR implementation using Blockchain technology to integrate patient health records

(ROEHRS et al., 2019). In particular, this work:

(a) evaluates the distribution and reintegration of health records via Blockchain technologies

to compose a unified PHR view,

(b) analyzes the assessment of non-functional performance requirements, such as measure re-

sponse time, CPU usage, memory occupation, disk and network usage of a varied number

of superpeers and concurrent sessions transacting different operations on health records

simultaneously, and

(c) discusses best practices for deploying Blockchain technologies in health care.

The OmniPHR approach is innovative since it promotes the integration of health data through

the use of a distributed, private, and customizable platform, along with interoperable and standards-

based protocols (ROEHRS; COSTA; ROSA RIGHI, 2017; ROEHRS et al., 2018, 2019). Like-

wise, we integrate distributed health records in a unified, safe, and interoperable manner for

use by health providers and patients. In particular, the essential contribution is that OmniPHR

promotes the sharing of PHRs among health care providers, with the possibility of knowledge

and consent of the patient.

Therefore, this study aims to promote the formation of an integrated PHR as a basis for full

clinical knowledge with the use of Blockchain technology in a differentiated setup from the

traditional one. In this way, this study aims to address as contribution two main aspects:

(a) The first contribution aims to propose a disruptive business model architecture based

on Blockchain technology, to promote the implementation of a complete and distributed

health record of the patient.
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(b) As a second contribution, this proposal aims to shed light on the integration of differ-

ent Blockchain-based architectures, i.e., specifically regarding the orchestration of multi-

ple Blockchains (Multi-Blockchain), in order to make the integration of patients’ health

records widely possible.

As contribution regarding the interoperability, the proposal presents an application model

to addresses the integration issues between health data standards, providing a single, semantic

and up-to-date PHR viewpoint, through ontology and Artificial Intelligence (AI) using Natural

Language Processing (NLP) to automate the conversion of different health standards (ROEHRS

et al., 2018). According to the problem statement of health data interoperability, the objective

is to propose an architecture model that enables the improvement of health services for patients

and health care providers through the semantic interoperability of health data. These objectives

aim to enable continuous updates on the PHR, independently of the places where the patient

has their data collected or changed.

1.5 Study Organization

The remainder of the study is divided as follows:

(i) Chapter 2 summarizes the main concepts, challenges, and models that support the pro-

posal, detailing the concepts of EHR, PHR, as well as the respective advantages and

disadvantages.

(ii) Chapter 3 explains the methodology applied in each stage of the work, including the

methods used in the systematic literature review, architecture proposal, and semantic in-

teroperability proposal.

(iii) Chapter 4 presents the main related work and the strategies to select them.

(iv) Chapter 5 presents the foundation technologies for model development and details the

architecture of OmniPHR model.

(v) Chapter 6 presents the implementation details, evaluation applied in each stage, and sum-

marizes the results obtained.

(vi) Chapter 7 discusses the impacts, opportunities, research limitations, and future directions.

(vii) Chapter 8 presents the final considerations regarding the findings and future work.
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2 BACKGROUND

This chapter summarizes the terminology and platforms used in this work. This chapter

presents the main concepts in order to support the proposed solution, as well as important def-

initions for the understanding, classification, and organization of the proposed work. We start

with the concepts, advantages, and disadvantages of EHR, PHR, and the definition of inter-

operability. Afterward, we describe the technologies that complete the solution and how they

are interconnected with the model, including the technologies: Blockchain, Routing Overlay,

openEHR health data standard, and Chord algorithm.

2.1 Electronic Health Record - EHR

The EHR, also called electronic medical record, refers to a structure in digital format of pa-

tients’ health data that is maintained throughout their life and is stored accurately in a repository

(GUNTER; TERRY, 2005). Health care providers use EHRs, whose data can vary greatly and

can include vital signs (such as body temperature, pulse, respiration, and blood pressure), age,

weight, medications, allergies, medical examination results, and radiology images that are used

to diagnose conditions (GUNTER; TERRY, 2005), (ISO, 2005). The EHR is used to support

health care professionals and health organizations (e.g., hospitals, laboratories, or clinics) for

the improved management of patient health data (CALIGTAN; DYKES, 2011). However, these

health records are usually not stored with the same structure in different health organizations.

These factors hinder the interoperability of health information among hospitals, clinics, and lab-

oratories (ALABBASI et al., 2014). To address some of these problems, the PHR concept was

proposed in 2006 (TANG et al., 2006) and was defined as an ISO (International Organization

for Standardization) standard (ISO/TR 14292) in 2012 (ISO, 2012).

According to ISO/TR 14639, EHR is “information relevant to the wellness, health and health

care of an individual, in computer-processable form and represented according to a standard-

ized information model" (ISO, 2014). EHR refers to a structure in an electronic way of patient’s

health records, collected and stored in a repository, which can be shared by different digital for-

mats. EHR can contain several data groups, such as allergies, vital signs, medical appointments,

laboratory exams results, medical imaging, and diagnoses. To differentiate health records that

are not integrated between health care providers, these are named EMRs (Electronic Medical

Records). EMR can be considered a special type of EHR with specific focus into the inter-

nal medical domain of health organizations (ISO, 2014) (HEART; BEN-ASSULI; SHABTAI,

2016).
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2.1.1 Advantages and Disadvantages of EHR

EHR is a standardized information model, enabling integration among multiple health care

providers, and this integration is considered their main advantage (ISO, 2014) (HEART; BEN-

ASSULI; SHABTAI, 2016). EHR has several benefits, ranging from supporting medical pre-

scriptions (CHEN, 2016), improving disease management (ROUMIA; STEINHUBL, 2014) and

contributing in the reduction of severe medication errors (HAN et al., 2016).

However, EHR has limitations regarding interoperability, e.g when health organizations

adopt international but heterogeneous standards (BHARTIYA; MEHROTRA; GIRDHAR, 2016).

Other limitations are related to the security of data exchanged between health organizations, or

to non-incorporation of data about patient’s wellness, such as sports activities or eating habits

(CHEN, 2016). According to the ISO definition (ISO, 2014), EHR aims at standardizing health

data, but without determining or specifying which standards should be adopted. In this sense, it

is up to the health providers to choose which standards to use in their health organizations.

2.2 Personal Health Record - PHR

As an evolution of EHR, we have the concept of PHR. PHR refers to a representation of

health records related to the care of a patient that is managed by the patient (TANG et al.,

2006). In other words, the PHR refers to archives containing health data about each patient, but,

unlike the EHR, it is managed by the patient (BAIRD; NORTH; RAGHU, 2011), (ISO, 2012).

With a PHR, patients can choose to share their health data with health care providers or keep

them private (TANG et al., 2006). Figure 1 illustrates how the PHR and EHR differ in their

goals, although they can be integrated to exchange information that is relevant to the patient’s

health (ISO, 2012).

According to ISO/TR 14639, PHR refers to a “representation of information regarding,

or relevant to, the health, including wellness, development, and welfare of that individual"

(ISO, 2014). As patients are the owner of their health records, they can manage and grant

permissions for access or share their health data with third-parties (ISO, 2014). PHR is ori-

ented to the patient but can be integrated with EHR (ROEHRS et al., 2017). Some health care

providers have been successful in improving communication with patients using mobile tech-

nology (mPHR), where PHR allows patients self-monitoring and managing their health status

(REEDER; DAVID, 2016). PHR can receive data from health care providers, stored in a repos-

itory where the patient has access (ARCHER et al., 2011).

Some variant names for PHR appeared in the literature, such as ePHR (electronic PHR)

(WYNIA; DUNN, 2010) or UHR (universal health record) (MORGENTHALER, 2011). The

first concept refers to the use of PHR in an electronic format, while the second proposes PHR-

sharing data with health care providers. Another term is intelligent PHR (iPHR), which uses

medical knowledge to anticipate the health needs of patients and promote tools to guide searches
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Figure 1 – PHR and EHR relationships.

Source: Prepared by the author.

for diseases and recommendations for nursing activities or medical products (LUO; TANG;

THOMAS, 2012). Although these different nomenclatures are used, we use the term PHR

throughout this work.

2.2.1 Advantages and Disadvantages of PHR

Multiple EHRs for the same patient can coexist, but only one PHR would exist. The PHR

can integrate data from many sources, ranging from devices connected to the patient to data

from EHRs stored in health care provider systems (TANG et al., 2006). Although PHR may

refer to records regardless of format (and can be on paper), the records are implemented elec-

tronically and are accessible through mobile devices (mHealth). Therefore, PHRs have al-

lowed patients to self-monitor and manage their own health conditions (HORAN; BOTTS;

BURKHARD, 2010). Another alternative is medical-oriented PHR, which includes features

that are not patient-centered (FUJI et al., 2012), (TANG; LANSKY, 2005). This PHR can be

“tethered” (tied) to where the data subsets are provided, including organizations that maintain

patient data electronically (TANG et al., 2006). Hence, PHRs may be stored in a stand-alone

computer or service portal to which only the user has access (ARCHER et al., 2011).

PHR has some advantages over EHR since PHR can receive data entered by the patient

(ROEHRS et al., 2017). For instance, the patient can inform weight or blood pressure readings

(GEORGE; HOPLA, 2015). However, PHR has some limitations and challenges (ROEHRS

et al., 2017). PHR issues range from usability (as usefulness, satisfaction, and ease of use)
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(WANG; DOLEZEL, 2016); low level of adoption (e.g. by patients with chronic medical con-

ditions) (SHIMADA et al., 2014); few patients and physicians knowledge regarding PHR fea-

tures; incompatibility or lack of integration with existing health systems; to concerns with se-

curity and access permissions for third-parties (e.g. physicians and family members) (BUTLER

et al., 2013).

2.3 Interoperability

The concept of interoperability is quite broad and applied in many contexts (HOGAN et al.,

2014). According to the Healthcare Information and Management Systems Society (HIMSS)

definition (HIMSS, 2018), there are three levels of health data interoperability: (a) foundational,

which makes the exchange of data between health systems possible without requiring the ability

to interpret the data; (b) structural, which defines the syntax for data exchange, ensuring that

data interoperability can be interpreted at the data field level; and (c) semantic, which “takes

advantage of both the structuring of the data exchange and the codification of the data includ-

ing vocabulary so that the receiving information technology systems can interpret the data”

(HIMSS, 2018). Semantic interoperability ensures that systems understand data in the same

way, resulting in unambiguous use, understanding, and interpretation of the data (SOCEANU,

2016). Semantic interoperability brings, besides the standardization and formatting of health

data, the possibility of inferring based on the data. Instead, syntactic interoperability refers to

the dealing of data with low-level problems, such as in the use of different protocols and formats

(MARCOS et al., 2015).

Reviewing the literature, we identify some techniques that can help in the semantic interop-

erability of health data, with the individual or combined use of:

(a) Dublin Core metadata standard (DC) (ALYAMI; SONG, 2016) (SONG et al., 2017) -

where the metadata could be used to describe, retrieve and organize the document with

health records that do not follow the open standard;

(b) Natural Language Processing (NLP) (OEMIG; BLOBEL, 2014) (MALIK; SALEEM,

2016) - where NLP could be used to help the parser of legacy contents to a standard

format, adding the possibility of extracting knowledge from the health records;

(c) Ontologies (MANDEL et al., 2016) (ESPOSITO; CASTIGLIONE; PALMIERI, 2016)

- where representations through ontologies could be used to compose a standard that

mediates heterogeneous standards, adding the possibility of extracting inferences from

this composition;

(d) Software Agents (MORAES et al., 2016) (HU; ELKUS; KERSCHBERG, 2016) - where

agent-based interface systems are designed to interpret the health records.
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2.4 openEHR Standard

As the purpose of this proposal is to promote the integration of patient health records

throughout life, we use international standards for the structuring of health data. These stan-

dards aim to promote the interoperability of health records and are key to designing a unified

view of the patient’s chart. In this sense, there are several standards for different parts of what

can form a complete medical record, such as the set of norms for use of DICOM (Digital Imag-

ing and Communications in Medicine) (GONÇALVES-FERREIRA et al., 2019), SNOMED-

CT (SNOMED Clinical Terms) (TEODORO et al., 2018), and the LOINC (Logical Observation

Identifiers Names and Codes) (WULFF et al., 2018), among others. In addition, more broadly,

in standardizing the format and high-level structure of health records, there are several formats

and protocols around the world. Two of the most recognized international standards used in

various countries to structure interoperable health records are HL7 (SARIPALLE; RUNYAN;

RUSSELL, 2019) and openEHR (YANG; HUANG; LI, 2019). These standards aim to provide

the structural format of patients’ records, as well as integrate with specific formats, such as DI-

COM (GONÇALVES-FERREIRA et al., 2019), SNOMED-CT (TEODORO et al., 2018), and

LOINC (WULFF et al., 2018) standards.

The HL7 with FHIR and openEHR are among the main structural patterns of health data

standards (BENSON; GRIEVE, 2016). Analyzing the main data standard regarding health

records to be used in our proposal, openEHR (OPENEHR, 2017) stands for promoting a flexible

structure based on archetypes. A key requirement for interoperability and important feature is

that openEHR connects with others health data standards, such HL7 (DOLIN et al., 2015),

LOINC (Logical Observation Identifiers Names and Codes) (BELLAMY, 2016), SNOMED-

CT (Systematized Nomenclature of Medicine - Clinical Terms) (MORTENSEN et al., 2015) and

DICOM (PANDIT; BOLAND, 2015). Moreover, the archetypes format of openEHR follows

the premise of datablocks, which fits the OmniPHR purpose of having health datablocks chained

on a P2P network.

One way to make health records interoperable is to use recognized data standards or pro-

tocols (MANDEL et al., 2016; SACHDEVA; BATRA; BHALLA, 2017). Several health data

standards are defined around the world, with different purposes. Two internationally recognized

standards used for electronic medical records are HL7 (ALIAKBARPOOR; COMAI; POZZI,

2017) and openEHR/ISO CEN13606 (ULRIKSEN; PEDERSEN; ELLINGSEN, 2017). The

openEHR standard has the differential to treat health records semantically through ontology

(LEGAZ-GARCÍA et al., 2015). In the openEHR standard, instances of datablocks can be seri-

alized in either archetype (RDF/XML or JSON) or ontology (OWL) format, where RDF stands

for “Resource Description Framework” and OWL stands for “Web Ontology Language.”



30

2.5 Distributed Architectures Models

Considering that our subject of study is related to an architecture model for PHR based on

a distributed system, we look for the main models mentioned in the literature. According to the

classification of Coulouris (COULOURIS et al., 2011), there are five possibilities of architecture

models:

(i) CS (Client-server), where “client processes interact with individual server processes in

potentially separate host computers to access the shared resources that they manage";

(ii) P2P (Peer-to-Peer), where “all of the processes involved play similar roles, interacting

cooperatively as peers without any distinction between client and server";

(iii) DO (Distributed Objects), where “each process contains a collection of objects, some

of which can receive both local and remote invocations, whereas the other objects can

receive only local invocations";

(iv) DC (Distributed Components), where “application servers provide structure to support a

separation between application logic and data storage";

(v) DE (Distributed Event-based - services), where “the essence of indirect communication

is to communicate through an intermediary and hence have no direct coupling between

the sender and the one or more receivers."

And, still according to Couloris (COULOURIS et al., 2011), P2P systems are a trend for

distributed systems because they have storage capacity and resource sharing on a global scale,

but they have as a limitation the management and provision of adequate access to all the load

to which they are subject. In addition, to compose the concept of P2P, Couloris (COULOURIS

et al., 2011) defines the concept of routing overlay, which is described in the following.

2.6 Routing Overlay

In a P2P network, there is the concept of routing overlay, also known as superpeer or ul-

trapeer, which have special functions in a distributed system (COULOURIS et al., 2011). A

routing overlay network aims to decentralize data and locate nodes on the network, managing

their location. This mechanism has some certain goals, such as providing distribution, repli-

cation, security, and privacy. In our proposal, the health records are broken into small pieces

distributed and encrypted on the network. The routing overlay must have special skills to man-

age responsibilities such as: (a) maintain system user registers; (b) keep PHR data, including

new and update datablocks; (c) querying datablocks to assembly PHR when required; (d) main-

tain access permissions to health records; and (e) maintain access profiles to health records. In

addition to these responsibilities, the routing overlay application needs to have functions granted
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to system administrators, such as the capabilities to maintain: (a) types of profiles; (b) health

datablocks inherent in the standard; and (c) other interconnected standards of health records. In

this sense, we have the Blockchain concept as a technology capable of unifying the concepts of

distributed systems to support our proposal, which is described in the following section.

2.7 Blockchain Technology

Blockchain was first proposed to serve as a backbone for the Bitcoin technology, known as

Satoshi’s bitcoin model (TAPSCOTT; TAPSCOTT, 2016). In Bitcoins case, the coin is com-

posed of distributed transactions chain in the network, which uses the principle of a P2P network

to concentrate data in a single location (NAKAMOTO, 2008). In this sense, a block contains

data regarding transactions and about the previous block, which links to the first block when the

Bitcoin network started (NAKAMOTO, 2008). Blockchain is formed by a distributed database,

which maintains a chain of datablocks, hence the origin. Each datablock refers to another within

the block list, forming a complete chain, from first to the last datablock. These datablocks are

distributed in a P2P network, making it difficult to manipulate this data by attackers. Applied

to Bitcoin, the public key encryption mechanism is used to ensure the security of the electronic

currency. This cryptography type is based on algorithms that require two keys, one public and

the other private. The Bitcoin electronic currency is based on a chain of digital signatures with

a central authority that verifies the validity of the chain (NAKAMOTO, 2008). In this case,

the public key is used only to verify the digital signature applied to the transactions datablocks.

More accurately, each datablock into the end of the chain is digitally signed and point to the

next block using the public key of the latter.

Blockchain is a linked list of datablocks chained together in a distributed ledger by pointers,

represented by a hash code that identifies each block, and where each datablock has, beyond the

content, the pointer to the previous datablock in the chain (NAKAMOTO, 2008; NARAYANAN

et al., 2016). In a Blockchain, each node in the peer-to-peer (P2P) network acts as a recorder of

datablocks and as an evaluator of appropriate access and permissions of the content. Each node

can add new blocks in the list and execute evaluation rules every interaction. These checks are

performed in conjunction with the other nodes, forming the consensus protocol (KRAFT, 2016;

STAGNARO, 2017).

Smart contracts are another concept applied in Blockchain technology to incorporate busi-

ness rules or scripts to the processing performed on the platform. According to (SZABO, 1996),

the smart contract is a “set of promises, specified in digital form, including protocols within

which the parties perform on these promises.” In many cases, smart contracts are used to verify

the validity of contracts between two or more participants in a contract.
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2.8 Chord Algorithm

In order to maintain the distribution of datablocks in an equitable manner throughout the

network, OmniPHR can use an algorithm for P2P networks with Distributed Hash Table (DHT),

such as CAN (Content Addressable Network), Chord, Kademlia, Pastry or Tapestry (COULOURIS

et al., 2011). These algorithms can ensure equal distribution and knowledge of nodes where dat-

ablocks are located. To distribute health records parts, OmniPHR proposes the use of the Chord

algorithm (STOICA et al., 2001), which is widely accepted on P2P networks (VATSAVAI;

SURAVARAPU; MIR, 2016).

The goal is to get scalable (handling with increase amount of workload) and elastic (adapting

to changes of workload) search service for OmniPHR distribution on the P2P network. The

reasoning for selecting this algorithm is that Chord has an efficient node location and provides a

balanced system in P2P networks (WOUNGANG et al., 2015). This suits the need to maintain

the PHR datablocks chain using the principle of lookup in

O(logN)

where N is the number of nodes in the network and grows logarithmically with the number

of nodes. Chord operates two additional structures: finger table and successor. The algorithm

uses a structure in which nodes are kept close, so a node is in the middle distance, another node

a quarter off, and so on in a sequence powers of two. Chord algorithm promotes scalability,

elasticity, availability, and durability of records. As can be seen in Figure 7, the purpose is that

each part of OmniPHR may also be replicated in other nodes, distributed and chained on the

network. Chord uses a variant of consistent hashing for load balancing, effecting in a uniform

distribution (STOICA et al., 2001) (WOUNGANG et al., 2015).

Chord algorithm has flexibility and automatically adjusts the control tables according to

enter and leave of nodes in the network (VATSAVAI; SURAVARAPU; MIR, 2016). Chord

finger table is present at each node and has information about its identifier and IP address

(WOUNGANG et al., 2015). The finger table contains data only on some near nodes, according

to the execution of the algorithm, being the first table entry always refers to the successor node

(STOICA et al., 2001). In the management of nodes, an important factor for OmniPHR regards

to the replication of health datablocks. In the Chord algorithm, the list of successor nodes works

as an engine that allows replicates data. When a regular node enters or leaves the network,

a routing overlay is notified and knows whether it should disseminates copies. As a way to

integrate and facilitate communication between nodes, we can use the precepts of the publish-

subscribe system.

Nodes publishers publish messages to a service, represented in OmniPHR by routing over-

lay, and subscribers can get these messages, in an indirect communication between nodes

(COULOURIS et al., 2011). Routing overlay application has the ability to receive and up-
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date datablocks containing information about PHR. Nodes publish messages with updated dat-

ablocks in the service addressed to certain nodes according to the DHT algorithm, and these

nodes subscribe to their respective messages.
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3 METHODOLOGY

In this chapter, we present step-by-step the scientific methodology used to support our re-

search. The methodology proposed follows the principle used in the scientific community of

designing a model, with the evaluation of a prototype system (GROENEN et al., 2016) (MA-

HER et al., 2016). The objective of this evaluation is to meet the health records distribution and

interoperability requirements proposed for PHR.

Regarding the type of research, the approach is quantitative, since the analyzed health data

is from existing patients, although with anonymized data. As for the nature of the research,

the study is an applied research, since it aims at practical applications in the day-to-day of

patients and health care providers. Regarding the objectives, the research was based on a case

study applied to the context of the proposed model. Regarding the conduction, the research was

divided into seven steps, described in Figure 2.

Figure 2 – Methodology.

Source: Prepared by the author.

According to the methodology presented, the first two steps have already been defined in

the introduction of the study. The rest of the work is divided as follows.

(i) Section 3.1 explores how to achieve the state-of-the-art regarding PHR, and for this pur-

pose, we followed the SLR methodology.

(ii) Section 3.2 presents specific aspects of the methodology to support and evaluate the ar-

chitecture proposal.
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(iii) Section 3.3 describes the methodology to evaluate the performance of the model.

(iv) Section 3.4 presents the methods to evaluate the Multi-Blockchain proposal.

(v) Section 3.5 explores the methods to evaluate the semantic interoperability proposal.

3.1 Exploration of the state-of-the-art regarding PHR

This section presents the methods used to identify the state-of-the-art in PHR through the

SLR methodology. The details of the SLR methodology application and the results obtained are

described in the next chapter of related work. We published a full article (ROEHRS et al., 2017)

contemplating this methodology and the results obtained in the Journal of Medical Internet

Research (JMIR).

3.1.1 Study Design

This section focuses on describing the study protocol, which introduces the adopted proce-

dures and outlines the main subsequent decisions. As previously mentioned, this study presents

the SLR method designed to provide a wide overview of the PHR research area, establish

whether research evidence exists on a topic, and provide quantitative evidence (KITCHEN-

HAM; CHARTERS, 2007), (PETTICREW; ROBERTS, 2008).

We selected this type of literature review approach because our goal was to summarize

the technology regarding PHRs and identify promising directions, which do not require an in-

depth analysis and synthesis. With this in mind, we followed widely recognized empirical

guidelines (KITCHENHAM; CHARTERS, 2007), (PETTICREW; ROBERTS, 2008) to plan

and run systematic mapping studies. Moreover, to mitigate threats to validity, we followed the

well-documented study protocol available in the studies by Biolchini et al. (BIOLCHINI et al.,

2005) and Qiu et al. (QIU et al., 2015). The presented SLR method was carried out by defining

the following activities:

(a) Research questions — introduce the research questions investigated;

(b) Search strategy — outline the strategy and libraries explored to collect data;

(c) Article selection — explain the criteria for selecting the studies;

(d) Distribution of studies — present how studies are distributed chronologically;

(e) Quality assessment — describe the quality assessment of the selected studies;

(f) Data extraction — compare the selected studies and research questions.

The following sections describe how this process of mapping the study was carried out.
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3.1.2 Research Questions

According to Kitchenham and Charters (KITCHENHAM; CHARTERS, 2007) and Petti-

crew and Roberts (PETTICREW; ROBERTS, 2008), the definition of research questions is the

most important part of any systematic review. Therefore, we seek to identify and classify the

technology related to PHRs; the features, problems, challenges, and solutions that are currently

being considered; and the research opportunities that exist or are emerging. In this sense, we

have defined general and specific research questions. The general research questions have been

refined into more specific questions to provide a thorough classification and thematic analy-

sis, as well as to pinpoint promising research directions for further investigation. Our research

questions are classified into two categories: General Question (GQ) and Specific Question (SQ).

Table 2 lists all the research questions investigated.

Table 2 – Research questions.

Group and identifier Issue

General Questions (GQ)

GQ1 How would the taxonomy for PHR classification appear?

GQ2 What are the challenges and open questions related to PHRs?

Specific Questions (SQ)

SQ1 What are the data types that are included in a PHR?

SQ2 What are the standards that apply to PHRs?

SQ3 What are the user types and profiles that interact with a PHR?

SQ4 What are the interaction types of a patient with a PHR?

SQ5 Which are the techniques used to input information into a PHR?

SQ6 What are the goals of a PHR?

SQ7 What are the types or models of architecture of PHRs?

Source: Prepared by the author

The GQ group of research questions concerns a broader classification and some challenges

concerning PHRs. GQ1 refers to the question of classifying and defining the taxonomy for

PHRs. This research question focuses on the interoperability capacity that a PHR can have.

This question highlights the integration issues of a PHR that is created and maintained by sys-

tems that are developed using heterogeneous technologies. GQ2 refers to the key challenges

and issues in using PHRs. This is the main factor that will serve as a direct influence in the

PHR survey. The purpose is to identify the types of issues that have been raised in the literature

in the last decade. The research focuses on identifying the main problems affecting the spread

of PHR adoption by patients and health care providers. For this question, we are able to rea-

son with regard to the issues and factors that consequently influence PHR adoption. With the

general research questions, we have also explored some derived specific research questions (SQ



37

group) to improve the study filtering process. These questions have been proposed to pinpoint

questions surrounding the adoption of the PHR. SQ1 seeks to identify the data types that a PHR

can contain. SQ2 investigates the types and profiles of users who interact with a PHR. SQ3

examines the types of standards that are used in PHR implementations. SQ4 seeks to show the

interaction types that a patient has with a PHR. SQ5 concentrates on evaluating the techniques

or methods used to input data into a PHR. SQ6 investigates the purposes of a PHR. Finally, SQ7

concentrates on the types and models of PHR architecture.

3.1.3 Search Strategy

The next step was to find a complete set of studies related to the research questions. This

process involved the designation of search keywords and the definition of search scope (PETTI-

CREW; ROBERTS, 2008). In the construction of search keywords phase, we defined keywords

to obtain accurate search results. In their report, Kitchenham and Charters (KITCHENHAM;

CHARTERS, 2007) suggest breaking down the research question into individual facets as re-

search units, where their synonyms, acronyms, abbreviations, and alternative spellings are all in-

cluded and combined by Boolean operators. In addition, Petticrew and Roberts (PETTICREW;

ROBERTS, 2008) propose the PICOC (Population, Intervention, Comparison, Outcome, and

Context) criteria, which can be seen as guidelines to define such research units. In focusing on

defining the PHR technology, we defined broader PICOC criteria based on the general research

questions. Our goal was to refine and answer the specific research questions, which are derived

from the general research questions with a restricted focus. Therefore, under the PHR scenarios,

we defined the PICOC criteria as follows.

3.1.3.1 Population

The populations involve keywords, related terms, variants, or the same meaning for the

technologies and standards on PHRs. Therefore, the following search string in the textbox was

defined for the selection:

(((’personal’ or ’patient’ or ’private’) and (’health’) and (’record’ or ’application’ or

’management’ or ’information’)) or (’patient’ and (’access’ or ’portal’)) or (’PHR’1 or

’PHA’2 or ’PHM’3 or ’PHI’4 ))

1 PHR: Personal Health Record;
2 PHA: Patient Health Application;
3 PHM: Private Health Management;
4 PHI: Private Health Information.
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3.1.3.2 Intervention

We used the following terms to better filter studies in line with the purposes: health data,

health services monitoring and reporting, patient monitoring devices, remote health monitoring,

and mobile health care devices.

3.1.3.3 Comparison

This case refers to the comparison of different architecture types and models of implemen-

tation of the PHR. In addition, we compared the different PHR types regarding coverage and

localization.

3.1.3.4 Outcome

The outcomes related to factors of importance to practitioners (e.g., improved reliability)

and, in particular, to the patient. With respect to PHRs, this might refer to reducing the cost

of collecting data, improving health information quality, anticipating potential problems, and

allowing the patients to interact with their health data.

3.1.3.5 Context

In this regard, we analyzed the context of PHR information coverage in terms of content

such as standardization, information grouping, and security and privacy in the relationships

between patients and health care providers. Hence, the final keyword set is displayed in the

following textbox:

Keywords = PICOC = Population AND Intervention AND

Comparison AND Outcome AND Context

In the definition of search scope phase, the source studies were obtained from selected

electronic databases by searching using the constructed research keywords.

3.1.4 Article Selection

Once we found all the related articles, we proceeded to remove the studies that were not

as relevant and kept only those that were the most representative. Therefore, we removed the

studies that did not address PHR specifically. To apply the exclusion criteria, we used the terms

of population and intervention criteria as follows:
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• Exclusion criterion 1 — the article does not address PHR or related acronyms (population

criterion I).

• Exclusion criterion 2 — the article does not address “health data” or “health services”

(intervention criterion II).

The steps of the filtering process are as follows: (1) impurity removal, (2) filter by title and

abstract, (3) removal of duplicates, and (4) filter by full text. First, the impurities of the search

results were removed. Some impurities, for example, the names of conferences correlated to the

search keywords, were included in the search results because of the characteristics of the differ-

ent electronic databases. Second, we analyzed the title and abstract of the articles and excluded

those that did not address PHR as a subject. Third, all the remaining studies were grouped,

and the duplicates were removed because some studies were in more than one database. Some

studies remained that were not particularly related to this survey. We analyzed the full text to

remove those that were not relevant.

3.1.5 Quality Assessment

Since it is important and essential to assess the quality of the selected studies, the qual-

ity criterion is intended to verify that the article is really a relevant study (KITCHENHAM;

CHARTERS, 2007). We evaluated the selected articles with regard to the purpose of research,

contextualization, literature review, related work, methodology, the results obtained, and the

conclusion in accordance with objectives and indication of future studies. For this purpose,

the quality was evaluated according to Table 3, where the questions to which the articles were

submitted to validate that these studies met the quality criteria are listed.

Table 3 – Quality assessment criteria.

Id. Issue

C11 Does the article clearly show the purpose of the research?

C2 Does the article adequately describe the literature review, background or context?

C3 Does the article present the related work with regard to the main contribution?

C4 Does the article have an architecture proposal or research methodology described?

C5 Does the article have research results?

C6 Does the article present a conclusion related to the research objectives?

C7 Does the article recommend future works, improvements, or further studies?

1 C: Criterion;
Source: Prepared by the author
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3.1.6 Data Extraction

We also developed an evaluation form for the selected articles in order to gather information

about the studies and the sections where we found answers to general and specific research

questions, which are presented in Table 4. This table shows each item of the study related to the

research question, allowing us to assess and extract details of the articles and understand how

the studies have addressed the issues related to the proposed research questions. The aim was

to direct the survey to specific points that would answer the research questions.

Table 4 – Review articles related to the research questions.

Section Description Research questions

Open content

Title Title of the scientific article. GQ11, GQ2, SQ12, SQ2, SQ7.

Abstract Summary of purpose, method and results. GQ1, GQ2, SQ1, SQ2, SQ7.

Keywords Words representing the text content. GQ1, GQ2, SQ1, SQ2, SQ7.

Article content

Introduction Specifies the issue to be addressed. All questions.

Background Includes concepts related to the proposal. All questions.

Method Presents and describes the methodology. All questions.

Results Performs evaluation according to method. All questions.

Discussion Data quantified compared with the literature. GQ2, SQ2-SQ7.

Conclusion Findings related to the objectives. GQ2, SQ2-SQ7.

1 GQ: General Question; 2 SQ: Specific Question.

Source: Prepared by the author

3.2 Two-layer Architecture Proposal Method

This section presents specific aspects of methods used to support and evaluate the OmniPHR

architecture proposal in two-layer format, as well as the methodology that we used to select

related work regarding the architecture models.

3.2.1 Related Work Selection Method

Our initial basis for proposing the model comes from the analysis of recent works since

2012, from the publication of ISO/TR 14292 (ISO, 2012), considering the definition of PHR

and EHR applied in architectures proposals. For the selection was defined the following search

string, according to the nomenclature used in the ISO standards:

( (’personal’ or ’electronic’) and (’health’ or ’medical’) and (’record’ or ’records’) ) and

( ( (’distributed’ or ’decentralized’) or (’client-server’ or ’centralized’) ) and

(’architecture’ or ’model’) )
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These terms were applied in recognized research portals on the computing and health areas:

ACM, Google Scholar, IEEE, PubMed, Science Direct, and Springer.

3.2.2 Evaluation Method

The scientific community has been using modeling and profiling methodology to evaluate

mobile applications (BANERJEE; GUPTA, 2015) (AHMED et al., 2015). With this strategy,

the goal is to describe and evaluate scenarios of use where OmniPHR can be applied. Following

this methodology, Bossel (BOSSEL, 2013) defines five steps to carry out the process:

(i) Developing the Model Concept - This stage defines the purpose of the model, which is to

represent a typical use.

(ii) Developing the Profiling Model - This phase describes the system states, which are the

scenarios to which the model will be submitted.

(iii) Profiling of System Behavior - At this stage, the emphasis is on the behavior of the model.

(iv) Performance Evaluation, Policy Choice, and System Design - At this stage, the emphasis

is on the choice of assessment criteria and policies.

(v) Mathematical Systems Analysis - At this stage, we performed the mathematical analysis

of the results.

3.3 Performance Analysis Method

This section explains the methods used in the OmniPHR prototype, evaluation, and results

collection. Due to the barriers to the adoption of distributed health records across different

health providers and in accordance with the background that underlying PHR and Blockchain

technology, we researched the state-of-the-art regarding open issues in this area. Below we ex-

plain how we researched and analyzed related work and then outline the steps used to evaluate

the performance of the OmniPHR model. We first reviewed the state-of-the-art by analyzing

articles related to OmniPHR, which implements Blockchain solutions applied to health records.

For this review, we used strings combining the PHR and EHR definitions with Blockchain.

We then submitted these strings to PubMed, Medline, CiteSeerX, Cochrane, HealthStar, Else-

vier, and Google Scholar, which are common portals that index scientific studies in the area

of Health and Information Technology. In addition to verifying the correct reunification of

patients’ scattered data, we evaluated non-functional requirements (GALSTER; BUCHERER,

2008; CHUNG et al., 2012). The requirements and statistical formulas used to collect the data

are described below.
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Initially, we counted the Mean Time Between Failures (MTBF):

MTBF =
TotalWorkingT ime− TotalBreakdownTime

TotalBreakdownIncidences
(3.1)

and Mean Time To Repair (MTTR):

MTTR =
TotalBreakdownTime

TotalBreakdownIncidences
(3.2)

to compose the Availability (A):

A =
MTBF

MTBF +MTTR
(3.3)

Finally, we evaluated the Performance (P) extraction arithmetic mean:

P =
1

n

n∑

i=1

ai (3.4)

through the accounting of main memory, storage occupation, response time and throughput,

where a compose the values and n the total of observations.

3.4 Multi-Blockchain Proposal Method

In this section, we introduce the methodology we use to support our OmniPHR Multi-

Blockchain proposal. The section explains the methods applied and the related work selected in

the study (KOTHARI, 2004). As a methodology, we followed the seven steps described below

(BASKERVILLE; PRIES-HEJE; VENABLE, 2009; SOHAIB et al., 2019):

(i) In this stage, we present the problematic and research questions that underlie the study,

with the general methodology and related work, as well as background and terminologies.

(ii) We express the problems identified in the requirements that the solution should meet.

(iii) We model and present the architecture using design-thinking techniques.

(iv) We construct the prototype following the requirements specified in the previous steps.

(v) We perform the evaluation of the prototype, collecting and presenting the data obtained.

(vi) We explore the analysis of the data in relation to the feasibility of the project, discussing

the results obtained, verifying the results in relation to the specified requirements, as well

as comparing the results in relation to the related works.

(vii) This stage presents the conclusions about the actions to address the problematic identified

in the first step, the limitations of the solution and address possible future studies.
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As a methodology to select the related work in the literature review (BASKERVILLE;

PRIES-HEJE; VENABLE, 2009), we elaborated a search string that could extract the main

studies about the implementation and the challenges faced in the use of Blockchain technology

for records of geographically distributed health systems. Hence, we elaborate the following

search string:

Blockchain(s) + ((Distributed / Decentralized) +

Architecture) + ((Health(care) / Medical) + (Records / Data))

3.5 Semantic Interoperability Proposal Method

This section presents the methods used to support and evaluate the OmniPHR semantic

interoperability proposal. Initially, as a way to direct this stage of the proposal, we formulated

a General Research Question (GRQ), which we aim to answer: How a model proposal for PHR

can promote semantic interoperability between open and proprietary health standards?

In addition, we have formulated two Specific Research Questions (SRQ) about our proposal,

as explained below:

• SRQ.1: How does the model proposal aim to obtain a unified and up-to-date PHR view-

point for both patients and health care providers?

• SRQ.2: What other advantages patients and health care providers could have with the

interoperability of health data?

3.5.1 Related Work Selection Method

In order to reach the related work at this step of the research, we used recognized research

portals by the scientific community about articles related to health informatics, as follows: ACM

Digital Library, Bentham Science Publishers B.V., BioMed Central, Google Scholar, IEEE

Xplore Digital Library, Journal of Medical Internet Research (JMIR), Medical Library Associ-

ation, Oxford University Press, PubMed, SciELO, ScienceDirect (Elsevier BV) and Springer-

Link. The research was limited to the search of articles written in the English language and

from the last six years since the original PHR definition by ISO is from 2012. The search used

the following initial search string to restrict and localize studies that specifically address the

article keywords, where the asterisk symbol (*) means AND and sum symbol (+) means OR:

(’personal health record(s)’ + PHR) * (interoperability + inter-operability) * semantic *

(health * (standards + standardization))
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3.5.2 Evaluation Method

After to select the related work, the next step of the methodology is to define in the Om-

niPHR proposal how the model can address related issues regarding semantic interoperability.

For this purpose, we followed the same steps of the methodology proposed by Bossel (BOSSEL,

2013) that we used to evaluate the architecture proposal. In addition, to evaluate the OmniPHR

model specifically related semantic interoperability, we proposed to use a real database of pa-

tients’ health anonymized data. In this way, we can to compose and submit different types of

health data standards to the model. After evaluation, the next step is to analyzes and discusses

the results obtained, presenting conclusions about the findings. Regarding the evaluation, the

proposal is to evaluate the model obtaining a statistical analysis of the solution. In this sense,

a metric recognized by the scientific community is the F1-score (or F-measure) (POWERS,

2011). Following this metric, the precision and recall of the algorithm are calculated. We also

calculated the accuracy, to have a measure in relation to the total records.

The precision (or ppv = positive predictive value, also known as confidence) is given by

ppv =
tp

tp+ fp
(3.5)

The recall (or tpr = true positive rate, also known as sensitivity) is given by

tpr =
tp

tp+ fn
(3.6)

And accuracy (acc, also known as trueness) is given by

acc =
tp+ tn

tp+ tn+ fp+ fn
(3.7)

Where tp = true positives, tn = true negatives, fp = false positives, and fn = false negatives.

The F1-score is defined as follows:

F1 = 2 ·
ppv · tpr

ppv + tpr
(3.8)

Applied to this proposal, accuracy represents the proximity measure between the number

of converted and unconverted fields, as expected, in relation to the total measured fields. Pre-

cision represents the number of fields converted correctly, as expected, divided by the number

of fields returned in the process execution. The recall represents the number of successfully

converted fields, as expected, divided by the number of fields that should have been converted.

The harmonic mean of precision and recall results in the F1-score.
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4 RELATED WORK

This chapter concentrates the main related work in order to support the proposed solution,

following the methodology previously presented. We published a full article (ROEHRS et al.,

2017) contemplating the related work criterion in the Journal of Medical Internet Research

(JMIR). The chapter is divided into six sections.

(i) Section 4.1 has a higher level of detail since the section presents the step-by-step of

SLR methodology development regarding the state-of-the-art of PHR. This section also

presents findings regarding the PHR review.

(ii) Section 4.2 presents the related work selected to support the architecture model.

(iii) Section 4.3 presents the related work to support the performance analysis of the model.

(iv) Section 4.4 presents the related work regarding the Multi-Blockchain proposal.

(v) Section 4.5 presents the related work selected to support the OmniPHR semantic interop-

erability proposal.

(vi) Section 4.6 presents research opportunities collected from related work.

4.1 Related Work on Systematic Literature Review

4.1.1 Recruitment

In this section, we present the results obtained from the 48 fully assessed studies related

to the research topic. We seek to answer each proposed research question in the following

subsections through elaborative information synthesis. As a result, aside from answering the

research questions, we have also proposed contributions in the PHR field from the study of

related works, which are an updated taxonomy and an updated vision about main challenges

and issues, as well as an updated survey about data types, standards, user types, profiles, and

input techniques.

4.1.2 Conducting the Search Strategy

To cover as many related studies as possible, we selected 12 electronic databases as our

search scope, which are listed in Appendix 1. These portals cover the most relevant journals

and conferences within the computer science and health care field. In Appendix 2, we present

the publishers or organization editors and the respective publications of the selected studies.

Duplicated results produced from different databases were excluded by manual filtering in the

study selection.



46

4.1.3 Proceeding with Article Selection

The selection process is summarized in Figure 3, which shows the filtering process. We

found 5528 articles in the initial search before applying the exclusion criteria; of these, 3237

(58.55%) articles were identified as impurities. We applied the first exclusion criterion to the

studies that remained after we withdrew these articles. Continuing the process, 1429/2291

(62.37%) articles were filtered through a title review, and 453/862 (52.5%) articles were filtered

through abstract analysis. We grouped the studies that remained, and 205/409 (50.1%) articles

were identified as duplicates and were removed. After this stage, exclusion criterion 2 was

applied to the full text and only 97/204 (47.5%) remained.

Figure 3 – Systematic mapping study – article selection.

Source: Prepared by the author.

When analyzing the 97 candidate articles in the list, we noticed that some of these studies

were from the same author or research group and were similar in many respects. For articles

that were repeated, the most representative article was selected. Thus, 49/97 (50%) articles

were excluded at this stage. Finally, 48 articles were selected as the baseline for the study. An

overview of all primary studies is presented in Table 5 with the identifier, reference, publication

year, publisher, and type, which are sorted in ascending order by publication year.
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Table 5 – List of articles for SLR.

Identifier Study, year Publisher Type
A01 (BRICON-SOUF; NEWMAN, 2006) Elsevier Journal
A02 (TANG et al., 2006) Oxford1 Journal
A03 (FROST; MASSAGLI, 2008) JMIR2 Journal
A04 (KAELBER et al., 2008) Oxford Journal
A05 (HUDA; YAMADA; SONEHARA, 2009) IEEE3 Conference
A06 (KIM et al., 2009) JMIR Journal
A07 (BRENNAN; DOWNS; CASPER, 2010) Elsevier Journal
A08 (CASTILLO; MARTÍNEZ-GARCÍA; PULIDO, 2010) BioMed4 Journal
A09 (HORAN; BOTTS; BURKHARD, 2010) JMIR Journal
A10 (HUDSON; COHEN, 2010) IEEE Conference
A11 (JONES et al., 2010) MLA5 Journal
A12 (NAZI et al., 2010) Springer Journal
A13 (PATEL et al., 2010) Elsevier Journal
A14 (RETI et al., 2010) Oxford Journal
A15 (WEN et al., 2010) JMIR Journal
A16 (WILLIAMS, 2010) ACM6 Conference
A17 (WYNIA; DUNN, 2010) Wiley Journal
A18 (ARCHER et al., 2011) Oxford Journal
A19 (BAIRD; NORTH; RAGHU, 2011) ACM Conference
A20 (CALIGTAN; DYKES, 2011) Elsevier Conference
A21 (LAFKY; HORAN, 2011) SAGE Journal
A22 (LIU; SHIH; HAYES, 2011) ACM Conference
A23 (SIEK et al., 2011) Springer Journal
A24 (ZULMAN et al., 2011) ACP7 Journal
A25 (SEÑOR; FERNÁNDEZ-ALEMÁN; TOVAL, 2012) JMIR Journal
A26 (EMANI et al., 2012) JMIR Journal
A27 (FUJI et al., 2012) Springer Journal
A28 (KHARRAZI et al., 2012) Elsevier Journal
A29 (LUO; TANG; THOMAS, 2012) Springer Journal
A30 (STEELE; MIN; LO, 2012) Wiley Journal
A31 (SUNYAEV; CHORNYI, 2012) ACM Journal
A32 (AGARWAL et al., 2013) JMIR Journal
A33 (LI et al., 2013) IEEE Journal
A34 (NAZI, 2013) JMIR Journal
A35 (WOODS et al., 2013) JMIR Journal
A36 (ANCKER; SILVER; KAUSHAL, 2014) Springer Journal
A37 (BOURI; RAVI, 2014) JMIR Journal
A38 (CAHILL; GILBERT; ARMSTRONG, 2014) Springer Journal
A39 (CHRISCHILLES et al., 2014) Oxford Journal
A40 (OZOK et al., 2014) Elsevier Journal
A41 (SPIL; KLEIN, 2014) IEEE Conference
A42 (WELLS et al., 2014) Oxford Journal
A43 (CZAJA et al., 2015) SAGE Journal
A44 (LIU; HUANG; LIU, 2015) Elsevier Journal
A45 (PRICE et al., 2015) BioMed Journal
A46 (SPIL; KLEIN, 2015) Elsevier Journal
A47 (SUJANSKY; KUNZ, 2015) Springer Journal
A48 (FORD; HESSE; HUERTA, 2016) JMIR Journal

1 Oxford: Oxford University Press; 2 JMIR: JMIR Publications;
3 IEEE: Institute of Electrical and Electronics Engineers; 4 BioMed: BioMed Central;
5 MLA: Medical Library Association; 6 ACM: Association for Computing Machinery;
7 ACP: American College of Physicians.

Source: Prepared by the author
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In Figure 4, we present the evolution of the selected publications over the years, ranging

from 2006 to 2016. The studies were analyzed according to the main objectives, as seen in the

figure legend, where the articles were divided into the groups “Structures,” “Architectures,” and

“Functions.” Above each year, the number of articles published in that year is shown. Each

item label includes the publisher of the work, and the journal and conference articles are distin-

guished by the box format.

Figure 4 – Publication chronology.

Source: Prepared by the author.

4.1.4 Performing the Quality Assessment

In Figure 5, we present the quality criteria score of the articles based on the quality assess-

ment criteria proposed in Table 2. The quality criteria score each article obtained is shown on

the vertical axis and the studies themselves on the horizontal axis, from 1 to 48. Upon analysis,

most articles met all the criteria for evaluation, responding positively to at least 6 out of 7 qual-

ity assessment criteria. For instance, several articles do not comment on or cite possible future

studies in general because they are conclusive articles, with a conclusion on its assessment.

4.1.5 Data Extraction and Answers to the Research Questions

Finally, to address the general research questions, we have identified the following.

4.1.5.1 GQ1: How Would the Taxonomy for PHR Classification Appear?

We identified studies that investigated a number of current issues that were addressed in

the PHR field. Therefore, we managed to build the proposed taxonomy to gather and organize
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Figure 5 – Quality assessment of the articles.

Source: Prepared by the author.

the various possibilities for PHRs. By analyzing the selected articles and seeking to answer

this general research question, we propose a taxonomy for PHR based on important character-

istics of the models, and we believe that this taxonomy could help to classify, compare, and

evaluate different PHR types. Moreover, this classification can provide an overview of possible

alternatives in terms of aims, content, and architectures. The proposed taxonomy for the PHR

classification is summarized in Table 6, which is broadly divided into three groups: (1) Struc-

tures, (2) Functions, and (3) Architectures. The specific research questions (SQ1 to SQ7) are

included in the taxonomy, which was developed through analysis of the selected articles.

Table 6 – Personal Health Record taxonomy.

Group and item Description

Structures Main data types and standards used in health records.

Data types Data types found in PHRs1 (see subsection SQ12).

Standards Standards to which PHRs can adhere (see subsection SQ2).

Functions Depicts the main goals and features present in the PHRs.

Users profiles User types and profiles that interact (see subsection SQ3).

Interaction Patient’s interaction types with a PHR (see subsection SQ4).

Data source Techniques for input of information (see subsection SQ5).

Goals Represents the aim of the PHR (see subsection SQ6).

Architectures Architecture types and scopes (see subsection SQ7).

Models Describes the main architecture models.

Coverage Has a physical location division for data.

1 PHR: Personal Health Record; 2 SQ: Specific Question.
Source: Prepared by the author
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4.1.5.2 GQ2: What Are the Challenges and Open Questions Related to PHRs?

To answer this question, we listed and identified challenges, open questions, aspects, issues,

and common concerns in the adoption of PHR among the analyzed studies. These aspects were

collected and are presented in Table 7. As seen, the content is split to group some of the common

characteristics of challenges and concerns (GCC – group of challenges and concerns) related to

collaboration and communication (GCC1), privacy, security, and trust (GCC2), infrastructure

(GCC3), and integration (GCC4). The subject most cited ranges from CC01 to CC15.

Table 7 – Personal Health Record challenges and concerns.

Group / ident. Challenge and concern Reference articles

GCC11: collaboration and communication
CC012 Context-aware computing A01, A41.
CC02 Wearable computing, IoT3 A01, A28.
CC03 AI4 applied to health A01, A10, A16.
CC04 Personaliation, usability, familiarity, comfort A02, A07, A19, A22, A29, A40, A42, A45.
CC05 Manage medications A23, A29.
CC06 Patient-generated data A22, A42, A44, A45, A47.

GCC2: privacy, security, and trust
CC07 Confidentiality and integrity A07, A08, A19, A29, A42, A45, A46.
CC08 Data repository ownership A13, A16, A19, A45, A47.
CC09 Authorization and access control

technologies

A02, A07, A11, A16, A21, A22, A31,

A40, A42.
CC10 Secure transport protocol A16, A22, A42, A47.

GCC3: infrastructure
CC11 Portability - devices, equipment, HW5 A11, A18, A21, A23, A24, A28, A30,

A42, A43, A44.
CC12 Efficiency and scalability A01, A40, A41, A44, A45, A46.

GCC4: integration
CC13 Patterns in collecting medical data A13, A17, A42, A47.
CC14 Terminology A22, A29.
CC15 Interoperability A13, A16, A21.

1 GCC: Group of Challenges and Concerns; 2 CC: Challenge and Concern; 3 IoT: Internet of Things;
4 AI: Artificial Intelligence; 5 HW: Hardware.
Source: Prepared by the author

In GCC1 group, there are challenges and issues related to collaboration and communica-

tion, ranging from data types to be stored and made available in the PHR to policy barriers

to limit the provided information type. Some articles mention the PHR data that are available

according to the context awareness, such as CC01, and some articles discuss wearable comput-

ing and IoT, such as CC02. Other articles examine AI that is applied to the health sector in

CC03. The customization, usability, familiarity, and comfort when using the PHR is the subject

matter of several articles in CC04, and the management of medications contained in the PHR

is reviewed in CC05. GCC2 group presents issues related to privacy, security, and reliability

that are presented in PHRs: CC07 addresses confidentiality and integrity issues. CC08 refers to

data repositories and their owners. CC09 examines access control technologies. CC10 includes
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a discussion on data transport protocols. GCC3 group treats issues related to the infrastructure

of PHRs, in which CC11 discusses the portability of devices and equipment used with a PHR.

In CC12, issues on the efficient construction of computer systems and the scalability of the in-

frastructure used to support PHR solutions are discussed. Finally, in the GCC4 group, concerns

about integration are examined, such as in CC13, which concerns patterns in collecting medical

data. CC14 presents concerns about the terminology used to collect and store PHRs. CC15

addresses issues about interoperability.

Regarding specific research questions, we have identified the following:

4.1.5.3 SQ1: What Are the Data Types That Are Included in a PHR?

To answer this research question, we analyzed all selected studies that involved research

of the data types used in PHRs, which are summarized in Table 8. Through the analysis of

proposals and references in selected articles, we were able to obtain an updated set of data types

related to PHRs. The data types ranged from information cited in many studies, such as those

on allergies, immunizations, and medications, to types that are not frequently mentioned, such

as genetic information and home monitoring data.

Table 8 – Personal Health Record data types.

Type Description Reference articles

Allergies Allergies and adverse reactions A02, A12, A16, A18, A20, A25, A28, A30,

A35, A39, A40, A41, A46.
Demographic Patient statistics and clinical data A03, A20, A35, A39, A40, A43.

Documents Attached files (photos, scanned documents) A07, A20, A28.
Evolution Progress and clinic notes, care plan A07, A14, A18, A34.

Family history Family medical history A02, A12, A16, A18, A20, A25, A28, A37.

General Patient registration info., emergency contact A03, A12, A16, A18, A28.
Genetic Genetic information A16, A25.

Home monitor Home-monitored data A02, A18, A25.

Immunizations Immunization records (vaccine),

tracking immunizations

A02, A09, A12, A16, A18, A19, A20, A25,

A28, A30, A32, A37.
Insurance Insurance plan information, billing A16, A18, A28.

Laboratory results Laboratory and imaging test results

(laboratory tests)

A02, A12, A14, A16, A18, A19, A20, A25,

A28, A32, A35, A43.
Major illnesses List of major diseases A03, A02, A12, A18, A25.

Medications Medication list prescribed, past

medicines taken

A02, A07, A12, A16, A18, A20, A25, A28,

A35, A39, A41.
Prescriptions Medical prescription refills (renewing) A04, A09, A12, A15, A17, A43, A46.

Prevention Preventive health recommendations A12, A18, A32, A40, A46.
Providers Previous health care provider list A02, A18, A28, A30, A37.

Scheduling Appointments, past procedures,

hospitalizations

A02, A12, A16, A18, A20, A25, A28, A35,

A37.
Social history Social history, lifestyle (health habits) A02, A12, A18, A25, A40.
Summaries Admissions, permanencies, and discharges A39, A35, A43.
Vital signs Status of bodily functions A16, A30, A35, A37, A40.

Source: Prepared by the author
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4.1.5.4 SQ2: What Are the Standards That Apply to PHRs?

Some providers use proprietary formats to organize their health records that are used only

by internal applications, each of which has a different format (WYNIA; DUNN, 2010), (SU-

JANSKY; KUNZ, 2015). Thus, to answer this question, we focused on open standards, which

are summarized in Table 9 and present a vast number of organizational data patterns for health

records. Table 9 lists the referenced standards (GS – group of standards) according to their

goals: nomenclature and terminology (GS1), privacy (GS2), structural and semantic (GS3), and

templates and technology platforms (GS4). In group GS1, standards regarding nomenclature

and terminology were grouped. Group GS2 contains only one standard that addresses privacy.

In the GS3 group, several structural and semantic standards are presented. Finally, the GS4

group is related to templates and technology platform standards. We were able to identify some

standards from the research on integrations and related projects, such as openEHR (OPENEHR,

2017), which is integrated with the DICOM standard and others.

Table 9 – Main personal health record–related standards.

Group and standard Description Reference articles

GS11: nomenclature and terminology

HNA/NIC2 Classifications of nursing activities and interventions. A29.

ICDx Family of international classification of diseases. A11, A28, A29, A44.

LOINC Code names for identifying medical observations. A47.

SNOMED CT Terminology collection of medical terms. A11, A28, A47.

UMLS System of medical vocabularies. A11, A13.

GS2: privacy

HIPAA USA legislation for medical information. A09, A22, A25, A35.

GS3: structural and semantic

ASC X12N Accredited standards committee X12-INS. A45, A47.

CCD Specification for exchange clinical documents. A11, A47, A48.

CCR Specification for sharing continuity of care content. A11, A33.

CDA Specification for clinical notes. A11, A47.

DICOM Standard for medical digital imaging. A11.

EN 13606 EHR3 standards in Europe. A25.

HL7/FHIR/

SMART

Family of standards and platforms based on the

HL7 reference model.

A11, A18, A28, A42,

A43, A45, A47.
ISO4 TR (Technical Report) 14292 (PHR) and

ISO/IEEE 11073 Personal Health Data (PHD).

A01, A03, A20, A23,

A25, A38, A43, A47.
openEHR Open standards specification in eHealth. A11.

xDT German family of data exchange formats. A04.

GS4: templates and technology platforms

OpenMRS Platform and reference application named Open

Medical Record System.

A42.

OSCAR EHR system named Open Source Clinical

Application and Resource.

A42.

1 GS: Group of Standards; 2 HNA/NIC: Home Nursing Activities/Nursing Interventions Classification;
3 EHR: Electronic Health Record; 4 ISO: International Organization for Standardization.

Source: Prepared by the author



53

4.1.5.5 SQ3: What Are the User Types and Profiles That Interact With a PHR?

Upon analyzing the selected articles, we identified a set of profiles or user types that have

access to the electronic patient record, which vary from the physician, who is primarily respon-

sible for the PHR information, to the patient. The types of access also include the possibil-

ity that some data may be publicly available, for example, on social networks (LUO; TANG;

THOMAS, 2012). There are multiple stakeholders involved in accessing the PHR, such as

patients, providers, employers, payers, governments, and research institutions (TANG et al.,

2006). In Multimedia Appendix 3, we present the details of the profiles that have been iden-

tified. We can see that the physician is widely referenced, while the nurse and administrative

profiles are not cited as often. Among the laity, the patient profile is often cited; however, the

relative or guardian profile is less commonly cited. We also included a public profile because

patients might share their information anonymously in some cases or for other cases in which

public administration sectors provide open statistical data.

The following is a brief description of perceived profiles:

(a) Physician or doctor — the physician, in this assessment, is the health professional profile

responsible for reporting patient data in consumer electronic records.

(b) Nurse — according to the International Standard Classification of Occupations (ISCO,

2016), nursing professionals provide treatment, support, and care for people who need

nursing care owing to the effects of aging, injury, disease, or other physical or mental

impairments or face potential risks to their health.

(c) Administrative — this profile refers to all administrative health professionals who are

not directly linked to the data generation but have informational access for bureaucratic,

statistical data gathering, or financial information needs.

(d) Patient or consumer — this profile refers to the PHR principles; some authors also refer

to the patient as a consumer of health care (LAFKY; HORAN, 2011), (CALIGTAN;

DYKES, 2011).

(e) Relative — this profile is composed of parents, guardians, caregivers, responsible legal

individuals, or anyone who has the patient’s permission to access his or her PHR.

(f) Public or anonymous — this refers to profiles with external access in an anonymous or

public way, such as institutions, the government, researchers, health plans, third parties,

and even social networks.

4.1.5.6 SQ4: What Are the Interaction Types of a Patient With a PHR?

This research question seeks to describe the interaction types of a patient with a PHR, that is,

the types of relationships that a patient has using the PHR. In the following section, we present
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a brief description of the interaction types that were identified when analyzing the articles:

(a) Direct — in this case, the patients are the owners and manage their health data in the

PHR. Reference articles: A02, A05, A09, A12, A25, A26, A31, A48.

(b) Indirect — in this case, the patient has read-only access and cannot edit the data. The

health care providers are the owners, and the patient can only download or print the health

records. Reference articles: A01, A05, A22, A25, A26, A40, A41, A42.

(c) Outsourced — in this case, the patient authorizes a third party to handle the health data

or the responsible parties (e.g., parents) manage the patient’s health records. Reference

articles: A02, A03, A04, A07, A18, A24, A25, A28, A37, A48.

4.1.5.7 SQ5: Which Are the Techniques or Methods Used to Input Information Into a PHR?

Another result was the identification of techniques and actors that interact in the process

of data collection for inputting into a PHR. Table 10 presents some answers to this specific

research question, summarizing the techniques of inputting the relevant data into PHRs. This

information follows standards and is intended to structure and standardize the data provided.

We list the main profiles (actors) that provide the data, including health professionals and the

patients themselves, which are gathered from the environment, including anonymously. The

techniques (T) identified for inputting data range from data collaboration (T1), to patient reports

(T2), adaptive platforms (T3), and anonymization (T4). Table 10 also includes articles in which

these techniques and actors are cited. In short, this was the actors’ group that was identified

with a relevant interaction in collecting data for inputting data into the PHR.

Table 10 – Techniques for inputting information into personal health records.

Techniques and profiles Description References

Data collaboration (T11)

Health professionals Collaboration between multiple health care

professionals. Health care providers are the owners

(paternalistic relationship).

A08, A09,

A12, A15,

A22, A23.

Patient reports (T2)

Patient Patient reports data, for example, listing drugs that are

being used or menstrual period data.

A23, A26,

A47.

Adaptive platforms (T3)

Environment Aggregate sources provisioning individualized

personal eHealth services combined with context

information, including monitoring sensors. Patient

and health care providers collaborate for inputting

data into PHR2.

A01, A26,

A38, A43,

A44.

Anonymization (T4)

Anonymous Anonymizing social network data. A16, A44.

1 T: Technique; 2 PHR: Personal Health Record.

Source: Prepared by the author
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4.1.5.8 SQ6: What Are the Goals of a PHR?

This research question includes the main goals of the PHR. This question is intended to

identify the purpose that a PHR has in a broad context, and that applies to any profile that has

access. In the following section, we present a brief description of the interaction types:

(a) Consult — in this case, the purpose is to allow the profile only to consult (in read-only

mode). Reference articles: A01, A03, A07, A10, A13, A15, A16, A17, A21, A39, A47.

(b) Maintain — in this case, the user profile is allowed to maintain and control the health

records. Reference articles: A09, A16, A18, A22, A29, A33, A37, A46.

(c) Monitor — in this case, the PHR is in monitoring mode and can send alerts or warnings

for one or more profiles; the goal is to help the patients monitor their health. Reference

articles: A01, A07, A10, A20, A23, A25, A29, A40, A43, A45.

4.1.5.9 SQ7: What Are the Types or Models of Architecture of PHRs?

The purpose of this question is to identify the types or models of architecture in which a

PHR can be implemented. When analyzing the articles, as seen in Table 11, the architecture

types (AG – architecture group) were split into two groups: model (AG1) and coverage (AG2).

The first group, AG1, describes the main architecture models. The second group, AG2, divides

the data based on the physical location, that is, the scope of the PHR.

Table 11 – Personal Health Record architecture types or models.

Group and item Description Reference articles

AG11: model

On paper Health records are kept on paper. A08, A20, A22.

Inside PHR2 is kept in local repositories, inside the

provider, for example.

A02, A03, A16, A20, A31.

Outside PHR is distributed or shared between servers

outside the provider.

A01, A03, A24, A35.

Hybrid PHR is distributed inside and outside the provider. A02, A10, A28, A35, A47.

AG2: coverage

Stand-alone Data coverage is used only in the provider area. A11, A26, A45, A46.

Local Area is at the city level. A03, A11, A20, A29, A35.

Regional Data are used in the state or province. A02, A04, A25, A37, A45.

National Coverage encompasses the nation. A09, A12, A28, A34, A35.

International Coverage transcends the nation. A09, A16, A28, A30.

1 AG: Architecture Group; 2 PHR: Personal Health Record.

Source: Prepared by the author
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4.1.6 Systematic Literature Review Findings

In this study, we sought to identify a quantitative and qualitative sample of studies that

enabled us to obtain a clear overview of the technology regarding PHRs in the last 10 years

from a number of candidate articles. This research sought to highlight some of the most relevant

studies of the field according to certain systematic selection criteria. The survey sought to

identify several common aspects of studies by answering a number of research questions. As a

result, we were able to propose a PHR taxonomy and identify gaps to be further researched that

represent challenges and issues that have been detected in recent years. These aspects range

from patients’ concerns to providers’ problems regarding PHR adoption. In addition, we have

identified the data types included in PHRs, an updated tabulation of the data standardization,

access profiles, and their characteristics, and, finally, a classification of input techniques. We

also identified other common and related aspects. These opportunities are discussed as follows.

4.1.6.1 GQ1: How Would the Taxonomy for PHR Classification Appear?

For the GQ1 research question, we sought to define a PHR taxonomy, which is presented

in Table 5. Our proposed taxonomy illustrates the PHR types and their organization according

to several studies that were analyzed. We primarily identified three major groups of PHR or-

ganization types: (1) Structures, (2) Functions, and (3) Architectures. From these groups, we

were able to examine the PHR types in-depth to understand each one of them. These groups

also showed that there are PHR application initiatives on several fronts with concerns that range

from features and content to architectural format in terms of PHR implementation (STEELE;

MIN; LO, 2012).

4.1.6.2 GQ2: What Are the Challenges and Open Questions Related to PHRs?

For the GQ2 research question, we sought to define the main challenges and issues regarding

the use of PHRs. There are many open questions to be further researched in the area of PHR.

The challenges and constraints in the adoption of PHRs are diverse. Some research results

indicate problems of usability, privacy, security, and complexity in the use of PHRs, ranging

from fears of including erroneous data to the difficulty of interpretation as the main difficulties

(BAIRD; NORTH; RAGHU, 2011), (LIU; SHIH; HAYES, 2011). In Table 6, we describe some

challenges and issues that may give rise to future studies. According to the number of items

in each group in the table, we notice a greater concern with the first three groups, although we

cannot claim this assessment as being definitive. One possibility that we touch upon for this

observation is that the integration of standards and interoperability, as well as the nomencla-

tures and terminologies, are already in a stage of stability and consolidation. This leads us to

reinforce the thesis that the concerns of the authors at this time are the issues raised by the first
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three groups of problems. That is, the concerns and challenges are more focused on discus-

sions regarding confidentiality, integrity, authorization, access control, portability, efficiency,

scalability of solutions, and issues related to user experience.

4.1.6.3 SQ1: What Are the Data Types That Are Included in a PHR?

With respect to the SQ1 research question, we sought to define an updated ranking on data

types in PHRs. Upon analyzing the studies, we observed that PHR data types have evolved

since the first PHRs (TANG et al., 2006), (BRICON-SOUF; NEWMAN, 2006). The data types

found include groups that are not usually included in EHRs. Among the EHR stored data

are medications, prescriptions, scheduled appointments, vital signs, medical history, laboratory

information, immunizations, summaries, scanned documents, billing information, and progress

notes about changes in the patient’s health (ISO, 2005). However, in PHRs, new data types have

emerged, including genetic information (SEÑOR; FERNÁNDEZ-ALEMÁN; TOVAL, 2012),

(WILLIAMS, 2010), medical advice (recommendations), and prevention concerning the pa-

tient’s health, as well as data types with recommendations for prevention and home monitoring

data (SPIL; KLEIN, 2015), (OZOK et al., 2014). Other data types that appear in PHRs are

allergies, patient registration data, and insurance plan information, including demographic data

such as age, sex, and education. Furthermore, information on the patient’s family, social history,

lifestyle, food, diet, daily activities, and a list of providers who treated the patient previously

are included in PHRs.

4.1.6.4 SQ2: What Are the Standards That Apply to PHRs?

For the SQ2 research question, we sought to define a current view of PHR standards. The

result was the identification of the current list of existing data standards used in PHRs. We

observed several standards that were maintained by various stakeholders that were located in

different countries and regions. We were also able to observe a consolidation of some patterns

in the articles’ citations, such as ISO (ISO, 2005), (ISO, 2012) and HL7 (Health Level Seven)

(ARCHER et al., 2011), which are used to define and establish interoperability between the

systems. When analyzing the articles, it was observed that all the standards listed could be used

directly or indirectly with a PHR. However, their purposes are diverse. Some standards have

specific goals, for example, DICOM (JONES et al., 2010) and SNOMED CT (SUJANSKY;

KUNZ, 2015), while others have broader purposes, for example, HL7 (ARCHER et al., 2011)

and openEHR (OPENEHR, 2017), which can be integrated with other specific standards to ren-

der the solution. Finally, we identified some open systems or platforms that serve as templates,

which use some of the listed standards to propose management solutions for patients’ health

data.
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4.1.6.5 SQ3: What Are the User Types and Profiles That Interact With a PHR?

In the SQ3 research question, we sought to define the PHR user types and profiles that

address PHR. The result was the identification of updated profiles as well as their characteristics.

For the security and privacy of the health data, the answer to this research question offered a

clear definition of the profiles that are allowed access to the PHR and what their responsibilities

are (FUJI et al., 2012). In terms of access profiles, although the PHR is focused on personal

use, the idea is that a patient can also delegate access to third parties by choice or necessity, as

in the case of children or people who need special care. These third parties can access all or

only specific parts of the PHR dataset. Patients can share their PHR for various purposes. Such

patients may be minors whose parents need to share their health data with physicians, people

with special needs who require constant monitoring, or even patients who wish to share their

health data with other physicians.

By analyzing the selected articles, it was possible to find multiple profiles that have ac-

cess to the PHR. Therefore, e can highlight the following profiles: patients, physicians, nurses,

relatives, administrators, and the public. A physician’s tasks include recording the health infor-

mation and medical history of the patients as well as exchanging information with practitioners

and other health care professionals (ISCO, 2016). In cases where patients need emergency care,

a primary care physician usually treats them. If more specialized care is needed, the physi-

cian indicates the need for a specialist. Furthermore, physicians must report births, deaths, and

notifiable diseases to the government. Because the PHR is composed of health data that are

stored for a lifetime, many physicians edit the PHR over time. Otherwise, in the case of an

administrative profile, these professionals usually have limited and controlled access to medical

records. This profile is considered internal access, which is not to be confused with external

access institutions.

With the patient profile, the user can manage the information provided in his or her reposi-

tory. The purpose is for patients to have access to their health data and use them throughout their

lives (SUJANSKY; KUNZ, 2015). This set of information is established at different moments

over time, for example, for each medical consultation, laboratory test, and hospital admission.

Nevertheless, there is a clear distinction between what was reported by health professionals

and what the patient reports. Thus, the PHR offers an exact distinction between what was

reported from each profile in its repository. In the case of a relative profile, some authors dis-

tinguish these profiles in terms of accessing the PHR with some limitations or full access with

the permission of the patient (CASTILLO; MARTÍNEZ-GARCÍA; PULIDO, 2010), (HORAN;

BOTTS; BURKHARD, 2010), (SUJANSKY; KUNZ, 2015). Additionally, in the case of public

or anonymous profiles, the health data can be accessed in a limited or shared way, in which the

PHR has a public and social nature to help other patients (WILLIAMS, 2010).
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4.1.6.6 SQ4: What Are the Interaction Types of a Patient With a PHR?

In the SQ4 research question, we were able to identify three types of patient interactions with

the PHR. In the first type, according to the definition of the PHR in ISO 14292 (ISO, 2012), the

patient manages and controls the health data directly. In the second case, the patient only acts in

a supporting role as complementation of EHRs but does not have effective control. Finally, in

the third type, the patient outsources the management of the health data to a responsible person.

4.1.6.7 SQ5: Which Are the Techniques or Methods Used to Input Information Into a PHR?

Regarding the SQ5 research question, we sought to define the main techniques to input data

into the PHR. As a result, with the analysis of the selected articles presented in Table 9, we can

identify the techniques and profiles of the actors who use them. In the data collaboration (T1)

technique, different health professionals access the PHR aside from the patient. The patient

remains the PHR owner, but health professionals collaborate on input records in an identifiable

and controlled way. In the second case, patient reports (T2), patients alone are in charge of

inputting their medical record data without any support. In the third form, adaptive platforms

(T3), the reported data, and the data collected from the EHR are integrated with the PHR data.

In this case, data obtained from different sources and contexts are combined. The purpose is

to provide better management of the patient’s condition. For instance, it would be possible

to provide real-time access to sensitive patient information and ease communication among

patients and providers. In the case of the anonymization (T4) technique, medical data can be

integrated with a social network, where the patient can share his or her status anonymously and

receive contributions from other users.

4.1.6.8 SQ6: What Are the Goals of a PHR?

In the SQ6 research question, we sought to identify the PHR use purposes. This research

question is related to the specific question SQ3, which aims to identify the objectives of the

user profiles when accessing the PHR. We have identified three objective types. In the first

case, the user profile accesses the PHR to only verify the health data without manipulating

them. One example here includes health professionals or administrators who have permission

only to view the data. In the second case, the user profile has permission to manipulate the data.

In this situation, it is important to highlight the need to identify and control the profile that has

changed the data and which data have been changed. In the third case, the user profile only

monitors the records. An example of this might be a case in which the PHR receives data from

sensors (IoT) and can send alerts depending on a situation.
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4.1.6.9 SQ7: What Are the Types or Models of Architecture of PHRs?

Finally, in the SQ7 research question, we identified the architectures related to PHRs. We

divided them into two groups: types (AG1) and coverage areas (AG2). In the case of architec-

ture models, some articles state that health data are still stored on paper in many places, and

other institutions have evolved into the proposed hybrid architectures with the PHR distributed

inside and outside the health care organizations. In the case of the possibilities of coverage

areas, we identified types ranging from a stand-alone PHR on a single machine to PHRs that

can be taken from one country to another following an open international standard.

4.2 Related Work on Two-layer Architecture Model

This section presents related work to our OmniPHR two-layer architecture proposal. With

more than 2500 studies returned in the search, we eliminated those works that do not deal

directly about computer architecture models. Finally, we selected the most relevant regarding

our research topic, which we highlight the related work in Table 12.

Table 12 – Related Work - Architecture models.

Related Work Year Model 1 Interoperability Security
HDEHR 2012 DE,P2P - -
m-Health 2013 DE CCR -
uPHR 2013 DE HL7, CCR, CEN -
CF 2014 CS,DO - CIA, HIPAA
HealthVault 2014 CS CCR, HL7 Authentication
healthTicket 2014 CS HL7, CCR CP-ABE
DEPR 2015 DC OpenEMR 2 -
My HealtheVet 2015 DE HL7 Security policies
SNOW 2015 DC openEHR Privacy policies

1 Architecture Models: CS = Client-server;
P2P = Peer-to-peer; DO = Distributed objects;
DC = Distributed components; DE = Distributed event-based;
2 Open-source medical software compliance with standards such as
HIPAA, HL7, ASC X12 and SNOMED-CT.

Source: Prepared by the author

The works were evaluated from the architecture models according to the classification of

Coulouris (COULOURIS et al., 2011), as well as regarding the security and privacy mechanisms

that they use and what standards the model supports or is compliance:

• HDEHR (Hierarchical Distributed EHR) model (XIA; SONG, 2012) aims to maintain the

patient’s data in the health organization and replicate at the same time to other hospitals

in their region, ensuring fail tolerance, but the P2P distribution is a future proposal and

topics such as security, privacy, or interoperability are not covered.
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• m-Health (Ubiquitous healthcare services in cloud) model (HE; FAN; LI, 2013) proposes

an event-based distribution architecture, with services for interoperability following the

CCR standard, although not mentioning about security or privacy.

• uPHR (Ubiquitous PHR framework) model (KSIMON; SONAI MUTHU ANBANAN-

THEN; LEE, 2013) is a distributed event-based model and has interoperability with HL7,

CCR, and CEN 13606 standard, but also do not comment about security or privacy.

• CF (Conceptual Framework) model (SAFAVI; SHUKUR, 2014) is a framework to a wear-

able health system with a distributed mechanism based on cloud server distribution of

objects with support for security and privacy with CIA and HIPAA protocols, but do not

focus on interoperability.

• HealthVault (SPIL; KLEIN, 2014) is a proprietary solution following the CCR and HL7

standards. This is a web-based PHR to maintain health and fitness records but consists of

a client-server platform where all health data are stored in the company’s servers.

• healthTicket (KYAZZE; WESSON; NAUDE, 2014) is a design and implement case for

ubiquitous PHR. This model is proposed as an architecture for patients’ access by mo-

bile and health care providers by a web application, following CCR and HL7 standards.

This is a client-server model that uses a security mechanism called CP-ABE (Cipher-text

Policy Attribute Encryption Scheme) to ensure privacy.

• DEPR (Distributed Electronic Patient Records) model (KEMKAR; KALODE, 2015) is

a distributed components proposal based on OpenEMR system, which is compliant with

several standards but does not focus on security or privacy.

• My HealtheVet (KLEIN et al., 2015) is an online tool for sharing health information and

has a distributed event-based model with security policies and interoperability with HL7.

• Finally, SNOW project (HAILEMICHAEL; MARCO-RUIZ; BELLIKA, 2015) is a de-

centralized medical data processing system. This model uses distributed objects and has

privacy policies following the openEHR standard.

4.3 Related Work on Performance Analysis

The selected related work studies are listed in Table 13, which lists the model name and

reference, year of publication, health data standards, used framework, and if the study meets

only organizational (EHR) or personal (PHR) health records. Table 13 underscores the fact that

few studies dealt with the implementation of Blockchain technology applied to health records.

Moreover, even fewer articles presented results with systematic quantitative evaluations. We

analyzed the studies returned from these searches and selected only those studies that demon-

strated Blockchain implementations involving health records in actual databases. We discarded
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studies that only conducted simulated evaluations, as well as those that only dealt with surveys

or proposed solutions, i.e., without implementations that processed real data. Although the re-

lated work we examined was not restricted by date, we found relevant publications only from

the year 2015 onwards since Blockchain technologies have just recently been explored in the

context of health care.

Table 13 – Related Work - Performance analysis proposal.

Model & Year 1

Results
Health Data Std. 2 FW 3 EHR PHR

Invisible Ink, 2015 - E - X

Built Certified Mail service as sensitive user-data management platform.
FairAccess, 2016 - E X X

Established an initial implementation with IoT and local Blockchain.
Healthbitt, 2016 HL7/FHIR, ISO13606 - X X

Stores patient data in a distributed ledger allowing sharing with doctors.
HGD, 2016 - - X X

Potential way to house and share health care data.
MyData, 2016 - - X X

Provides useful information on business models and ecosystems.
CBTi, 2017 - H X X

Data update and evaluation process worked normally.
D-CAM, 2017 - - - -
Adds a modest overhead and can be scaled for large networks.
MedRec, 2017 HL7/FHIR E X X

Describes the technical design and early-stage prototype.
MeDShare, 2017 - - -
Comparable to solutions for data sharing between cloud services.
Patientory, 2017 HL7/FHIR E X X

Potential to eliminate friction and the costs of third-party intermediaries.
Ancile, 2018 HL7 E X X

Discusses interactions with patient’s needs, providers and third parties.
FHIRChain, 2018 HL7/FHIR E X X

Demonstrates a case study of collaborative app for remote cancer care.

1 Models in ascending order by year.
2 Health data standards.
3 Platforms used in the solution, where E: Ethereum and H: Hyperledger Fabric.

Source: Prepared by the author.

4.4 Related Work on Multi-Blockchain Proposal

We submitted this search string to eight search portals for scientific studies in the health area,

recognized by the academic community, without restricting the period: CiteSeerX, Cochrane

Library, Google Scholar, PLOS ONE, ProQuest, PubMed, ScienceDirect, and Scopus. Initially,

we found many related studies, mainly due to the restriction for searching articles that deal
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exclusively with implementations that refer to Blockchain-Distributed architectures. However,

by removing articles that, in a first selection, dealt only with systematic reviews, contained only

bidders without results, or even did not include the health area, we reduced the scope to less

than a hundred articles. After this phase, we selected only those articles that had concrete results

that were closer to our proposals, so that we could compare the proposals and the results. Then

we select the following recent studies on the topic, according to Table 14. In the first column

are presented the names or authors of studies selected as closer to this proposal. These selected

studies allowed us to discuss the characteristics of models regarding the architectures, as well as

the results obtained for comparative purposes of the projects. The second column lists the health

data standards used or cited by the studies for structuring the health records, including openEHR

(YANG; HUANG; LI, 2019) or HL7 FHIR (SARIPALLE; RUNYAN; RUSSELL, 2019). The

third column contains the frameworks that served as the basis for proposals, including Ethereum

or Hyperledger. Finally, in the last columns, it appears that the study deals with EHR or PHR.

The blanks indicate that the proposals do not mention standards or type of health data.

Table 14 – Related Work - Multi-Blockchain proposal.

Model & Year 1

Results
HDS 2 BF 3 EHR PHR

Bismuth, 2017 - E H - X

Assist in transition towards thoughtful and responsible data usage.
SDN, 2017 - E - X

Performance improved reducing induced delay and ability to detect real-time attacks.
SingularityNET, 2017 - E - -
Ability to interface with multiple Blockchains.
IoB, 2018 - E H - -
Discuss interledger techniques for enabling industry-scale Blockchain networks.
Sharma et al, 2018 - - X -
Resolves hierarchical security requirements with less consumption of energy.
BDKMA, 2019 - - X -
Multi-Blockchain improves performance and scalability as network size increases.
Hawig et al, 2019 F - X -
Designs presented suitable performance in enabling the interoperability.
HCB-SDPP, 2019 - H - X

Can protect customer privacy more effectively than traditional smart home system.
ReviewChain, 2019 - E - -
Proposed smart contracts and notaries allow interfacing two Blockchains.

1 Models in ascending order by year.
2 HDS - Health Data Standard, where O: openEHR and F: HL7 FHIR.
3 BF - Blockchain frameworks or platforms quoted in the solution,
where E: Ethereum and H: Hyperledger.

Source: Prepared by the author.
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4.5 Related Work on Semantic Interoperability

For the Semantic Interoperability Proposal, the methodology follows the principle used in

the scientific community for designing a model, with the evaluation of a prototype system

(GROENEN et al., 2016). The objective of this evaluation is to meet the health record interop-

erability requirements proposed for PHR. Regarding the research type, the approach is quan-

titative because the analyzed health data are from existing patients, although with anonymized

data. As for the nature of the research, the study involves applied research because it aims at

practical applications in the day-to-day lives of patients and health care providers. Regarding

the objectives, the research used a case study applied to the context of the proposed model. As

research materials to support our proposal, we start by investigating how studies of the past

decade deal with semantic interoperability in health data.

Table 15 summarizes relevant related works that fit the concept of semantic interoperability

according to the HIMSS. A reference model is a reference standard that uses a clinical infor-

mation model (CIM), which is a structural standard of health data (MORENO-CONDE et al.,

2015). As examples of CIMs there are the formats of templates used by the Health Level 7

(HL7) reference model, and the archetypes used in the openEHR and CEN/ISO EN13606 stan-

dards (MORENO-CONDE et al., 2015; SOCEANU, 2016; MARCOS et al., 2015). As can be

seen in Table 15, practically all studies mention the HL7 reference model and the use of tem-

plates (Tm) in semantic interoperability (LAHTEENMAKI; LEPPANEN; KAIJANRANTA,

2009; GOOSSEN; GOOSSEN-BAREMANS; VAN DER ZEL, 2010; MUÑOZ et al., 2011;

MO et al., 2015; ESPOSITO; CASTIGLIONE; PALMIERI, 2016; HEART; BEN-ASSULI;

SHABTAI, 2017; PELEG et al., 2017).

However, among these works, only three studies mention Fast Healthcare Interoperabil-

ity Resources (FHIR) (ALTEROVITZ et al., 2015; MANDEL et al., 2016; PAIS; PARRY;

HUANG, 2017). The FHIR platform specification aims to promote and achieve interoperability

among health systems using the HL7 reference model (BENDER; SARTIPI, 2013). However,

only seven studies mention the openEHR or CEN/ISO EN13606 standards, and few works men-

tion archetypes (Ar) associated with semantic interoperability. With one work found (ALYAMI;

SONG, 2016), Dublin core (Dc) consists of metadata that can be used to retrieve and organize

the PHR. Another study (HU; ELKUS; KERSCHBERG, 2016) mentions software agents (Sa),

which consist of agent-based systems designed to interact and interpret health data.

Analyzing the selected articles, we observed a point in common among all studies. All

research seeks to support semantic interoperability using one or more ontologies. Further, most

studies cite terminologies (Tr) or vocabularies in health records, such as the LOINC, SNOMED-

CT, and ICD standards, linked to the proposed semantic interoperability. However, we observed

that few studies implemented or evaluated models with real patient data. Several articles consist

of surveys or reviews, being limited to the conceptual description and presenting few concrete

numbers regarding the results obtained.
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Table 15 – Related Work - Interoperability

Reference & Year
Results

Reference
Model2

Semantic Interoperability 1

Ar Dc Sa Tm Tr

Lahteenmaki, 2009 H - - - X X

Occupational health pilot, with content from several apps merged.

Goossen, 2010 H, O X - - X X

Two types of analyses and six initiatives evaluated accordingly.

Muñoz, 2011 H, O X - - - X

Description of how to achieve sharing and interoperability of clinical data.

Alterovitz, 2015 H3 - - - X X

Feasibility shown by development of three applications.

Marcos, 2015 H, O X - - X X

Implemented in two clinical domains.

Moreno-Conde, 2015 H, O X - - X X

Common patterns to develop clinical information models (CIMs).

Mo, 2015 H - - - X X

Proposed 10 desired characteristics for computable phenotype repr. model.

Alyami, 2016 H - X - X -

Survey PHR in six categories and framework proposed.

Esposito, 2016 H - - - X -

Proposes a semantic approach based on ontologies.

Hu, 2016 - - - X - -

Presents an architecture for PHR recommendation.

Mandel, 2016 H3, O X - - X X

Relates development experiences and discusses challenges.

Heart, 2017 H, O X - - X X

Reviews and presents needs to integrate EMR, EHR, and PHR.

Pais, 2017 H3 - - - X X

Developed a conceptual model of wellness data using HL7 FHIR.

Peleg, 2017 H, O X - - X X

Subsidized diagnosis change of 2/10 patients and anticipated therapy for 11/20.

1 Ar = Archetypes, Dc = Dublin core metadata, Sa = Software agents;
Tm = Templates; Tr = Terminologies.
2 Reference Model (Standards): H = HL7, O = openEHR/CEN ISO EN13606;
3 HL7 Fast Healthcare Interoperability Resources (FHIR) platform specification
assists the solution.

Source: Prepared by the author.
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4.6 Research Opportunities

We verified some research opportunities analyzing all the related work considered and pre-

sented in this Chapter 4. We identified several barriers to PHR adoption verifying the state-

of-the-art regarding PHR through the systematic review. However, prominent challenges are

related to the barriers regarding usability, portability, and performance of the solution. In addi-

tion, regarding the architecture proposal, we identified opportunities for research related to the

confidentiality and privacy of health data, since it is a concern of patients, physicians, and IT

professionals.

Regarding the interoperability proposal, another research opportunity detected is related to

the inference of possible health problems from standardized health data. To close the scope of

our proposal, this work aims to focus on two research opportunities found in the related works

and that stand out: (a) problems related to the distribution of patient health data, where we

propose a differentiated model of distributed architecture; (b) problems related to the diversity

of existing health data standards, for which we propose a differentiated model of semantic

interoperability.

As can be seen in the related work presented, there are several open research issues. Re-

garding the problems of architecture and interoperability, we can observe that there are several

solutions proposals. However, we note that the use of Blockchain to address health issues of

technology is a promising area where we can highlight the originality of our proposal. Our sci-

entific contribution aims to promote the use of this type of technology as a model that addresses

the problems related to the distribution of health records. We also see a number of open issues

about the interoperability of health records, especially regarding semantic interoperability. This

is an area with research potential, in which we also seek to highlight a scientific contribution,

distinguishing our proposal for syntactic and semantic interoperability in this study.
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5 OMNIPHR MODEL

This chapter details all parts that make up the OmniPHR model, with the functionalities

and technologies that support the proposal defined previously. We start with an overview of the

model, and then we present the OmniPHR model in detail. Regarding the model, we published

two full scientific articles:

1. (ROEHRS; COSTA; ROSA RIGHI, 2017) in the Journal of Biomedical Informatics (JBI)

on specifically the architecture model.

2. (ROEHRS et al., 2018) in the IEEE Journal of Biomedical and Health Informatics (J-BHI)

on specifically the semantic interoperability model.

This chapter is divided into five sections, which are described below:

(i) Section 5.1 presents an overview of the OmnipHR model and the objectives.

(ii) Section 5.2 describes in detail the architecture of the model.

(iii) Section 5.3 presents the two-layered proposal for the OmnipHR model, specifying the

use of Blockchain technology.

(iv) Section 5.4 describes an architecture proposal of the OmniPHR model, using a Multi-

Blockchain setup.

(v) Section 5.5 describes the OmniPHR interoperability proposal.

5.1 Overview

One of the conceptual bases of the OmniPHR is to divide the patient’s health records into

datablocks, which are a logical division of the patient’s health datasets, such as laboratory,

drug-related, x-ray, and others datasets, as can be seen an overview in Figure 6. As OmniPHR

proposal is to promote an interoperable and distributed architecture for PHR with safety fea-

tures for sensitive data, we found in Blockchain technology (NAKAMOTO, 2008) appropriate

alternatives to composing our base architecture model. Furthermore, the OmniPHR model in-

cludes a premise of paging records, where the page’s goal is that the user always accesses the

latest data, but in a paginated way. This factor brings benefits ranging from faster access to the

capacity of data maintenance be able, e.g., to keep older data in a less used repository.

OmniPHR focuses on the distribution and interoperability of PHR data. The model’s pur-

pose is to allow a unified view of health records, which are distributed in several health orga-

nizations, as well as address the challenges of having a distributed architecture that is scalable,

elastic and interoperable. OmniPHR proposes a PHR representation, organized hierarchically,

encrypted and distributed in chained datablocks on the network, using for this implementation
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Figure 6 – Blockchain overview.

Source: Prepared by the author.

the Blockchain technology. These blocks can be located in different health care organizations

and even in a patient-managed repository. In addition, the model provides the possibility of

access by heterogeneous devices. In Figure 7, we observe a model overview. The figure shows

a partitioned PHR in datablocks, distributed in a network with twelve nodes grouped into four

subnetworks. It is possible to observe the diversity of devices able to interact with OmniPHR.

The devices can join the system as providers (a) or consumers (b) since one of the model’s

premises is have OmniPHR present everywhere, patients may be, for instance at home, at work

or in a hospital. As providers (a) users can use different devices that can supply data to compose

the PHR. As consumers (b) users can use devices that can read the PHR data.

In OmniPHR we propose the use of a P2P network with routing overlay, which is an applica-

tion server with defined responsibilities, including cloud computing features such as horizontal

scalability and elasticity (ROSA RIGHI et al., 2016). Nevertheless, the main goal of OmniPHR

routing overlay is to have the ability to maintain and locate datablocks of PHR when required

and validate whether the chaining is intact or had some manipulation. Each OmniPHR dat-

ablock is encrypted and digitally signed by the responsible for inserting the information, which

can be a health professional, patient, or whom the patient authorized to access their health

records. This means that even patient’s demographic data have one responsible, e.g., full name,

birth date, gender, current address, or identification document numbers. Likewise, each diag-

nosis or laboratory test results datablock also have one responsible for this information with the

digital signature respectively. In case of data coming from sensors, datablocks reported by these

devices are also properly identified. Hence, the proposal is that any health datablock informed

in OmniPHR is encrypted and has the informant with digital signature associated.
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Figure 7 – An OmniPHR distributed in the network.

Source: Prepared by the author.

5.2 Architecture

In this section, we focus on the modules and components of OmniPHR design. The routing

overlay node has a key role in the negotiation model design, acting as the main business com-

ponent. The assignments are distributed in components split into three main modules, which

are illustrated in the component diagram presented in Figure 8. In the diagram, we depicted the

middleware present in each routing overlay, which is a logical abstraction of all modules and

business components.

We can see in Figure 8, from top to bottom, that the data sources can be diverse. Health

care providers may have a legacy database in a proprietary format (EMR) or following an open

data standard (EHR). In addition, the data source may come from data collected on devices

connected to the patient, such as wearables, or personal devices, such as mobile devices. As can

be seen in Figure 8, in green color, the entry health records in the model middleware may follow

a proprietary or open pattern. Also, in Figure 8, in blue color, the middleware and its respective

components are presented within the OmniPHR model. Each module and component part is

described following. Moreover, at the bottom of Figure 8, are the data repositories used by the

OmniPHR model, which can be a relational database or a Knowledge Base (KB), represented

by a semantic database.
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Figure 8 – OmniPHR architecture model.

Source: Prepared by the author.

5.2.1 Datablock and Service Module

The Datablock and Service module is in charge of (1) translate, (2) distribute and (3) validate

each patient’s health datablock, as well as (4) manage the nodes and (5) routing services of

connection messages. The proposal is to separate this module in components for each of these

responsibilities that deal with the datablocks distribution and network management services.

Following, we summarize each component:

5.2.1.1 Translator

The Translator component performs a key role in the OmniPHR since it is the input and

output gateway of the datablocks. This component may be considered primarily responsible

for interoperability in the model. By default, OmniPHR adopts an open standard for storing the
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health datablocks on superpeer. Thus, this component is only used when the health care provider

uses a different standard of OmniPHR. That is, if the provider uses the same OmniPHR format,

then this component is not triggered. On the other hand, if the provider uses another standard,

whether it is open standard or not, then this component is triggered to translate the datablocks

when they pass through the superpeer. The proposal consists in converting the altered parts at

the source to the standard format adopted by the OmniPHR model. In this way, the component

could promote interoperability with different standards of health datablocks, i.e., between the

input and output standards.

In this process of constructing the conversion logic, the archetypes of openEHR standard can

be organized in templates, collaborating to adapt the source data to its format. The component

has the ability to translate datablocks in two ways: (1) in case the provider uses an open standard

different from that adopted in OmniPHR; or (2) in case the provider uses a proprietary standard.

In case of OmniPHR model, the proposal is the use of an equivalent ontology for each datablock,

stored in a semantic database (as can be seen at the bottom of Figure 8), and using NLP to assist

in automating the conversion of legacy health records to the standard format adopted by the

model.

The next section, which deals with the semantic interoperability of the OmniPHR model,

contains more details regarding the use of this component to promote the conversion of hetero-

geneous health records.

5.2.1.2 Distributor

After going through the Translator component and the content being translated and con-

verted, we have the Distributor component, which is in charge of distributing and replicating

datablocks on the network. The component requires knowledge of datablocks location, as well

as the ability to fetch datablocks in the appropriate node that contains the requested data and

return to requester. By default, the datablocks are stored on the computer where it was created,

and some copies are distributed on the routing overlay and on the network following the DHT

algorithm adopted.

We define this component in order to maintain a balanced distribution of data in the network.

With this, the component also helps to minimize the risk of data loss, as well as enable a quick

search of the data. In this way, the original data reported by a health care provider remains

stored in the health organization with copies of these datablocks distributed over the network.

In case of data informed by the patient, these are stored in the routing overlay, as well as with

copies distributed in the network.
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5.2.1.3 Validator

To help ensure reliable data, we have the Validator component, which has the responsibility

of validating the health datablocks chaining. The tasks are to check the integrity of datablocks,

to check and ensure the consistency, as well as the correct sequencing of datablocks. When

a datablock is inserted in the chain, each one is formed by a dataset with time it was created

and the hash pointer of the previous datablock. This principle was recommended by Satoshi’s

model (NAKAMOTO, 2008). However, each new datablock must be authenticated before it can

form the next datablock in the chain, which is one of the routing overlay responsibilities through

this Validator component. In this way, this component has the responsibilities of verifying the

content consistency of each block, as well as the chaining with the adjacent nodes.

5.2.1.4 Nodes Manager

This component is one of the service components of the Datablock and Service Module.

This component manages and controls the input and output of regular (or leaf) and routing

overlay nodes in the network, promoting scalability and load balancing capabilities. For the

input and output of network nodes, this component follows the rules of the DHT algorithm

adopted by the OmniPHR model.

When a node wishes to be inserted into the network, this component generates a new iden-

tifier for the node according to the DHT algorithm and notify other nodes that this node is

accessible. In the same way, if any node should be removed, the responsibility of this com-

ponent is to command the redistribution of the nodes in the network, according to the DHT

algorithm. In addition, if necessary, this component should trigger the distributor component to

redistribute the data blocks in the network.

5.2.1.5 Message Router

This component provides communication services, such as packaging and routing of mes-

sages, receiving and forwarding requests to other modules and components. This component

works in conjunction with the Nodes Manager and Distributor components to access the nodes

in the network. In this component, OmniPHR proposes the use of an open cache solution, which

aims to achieve better performance.

This solution follows the same DHT algorithm to distribute replicas of datablocks, main-

taining in memory for a limited time the newly requested datablocks. In addition to routing

requests on the network, this component also has the responsibility of sending simple queries

(pings) to discover the nodes that are online on the network. This function aims to keep an

updated routing table and speed up network communication.
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5.2.2 Security and Privacy Module

The Security and Privacy module has a number of tasks regarding privacy and security main-

tenance. The responsibilities ranging from the protection of stored and transmitted datablocks

through (1) encryption and (2) digital signature, promoting the privacy and data integrity, as

well as a component for (3) authentication, until the control of (4) roles and privileges granted

to the profiles. Following, we summarize each component:

5.2.2.1 Encryptor Component

This is the first component of the Security and Privacy Module, which has the responsibil-

ity of establishes the transmitted and stored datablocks encryption. This component encrypts

datablocks pointers, as well as the health datablocks contents. In the OmniPHR model, in addi-

tion to the chaining of the datablocks are encrypted, the content of the datablocks must also be

protected, both in repositories and in when they are transmitting in the network.

The purpose of the OmniPHR model is to promote the security of the datablocks chaining

and the confidentiality of the patient’s health data. The solution base is an open public key en-

cryption, which generates two cryptographic keys: one public and another private. The private

key is secret, and the public key is distributed with the patient identifier;

5.2.2.2 Digital Signer Component

This component is responsible for the digital signature of datablocks on the transmission

and storage on the network. Each user has a digital signature, which is used to assign each

datablock informed, respectively. The purpose is to verify that a transmitted datablock is an

unchanged copy of one produced by the signer (COULOURIS et al., 2011). In addition, this

component intends to contribute to identifying each responsible for inserting or updating the

health datablock through a digital signature and making it possible to obtain the authenticity of

the data reported.

5.2.2.3 Authenticator Component

This component ensures authorized access and proper attribution profile, as well as prevent-

ing unauthorized access, blocking and providing lost access recovery mechanisms. The purpose

is that all network connections must be authenticated in order to minimize problems with unau-

thorized user access. When entering on the network, the user must have an ID generated for

health records identification. The ID creation follows the OpenID code, which is used to iden-

tify users (OPENID, 2017), in order to avoid duplication of users (MCCOY et al., 2013). This

ID forms the main health records identifier.
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5.2.2.4 Roles and Privileges Component

This component is in charge of registration, concession, and maintenance of network access

profiles. The algorithm model of the proposal follows the RBAC (Role-based Access Control)

principle used by the scientific academic community (LU et al., 2015) (TSENG et al., 2017).

This component has two approaches. The first approach is a personal purpose with an individual

control of permissions granted to other users’ access their PHRs. In this case, the patient may

grant access privileges to their health records to health professionals or third-parties, as well as

revoke at any time. The second approach is an organizational purpose where it is possible to

create and maintain health professional profiles. The proposal is that each health organization

should define the profiles and privileges of their health professionals. However, the master

controller of PHR remains with the patient, following the first approach.

5.3 Two-layer Model

This section describes the OmniPHR architecture in relation to the two-layer model, where

we apply Blockchain technology (ROEHRS; COSTA; ROSA RIGHI, 2017; ROEHRS et al.,

2018). The model follows a distributed P2P network architecture with superpeers (COULOURIS

et al., 2012). We expand and introduce improvements in OmniPHR’s Blockchain-based archi-

tecture and implementation. In particular, the model deals with aspects focused on OmniPHR’s

Blockchain architecture and the impacts arising from the replication of health data.

OmniPHR’s Blockchain architecture model is comprised of the following two layers:

(a) Client modules, which are installed in the health providers and in the patient devices;

(b) Server layer, which is distributed in superpeers on a platform based on Blockchain.

This architecture is formed via a private P2P network, where health records are organized

into datablocks comprising a linked list and a distributed ledger of health data (WALPORT,

2016). Figure 9 depicts the architecture of our OmniPHR prototype. This figure shows how

clients communicate with the underlying Blockchain platform via pull and push messaging

(COULOURIS et al., 2012). This format enables all clients connected in the network to update

their data proactively, i.e., datablocks can be sent and received automatically. On the server, the

Blockchain platform is installed on a set of distributed superpeers. This private network stores

datablocks within a KnowledgeBase, which is a non-relational NoSQL database based on a

Graph or RDF DBMS. The KnowledgeBase itself is implemented using the openEHR ontology

to store the data in a non-relational database based on graphs.

Our OmniPHR prototype also uses a parallel database in an entity-relationship (ER) model

to store the datablocks in the format of archetypes, which is a relational DBMS. These archetypes

follow the openEHR health data standard, which we adopt for communication and data storage

in our Blockchain network. The compositions of archetypes are the units that comprise the
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Figure 9 – The architecture of OmniPHR prototype.

Source: Prepared by the author.

openEHR medical record structure (LI et al., 2018). The chained health datablocks in this

database are used in forming the PHR smart contract.

Figure 10 shows how OmniPHR prototype chains health datablocks together. Each dat-

ablock consists of (a) content formed by an archetype containing the health record, (b) a field

containing the hash code representing the digital signature of the content of the archetype, and

(c) a pointer with hash code that set the previous datablock. The first datablock is named the

’genesis block’, and the ’previous hash’ field points to no other datablock since it is the first

node in the linked list.

The OmniPHR prototype applies the Blockchain smart contract feature (SZABO, 1996)

to verify and prevent violations of PHR data. Another highlight of our OmniPHR prototype

involves the role of each node in the Blockchain network of health records. In particular, our

prototype only allows superpeers located in the private network to evaluate the correctness

of datablocks. Therefore, client nodes only consume microservices provided by superpeers.

Moreover, clients also produce content that is evaluated and distributed on the Blockchain by

superpeers.

Datablocks in our OmniPHR prototype can be stored in the following two ways:

(a) Replicated in all nodes, following the approach adopted by the crypto-currency Bitcoin

(ASPLUND; LOVHALL; NADJM-TEHRANI, 2018) or

(b) Using a replication algorithm, such as Chord (ROEHRS; COSTA; ROSA RIGHI, 2017),

to replicate records only on certain nodes in the private Blockchain network.

The OmniPHR model can be configured to support both forms of replication because when

using the Chord algorithm we can set up to how many nodes we want to replicate the data
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Figure 10 – PHR Blockchain in OmniPHR

Source: Prepared by the author.

blocks. The Chord algorithm was used to make this decision flexible. This flexibility is one

of the main characteristics of the model, since it may not be desirable or even performative to

replicate health blocks for all nodes in the network.

5.4 Multi-Blockchain Model

Initially, in the first studies about OmniPHR model (ROEHRS; COSTA; ROSA RIGHI,

2017; ROEHRS et al., 2018, 2019), we propose a model that used the Chord algorithm to

perform the data replication for a limited number of nodes in a single Blockchain, instead of

replicating to all nodes, as would the traditional setup of the Blockchain technology. As an ex-

tension, we propose a disruptive architecture, denominated OmniPHR Multi-Blockchain, that

follows a different configuration compared to the traditional proposal of Blockchain. However,

we remain committed to not replicating all data to all nodes and taking advantage of the dis-

tribution and security features of Blockchain technology, as can be seen in Figure 11. In this

illustration, we can see that the PHR is distributed in different Blockchains (Blockchain #1 and

#2), i.e., without replicating the data for all nodes, but maintaining the concept of integrated

distribution. In the present proposal, we propose an architecture with multiple Blockchains

orchestrated to support the distribution of PHR. Therefore, we use the traditional Blockchain

architecture in a restricted context of nearby health providers, and a middleware orchestration

to a context of distant health providers.



77

Figure 11 – PHR distributed in different Blockchains.

In this way, given the context initially presented, existing problems, proposed contributions,

and related work, in this section, we detail our proposal of the architecture model. This proposal

aims to support the implementation of Blockchain technology applied to health records in a

distinct setup. Initially, we present a broad view of the architectural structure, as can be seen

in Figure 11. Hence, we detail the pillars that form the technological and business view of the

model.

Figure 12 – Overview of OmniPHR Multi-Blockchain architecture.
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Therefore, given the distribution problem of health records of patients, we envision some

aspects to address, which form the basis of our architectural model. In the Figures 12 and 13, we

can visualize the base of the OmniPHR Multi-Blockchain model, understood by the questions

concerning regarding (a) locality, (b) interoperability, (c) volume of data, and (d) security.

Figure 13 – Detailed view of OmniPHR Multi-Blockchain architecture.

(a) In terms of locality, this aspect concerns the physical location where the data is stored.

A patient can knowingly go through various health providers throughout life. A patient

can treat him/herself at home, in different places, in different countries, in different health

organizations and by different professionals, as well as for short or long periods. Ideally,

the PHR should collect the formal health records independently of location and timeless.

This pillar is one where Blockchain’s technology is best able to fit in, as it can promote an

independent view of locality and at the same time linked health records through P2P net-

works. In this way, the Blockchain database of health records can promote a unified and

distributed view of the data. This distributed format is a different model from the central-

ized one, where health records are concentrated in one location only and shared by health

organizations. At this point, we note a distinction in our proposal regarding traditional

Blockchain models, where all nodes share all data following the original model applied

to the crypto-coins. Therefore, it is important to emphasize the aspect of data replication

in the traditional Blockchain model, since data replication happens on all nodes of the

network in order to keep everyone up to date (PARK et al., 2019).

(b) In terms of interoperability, this aspect concerns the standardization of the types and

contents of the data, that is, it aims at meeting the great variability of types and contents
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that the patients’ health records can store. Although the problem of data locale and its

chaining we can suppress with the use of Blockchain, there are still other problems, start-

ing with the nature of the data types in health records. The data entered patients’ health

records have several types. Several studies demonstrate the great variability of types of

data that health records may contain. In essence, we can have structured and unstructured

data records, which may even be in different languages, depending on where the patient

was treated. In this sense, we have found the international interoperability standards HL7

(SARIPALLE; RUNYAN; RUSSELL, 2019) and openEHR (YANG; HUANG; LI, 2019),

which can be integrated into some situations. Moreover, even based on the use of these

international standards, there needs to be a concern with converting the data to the same

protocol, since the variability of protocols around the world is wide, including private

standards, as well as the variability of types of data is also vast.

(c) In terms of volume, this aspect addresses another fundamental aspect of the basis that

composes a complete medical history of the patient and concerns the volume of these

data. Many studies show that data records vary in volume, with media records, such as

images and sounds, some of the most responsible for large volumes of data with regard to

health records (KAUR; RANI, 2015). However, we can also have other types of records

that demand large volumes of data like snippets of our DNA. In a structure that follows a

centralized model this large volume of data may not be a big problem, however when it

comes to a distributed model that follows a replication model for all nodes in the network,

then this large volume of data can affect the system performance.

(d) In terms of security, this aspect concerns about data security in several respects. Some

of the major concerns are about aspects such as access or privacy permissions; others

relate to data breach or corruption, and other issues related to veracity or confirmation of

responsibility identification for information. The use of Blockchain technology also seeks

to collaborate on the security side, since the mechanism brings with it a model that, in

addition to linking the data blocks, also aims to keep them inviolable. Hence, the concerns

end up focusing on access and responsibility for the inserted data. In this sense, digital

signature solutions can bring greater security in the composition of the identification of

responsibility for the information inserted in the medical record.

In Figure 12, we present how to distribute the Blockchain network as an architectural model.

We can see that there are two views on the distribution of records. Beginning with the internal

view, this detailed view composes the internal Blockchain network of the health provider. This

internal network aims to distribute the records in internal nodes of the health organization and

in the nearby health providers, with all features that Blockchain technology provides in its

original proposal, i.e., to replicate all data to all nodes of the network. This mechanism aims to

facilitate the use of tools that follow the traditional Blockchain model, taking advantage of all

P2P features and services.
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On the other hand, as can be seen in Figure 13, we have the external view of the Blockchain

network. This view aims to meet the access of a professional or even the patient himself/herself

to data that are in other health providers. Therefore, this model aims to serve the data sharing be-

tween organizations and follows a different architectural model from the traditional Blockchain

model, where all nodes receive all the data. Also on the external view, in this context, we seek to

assemble the OmniPHR model using technologies that facilitate the integration and replication

of data, such as the use of ESB (Enterprise Service Bus) with Publish and Subscribe, facilitating

the interoperability of the model. This technological feature of the model aims to include both

the attendance of possible different types of data coming from different organizations, as well

as the integration with IoT devices and devices, for example.

The proposal format of the OmniPHR Multi-Blockchain model aims to take advantage of

the original proposal of traditional Blockchain in internal use, with all its characteristics, thus

facilitating the internal implementation by health providers. In addition, in the sense of the

external use, the intention is to try to meet with a better performance the data replication, since

a smaller number of replications of data we can realize, due to the size that a complete medical

record can have over a lifetime.

5.5 Semantic Interoperability Model

This section presents the semantic interoperability vision of the OmniPHR, which provides

to patients and health care providers the integration of different health data standards. Further-

more, OmniPHR also aims to aggregate semantic interoperability between the different PHR

formats that the patient’s health data can be structured. The architecture model can be illustrated

according to the overview presented in Figure 14, with the OmniPHR middleware highlighted

in green color, representing the core of the proposed model.

The model has two different domains. The first domain, the organizational domain, ad-

dresses the context of artifacts under the control of health care providers. The second domain,

the personal domain, addresses the artifacts that hold the core of the model implementation.

The organizational domain addresses the private context of health organizations. The proposal

is to keep the original data contained in the databases of health care providers. Therefore, the

health care provider can integrate its database with the model through two options:

(a) using a reference model that follows an open standard supported by the model, such as

openEHR, CEN/ISO EN13606, or HL7 FHIR; and

(b) maintaining the current data definition standard, but providing the necessary subsidies for

a semantic conversion of the internal model.

Figure 15 shows a detailed view of the model, following the division presented in Figure

14, with two domains:
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Figure 14 – Semantic interoperability architecture overview.

Source: Prepared by the author.

(a) one is the organizational domain, in which the objective is to preserve the health record

structure used by the organization;

(b) the second is the personal domain, composed of the middleware, which is a business

model layer and includes the repositories where PHR is stored.

In the organizational domain, OmniPHR predicts the entry of open and legacy standards.

We have two representatives of open standards: (a) openEHR and (b) HL7 FHIR. To evaluate

the legacy standards, we have one reference model: (c) Medical Information Mart for Intensive

Care (MIMIC-III) (JOHNSON et al., 2016). In the middleware, there is a main component, the

translator component, which has two subcomponents: (a) natural language processing (NLP)

and (b) ontology converter. The health organization can submit to the OmniPHR middleware

any of the three formats supported (openEHR, HL7 FHIR, or legacy), which read and convert

to the openEHR ontology through the NLP processing phase. OmniPHR uses NLP resources to

automate the conversion process. With ontology, we can integrate different standards, allowing

the realization of inference about these data (OEMIG; BLOBEL, 2014).

After the health records are converted to the openEHR ontology, the data are stored in a

semantic database repository, i.e., in a knowledge base (KB). In conjunction with this, the Om-

niPHR middleware replicates the health records, based on the openEHR archetypes, to the rela-
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Figure 15 – Semantic interoperability detailed architecture.

Source: Prepared by the author.

tional database. Considering the health records as controlled natural language (CNL), which is a

language based on a certain natural language (KUHN, 2014), the main problem that OmniPHR

addresses is extracting data from this CNL and converting it to openEHR ontology. In this way,

the content that composes the PHR can be structured and unstructured data. The proposal is,

besides promoting health record interoperability, to create the basis for enabling extraction and

to infer possible health problems from the PHR unified viewpoint. We propose with OmniPHR

a mechanism for health record conversion, using machine learning with NLP to automate the

conversion to openEHR ontology. We have, in Figure 16, the details of the semantic interoper-

ability model, where we can see the subcomponents of the Translator component. This is the

main component responsible for the interoperability method.

The translator component is the main component responsible for the interoperability method.

The method of converting the heterogeneous standards to the standard supported by OmniPHR

begins receiving the corpus text and passing through the NLP subcomponent. The corpus can

be a text in the XML or JSON format, represented by the HL7 FHIR, or CSV format repre-
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Figure 16 – OmniPHR semantic interoperability method.

Source: Prepared by the author.

sented by the legacy MIMIC-III. According to the background of syntactic interoperability, we

address the issues of syntactic interoperability through (a) functional and (b) data instance in-

teroperability with the help of an XSD document (XML Schema Definition), which describes

in detail the types and formats sent by sources. Considering the semantic interoperability issues

with metadata, OmniPHR addresses the problem with training in the NLP component, through

a neural network.

In the NLP subcomponent, the sequence of steps starts with the corpus text passing through

the Sentence handler. This subcomponent has two stages, one that splits the sentence into

words with Splitter, and the Tokenizer, which tokenizes the sentence identifying and sep-

arating relevant words from prepositions. Then, the text passes through the Field handler

subcomponent, which has two functions: (a) tagging the words meaningfully through Tagger,

identifying them according to the Keywords setup; (b) and afterward, the words are converted

through the Converter to the standard used by the OmniPHR model.

At this point, the conversion to the openEHR archetype is complete. What remains is up-

dating the OmniPHR model’s ontology. The Ontology converter subcomponent is used to

update the openEHR ontology, which has an object localization feature in the Field handler,

and the feature used to update the ontology by adding, updating, or removing objects is called

the Field updater. In this way, the steps of the working method of converting the hetero-

geneous standard to the OmniPHR standard are complete. OmniPHR updated the openEHR
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archetypes and the ontology, as well as stored them in the respective relational and KB repos-

itories. In the following Figure 17 is the main algorithm that represents the extraction and

conversion service in the Translator component:

Figure 17 – Algorithm for the extraction and conversion service.

Algorithm: Extraction and conversion service.

input: list of sentences (S) to translate

input: setup of keywords (K) to verify

output: ontology (O) filled

01 O ← queryCurrentOntology();

02 var: current sentence (s) to convert

03 loop for each s ∈ S do

04 var: current element (e)

05 e ← splitter(s);

06 e ← tokenizer(s);

07 loop for each e do

08 var: current word (w)

09 w ← tagger(e, K);

10 w ← converter(e);

11 O ← fieldFinder(w);

12 O ← fieldUpdater(w);

13 end loop

14 end loop

Source: Prepared by the author.

The input parameters for the conversion algorithm are the list of sentences (S) to convert and

the keyword setup (K). The output parameter and final goal of the algorithm is to fill the ontol-

ogy (O). The execution begins by loading the current ontology using the queryCurrentOntology

function and proceeds according to the steps of the translator component. In line 3 starts the

main loop, which deals with the sentence, splitting the phrases and the tokens (words). Then,

in line 7 another loop manages the conversion of words, finding the corresponding field to store

the specific data. Finally, the ontology is updated, completing the process.



85

6 EVALUATION AND RESULTS

This chapter presents in sections the implementations and evaluations carried out on the

Architecture, Multi-Blockchain, and Semantic Interoperability proposals, with their respective

results obtained. We have published a full article (ROEHRS et al., 2019) specifically on per-

formance analysis regarding the implementation of the OmniPHR model, based on Blockchain

technology, in the Journal of Biomedical Informatics (JBI). This chapter is divided into four

sections:

(i) Section 6.1 presents the implementation-related aspects of the tools used.

(ii) Section 6.2 contains the evaluation performed on the OmniPHR architecture proposal,

and the subsections contain the detail of each step carried out in this evaluation.

(iii) Section 6.3 contains the tools and evaluation performed on the OmniPHR Multi-Blockchain

proposal.

(iv) Section 6.4 contains the evaluation performed on the OmniPHR semantic interoperability

proposal, as well as the subsections detail the steps taken to evaluate this proposal.

6.1 Implementation

A distinguishing characteristic of our OmniPHR prototype is its modular and distributed

architecture based on components and microservices. We support the use of different compo-

nents, as shown by the ecosystem in Figure 18. This Figure 18 should be viewed from the inside

ring outwards. The core ring is PHR, which focuses on the integration of patient records. The

second ring is based on a private Blockchain network and data protocol following the openEHR

or ISO 13606 standard. The third ring used supports and implements the Blockchain network

via a distributed streaming platform, as well as a graph-based database or RDF. This stream-

ing platform enables the distribution and integration of health records, whereas the database in

Graph or RDF format forms the KnowledgeBase ontology.

To support OmniPHR, we evaluated Blockchain platforms that have been applied to sup-

port health records, including Hyperledger Fabric (www.hyperledger.org) (ICHIKAWA;

KASHIYAMA; UENO, 2017) and Ethereum (www.ethereum.org) (EKBLAW et al., 2016).

To gain greater control, however, we developed our own Blockchain platform based on open

APIs. This platform applies a private Blockchain format, i.e., a trusted network, where only

clients who are authorized to participate can access health datablocks (DHILLON, 2017).

Table 16 summarizes all the platforms and tools employed in the OmniPHR prototype. We

use the Apache Kafka platform to distribute the datablocks in the superpeers network (TA;

LIU; NKABINDE, 2016). Kafka abstracts application concerns about data replication by ex-

tending its producer and consumer classes, which represent client nodes sending and receiving
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Figure 18 – OmniPHR application ecosystem.

Source: Prepared by the author.

datablocks, respectively.

The Apache Kafka platform also acts as the message broker in the OmniPHR architecture,

which uses its messaging and queuing features to exchange data between nodes. Its high-

performance partitioning and replication capabilities are also used to support real-time process-

ing systems. Apache Storm is a real-time distributed computing system associated with Apache

Kafka. In contrast, Apache Spark supports large-scale data processing, making the OmniPHR

architecture scalable and fault tolerant when distributing messages with health records.

Table 16 – Architectural choices.

Option Potential benefits
Apache Kafka1 Distributed platform to store data safely in the

distributed, replicated and fault-tolerant network.
Apache Zookeeper2 Configuration and synchronization services
Apache Storm3 Real-time computing for data stream distribution
Apache Spark4 Engine for large-scale data processing
OpenLink Virtuoso5 Multi-model DB, supporting KB and ER store

1 Apache Kafka - https://kafka.apache.org/
2 Apache Zookeeper - https://zookeeper.apache.org/
3 Apache Storm - http://storm.apache.org/
4 Apache Spark - https://spark.apache.org/
5 OpenLink Virtuoso - http://sourceforge.net/projects/virtuoso/

Source: Prepared by the author.

We also use Apache Zookeeper in conjunction with the network resources provided by

Apache Kafka. In particular, we use Zookeeper as an microservice interface to perform dis-

tributed configuration and synchronization of the messages that circulate in the Blockchain

network (WANG et al., 2015). Apache Storm and Apache Spark services (JAIN, 2017; ZA-

HARIA et al., 2016) are also applied to support scalable and responsive processing needs. Our
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OmniPHR prototype contains classes that serve as an interface to access the Blockchain, as

well as store and remove content from the ledger. These classes enable the creation and main-

tenance of the PHR smart contract. Health data is stored in the open-source edition OpenLink

Virtuoso database, which can store both relational storage (archetypes) and triple store (on-

tology) (ODGERS; DUMONTIER, 2015). The Virtuoso database enables data querying via

the SQL or SPARQL (RDF) query languages. The OmniPHR prototype applies the Docker

platform (www.docker.com) as the network container to provide a layer that abstracted and

automated the virtualization (ADUFU; CHOI; KIM, 2015). To automate the building and de-

ploying of code, we use Gradle (gradle.org) (IKKINK, 2015). To verify the transactions

that circulate in the platform and to check with the content transmitted in the prototype, we

exposed some microservices through RESTful web services, and we used the HTTP client

SoapUI (www.soapui.org) to test the unification of health records. Finally, we used the

Apache JMeter tool (jmeter.apache.org) to represent the concurrent load of client nodes

by performing insertions of new datablocks in the network or queries of existing blocks on the

network.

6.2 Two-layer Architecture Evaluation

Following the evaluation methodology proposed by Bossel (BOSSEL, 2013), which defines

five steps to carry out the process we have to:

6.2.1 First - Developing the Model Concept

To illustrate the model behavior, we consider typical scenarios where patients go to various

health organizations and are assisted by different health professionals. As a consequence, the

patient’s health records are updated many times. In this evaluation, we seek to assess the distri-

bution and communication of health records in a network, following the proposal of OmniPHR

model.

6.2.2 Second - Developing the Profiling Model

The objective is to evaluate the model initially in a setup with few nodes, which represent an

initial situation of a health organization. Then, evaluate in some intermediate setups with varied

settings, and finally, evaluate in a setup with a large number of nodes. At the end of execution,

the purpose is to collect the averages of one-way hop count, messages present at runtime and

one-way latency.
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6.2.3 Third - Profiling of System Behavior

In this stage, we used as basis the OverSim framework (MOORHOUSE et al., 2013), which

represents overlay and P2P networks. This framework is an implementation that uses the dis-

crete event network environment OMNeT++ (JV; KALYANKAR; KHAMITKAR, 2014) and

the INET Framework, which is an open-source suite of models for wired, wireless and mobile

networks to OMNeT++.

6.2.4 Fourth - Performance Evaluation, Policy Choice and System Design

As environment settings, ten network setups with two different tests for each one have been

executed, as can be seen in Table 17. To illustrate, a first setup (#1) in the ’A’ column with

100 nodes, 4 routing overlays, and 1 backbone router can be seen in Figure 19. The second test

(’B’ column) with 100 nodes also, but quadrupling the number of routing overlays (4 to 16) and

backbone routers (1 to 4) can be seen in Figure 20. The other tests followed the same logic,

increasing the nodes, routing overlays, and backbones routers proportionally. In total, 20 tests

were performed, i.e., 2 tests (A and B columns) for each setup of nodes.

Figure 19 – Setup #1 - Test A - 100 nodes, 4 routing overlays, 1 backbone router.

Source: Prepared by the author.
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Figure 20 – Setup #2 - Test B - 100 nodes, 16 routing overlays, 4 backbone routers

Source: Prepared by the author.

All evaluations had a total period of 3 hours of execution and performed the following steps:

(a) Entry of the number target of nodes for each execution in the network, with tests calibrated

to have at most 5% above or below of entrances and outputs of nodes during the test period; (b)

Random trigger of messages (each one representing one health datablock transmitted) at ranges

up to 1 second concurrently between nodes.

6.2.5 Fifth - Mathematical Systems Analysis

In Table 17, we describe the parameters for each setup and the results obtained. In all

evaluations, the use of CPU (maximum speed of 2 GHz with 2 cores) and memory (up to 8GB of

RAM memory) was at most 50%. In the ’Setup’ column, we have listed 10 test configurations.

The ’Nodes’ column refers to the target number of nodes in each evaluation setup, from 100

to 3200 nodes. In the set of columns ’Parameters’ we listed the combinations of parameters

tested, which are divided into the number of ’Routing Overlays’ and the number of ’Backbones

Routers’. The ’Routing Overlays’ column refers to the fixed number of routing overlays nodes
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Table 17 – Evaluation setups and results.

Setup Nodes 1
Parameters Results

RO 2 BR 3 MP 4 OHC 5 OC 6

A B A B A B A B A B
1 100 4 16 1 4 1490 1570 4.17 4.60 0.216 0.260
2 200 5 20 2 8 2881 3138 5.03 5.02 0.247 0.393
3 400 6 24 3 12 6518 6593 5.32 5.34 0.479 0.403
4 800 8 32 4 16 13269 13457 5.54 5.57 0.491 0.475
5 1200 10 40 5 20 14561 15542 5.84 5.87 0.381 0.488
6 1600 12 48 6 24 19739 20091 6.03 6.07 0.564 0.445
7 2000 14 56 7 28 24975 25579 6.21 6.22 0.480 0.425
8 2400 16 64 8 32 30393 30802 6.34 6.35 0.549 0.547
9 2800 18 72 9 36 34511 36304 6.45 6.45 0.552 0.523

10 3200 20 80 10 40 40635 42035 6.52 6.56 0.470 0.555

1 N = Number of nodes per setup;
2 RO = Routing Overlays;
3 BR = Backbone Routers;
4 MP = Messages Present;
5 OHC = One-way Hop Count;
6 OL = One-way Latency.
Source: Prepared by the author.

in each setup and tests. The ’Backbone Routers’ column refers to the fixed number of backbones

in each setup and tests. For each of the setups, we run two tests, according to the ’Test A’ and

’Test B’ columns. The ’Test A’ had the objective of verifying the network behavior with an

increasing number of nodes per routing overlay, from 100/4 to 3200/160. For the second test,

we quadruplicate the values of the ’Test A’ parameters. The objective of ’Test #2’ was to

verify the network behavior with a smaller number of nodes per routing overlay, from 100/16 to

3200/80. In the set of columns ’Results’, we listed the results obtained for each of the setups and

for each parameter used in ’Test A’ and ’Test B’. The ’Messages Present’ column refers to the

average number of messages present on the network each moment, i.e., in transmission at every

instant. The ’One-way Hop Count’ column refers to the average number of hops each message

jumps between nodes in one way, i.e., between the source node and target node. Finally, the

’One-way Latency’ column refers to the average time of delay in seconds that a message took

to traverse the network from the source node to the target node.

6.2.6 Environment for Evaluation Methodology

To help load the KnowledgeBase of health data, we used the CaboLabs EHRServer (GUTIéR-

REZ, 2018) platform. This platform implements the openEHR standard in a relational database.

Using data stored in archetypes—and following the openEHR standard—we distributed the

records into datablocks in the Blockchain.
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To evaluate if the datablocks comprised a unified view of the health records, we evaluated the

response time, the amount of memory occupied and the CPU usage, in a private Blockchain net-

work with 10 superpeers and up to 40,000 concurrent sessions. That is since the used database

has data of 40,000 patients, and as a way to perform a stress test on the system, we have tested

the Blockchain to the limit of having at least one block of data from each patient searched

or included concurrently. Each superpeer node consisted of Intel(R) Core(TM) i5, 3.30 GHz

CPU, 4 cores, and 8GB RAM. We also profiled the OmniPHR prototype behavior by submitting

different types of queries from an increasing series of client nodes.

Our evaluation environment used EHR and PHR for data query and health record manipu-

lation (SHAH et al., 2016). As a load test scenario, therefore, we shared the use of the network

Blockchain by having half the client nodes query blocks of registers and the other half insert

blocks into the Blockchain network.

For comparison purposes, we created the following three test scenarios that performed an

increasing number of queries and inserts operations:

(a) Light scenario, which had datablocks triggered from 50 up to 500 concurrent sessions in

the network;

(b) Medium scenario, which had datablocks triggered from 1,000 up to 10,000 concurrent

sessions;

(c) Heavy scenario, which had blocks of records transmitted from 13,000 up to 40,000 ses-

sions on the network.

After configuring the settings to start each test scenario, we ran the network for nearly a

week. During this period of ∼160 hours, we performed several load tests to evaluate the Light

and Heavy scenarios. These load tests obtained the necessary values for the MTBF and MTTR

calculations, obtaining results of 3.9586 and 0.0414, respectively. Based on these results, we

calculated the Availability (A), where we obtain the value of 0.98964. The number of users ac-

cessing the network during the execution of the Light scenario was increased gradually, starting

from 50 initial concurrent sessions until reaching the number of 500 users, as shown in Figure

21, which depicts the Light scenario results.

The average load of blocks transmitted in the Blockchain during the load test period is

represented in Megabytes. The average response time (i.e., the average time of end-to-end

latency that a client node requests to query a block or insert a new data in the Blockchain

and obtain the response) is represented in milliseconds. Figure 21 shows the number of users

accessing simultaneously the network in the Light scenario is increasing, as is the average load

of records and the average response rate obtained. In this scenario, the load tests start from 50

concurrent sessions accessing the network, with a load of 5MB/sec of throughput, an average

latency rate (end-to-end latency) of 52ms and 144 records processed per second, reaching 500

users (concurrent sessions), with 11MB/sec of throughput in the network, one average response

rate of 214ms and 325 records/sec.
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Figure 21 – Light load scenario.

Source: Prepared by the author.

In the second scenario of Figure 22, we can see a range from 1,000 to 10,000 concurrent

sessions. Throughput ranges from 30MB/sec to 64 MB/sec. We can observe that latency is

stable, almost unchanged, going from 447ms to 449ms, i.e., less than half a second. And the

number of records per second goes from 919 to 1,917 records/sec.

Figure 22 – Medium load scenario.

Source: Prepared by the author.
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In the third scenario, represented in Figure 23, we can see the results from the Heavy sce-

nario. This scenario also shows an increasing number of users, the average load of datablocks,

and response rate. The initial load was 68MB/sec with the response time of 432ms for 13,000

concurrent sessions until 40,000 were reached, with 77MB/sec of throughput, an average re-

sponse rate of 404ms and 2,298 records/sec. We can observe that even by increasing the number

of concurrent sessions and throughput, the average response time remained stable.

Figure 23 – Heavy load scenario.

Source: Prepared by the author.

Table 18 presents data collected in the load test profiling for other non-functional require-

ments. The items analyzed were (a) CPU Usage, (b) Memory, (c) Disk throughput, (d) Network

throughput (Sender) and (e) Network throughput (Receiver), for each of three scenarios eval-

uated (Light, Medium and Heavy). The variations of the data obtained in our tests for these

requirements did not significantly impact the performance of the superpeers, except in the case

of the heavy scenario, where there was greater use of machine resources.

Table 18 – Performance scenarios - average usage value per node.

Rated item Light Load Medium Load Heavy Load
CPU usage average 0,3 GHz (10%) 0,75 GHz (25%) 1,5 GHz (45%)
Memory 0,8 GB (10%) 2,08 GB (26%) 3,6 GB (45%)
Disk throughput 0,1 MB/sec (0,1%) 4 MB/sec (4%) 10 MB/sec (10%)
Network throughput (Sender) 0,1 MB/sec (0,1%) 4 MB/sec (4%) 10 MB/sec (10%)
Network throughput (Receiver) 0,4 MB/sec (1,5%) 2 MB/sec (10%) 4,5 MB/sec (21%)

Source: Prepared by the author.
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After we applied the methods for evaluation, the results from the MTBF and MTTR calcu-

lations comprised and demonstrated a 98% solution availability during load tests. These results

were obtained by subjecting the model to three scenarios: one light with until 500 concurrent

sessions accessing the network, one medium with up to 10,000 sessions and one heavy with up

to 40,000 sessions. The scenarios used the same amount of patient data.

6.3 Multi-Blockchain Evaluation

Regarding the Multi-Blockchains-based model, we performed some experiments in order to

verify the efficiency and performance of the proposal in a context with real data from a database

of approximately 40 thousand patients. We perform the tests within a week of submissions

of inserts and queries of records in the same Blockchain network and on another Blockchain

through the OmniPHR Multi-Blockchain middleware. In the context of clients (for internal

view), representing the health providers use, we tested with two Blockchains, each blockchain

having two health organizations and each health organization with two peers. In the context

of SuperChain, representing the OmniPHR middleware (for external view), we tested with two

super-peers in the Blockchain. The configuration of each superpeer in the SuperChain context

was an Intel(R) Core i5, 3.30GHz CPU, 4 cores with 8GB RAM. In the client context, each

peer was an Intel(R) Core M, 1.1GHz CPU with 8GB RAM.

We perform the transactions of insert and query in datablocks, i.e., we work with parts of a

PHR, following the model of archetypes of openEHR. We submitted the operations both in the

internal view of the model, representing the use within a nearby network of health providers,

i.e., same Blockchain, as well as in the external view, of data sharing between distant health

providers, i.e., on another Blockchain.

In Figures 24, 25, 26, and 27, we present the graphs of results, with the response times, the

respective standard deviation indicated and throughput. Moreover, on each graph, we present

detailed numbers that compose the results.

In these results, we can observe that the first executions carried out in the same Blockchain

and queries executed in another Blockchain with one hop. This means that in our tests, we per-

form the operations of inserting records only within the internal Blockchain, as well as queries.

In addition, regarding other Blockchains, we only executed queries.

These test scenarios represent scenarios where health providers can only enter patient records

within the internal Blockchains, never updating or removing record blocks. Similarly, health

providers can only query records from other Blockchains, which means that health providers

cannot enter or change records in other Blockchains. The principle is that healthcare profes-

sionals insert records in the Blockchains where the patient is close, and conducting queries on

records on nearby and distant Blockchains networks.



95

Figure 24 – Response time of datablock insert transaction in local Blockchain.

Source: Prepared by the author.

Figure 25 – Throughput of datablock insert transaction in local Blockchain.

Source: Prepared by the author.
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Figure 26 – Response time of datablock query in local and external Blockchain.

Source: Prepared by the author.

Figure 27 – Throughput of datablock query in local and external Blockchain.

Source: Prepared by the author.
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6.4 Semantic Interoperability Evaluation

Analyzing the related work for the semantic interoperability proposal in Table 15, we could

observe that, although some studies propose to integrate the heterogeneous standards using so-

lutions such as ontologies, software agents or DC metadata, there are still gaps in the integration

process. In addition to the diversity of existing standards, as the standards are generally incom-

patible (EDEN et al., 2016), one of the difficulties encountered is how to automate this process,

since the standards and health records can change any time.

6.4.1 Selection of the reference model standard

Analyzing the two reference models for health records structure, openEHR and HL7/FHIR,

we chose to use openEHR standard. This choice is due to the flexible combination of archetypes,

which gives dynamism to the records structure. Another factor is due to the existence of on-

tologies for this standard (OPENEHR, 2017). The use of openEHR ontology aims to promote

the use of a single open language that provides interoperability between heterogeneous stan-

dards. This also aims to provide the ability to infer and prevent possible health problems that

the patient may have. Since the model uses the openEHR standard internally, if the health orga-

nization uses the same standard, then there is no need to use the NLP subcomponent. In order to

automate the translation process of the heterogeneous health standards to the standard used by

the model, the translator component uses NLP to perform the conversion to the openEHR on-

tology. This translation subcomponent is required when the health organization uses a different

standard than the one adopted by the model, whether it is an open standard (such as HL7/FHIR)

or legacy standard (represented in our model by the MIMIC III (JOHNSON et al., 2016)).

6.4.2 Use of Natural Processing Language and Ontology

In order to automate the conversion of the heterogeneous standards to the health standard

adopted by the OmniPHR, we investigated NLP and CNL (Controlled Natural Language) pars-

ing solutions that could be integrated with ontologies. Table 19 summarizes the tools found.

Table 19 – Natural Language Processing (NLP) parsing tools.

Tool and References Date 1 Citations 2

Apache cTAKES – 4.0.0 (CTAKES, 2017) (SAVOVA et al., 2010) 2017-04-25 384

Attempto (ACE) – 6.7 (ATTEMPTO, 2017) (MENDES et al., 2014) 2013-10-04 1,130

GATE – 8.4.1 (GATE, 2017) (CUNNINGHAM et al., 2013) 2017-06-09 2,710

OWL API - 4.1.0 (OWL, 2017) (AZEVEDO et al., 2014) 2016-02-02 691

Stanford Parser - 3.7.0 (PARSER, 2017) (AZEVEDO et al., 2014) 2016-10-31 6,550

1 Last stable release date; 2 Number of citations, searching by full tool name in Google Scholar.

Source: Prepared by the author.
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We can see in Table 19 the name, references, date of last stable release and number of

usage citations of the tool, where we can see a large number of uses. The Apache cTAKES

(CTAKES, 2017) tool focuses on KB extraction from the Electronic Medical Record (EMR)

analysis. The Attempto Controlled English (ACE) is focused on CNL, serving as a language

for knowledge representation (ATTEMPTO, 2017). GATE (General Architecture for Text En-

gineering) (GATE, 2017) can be considered a platform, which provides several components

and plugins for NLP and CNL parsing with manipulation of ontologies. The OWL API (OWL,

2017) is geared towards creating, manipulating, and serializing OWL ontologies. The Stanford

Parser (PARSER, 2017) is dedicated to the parsing of structured, semi-structured, and unstruc-

tured texts. Due to the range of functionalities available for manipulation and processing of

natural languages, mainly in relation to the populating ontologies, as well as due to the current

state of the tool, which remains up-to-date, the proposal selected the GATE platform (GATE,

2017) (CUNNINGHAM et al., 2013). The GATE platform provides mechanisms that promote

the interpretation and conversion of controlled text to an ontology, with a set of tools for NLP,

such as: tokenizers, taggers and parsers (GATE, 2017) (DAVIS, 2013). Figure 28 presents the

openEHR ontology imported on GATE platform (GATE, 2017).

Figure 28 – Ontology of openEHR on GATE platform.

Source: Prepared by the author.

6.4.3 Selecting the Data repository

In the OmniPHR architecture, we have PHR repositories divided into two instances:
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• (a) one for the relational repository of the openEHR archetypes;

• (b) other for the semantic repository of the openEHR ontology.

To meet this demand, we evaluated four data repository solutions, according to Table 20.

Table 20 – Data repository solutions.

Database Reference Version Relational Graph RDF 1

Neo4j (NEO4J, 2017) 3.1.3 X

PostgreSQL (POSTGRESQL, 2017) 9.6.3 X

Stardog (STARDOG, 2017) 4.2.4 X X

Virtuoso (VIRTUOSO, 2017) 7.2.4 X X X

1 Resource Description Framework.

Source: Prepared by the author.

Neo4J (NEO4J, 2017) is dedicated to graphs and with the Cypher language is possible to

make inferences about the graph data, although it does not have native support for RDF (Re-

source Description Framework) triple store, which is the basis for storing ontologies. Post-

greSQL (POSTGRESQL, 2017) does not have native support for RDF, although it has support

for XML, which is the RDF base format. Stardog (STARDOG, 2017) is dedicated to graph

types and RDF triple store. Finally, OpenLink Virtuoso (VIRTUOSO, 2017) is a multi-model

database, with relational data, graphs, and RDF triple store support. Due to the characteristics

of providing access, both relational and RDF triple store, allowing the realization of inferences

natively, we selected the OpenLink Virtuoso database version 7.2.4.2.

Analyzing the recognized reference models openEHR and HL7/FHIR, we chose to use the

openEHR standard because of the flexible combination of archetypes and the existence of on-

tologies for this health standard. The use of openEHR ontology aims to promote the use of

a single open language that provides interoperability between heterogeneous standards. The

openEHR standard also integrates with vocabulary and medical terminology such as SNOMED-

CT, LOINC, ICD, and ISO. In addition, this aims to provide the ability to infer and prevent pos-

sible health problems that the patient may have (ISO, 2014). Since the model uses the openEHR

standard, if the health organization uses the same standard, then there is no need to use the NLP

subcomponent. To automate the translation process of the heterogeneous health standards to the

standard used by the model, the Translator component uses NLP to perform the conversion to

the openEHR ontology. This translation subcomponent is required when the health organization

uses a different standard than the one adopted by the model.

We used anonymous patient data available in the MIMIC-III database (JOHNSON et al.,

2016) as input data to OmniPHR prototype. We used the version 1.4 of MIMIC-III, with 38,645

adults patients. We represented each patient with the standards supported by the model, i.e. (a)

openEHR, (b) HL7 FHIR, and (c) legacy (MIMIC III). The MIMIC III database has real patient

health data, although anonymized. In case of openEHR standard, we used the EHRServer

platform through the EHRCommiter component to populate its database in PostgreSQL with
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data extracted from MIMIC III. We used this component to extract data in XML format. We

obtained a document in the openEHR format generated from a solution that admittedly follows

this standard. In case of HL7 FHIR standard, we followed the same script, using both the

API and documentation in XML and JSON format, available on the FHIR website. In case of

patient data that represented the legacy standard, we extracted data directly from the MIMIC-

III database for plain text, in CSV format. OmniPHR receives, interprets, and tags all three

formats through the NLP component. Then, OmniPHR converts the sentence to the openEHR

archetypes and ontology model.

In Figure 29, we can observe that in the HL7 FHIR standard the patient identifier is Id,

whereas in MIMIC-III it is subject_id. The openEHR standard allows mapping the patient’s

original identifiers in the Health Information System (HIS), referenced as subjectID, to a com-

mon identifier, called ehrID. The principle is that the identifier in openEHR follows a universal

identification pattern (UID) (INFORMATICS, 2018). In this way, we can maintain the interop-

erability of patient identification codes.

Figure 29 – Extraction and conversion in OmniPHR

Source: Prepared by the author.

The first step is performed by the Sentence handler subcomponent, which reads the orig-

inal format and parses to a key=value sentence. The second step is performed by the Field

handler subcomponent, which identifies the fields and uses the tagger to create a tag=value

sentence. Thus, the NLP subcomponent has the ability to learn, with a machine-learning algo-

rithm, about input formats, and identify them the next time an equal input occurs. We evaluated

the model using the Virtuoso database, which we populated through the OmniPHR. OmniPHR

populates the relational portion of the database with the openEHR archetype data and the KB
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portion with the openEHR ontology data. We employed SQL queries to check the consistency

of the replicated data in OmniPHR against the original patient data. Also, with the patient

data filled in the openEHR ontology, we employed SPARQL queries on the KB portion of the

database to verify the populated data from OmniPHR compared with the original data.

Table 21 – Patient’s health data from different sources.

Demographic

Patient Number Gender Data of birth 1 Language

NNN - YYYY-MM-DD English

Admissions

Source Admission 1 Discharge 1 Type

openEHR 2157-01-11 16:56:00 2157-01-19 14:58:00 EMERGENCY

HL7/FHIR 2157-03-07 11:08:00 2157-03-10 13:50:00 ELECTIVE

Legacy 2157-11-17 12:11:00 2157-11-20 13:05:00 EMERGENCY

Blood pressure

Source Date 1 Diastolic Systolic

openEHR 2161-07-02 21:00:00 62 125

HL7/FHIR 2161-07-02 23:00:00 81 140

Legacy 2161-07-03 01:00:00 70 135

Diagnosis

Source Type 2 Code Description

openEHR APR NNNN Spinal Procedures

HL7/FHIR APR NNNN Other Compl. Treatment

Legacy HCFA NNNN Septicemia

Heart rate

Source Date 1 Frequency

openEHR 2167-01-13 10:00:00 68

HL7/FHIR 2167-01-13 11:00:00 71

Legacy 2167-01-13 12:00:00 73

Microbiology

Source Chart Time 1 Item ID Description

openEHR 2161-11-24 06:00:00 NNNNN Blood Culture

HL7/FHIR 2161-11-26 20:15:00 NNNNN Sputum

Legacy 2161-12-14 15:50:00 NNNNN Urine

Prescriptions

Source Start Date 1 End Date 1 Drug Name Generic

openEHR 2157-01-11 00:00:00 2157-01-12 00:00:00 Fluconazole

HL7/FHIR 2157-01-12 00:00:00 2157-01-13 00:00:00 Heparin Sodium

Legacy 2161-07-07 00:00:00 2161-07-08 00:00:00 Potassium Chloride

1 All data is anonymized.
2 Types: HCFA (Health Care Financing Administration) and APR (All Payers Registry).

Source: Prepared by the author.
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Following the openEHR and HL7/FHIR standards, we used anonymous patient data avail-

able in the MIMIC III database (JOHNSON et al., 2016) to submit to the model prototype. The

version employed of MIMIC III is v1.4, with 58,000 subjects. Each patient was represented by

the standards supported by the model, i.e. (a) openEHR, (b) HL7/FHIR and (c) legacy (MIMIC

III). The MIMIC III database has real patient health data, although anonymized. In order for

the tests to be the closest to reality, we use this data to compose the three formats supported

by the model. In the case of the openEHR standard, we used the EHRServer (EHRSERVER,

2017) platform through the EHRCommiter component to populate the base of its database in

PostgreSQL with data extracted from MIMIC III. This component was also used to extract the

data in XML format. In that sense, we obtained a document in the openEHR format generated

from a solution that admittedly follows this pattern. In the case of the HL7/FHIR standard, we

performed the same script, using both the API and documentation in the XML format available

on the FHIR website (FHIR, 2017). Finally, in the case of patient data that represented the

legacy standard, data were extracted directly from the MIMIC-III base for plain text, in CSV

(comma-separated values) format.

For instance, Table 21 shows a PHR used in the tests, with health data such as demographic,

admissions, blood pressure, diagnosis, heart rate, microbiology and prescriptions of a patient,

extracted from the different sources, but all of them originating from MIMIC-III database. The

column ‘Source’ displays the source format used in the model. Some data are anonymized to

do not identify the patient. The model evaluation was carried out using the Virtuoso database,

populated through the OmniPHR with the archetype and ontology data. OmniPHR populates

the relational portion of the Virtuoso database with the openEHR archetype data and the knowl-

edge base portion with the openEHR ontology data. We employed SQL queries to check the

consistency of the replicated data in OmniPHR against the original patient data. As well, with

the patients’ data filled in the openEHR ontology, we employed SPARQL queries on the KB

portion of Virtuoso to verify the populated data from OmniPHR compared to the original data.

In the database, the inserts execute with the following SPARQL syntax:

insert in graph <openehr>

{ <http://subject> <http://predicate> <http://object> };

Moreover, we can use SPARQL queries in the normal way (W3C standard) or through

SPASQL (SPARQL within SQL), which follow a pattern similar to SQL, with the syntax:

SPARQL SELECT * FROM <openehr> WHERE { ?Subject ?Predicate ?Object };

In this way, in the same database, we can verify the data with the same query pattern, in

either SPARQL or SPASQL. Moreover, with data in both formats stored in the same database,

we avoid possible integration problems between different databases. This feature proved to

be efficient for verifying the inserted and updated data in relational and semantic formats. To

collect the results, we ran SQL and SPARQL queries in Virtuoso to compare the conversions

performed by the model, compared with the original data of the three formats. In the first

execution of the selected data set, no manual interference or training adjustment was performed.
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Only the relevant fields and values were determined. The accuracy achieved in the first run was

on the order of 66%.

The accuracy represents the part of fields converted correctly, as expected, plus the fields

that were not selected and not converted as expected, in relation to the total population of the

records. The precision reached was 78.57%, i.e., the percentage of relevant fields that have

been successfully converted. Recall achieved 74.32%, i.e., the percentage of fields that have

been selected for conversion. Finally, the F1-score reached 76.39%, i.e., the harmonic mean of

the precision and recall results. These numbers were initially lower than expected. To improve

the failures of conversions on the first run, we had to perform additional training, improving the

unfilled fields, as well as investigating the reasons.

Taking as sampling, consider the gender field. The name of this field is gender in HL7 FHIR

and the values are defined by extensive writing (male/female/other/unknown). In MIMIC-

III, this field has the same name, but the possible values are characters (M/F). However, in the

openEHR standard, this field has several possibilities of filling because there is a dedicated

archetype for this purpose. This archetype has several items, such as: administrative gender,

legal gender, anatomical sex, gender expression, gender identity, and preferred pronoun.
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7 DISCUSSION

This chapter presents the main findings found in the research, what are the limitations that

the proposal has at the moment and, finally, the challenges and opportunities for future work.

7.1 Two-layer Architecture Proposal Analysis

Analyzing the Related Work on Chapter 4 and as we can see in Table 12, some models

concentrate all patient’s health data on single or multiple servers, following a centralized client-

server architecture. Others models propose distributed architectures, although none currently

uses P2P, just as future work in the case of HDEHR (XIA; SONG, 2012). Additionally, we

analyzed models whether they provide security or privacy support for patients and health care

providers use, where only few models tackle this subject. Finally, we researched what stan-

dards for interoperability the models support and only HDEHR (XIA; SONG, 2012) and CF

(SAFAVI; SHUKUR, 2014) not specifically mention this subject.

Analyzing the results (summarized in Table 17), the ’Messages Present’ column demon-

strate an increasing number of transmission capacity and communication overhead. For in-

stance, it is possible to compare the setup #3 with 400 nodes and setup #4 with 800 nodes,

where the average number of messages present in the network and transmitted at the same time

is doubled (6518 versus 13269 in the ’Test A’, and 6593 versus 13457 in the Test #2), but the

latency is very similar (0.479s versus 0.491s in ’Test A’, and 0.403 versus 0.475), as well as the

average number of hops (5.32 versus 5.54 in the ’Test A’, and 5.34 versus 5.57 in the ’Test B’).

Analyzing the other setups and tests, it is possible to observe that this behavior is maintained.

Even with the number of nodes, routing overlays and backbone routers increasing, the number

of messages being transmitted also increases, but the latency remains stable or even decreased

in some cases. It is possible to observe, for example, that the latency in tests 1 and 2 with

1200 nodes (0.560 and 0.539, respectively) is much similar as in tests 1 and 2 with 3200 nodes

(0.560 and 0.545, respectively). This demonstrates that the network topology, employing the

Chord algorithm, was able to answer an increasing number of users and requests, but without

increasing the delivery time significantly.

Another analysis is related to the results obtained from the parameters of tests 1 and 2. The

Chord algorithm manages the nodes to be kept close. In this sense, it is possible to observe that

in most results, the number of ’One-way hop count’ increases slightly between tests 1 and 2

for the same setup. This happens due to the increase of routing overlays and backbones routers

between the parameters of tests 1 and 2. However, latency remains stable or even decreased.

This demonstrates that while increasing the number of routing overlays and backbone routers,

for the same number of nodes, latency is not impacted. The tests also showed that there was no

impact in performance with inputs and outputs of nodes, demonstrating the adequate capacity

of elasticity and scalability of the P2P network following the Chord algorithm.
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Regarding the standard for the health data proposed to be used in the OmniPHR model,

to promote interoperability between different standards and among health care providers, the

proposal is the use of the open standard openEHR. This standard is integrated with other stan-

dards specialized in specific health data types, such as laboratory exams results. Moreover, in

order to enable proper distribution model, this open standard follows the principle of partition-

ing the PHR in datablocks. OmniPHR model proposes to distribute PHR in a P2P network,

and this involves several challenges, such as rules to determine how to divide and replicate the

datablocks. For this, the open standard that OmniPHR use divides PHR in structures of dat-

ablocks organized hierarchically. The evaluation sought to reflect the division, replication, and

communication of datablocks in the network.

7.2 Performance Experiments Analysis

In the test scenarios, the number of users accessing the network was the number of con-

current sessions connected to the network, with the same increasing number of requests to the

network (MORABITO, 2016). We chose a private Blockchain to restrict the management and

access of network participants, thereby avoiding unauthorized sharing. This approach used

mining resources and data evaluation more effectively by limiting access only to members of

the network. In particular, evaluation in our private network was only performed by superpeers

rather than burdening client nodes (which only produce and consume datablocks registered in

the Blockchain). Two other factors justified our use of a private Blockchain network: (a) to

facilitate the traceability of updates and (b) to reduce intermediaries in data exchanges since the

superpeers concentrate the execution of operations on health records. Moreover, we applied the

openEHR standard since it stored data in meta-data blocks, which integrates seamlessly into

the Blockchain model. Our OmniPHR prototype accepts JSON and XML, though we applied

XML predominantly within the Blockchain and for the evaluation tests since XSD is useful to

evaluate content and typing.

This study just focused on private Blockchains instead of public Blockchains due to data

security and privacy issues, as well as due to the specific domain of health care targeted by

OmniPHR. Therefore, we did not allow access to other nodes since we handled sensitive health

data that should only be shared by health providers and patients. Although there were some

periods with communication problems in the network (i.e., some nodes were not accessible),

these periods were generally short. Our Blockchain solution ensured that superpeers knew about

the distribution of other nodes connected to them. In particular, since the Chord algorithm

provided access to nodes with replicated content, superpeers could access other nodes with

replicated data even though some nodes had communication problems. As a result, the overall

operation of our solution was not impeded. Another aspect is regarding smart contracts used to

evaluate the permissions granted on the PHR. The smart contract can specify who can access

PHRs and what permissions each client can get on the data. Therefore, a smart contract on the
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OmniPHR prototype maintains the security and privacy of health records.

One difficulty faced in evaluating the OmniPHR prototype stemmed from the challenge of

submitting data to the model. To test the prototype, we had to submit a considerable volume

of health records to evaluate its performance. However, the results from the load tests shown

in Figure 23 indicated that in the heavy scenario response times stabilize around 500ms. In

general, the OmniPHR prototype demonstrated average responses below one second. Although

average response times grew with the load and number of users, response times remained low

even as the loads increased. In particular, response times are nearly instantaneous with smaller

loads and few simultaneous accesses. The network still responded quickly, however, even with

larger simultaneous loads and accesses.

Comparing our performance experiments, Table 13 summarizes results obtained by related

work. Although these studies espouse the benefits of applying Blockchain technologies to

the health care domain through qualitative evaluations, few studies present empirical results

to substantiate their claims. Hence, we focus on qualitative analyses that evaluate the perfor-

mance and efficacy of integrating health records via Blockchain technologies. Although all

projects use some Blockchain technology in their implementations, only Healthbitt (RONO,

2016), MedRec (EKBLAW, 2017), Patientory (MCFARLANE et al., 2017) and FHIRChain

(ZHANG et al., 2018) applied at least one health data standard and focus on providing access to

both health providers and patients. Among the related work efforts presented in Table 13, seven

used at least one of the two cross-industry platforms: Ethereum or Hyperledger. Most of these

studies used Ethereum (LAZAROVICH, 2015; OUADDAH; ABOU ELKALAM; AIT OUAH-

MAN, 2016; EKBLAW, 2017; MCFARLANE et al., 2017; DAGHER et al., 2018; ZHANG

et al., 2018) as their Blockchain platform and only one used Hyperledger Fabric (ICHIKAWA;

KASHIYAMA; UENO, 2017). The Ethereum platform uses the Ether (ETH) crypto-currency,

whereas Hyperledger is not associated with any crypto-currency.

Related work focuses largely on describing how models can utilize Blockchain technologies

(YUE et al., 2016; LAURA; KOIVUMÄKI; SARANIEMI, 2016; ICHIKAWA; KASHIYAMA;

UENO, 2017; HENZE et al., 2017; XIA et al., 2017). In contrast, our research presented in this

study focuses on demonstrating the viability of Blockchain technologies by evaluating the be-

havior of the OmniPHR prototype in production health record scenarios. Moreover, unlike

related work that use conventional Blockchain platforms like Ethereum or Hyperledger, Om-

niPHR uses the Chord algorithm, which supports replication. Conventional Blockchain plat-

forms generally follow the original Blockchain concept applied to crypto-currencies, which

replicate data to all nodes in the network. In contrast, the Chord replication algorithm enables

finer-grained control over how much, how, and where to replicate the data, thereby enabling

more granular control of replications. Our results show that Chord optimizes performance, al-

though data redundancy is reduced. In addition, by storing datablocks in ontology format, i.e.,

in the Ontology Web Language (OWL), the KnowledgeBase enables the creation of semantic

rules that allow inferences about possible patient health problems.
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7.3 Multi-Blockchain Proposal Analysis

Analyzing the results obtained with Multi-Blockchain proposal, we can check that the first

executions take extra time. This time we observe due to the initialization of configurations that

the Blockchains network needs to perform, such as the knowledge of the middleware and the

other nodes location in the network. For the other executions, we can observe that the perfor-

mance improves significantly. We can also note that insert operations take a little longer than

query-only operations. Another observation is that the operations within the internal Blockchain

are faster, compared to the hop needed to reach other Blockchains. However, we noted that the

query times of one block are less than one second. In addition, we observed that performing

batch operations like 100, 500, and 1000 transactions are close, with a slight deterioration of

performance (THAKKAR; NATHAN; VISWANATHAN, 2018). The results showed that the

insert operations of blocks from the health provider performed in the worst cases under 9 sec-

onds. In the case of queries of data records in the internal Blockchain, the performance was

almost in real-time. The situations in which the performances have degraded somewhat were

due to the search of data in another Blockchain with a hop, but even so in low times.

Comparing our architectural proposal and the results obtained with the related work seen in

Table 14, we can visualize three differences, as follows.

(i) The first observation is that, among these studies, only Hawig et al. (HAWIG et al.,

2019) proposes the use of a health data standard, in the case HL7 FHIR (SARIPALLE;

RUNYAN; RUSSELL, 2019). The other works do not address and do not specify in-

teroperability standards for health data. Our work proposes, as a first option, the use of

the openEHR (YANG; HUANG; LI, 2019) health data standard, due to its integration

with other standards, such as HL7 FHIR (SARIPALLE; RUNYAN; RUSSELL, 2019),

DICOM (GONÇALVES-FERREIRA et al., 2019), SNOMED-CT (TEODORO et al.,

2018) and LOINC (WULFF et al., 2018), in addition to the standard blocks through the

archetypes format. Nevertheless, our model can also support the HL7 FHIR format since

the proposal includes the transformation of this format into openEHR (ROEHRS et al.,

2018).

(ii) The second difference concerns the implementation framework, where some studies pro-

pose the use of Ethereum (ERHARDT et al., 2017; SHARMA; CHEN; PARK, 2017;

GOERTZEL et al., 2017; VO et al., 2018; WANG; ZHANG; KIM, 2018), others Hyper-

ledger (ERHARDT et al., 2017; VO et al., 2018; SHE et al., 2019) and others do not

mention a specific framework. In this case, our proposal is based on the Hyperledger

framework, to facilitate the implementation of our Multi-Blockchain model, due to some

important characteristics such as:

(a) being an open-source framework, allowing debugging and behavior analysis,

(b) the same way works with open and popular programming languages,
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(c) that allows the creation of private Blockchains, important in the case of sensitive

health data and (d) without the connection with some crypto.

(d) without the connection with some crypto (THAKKAR; NATHAN; VISWANATHAN,

2018).

(iii) The third observation is regarding to the type of health data stored in the Blockchain,

where some studies mention the use of EHR (SHARMA et al., 2018; MA; SHI; LI, 2019;

HAWIG et al., 2019), others mention PHR (ERHARDT et al., 2017; SHARMA; CHEN;

PARK, 2017; SHE et al., 2019) and the others do not specifically mention some type of

health data. In this case, our proposal aims to attend the patient emphasizing mobility,

i.e., the possibility of the patient having, in fact, under control their personal health data,

composing the concept of PHR.

Finally, comparing the obtained results, as a main difference, we seek to demonstrate the

ability of our model to scale the patient’s health data in a distributed, interoperable, and stan-

dardized architecture.

7.4 Semantic Interoperability Proposal Analysis

To maintain compatibility between openEHR and the HL7 FHIR standard, we filled the

fields that are compatible between the two standards. In this case, the compatible type is the

administrative gender field. According to the openEHR documentation: "This aligns with HL7

FHIR ’Person.gender’" (INFORMATICS, 2018). We trained the OmniPHR model based on the

possible openEHR definitions and values. In this case, the first time the prototype ran, it did

not populate the gender field completely because the possible types and possible values in the

source were different. After training the network, stating that gender could receive characters

as abbreviations, we re-executed the model, and OmniPHR recognized these types populating

the ontology correctly. Another example, in the case of unstructured data, is related to allergies.

In MIMIC-III allergies are described in a descriptive text field, e.g., Allergies: “Codeine and

shellfish”, or Allergies: “Codeine/Ambien/Shellfish Derived”, or Allergies: “He has an allergy

to CODEINE,. . . ”. However, in openEHR, it is a structured field forming an adverse reaction

list. With the help of NLP, OmniPHR can extract the relevant data from the sentences and

convert this unstructured information to the openEHR structured list.

We retrained the model with the new possible values for the unconverted parts. Specifically,

in the case of the GATE platform, it provides an API with a series of machine-learning compo-

nents (CUNNINGHAM et al., 2013), which we used to recognize the patterns sent according to

the standards adopted in openEHR. Then, OmniPHR could convert more data sent to the tests,

returning a larger number of expected results in the openEHR format. After the tuning and

training, the accuracy scores improved and reached 81%, precision 87.34%, recall 88.46%, and

the F1-score 87.9%.
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Revisiting the related work and analyzing the results obtained for comparison, it was diffi-

cult to draw a parallel. Likewise, it was difficult to find studies that used a metric of statistical

analysis to verify, quantitatively, or qualitatively, the treatment of the health records’ interoper-

ability. Thus, to obtain a more accurate evaluation of the model, we used the F1-score metric.

In this way, we obtained a parameter for the algorithm regarding the precision, recall, and ac-

curacy. Initially, we observed that the algorithm obtained low precision, recall, and accuracy.

Lower than we expected. However, with machine-learning training, we observed that there was

an improvement.

In addition to the low score in the first run, a manual intervention effort was necessary to

correct and train the model to improve the results. However, there is the advantage of the ability

to reuse training learned in new executions, extracting data from structured or unstructured

fields. Finally, the model was limited to tests with the MIMIC-III database and using the English

language. Thus, as future directions, the model needs to be evaluated using other databases,

following other health standards and tested using other languages.

7.5 Research Limitations

This research is limited to aspects related only to PHRs rather than also including EHRs

or electronic medical records, for example. In this sense, the review focused exclusively on

articles addressing the inherent PHR concepts. This research sought to answer the research

questions that were proposed in order to obtain an outline of the current literature related to

PHRs without specifically assessing any computer system that refers to the use of PHR. The

research was limited to obtaining articles published in a number of scientific portals related

to ICT and health. Our research was reduced to studies found from these websites when we

implemented the steps of the SLR methodology. We focused our work on scientific articles and

did not address commercial or more technological approach solutions.

A limitation of the model concerns the type and location of the data. First, the data must

follow the standards supported by OmniPHR model and be located in the model-enabled paths.

In this way, the architecture of the model is able to access and maintain the data. This means that

a patient’s data that is not in the scope of the model will not be part of the sharing, either with

the patient or with other health organizations. Besides, as the premise is that each datablock

must have a responsible, the model needs to be able to determine the author of each data,

whether patient, health care provider or sensor, ensuring the authorship of each datablock. For

instance, the demographic datablock is the patient’s responsibility, while health care providers

are responsible for other datablocks such as diagnosis.

In addition, the model needs to store data on the node closest to the user, with copies in other

nodes. For instance, datablocks created by a physician in a hospital are stored in the datacenter

of health organization. Similarly, data reported by patients are stored on the routing overlay

with copies in other nodes. In this way, another limitation is that, as default, data are shared
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only between health care provider and patient. This means that for a health organization to

access the patient’s data in another one, the patient must authorize this access.

Another potential problem that the model should deal with is the possibility of occurring

duplicate data entry, as it usually happens in health organizations (MCCOY et al., 2013). This

problem may occur mainly with patients registration data, e.g., when a patient is admitted in a

health organization, and the registration is not found. Another possibility is with legacy data,

when a health organization, that already has the PHR, wants to join the system. To avoid

this problem, the system needs to identify the patient unequivocally, leaving no doubt. Om-

niPHR provides a mechanism to generate a single hash code to identify patients, following the

openEHR standard for this identifier (OPENEHR, 2017).

PHR can be composed of many datablocks throughout the patient’s lifetime and also by a

large number of attachments. Examples of attachments would be the laboratory exams results

and medical images. These images usually have relatively large sizes, up to several tens of

megabytes (HUSSEIN; BADR, 2013). As health records can be formed by many data, the intent

is that queries are not made of all health records at once but in parts. In addition, these health

records can be divided in order to be sought only the most recent data in a paginated format.

An example would be the case of laboratory exams results returned in date order. That is,

from the most recent to the oldest, using pagination. So, just return the latest laboratory exams

results and, if necessary, then seek the older data in another query. This mechanism provides

optimization of database queries because records are always divided into pages, generating less

traffic on the network.

One of the major difficulties in promoting the interoperability of health records is dealing

with a range of different data types and content variability of EHRs, not only considering their

structure but also considering that many data are stored in textual format inside descriptive

fields. The experiments on OmniPHR were limited to the data and types provided by MIMIC-

III, as well as patient data and data types provided by openEHR and HL7 FHIR. Considering

the effort involved in training, we believe that it would be possible to extend it to other formats

because openEHR can be translated into other languages that follow the ISO 639-1 standard;

however, further experimentation is needed.

Our performance experiments did not cover the execution of business rules and inferences

about records, such as specific evaluations of the content of patients’ health records. Instead, we

limited our OmniPHR prototype to joining datablocks that formed a unified view of patient data.

In particular, our load tests only focused on evaluating the distribution and traffic of the blocks

of records based on Blockchain technology and the openEHR standard. We made this provision

for isolating the performance evaluation of the Blockchain solution without the interference of

the usual business rule validations that HIS have.

Another limitation is for image files, such as DICOM images. These images can occupy

large spaces because of their size in megabytes. Replication of these files in the Blockchain is

not foreseen, although the location address is provided. In this way, the images are stored off-



111

chain with a content hash code, and only the address where the images are located is replicated

to the network. We created the test scenarios in order to stress the system and verify that it

remained stable without generating errors or crashes, such as OOM (Out Of Memory). We

went to the limit of having at least one block of data from each registered patient handled

concurrently. We tried to verify if the system remained stable of the original form as it was

constructed, without using a special tuning of optimization.

Analyzing the results, it is important to highlight as limitations of the aspects of the tests

related to possible technological alternatives, which we can use to improve the performance,

as parallelism in the processing, use of cache database, and improve on the initializing opera-

tion (THAKKAR; NATHAN; VISWANATHAN, 2018). Another limitation was that we tested

the performance while the model was responding, i.e., without producing timeout or memory

overflow errors.

7.6 Challenges and Opportunities

An important challenge for the model is to guarantee the identity and authenticity of the

informant, whether patient, physician or a sensor connected to the patient. OmniPHR predicted

a security module in its architecture and is based on the structure of proposed distribution and

security mechanism of datablocks distributed in a P2P network, with encryption and the digital

signature of datablocks to ensure the authenticity. This aims at ensuring the health records chain

validity and data privacy.

Nevertheless, attackers can try to spoof these parts, try to decrypt parts, try to gain access

to other nodes, and try to reassemble datablocks (TAPSCOTT; TAPSCOTT, 2016). While

Blockchain technology helps prevent datablock fraud, it remains a challenge to ensure that

only authentic informants can access the health records. Although the model demonstrates the

potential to preserve the privacy of patients, further testing for security and privacy is required.

In relation to the architecture model, a component that needs future work is the Translator

Component of the Datablock and Service Module. This component aims to convert and equal-

ize communications with heterogeneous health systems. The component proposes to convert

data coming from open or proprietary standards, and for this purpose, OmniPHR should deal

with the possibility of integration using open standards such as HL7/FHIR and openEHR or an

equivalent ontology in case of integration with proprietary systems, which is another challenge.

Many health providers adopt their own formats for the use of health records, and even when

using open standard usually do not share them with other organizations. Thus, a patient may

have health records scattered in several organizations. With OmniPHR, health care providers

can be able to have access to complete PHR of patients assisted since the first contact with the

health organization. Health organizations already have a cost of maintaining medical records

(LI et al., 2013) and not integrated with other institutions. The benefit of our model to providers

is to have their patient’s health data, that is already stored in the organization, always up-to-date,
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beyond the possibility of extracting medical statistics to improve the quality of care.

However, in this sense, there are several questions and challenges to face, such as:

(a) Would it be necessary for all data to be shared online, or could it be according to a

configurable periodicity and at idle moments?

(b) Is patient’s data reported by a health care provider and shared with another one available

indefinitely or for a fixed time?

(c) When sharing data, are all patient’s data available by default (clinical and administrative)

or should the patient select which ones to share?

(d) In case the patient needs to select, how can patient accomplish this task without great

knowledge?
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8 CONCLUSIONS

This study started with the purpose of to raise and discuss the main issues regarding PHRs

and identify the concepts of technology in this area. To answer the research questions in this

paper, we sought first to systematize and qualify the information that served as a source for

the survey. Aside from answering all the specific research questions and relating them in the

taxonomy, we can also rank the PHR with regard to goals, negotiation types, and architectures.

The answers and classifications obtained contribute to the achievement of a coverage degree of

searches that are identified in various aspects regarding the PHR. The physician-patient rela-

tionship traditionally consists of total dependence of the patient on the physician. In addition,

the fragmented nature of the health system can impose a costly burden on physicians. The PHR

can be a solution to this problem, although obstacles still persist, including support for reaching

this paradigm, where the ownership of the data belongs to the patient.

In this work, we presented a distributed architecture proposal named OmniPHR. This so-

lution seeks to address recurrent needs in the adoption of PHR by patients and health care

providers. The OmniPHR purpose consists of partitioning PHR in datablocks distributed on a

P2P network. Thereby OmniPHR maintains characteristics of datablocks distribution having

spread copies of these parts on the network. The user can access PHR data through different

devices. Consequently, OmniPHR is a mobile-health model which uses the diversity of comput-

ing devices connected to the patients or to the environment where they are inserted at any time,

to be part of a collaborative and distributed network. The PHR data appear to be centralized

from the logical viewpoint of patient and health care provider, but in fact, PHR is physically

decentralized. This model proposes an architecture for users to obtain a single view of patient

health records with scalability, elasticity, and interoperability. With the PHR data scattered in

several health organizations where patients had contact, OmniPHR proposes to mitigate many

problems and barriers in the adoption of PHR providing a unified viewpoint of PHR. The model

aims to support patients to take advantage of having their health history single, as well for health

care providers have their patients’ health data up-to-date. Hence, OmniPHR proposes a model

where everyone involved has benefits sharing health records.

There are several health standards for PHR use. Revisiting the proposal of scientific contri-

bution, this research aimed to present a model to promote the interoperability between different

standards with semantic capability. We identified many ways to promote interoperability be-

tween health records, such as the use of archetypes, metadata, ontologies, software agents,

templates, and terminologies. To ensure interoperability, the model selected the openEHR ref-

erence model as the component centralizer. We proposed in OmniPHR the use of NLP as a CNL

component to help automate the conversion process. The results obtained with the evaluation

of the prototype were promising, demonstrating the feasibility of the OmniPHR model using

the health records from the MIMIC-III database. OmniPHR demonstrated compliance with the

requirements of semantic interoperability and unified view of patient data.
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The results of this contribution demonstrated the possibility of obtaining a unified and up-

to-date view of health data, presenting a solution based on artificial intelligence with NLP,

ontology, and an open health standard to achieve semantic interoperability. In addition, Om-

niPHR presented benefits, such as the possibility of obtaining inferences about the patients’

health. In future work, we intend to evaluate the model with data from larger health databases

and focus on increasing the possibilities of benefits for patients and health care providers. Other

important aspects to discuss are data distribution, scalability, security, and privacy. In addition,

the prototype can expand to integrate with other open and proprietary health standards.

This work presented the prototype implementation and evaluation of the OmniPHR archi-

tecture model that integrates distributed health records using Blockchain technology and the

openEHR interoperability standard. The OmniPHR prototype comprises a novel Blockchain-

based design that optimizes health data replication across computing nodes. We evaluated the

performance of our OmniPHR prototype by subjecting it to loads of thousands of concurrent

sessions transmitting datablocks on a network of 10 superpeers. We also evaluated implementa-

tion strategies related to the replication of health-oriented Blockchain solutions to promote the

unification of patient health data.

We started this study with the objective of contributing with a differentiated proposal of

architecture to support the distribution of patient health data. We can observe the growth of

Blockchain technology in supporting the use of patient health records. However, the traditional

Blockchain proposition tends to replicate the data blocks for all nodes, which in terms of health

data and for a large number of integrated health organizations, can be a problem due to the size

of each medical records may have. After presenting the essential background for the fulfillment

of our proposal, we presented the OmniPHR Multi-Blockchain model in a different format from

the one we presented in previous works (ROEHRS; COSTA; ROSA RIGHI, 2017; ROEHRS

et al., 2019). In the following, we presented the methodology and related work. In this sense,

we researched related work close to our proposal, which aimed to address the challenges with

the health records distribution through innovative architectures.

Finally, we presented the obtained results, and we compared them with the existing pro-

posals, where we can notice the differences in the proposals. We highlighted our proposal of

distributed Multi-Blockchain architecture with the help of the Hyperledger framework, the use

of openEHR health data standard, and focus on PHR. The results demonstrated the potential

of the OmniPHR Multi-Blockchain model and the need for greater testing in different usage

scenarios.

8.1 Contributions

For the completion of the work, we were able to identify and propose a broad taxonomy for

the scope of work, which was created after an analysis of the relevant articles in the last decade.

In the taxonomy, we were able to identify and group a number of types and PHR classifications
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ranging from “Structures” and types associated with “Functions” to the types of “Architectures”

applied to PHRs. Having established the taxonomy, we observed other important relationships

to understand PHRs. We noticed aspects regarding concerns and challenges in the adoption of

PHRs as well as the main data types.

In addition, we were able to identify several standards regarding PHR, where it was possible

to verify those that were most important in the current scenario. Regarding user profiles, we

identified the main users representing these types of profiles, as well as their responsibilities

when they access PHRs. We were able to identify the techniques and methods used in the input

of information into PHRs.

The scientific contribution of this work is to present a different proposal of distribution and

interoperable architecture for PHR. The evaluation of the model demonstrates that OmniPHR

is able to promote PHR divided into datablocks and proportional distribution in a routing over-

lay network through the Blockchain technology. The results showed that even increasing the

number of nodes, and consequently obtaining a larger number of messages being transmitted at

the same time in the network, the latency remains stable. This demonstrates that OmniPHR is

able to support a growing number of nodes and requests without increasing the delivery time

significantly.

In order to better promote the interoperability between the different existing standards and

to add semantic capacity, this study aimed to present an interoperable and semantic model.

To meet interoperability, the model selected the openEHR reference model as the component

centralizer. As a conversion helper, the model proposed the use of NLP as a controlled natural

language conversion component. And, as a repository, the model proposed the use of the multi-

model database, supporting both relational data and RDF triple store.

The following are a summary of the lessons learned from conducting our research:

(a) Combining the openEHR standard with Blockchain technologies created a unified and

interoperable view of health data. Even with some limitations, such as not executing

business rules on the prototype (since it is not a complete system), we observed promising

results of the architectural model using our private Blockchain platform.

(b) Applying the Chord algorithm for directed and limited data replication is a more scal-

able alternative than conventional crypto-currency platform replication models, where all

nodes receive all data. Chord’s scalability is a critical factor to support health data effec-

tively. In particular, it enables data replication with restricted access, providing control

and management by patients and health care professionals.

(c) The results of our empirical evaluations showed that the OmniPHR Blockchain archi-

tecture provided adequate network-level performance. It, therefore, appears that patient

health records can be integrated effectively via a Blockchain network using technologies

applied to the treatment of large masses of data and an interoperable health data standard.
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As additional contributions, four articles were published and made available to the academic

community, according to the following list. One article was published in the Journal of Medical

Internet Research (JMIR), one article was published in the IEEE Journal of Biomedical and

Health Informatics (JBHI), and two in the Journal of Biomedical Informatics (JBI):

1. Roehrs A, da Costa CA, da Rosa Righi R, de Oliveira KSF. Personal Health Records:

A Systematic Literature Review. Journal of Medical Internet Research (JMIR) 2017;

19(1):e13. DOI: 10.2196/jmir.5876. PMID: 28062391. PMCID: 5251169.

URL: https://www.jmir.org/2017/1/e13.

2. Roehrs A, da Costa CA, da Rosa Righi R. OmniPHR: A distributed architecture model

to integrate personal health records. Journal of Biomedical Informatics. Volume 71.

2017. Pages 70-81. ISSN 1532-0464. DOI: 10.1016/j.jbi.2017.05.012.

URL: http://www.sciencedirect.com/science/article/pii/S1532046417301089.

3. Roehrs A, da Costa CA, da Rosa Righi R, Rigo SJ, Wichman MH. Toward a Model for

Personal Health Record Interoperability. IEEE Journal of Biomedical and Health In-

formatics. 2018 May. 14; Volume 23. Issue 2. Pages 867-73. DOI: 10.1109/JBHI.2018.2836138

URL: https://ieeexplore.ieee.org/abstract/document/8358689.

4. Roehrs A, da Costa CA, da Rosa Righi R, da Silva VF, Goldim JR, Schmidt DC. Analyz-

ing the performance of a blockchain-based personal health record implementation.

Journal of biomedical informatics. 2019 Mar 4:103140. DOI: 10.1016/j.jbi.2019.103140

URL: https://www.sciencedirect.com/science/article/pii/S1532046419300589

In addition to these publications, during the development of this study, there were some

indirect publications, as co-author:

1. Wichman MH, da Costa CA, Roehrs A, Bandeira D, da Rosa Righi R. Integration Be-

tween Electronic Health Records Standards Using Ontologies And Rules. IADIS

International Conference Applied Computing. 2017. Pages 23-30.

2. Quaini T, Roehrs A, da Costa CA, da Rosa Righi R. A Model For Blockchain-Based Dis-

tributed Electronic Health Records. IADIS International Journal on WWW/Internet.

2018 Jul 1;16(2).

3. Montenegro JLZ, da Costa CA, da Rosa Righi R, Roehrs A. A Proposal for Postpartum

support based on Natural Language Generation Model. In: 5th Annual Conf. on

Computational Science & Computational Intelligence (CSCI’18), 2018, Las Vegas. Pro-

ceedings of 5th Annual Conf. on Computational Science & Computational Intelligence

(CSCI’18). New York: IEEE, 2018. v. 1. p. 1-756.
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8.2 Future work

In future studies, we envision a focus on the challenges and issues related to security, pri-

vacy, and trust, which directly affect the users’ confidence in adopting the PHR. Although these

questions have existed for a long time, they do not have definitive answers yet. Other aspects

that can be studied and that are important to improving the user experience are questions about

usability, personalization, familiarity, and comfort. Another aspect that can serve as a future

study is to explore the models of architecture and the implementation of PHR following the ex-

pansion of the use of technologies such as wearable computing, IoT, and artificial intelligence

that are applied to health.

As future work, the model needs more evaluations, mainly regarding security, privacy, and

integration with other systems. Moreover, as can be seen, there are several challenges to be

worked on and answered, ranging from decisions to flexible the model regarding access rules

and data replication, to subjective questions that arise, likewise how patients can manage and

share their data in practice.

In addition, as future study, we intend to focus on increasing the possibilities of benefits for

patients and health care providers. In addition, the prototype can be expanded to integrate other

health data standards. Other important aspects to be discussed are related to the distribution of

data, as well as data security and privacy.

In future work, we plan to evolve our OmniPHR prototype to incorporate additional databases

and conduct additional tests to evaluate its performance in even more scalable and realistic pro-

duction environments. Other evaluations we plan to conduct involves data security and privacy,

especially in the case of external access to private Blockchain networks.
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APPENDIX A RESEARCH PORTALS

Selected research portals.

Table 22 – Selected research portals.

Acronym Portal Name

ACM ACM Digital Library

CiteSeerX CiteSeerX Library

Google Scholar Google Scholar

IEEE IEEE Xplore Digital Library

IET IET Digital Library

JMIR JMIR Publications Library

PubMed National Center for Biotechnology Information, US Nat. Lib. of Medicine

SciELO Scientific Electronic Library Online

ScienceDirect Elsevier B. V. ScienceDirect

Springer Springer Science

Web of Science Web of Science

Wiley Wiley Online Library

Source: Prepared by the author
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List of editors.

Figure 30 – List of editors.

Source: Prepared by the author.
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List of users and profiles access.

Figure 31 – List of users and profiles.

Source: Prepared by the author.


