

UNIVERSIDADE DO VALE DO RIO DOS SINOS - UNISINOS UNIDADE ACADÊMICA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA NÍVEL MESTRADO PROFISSIONAL

EDUARDO NUNES DOS REIS

ANÁLISE DE FRAGILIDADE DE SISTEMAS DE TRANSMISSÃO DE ENERGIA ELÉTRICA ATRAVÉS DO CÁLCULO DE CENTRALIDADES

Eduardo Nunes dos Reis

ANÁLISE DE FRAGILIDADE DE SISTEMAS DE TRANSMISSÃO DE ENERGIA ELÉTRICA ATRAVÉS DO CÁLCULO DE CENTRALIDADES

Trabalho de qualificação apresentado como requisito parcial para a obtenção do título de Mestre, pelo Programa de Pós-Graduação em Engenharia Elétrica da Universidade do Vale do Rio dos Sinos – UNISINOS

Orientador: Dr. Márcio Rosa da Silva

R375a Reis, Eduardo Nunes dos.

Análise de fragilidade de sistemas de transmissão de energia elétrica através do cálculo de centralidades / Eduardo Nunes dos Reis. -2015.

84 f.: il.; 30 cm.

Dissertação (mestrado) — Universidade do Vale do Rio dos Sinos, Programa de Pós-Graduação em Engenharia Elétrica, 2015.

"Orientador: Dr. Márcio Rosa da Silva".

1. Engenharia elétrica. 2. Sistemas de energia elétrica. 3. Redes elétricas. I. Título.

CDU 621.3

Dados Internacionais de Catalogação na Publicação (CIP) (Bibliotecário: Flávio Nunes – CRB 10/1298)

Eduardo Nunes dos Reis

Análise de Fragilidade de Sistemas de Transmissão de Energia Elétrica Através do Cálculo de Centralidades

Dissertação apresentada à Universidade do Vale do Rio dos Sinos – Unisinos, como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica.

Aprovado em 18 de janeiro de 2016.

BANCA EXAMINADORA

Prof. Dr. Daniel Pinheiro Bernardon - UFSM

Prof. Dr. José Vicente Canto dos Santos - UNISINOS

Prof. Dr. Paulo Ricardo da Silva Pereira - UNISINOS

Prof. Dr. Márcio Rosa da Silva (Orientador)

Visto e permitida a impressão São Leopoldo,

> Prof. Dr. Eduardo LuisRhod Coordenador PPG em Engenharia Elétrica

AGRADECIMENTOS

Agradeço a Universidade do Vale do Rio dos Sinos, na figura do itt Fuse – Instituto Tecnológico em Ensaios e Segurança Funcional, pela oportunidade e auxílio, pelos desafios diários e por me propiciar o privilégio de aprender todos os dias.

Agradeço principalmente ao professor Dr. Márcio Rosa da Silva, por todo o auxílio durante o trabalho, pelas conversas e pela paciência. Ao professor Dr. José Vicente por me ajudar e desempoeirar vários de seus projetos. Ao professor Dr. Paulo Ricardo pela colaboração, pelos conhecimentos na área de energia e por ter sempre um mate à mão.

Agradeço em especial à minha esposa Aline, que batalhou, ajudou e me puxou a orelha durante todo o processo. Também à Clotilde, por ter sido companheira nas noites em claro e à minha mãe pela preocupação.

Agradeço também a todos os meus colegas de trabalho pela compreensão. Aos meus amigos pelas palavras de conforto e mesmo aceitando as minhas ausências fizeram de todo o possível para se mostrarempresentes. À Bruna Severo por resolver os pequenos entraves burocráticos sempre com disposição. Aos colegas e professores do Mestrado Profissional em Engenharia Elétrica pela troca de ideias.

RESUMO

Análise de Contingências em sistemas elétricos de transmissão são de fundamental importância tanto para o planejamento quanto para a operação do sistema. Conhecimento do nível de importância e o impacto de interrupções em condições de operação da rede, em cada linha e em todas as barras de carga é crucial para a análise de segurança da rede. Este trabalho tem como objetivo avaliar a fragilidade dos sistemas elétricos de transmissão através de cálculo e análise das centralidades das redes, identificando seus nós mais importantes. Desta forma, pode-se obter informações sobre a rede com um menor custo computacional que as ferramentas disponíveis no momento. Os testes foram aplicados em redes IEEE padrão e em redes reais de grande escala, como o Sistema Interligado Nacional brasileiro (SIN). Os resultados foram comparados com os obtidos no software ANAREDE, software este que possui maior penetração entre as empresas de transmissão, e é baseado em cálculo de fluxo de potência. Com essa comparação é possível avaliar o grau de confiabilidade do método proposto.Os dados analisados mostram que o método pode ser utilizado como uma ferramenta auxiliar de baixo custo computacional para a avaliação de contingências fornecendo subsídios para análises mais aprofundadas dos nós indicados como críticos. Através da utilização do coeficiente de Correlação de Spearman verifica-se que os resultados do cálculo de centralidades possuem boa proximidade aos resultados do ANAREDE, com menor custo computacional e possibilidade de rodarredes de grande densidade de forma completa.

Palavras-Chave: Medida de centralidade, redes elétricas de potência, fluxo de potência, fragilidade, vulnerabilidade, topologia de redes.

ABSTRACT

Contingency analysis of an electricity transmission system is of fundamental importance for both planning and system operation. Knowledge of the level of importance and the impact of outage in operating conditions of the network, were each one of the lines and on every load baseline is crucial for the analysis of network security. This work aims to evaluate the fragility of the electricity transmission system through centrality analysis of networks, identifying the most important nodes in the network. On this way, important information of the network can be achieved with lower computation cost than current available tools. Tests were performed on standard IEEE and in actual large scale networks, as the Brazilian National Interconnected Power System (NIPS). The results were compared with optimal results obtained from ANAREDE software, which is based on power flow calculation to check if the centrality-based method is reliable. The data analyzed show that the method can be used as an auxiliary tool with low computational cost for the evaluation of contingencies, providing support for further analysis of the nodes listed as critical. Spearman's rank correlation coefficient was obtained for each centrality calculation and shows a close relation with results from ANAREDE software, with less computational cost and possibility to run high density networks at once.

Keywords: Centrality Measure, power networks, power flow, fragility, vulnerability, network topology.

LISTA DE FIGURAS

Figura 1: Panorama do Sistema Interligado Nacional	25
Figura 2: Curva de aversão aos blecautes	30
Figura 3: Diagrama do grafo G	31
Figura 4: Diagrama da estrutura da Internet com base nos sistemas autônomos	32
Figura 5: Matrizes de incidência (M) e adjacência (A) do grafo G	33
Figura 6 - Rede social exemplo - kyte network	34
Figura 7: Diferenças no valor da centralidade de capacidade em duas redes	38
Figura 8: Rede IEEE 39 utilizada para teste	51
Figura 9: Diagrama Unifilar rede IEEE 30	52
Figura 10: Mapa da Região SUL - SIN	54
Figura 11: Grafo representando a rede IEEE 30	56
Figura 12: Grafo representando a rede IEEE 39	58
Figura 13: Representação do modelo de SIN - Sul em formato de grafos	61
Figura 14: Exemplo de inversão de rede. (a) Rede original. (b) Rede invertida pelo	-
Figura 15: Grafo representando a rede IEEE 39 invertida	74

LISTA DE TABELAS

Tabela 1: Matriz de capacidade instalada de geração de energia elétrica do Brasil	25
Tabela 2: Linhas de transmissão de energia elétrica no SEB	26
Tabela 3: Lista das maiores quedas de energia no mundo	27
Tabela 4 - Cálculo de Centralidade de Grau para Kyte Network	35
Tabela 5 - Cálculo de Centralidade de Proximidade para kyte network	36
Tabela 6 - Cálculo de Centralidade de Intermediação para kyte network	37
Tabela 7 - Cálculo de Centralidade de Fragilidade para kyte network	38
Tabela 8 - Dados de QI e Horas assistindo TV	39
Tabela 9 - Valores para cálculo de coeficiente de Spearman	40
Tabela 10: Comparativo de técnicas de análise de vulnerabilidade	46
Tabela 11: Comparativo de métodos pesquisados com a metodologia proposta	47
Tabela 12: Áreas e Concessões para região SUL - SIN	
Tabela 13: Resultados obtidos para rede IEEE 30	57
Tabela 14:Resultados de Avaliação Coeficiente de Spearman - Rede IEEE 30	57
Tabela 15: Resultados de Centralidades obtidos para rede IEEE 39	59
Tabela 16:Resultados de Avaliação Coeficiente de Spearman – Rede IEEE 39	60
Tabela 17: Resultado de Cálculo de Centralidades para Rede Sul	62
Tabela 18: Resultados de Avaliação Coeficiente de Spearman – Rede Sul	63
Tabela 19: Resultado de centralidades obtido para rede IEEE 39 invertida	74
Tabela 20: Resultados de Avaliação Coeficiente de Spearman – Rede IEEE 39 invertida	75

LISTA DE SIGLAS

ABNT Associação Brasileira de Normas Técnicas

AG Algoritmos Genéticos

ANEEL Agência Nacional de Energia Elétrica
BIG Banco de Informações de Geração

BS Black Start (usina com capacidade de auto-restabelecimento)

CC Corrente Contínua

CEPEL Centro de Pesquisas de Energia Elétrica

DC DirectCurrent (Corrente contínua)

EUA Estados Unidos da América

GRA GenericRestorationAction (Ação de restauração genérica)

Internet Rede Mundial de Computadores

MME Ministério de Minas e Energia

NBR Normas Brasileiras de Regulação

NCE/UFRJ Núcleo de Computação Eletrônica – Universidade Federal do Rio de Janeiro

ONS Operador Nacional do Sistema

PES Power & Energy Society(Sociedade para Potência e Energia)

PFSL Power FlowSeverityLevel(Nível de severidade para Fluxo de Potência)

PL Programação Linear

PLIM Programação Linear Inteira Mista

QI Quociente de Inteligência RNA Redes Neurais Artificiais

RSE Rede Sem Escala

RSP Recuperação de Sistemas de Potência

SE Sistemas Especialistas

SEB Sistema Energético Brasileiro SIN Sistema Interligado Nacional

SP Sistemas de Potência

UFJF Universidade federal de Juiz de Fora

ULM *Un-NormalizedLaplacian Matrix* (Matriz Laplaciana não Normalizada)

UNICAMP Universidade Estadual de Campinas

USC Un-NormalizedSpectralClustering (Particionamento Espectral não-

Normalizado)

VSL *VoltageSeverityLevel*(Nível de severidade para Tensão)

LISTA DE SÍMBOLOS

km Quilômetro

CC Corrente Contínua

GW Gigawatt(potência)

kV Quilovolt = 10^3 volts (tensão)

Mvar Megavar– Mega Volt Ampére Reativo (potência reativa)

MW Megawatt = 10⁶ watts (potência ativa)

R Resistência

X Reatância

Y Admitância

Z Impedância

ρ Ró – Coeficiente de Correlação de Spearman

SUMÁRIO

1 INTRODUÇÃO	22
1.1 Objetivo	
1.1.1 Objetivos Específicos	
1.2 Estrutura do Texto	
0.00N0FIT00.P.Á0I000	0.4
2 CONCEITOS BÁSICOS	
2.1 Sistemas de Potência	
2.1.1 As falhas em Sistemas de Potência	
2.1.2 Vulnerabilidade	
2.1.3 Restauração de Sistemas de Potência	
2.2 Teoria de Grafos	30
2.2.1 Matriz de adjacência e matriz de incidência	
2.2.2 Centralidades	
(1) Centralidade de Grau (Degree Centrality)	
(2) Centralidade de Proximidade (<i>Closeness Centrality</i>)	
(3) Centralidade de Intermediação (Betweenness Centrality)	
(4) Outras centralidades	
(a) Capacidade (Capacity)	
(b) Centralidade de Fragilidade (Fragility Centrality)	
2.3 Coeficiente de Correlação de Spearman – ρ	
2.4 Programa Anarede	
2.4.1 Ferramenta de Cálculo de Fluxo de Potência	
2.4.2 Ferramenta de Análise de Contingências	
2.4.3 Ferramenta de Análise de Sensibilidade de Tensão	
2.4.4 Ferramenta de Análise de Sensibilidade de Fluxo	42
3 REVISÃO BIBLIOGRÁFICA	44
3.1 Utilização de Grafos em Sistemas de Potência	44
3.2 Outras Aplicações de Teoria de Redes em Sistemas de Potência	48
4 METODOLOGIA	
4.1 Etapas para execução da análise	
4.2 Rede IEEE-39	
4.3 Rede IEEE 30	
4.4 O modelo de rede SIN Sul	
4.5 Metodologia para avaliação de eficácia	
4.5.1 Ordenação dos resultados	
4.6 Cálculo de Centralidades e aplicação do Método	55
5 RESULTADOS OBTIDOS	56
5.1 Rede IEEE 30	
5.2 REDE IEEE 39	
5.3 Rede Sul	
6 CONCLUSÃO	
6.1 Trabalhos Futuros	64
REFERÊNCIAS	
APÊNDICE A - RESULTADOS DE VIOLAÇÃO DE FLUXO PARA ANÁLISE DE CONTINGÊI REDE IEEE 39 - ANAREDE	NCIA NA
APÊNDICE B - RESULTADOS DE VIOLAÇÃO DE TENSÃO PARA ANÁLISE DE CONTIN	GENCIA
NA REDE IEEE 39 - ANAREDE	
APÊNDICE C - OUTRA ABORDAGEM PARA ANÁLISE DE CENTRALIDADES	72
6.1.1 Método para Inversão de Redes	
6.1.2 Rede invertida	
6.1.3 Rede IEEE 39	
ANEXO A – DADOS DOS BARRAMENTOS REDE IEEE 39	
ANDVO A DADOR DOR DADDAMENTOR DEDE JEEE 30	76

ANEXO B – DADOS DA LINHA DE TRANSMISSÃO E TRANSFORMADORES REDE IEEE	39 77
ANEXO C – DADOS DOS BARRAMENTOS REDE IEEE 30	79
ANEXO D – DADOS DA LINHA DE TRANSMISSÃO E TRANSFORMADORES REDE IEEE	39 80

1 INTRODUÇÃO

A modernização, a expansão da matriz energética, a descentralização dos centros produtivos e os avanços em busca do acesso de todos à energia elétrica trazem, como contrapartida, o aumento da complexidade das redes. A confiabilidade destas redes é crucial para inúmeros serviços que hoje são tidos como garantidos. Distúrbios na rede elétrica têm o potencial de interromper severamente serviços indispensáveis.(ZIO; PICCINELLI, 2010)

Casos de falha em sistemas de transmissão, como os que serão apresentados neste trabalho são de certa forma raros, especialmente para contingências de grande abrangência. Mas seu impacto pode afetar grandes regiões e afetar todo o mercado consumidor, trazendo prejuízos para a economia e desconforto para as pessoas.

Isso aumenta as preocupações sobre confiabilidade e resiliência aos distúrbios e falhas em vários tipos de sistemas de infraestrutura.

1.1 Objetivo

O objetivo deste trabalho é a modelagem da rede de conexão de Sistemas de Potência utilizando grafos, representando a rede elétrica de transmissão como uma rede complexa. Com as ferramentas matemáticas de análise de redes complexas, busca-se uma forma diferente de distinguir os pontos mais críticosdo sistema de transmissão e verificar a possibilidade de utilizar estes dados como uma alternativa à Análise de Contingências através de Fluxo de Potência.

A utilização de grafos e segmentação é difundida nas mais diversas ciências, como em análises metabólicas e também muito estudada na área de Redes Sociais. Diferentemente de algoritmos genéticos e redes neurais, a sua implementação não necessita de um conhecimento prévio e treinamento na rede a ser estudada, reduzindo o tempo de desenvolvimento e também a complexidade computacional.

Similarmente ao realizado em estudos de Redes Sociais, objetiva-se avaliar o comportamento da rede de Sistemas de Potência de forma a estudar seus componentes como indivíduos. Assim, possibilitando avaliar sua influência e importância enquanto participante da rede e como ponto de interação aos demais membros.

1.1.1 Objetivos Específicos

Avaliar a utilização de parâmetros elétricos como resistência elétrica, reatância e impedância das linhas de transmissão nos cálculos das centralidades e a sua influência na determinação dos pontos mais críticos da rede.

Através dos cálculos de centralidade de grau, proximidade, intermediação e fragilidade para as redes de transmissão de energia avaliar as conexões entre os pontos, suas iterações, sua influência na rede enquanto indivíduo e a influência da topologia na resiliência às falhas do sistema.

Determinar se o cálculo de centralidades pode obter resultados satisfatórios para avaliação dos pontos de vulnerabilidade da rede, com redução da complexidade de cálculo mesmo que estes resultados sejam paliativos ao resultado obtido com outras ferramentas. De

forma a que seja possível utilizar estes resultados em situações graves de contingência onde o tempo de resposta seja crítico.

Mesmo com a variedade de soluções existentes e já testadas, o objetivo é avaliar a utilização de Grafos e comparar os resultados com resultados obtidos através de outras técnicas.

1.2 Estrutura do Texto

Neste primeiro capítulo é realizada a introdução deste documento, com a apresentação dos objetivos e a motivação para a realização do trabalho e seleção do tema.

No capítulo 2 é apresentada uma pequena revisão teórica sobre os assuntos a serem abordados mais profundamente durante o documento, como redes elétricas, Teoria de Grafos, Análise de Vulnerabilidade, Recuperação de Sistemas de Potência (RSP), suas características e particularidades.

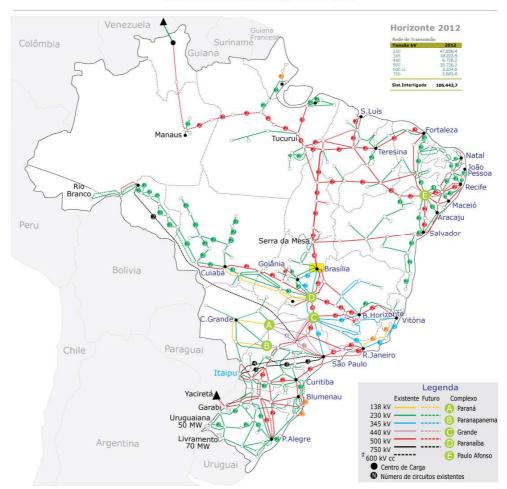
A revisão bibliográfica é vista no capítulo 3, onde, é realizada uma análise dos trabalhos relacionados à avaliação de Sistemas de Potência com foco em Teoria de Grafos e vulnerabilidade. Adicionalmente é feita uma avaliação dos trabalhos utilizando as mais diversas abordagens, incluindo Redes Neurais Artificiais (RNA), Algoritmos Genéticos (AG) e Sistemas Especialistas (SE) aplicados a Sistemas de Potência, mesmo não diretamente ligados à restauração destes sistemas.

O capítulo 4 apresenta a metodologia utilizada no desenvolvimento do trabalho, as ferramentas matemáticas necessárias e as informações que servem de base para que os objetivos sejam atingidos e a forma proposta para que os resultados sejam atingidos.

Os resultados obtidos, com a abordagem tomada, e discussão são o tema do capítulo 5. Ao final, são expostas algumas conclusões, seguidas das referências bibliográficas.

2 CONCEITOS BÁSICOS

Neste capítulo será apresentada a fundamentação teórica necessária para o entendimento do restante do trabalho. Inicialmente serão apresentadas informações sobre sistemas de potência e suas implicações, bem como informações sobre Teoria de Grafos e os métodos utilizados até então.


2.1 Sistemas de Potência

Um Sistema de Potência (SP) moderno consiste em três subsistemas. O primeiro é o sistema primário, onde se encontram os conversores de energia, transmissão, distribuição e consumo. O segundo é o sistema de controle e automação, chamado de secundário, responsável pela segurança, estabilidade e operação. O terceiro é o sistema de comercialização de energia.

No Brasil, a rede possui característica de ser completamente interligado. Chamado de Sistema Interligado Nacional (SIN)(PERIM et al., 2015). De acordo com dados de maio de 2015, existem no país 4.367 geradores, sendo 1.174 hidrelétricas e 2.604 termoelétricas. A capacidade instalada é de 136.776 MW, conforme pode ser verificado em Tabela 1. O sistema de transmissão conta com 126.406 km de extensão, dividido em seis classes de tensão: 230kV, 345kV, 440kV, 500kV, 600kv (CC) e 750kV como visto na Tabela 2 e um panorama geral do SIN pode ser visto na Figura 1.

Figura 1: Panorama do Sistema Interligado Nacional

Sistema de Transmissão 2011-2016

Fonte: ANEEL (Banco de Informações de Geração 29/08/2014)

Tabela 1: Matriz de capacidade instalada de geração de energia elétrica do Brasil

	Mai/14	Mai/15		Evolução da	
Fonte	Capacidade Instalada (MW)	Nº Usinas	Capacidade Instalada (MW)	% Canacidade Instalada	
Hidráulica	87.069	1.174	89.983	65,8%	3,3%
Térmica	38.883	2.604	40.753	29,8%	4,8%
Gás Natural	14.286	138	12.898	9,4%	-9,7%
Biomassa	11.576	507	12.492	9,1%	7,9%
Petróleo *	7.642	1.934	9.759	7,1%	27,7%
Carvão	3.389	23	3.614	2,6%	6,6%
Nuclear	1.990	2	1.990	1,5%	0,0%
Eólica	3.106	272	6.025	4,4%	94,0%
Solar	9	317	15	0,01%	62,3%
Capacidade Total - Brasil	129.068	4.367	136.776	100,0%	6,0%

Fonte: ANEEL (Banco de Informações de Geração01/06/2015)

Tabela 2: Linhas de transmissão de energia elétrica no SEB

Classe de Tensão (kV)	Linhas de Transmissão Instaladas (km)*	% Total
230 kV	52.750	41,7%
345 kV	10.303	8,2%
440 kV	6.728	5,3%
500 kV	41.126	32,5%
600 kV (CC)	12.816	10,1%
750 kV	2.683	2,1%
Total SEB	126.406	100,0%

Fonte: MME/ANEEL/ONS

Outra característica dos Sistemas de Potência é a necessidade instantânea do balanço entre o fornecimento e o consumo. A eletricidade é gerada nas usinas e transmitida pelas linhas de transmissão, transformadores e chaveadores e é transmitida quase instantaneamente até o consumidor final. Até o momento, não é possível armazenar esta energia em larga escala com grande capacidade. Portanto, um aspecto crítico dos sistemas de potência é a necessidade de balanço entre geração e consumo quase instantâneo. Caso o balanço seja quebrado, o sistema perde estabilidade, levando a interrupções de fornecimento em diferentes escalas.

2.1.1 As falhas em Sistemas de Potência

Os sistemas de potência estão constantemente expostos a perturbações aleatórias, como mudanças climáticas ou ação humana. A ação de raios ou árvores não podadas podem causar falhas de curto circuito nas linhas de transmissão, neve e terremotos podem destruir postes e subestações. Variações de consumo devido ao aumento na utilização de aparelhos de arcondicionado durante o verão ou grandes eventos que causem uma alteração nas características de carga das redes. Esses fatores aleatórios aumentam a complexidade na operação e gerenciamento dos sistemas de energia.

Embora os sistemas de potência modernos tenham características dinâmicas complexas, sua robustez e confiabilidade são altas devido à implementação de várias proteções e controles. Contudo, sérias perdas foram causadas por algumas poucas falhas de energia nos últimos anos. A interconexão regional pode trazer benefícios sociais e econômicos, mas por outro lado traz o crescimento do risco de falhas, especialmente falhas em cascata.

A forma como eventos em cascata podem causar grandes perdas de rede é descrita em (LISCOUSKI; ELLIOT, 2004). Neste relatório, são descritas as causas do blecaute de 14 de agosto de 2003 nos EUA. As causas apresentadas pelo autor, de forma macroscópica são a falha por parte da companhia de energia elétrica (*FirstEnergy*) em avaliar e compreender as inadequações de seu sistema. Particularmente com respeito à instabilidade de tensão e a vulnerabilidade da área de Cleveland-Akron.

Outro fator levantado por Liscouski é a consciência inadequada da situação, onde a empresa não reconheceu ou não entendeu a condição deteriorada do sistema. A falta de cuidado

e poda das árvores na área de passagem das linhas de transmissão também é apontada como problema, junto com a falha na confiabilidade do sistema interligado. Que neste caso, o sistema das redes que interconectam com o sistema que entrou em falha não estava operando com monitoramento dos dados em tempo real, não conseguindo tomar conhecimento da falha ocorrida.

Os maiores blecautes documentados até o ano de 2006 são destacados na Tabela 3, indicando algumas estimativas de perdas, inclusive financeiras, ou com consequências de desordem civil, como no caso do blecaute de Nova Iorque em 1977.

Tabela 3: Lista das maiores quedas de energia no mundo

•				
Data	Local	Perdas		
09 de novembro 1965	Nordeste dos EUA	O blecaute durou mais de 13h e 30 milhões de pessoas foram afetadas.		
13 de julho 1977	Nova lorque, EUA	Blecaute durou 25h, causando incêndios e saques. A área de Wall Street ficou fora de funcionamento.		
19 de dezembro 1978	França	Colapso de tensão. Perda de carga total de 29 GW, equivalente a 75% da carga total. A interrupção durou 8,5h e causou perdas de mais de 300 milhões de dólares americanos.		
12 de janeiro 1987	Leste da França	Perda de carga de 1.500 MW.		
02 de julho 1987	Tóquio, Japão	A falha durou 21 minutos, o sistema de metrô ficou fora de funcionamento; total de perda de carga de 8.168 MW, mais de 28 milhões de pessoas afetadas.		
14 de dezembro 1994	Oeste dos EUA	O sistema se dividiu em 4 ilhas e 2 milhões de pessoas foram afetadas em 14 estados.		
02 de julho 1996	Oeste dos EUA	O sistema se dividiu em 5 ilhas, 2.250.000 pessoas em 15 estados foram afetadas, perda total de carga de 11.850 MW		
03 de agosto 1996	Malásia	Todo o país sofreu blecaute e o total de perda de carga foi de 5.700 MW.		
10 de agosto 1996	Oeste dos EUA e México	O sistema se dividiu em 4 ilhas, 7,5 milhões de pessoas foram afetadas e o total de perda de potência foi de 30.392 MW.		
29 de julho 1999	Taiwan, China	Toda a ilha ficou sem energia e as perdas foram de 1 bilhão de dólares americanos.		
21 de janeiro 2001	Brasil	Perda de carga de 23.766 MW e tempo de restauração de 4h.		
14 de agosto 2003	Leste dos Estados Unidos (EUA) e Canadá	Perda de carga de 61,8 GW. Mais de 50 milhões de pessoas foram afetadas, falha durou mais de 29h. As perdas foram na ordem de 30 bilhões de dólares americanos.		
28 de agosto 2003	Londres, Inglaterra	Perda de carga de 724 MW; 500.000 passageiros nos trens subterrâneos ficaram "encalhados"; serviços restaurados após 2h.		
01 de setembro 2003	Sidnei, Austrália			

		Ao menos 50 construções ficaram sem energia no centro comercial da cidade e engarrafamentos tomaram a vizinhança
01 de setembro 2003	Malásia	Cinco estados no norte sofreram com interrupção de energia que durou 4h.
23 de setembro 2003	Suécia e Dinamarca	A perda de potência foi de 1800 MW; 5 milhões de pessoas foram afetadas; levou 6,5h para restaurar os serviços.
28 de setembro 2003	Itália	Uma falha de energia de 6400 MW colapsou a frequência do sistema; o país inteiro sofreu blecaute, com exceção da ilha de Sardenha; 57 milhões de pessoas foram afetadas; a perda somou 180 GWh; o serviço foi restaurado após 20h.
18 de janeiro 2005	Suíça	Uma súbita interrupção de energia ocorreu na região oeste; Lausanne e Genebra ficaram sem energia; interrupção durou 1h.
05 de junho 2005	Moscou, Rússia	As partes sul, sudoeste e regiões do sudeste da cidade ficaram sem energia; perto de metade da área urbana ficou paralisada; 2 milhões de pessoas foram afetadas; as perdas totais foram de um bilhão de dólares.
22 de junho 2005	Suíça	A rede ferroviária nacional ficou fora de serviço e a interrupção de energia durou 4h.
04 de novembro 2006	Oeste Europeu	8 países do oeste europeu foram afetados. A cidade industrial de Krohne foi quem mais sofreu. 15 regiões (incluindo Paris) na França sofreram com uma súbita interrupção de energia. A rede de energia do Oeste da Europa foi dividida; a perda de carga foi de 17GW; aproximadamente 5 milhões de pessoas foram afetadas; o serviço foi restabelecido após 1,5h.
10 de novembro de 2009	Brasil	Devido ao mau tempo, ocorreu uma falha tripla nas linhas de transmissão de 765kV provenientes da Usina de Itaipu, gerando queda de energia em 90% do Paraguai por 30 minutos. Pelo lado brasileiro 14 estados foram parcialmente afetados. Já os estados de São Paulo, Rio de Janeiro, Espírito Santo e Mato Grosso do Sul foram totalmente afetados. A energia foi restabelecida na maior parte das regiões em até 4 horas. Algumas regiões de São Paulo e Rio de Janeiro ficaram até 7 horas sem energia
10 de fevereiro de 2010	Nordeste e Norte do Brasil	Curto circuito na linha de transmissão que era responsável por suprir mais de 30% da demanda de energia para a região. Os estados da Paraíba e Rio Grande do Norte foram totalmente afetados. Nos outros estados o efeito foi visto principalmente nas capitais. A energia foi totalmente restabelecida após 2 horas.
30 e 31 de julho de 2012	Índia	Falhas em cascata na linha de transmissão deixaram 620 milhões de pessoas sem energia e causando problemas de acesso a serviços e transporte ferroviário. É considerado o maior blecaute da história considerando o número de pessoas atingidas.
21 de novembro de 2015	Criméia, Rússia	1,9 milhões de pessoas foram afetadas. A região da Criméia ficou totalmente isolada do sistema de transmissão e operando apenas com energia de emergência após explosões das linhas de transmissão provenientes da Ucrânia.

Fonte: Adaptado de (MEI; ZHANG; CAO, 2011, p. 4)

2.1.2 Vulnerabilidade

Vulnerabilidade significa a possibilidade de se ter umaparte afetada, em Sistemas de Potência uma parte afetada pode levar a falha de componente e até causar falha em cascata, com possibilidade de iniciar um grande blecaute. Com isso, vulnerabilidade possui um enorme impacto na performance do sistema. (PANIGRAHI, 2013)

Existem vértices e arestas que prestam um papel crucial na estrutura da rede. Éimportante descobrir os componentes com esse papel. Alguns pesquisadores, como Dekker (DEKKER; COLBERT, 2004) relacionam a vulnerabilidade da rede pelo tipo de suas conexões. Vértices com alto grau são considerados críticos, e também outras centralidades são utilizadas para avaliar a vulnerabilidade da rede.

De acordo com o proposto por Latora e Marchiori(LATORA; MARCHIORI, 2007), o ataque nos vértices ou arestas com mais alto valor de centralidade causam maior impacto na performance da rede complexa. Segundo os autores, a Eficiência Global (1) é a medida da performance da rede com o pressuposto de que a eficiência para o envio de informações entre dois vértices i e j é proporcional a recíproca de sua distância mínima. Onde η representa a Eficiencia Global do sistema, Nrepresenta o número total de vértices e d representa a distência mínima entre os vértices i e j.

$$\eta = \frac{1}{N(N-1)} \sum_{i \neq j}^{N} \frac{1}{d_{ij}}$$
 (1)

Assim, também nos trabalhos de Adilson E. Motter e Ying-ChengLai(MOTTER; LAI, 2002) é mostrada a relação da vulnerabilidade com a redução da eficiência do sistema quando certos nós e arestas falham ou são atacados.

Para avaliar a vulnerabilidade de um modelo de rede complexa, alguns vértices ou arestas precisam ser removidos. Holme, Kim, Yoon e Han(HOLME et al., 2002) apresentam uma análise de vulnerabilidade em redes através da remoção dos vértices com maior centralidade de grau e também com maior centralidade de intermediação.

2.1.3 Restauração de Sistemas de Potência

Como visto anteriormente na seção2.1.1, quando da ocorrência de falhas graves e/ou falhas em cascata, podem acontecer blecautes. Estes casos de contingência são o ponto de partida da restauração dos sistemas de potência.

Segundo Santos e Garcia (SANTOS; GARCIA, 1998), existem seis níveis que um sistema pode operar. Partindo do primeiro que é o denominado nível seguro até o nível chamado de emergência não corrigível, onde há a necessidade do corte de energia para que as violações no sistema possam ser corrigidas e o nível subsequente, que é o último nível, chamado de nível restaurativo. Neste ponto não há mais violações no sistema e há perda do fornecimento de energia.

Desta forma, o conhecimento sobre o sistema e os pontos mais críticos pode trazer informações importantes também para a etapa de reconstrução de forma que a RSP seja a condução de um sistema do nível restaurativo para o nível seguro, atentando para os limites de operação durante o processo. Como restrição importante para o RSP, tem-se a variável tempo,

pois este é o período em que os consumidores ficam sem o fornecimento de energia. A Figura 2 apresenta um gráfico com a tolerância do cliente em relação à duração do blecaute.

Curva de Aversão
a Blecautes

Curva de Aversão
a Blecautes

Intritação
Irritação
Irritação
I a

Desconforto

Suportável

30 min 60 min 120 min Duração do blecaute

Figura 2: Curva de aversão aos blecautes

Fonte: (GOMES, 2004)

2.2 Teoria de Grafos

Grafos são formas de representação de situações da vida real através de diagramas, de forma a apresentar a união de pontos através de linhas. As linhas podem representar uniões imateriais, como união de pessoas pelo laço de amizade, ou materiais, como conexão por cabo entre dois equipamentos.(NEWMAN, 2003).

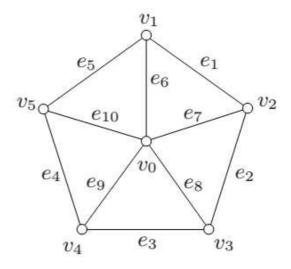
De acordo com Bondy e Murty(BONDY; MURTY, 1976), um grafo G é um par ordenado (V(G), E(G)) que consiste de um conjunto V(G) de vértices e um conjunto E(G), disjunto de V(G), de arestas, em conjunto com uma função de incidência ψ_G que associa cada aresta de G um par não orientado de vértices de G. Se e é uma aresta e u e v são vértices tais que $\psi_G = \{u, v\}$, então é dito que e liga u e v.

As seguintes terminologias são apresentadas por Ruohonen(RUOHONEN, 2013):

- a) Os dois vértices u e v são pontos terminais da aresta (u,v);
- b) Arestas que possuem os mesmos pontos terminais são paralelas;
- c) Uma aresta na forma (u, u) é um loop;
- d) Um grafo é simples se não possui arestas paralelas ou *loops*;
- e) Um grafo sem arestas é vazio;
- f) Um grafo sem vértices é um grafo nulo;
- g) Um grafo com apenas um vértice é chamado grafo trivial;

- h) Arestas são adjacentes se elas compartilham um vértice em comum;
- i) Dois vértices u e v são adjacentes se eles são conectados por uma aresta, ou seja, (u,v) é uma aresta;
- j) O grau de um vértice u, representado como d(u), é o número de arestas com u como um vértice terminal. Por convenção, um loop é contado duas vezes e arestas paralelas contribuem separadamente;
- k) Um vértice pendente é um vértice com grau 1;
- 1) Uma aresta que possui um vértice pendente é uma aresta pendente;
- m) Um vértice isolado é um vértice com grau 0;

A Figura 3 apresenta uma representação de G=(V(G),E(G)), onde:


$$V(G) = \{v_0, v_1, v_2, v_3, v_4, v_5\}$$

$$E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$$

 $e\psi_G$ é definida por

$$\psi_G(e_1) = v_1 v_2 \psi_G(e_2) = v_2 v_3 \psi_G(e_3) = v_3 v_4 \psi_G(e_4) = v_4 v_5 \psi_G(e_5) = v_5 v_1$$

$$\psi_G(e_6) = v_0 v_1 \psi_G(e_7) = v_0 v_2 \psi_G(e_8) = v_0 v_3 \psi_G(e_9) = v_0 v_4 \psi_G(e_{10}) = v_0 v_5$$

Figura 3: Diagrama do grafo G

Fonte (NEWMAN, 2003)

A representação gráfica dos grafos, em muitos casos pode auxiliar na compreensão dos dados analisados, suas propriedades e inter-relações. Como pode ser visto em Figura 4, a estrutura de rede da Internet baseada nos seus sistemas autônomos.

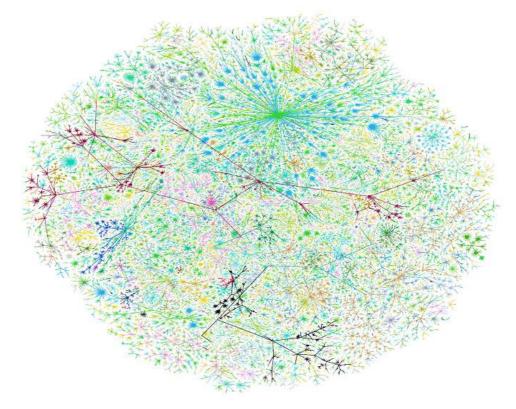


Figura 4: Diagrama da estrutura da Internet com base nos sistemas autônomos

Fonte (NEWMAN, 2003)

Mesmo os gráficos sendo uma forma conveniente de especificar os grafos, para que suas informações possam ser armazenadas, são utilizadas suas representações matemáticas. De acordo com Goldbarg e Luna(LUNA; GOLDBARG, 2000), estes grafos podem ser representados por, ao menos, quatro diferentes formas. Matriz de adjacências, matriz de incidência, listas lineares ou encadeadas e representação vetorial.

De acordo com a proposta de aplicações deste trabalho, somente serão discutidas as matrizes de incidência e adjacência.

2.2.1 Matriz de adjacência e matriz de incidência

Seja G um grafo, com conjunto de vértices V e conjunto de arestas E. A matriz de incidência de G é a matriz n x $mM_G:=(m_{ve})$, onde m_{ve} é o número de vezes que o vértice v e a aresta e é incidente.

A matriz de adjacência de G é a matriz $n \times nA_G := (a_{uv})$, onde a_{uv} é o número de arestas unindo os vértices u e v, cada loop contando com duas arestas. As matrizes de incidência e adjacência podem ser vistas na Figura 5.

 $a\ b\ c\ d\ e\ f\ g\ h$ u v w x yyh u | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0u | 2 | 1 | 0 | 1 | 0v | 1 0 1 0 1 0 0 0v | 1 0 1 1 0 $w \mid 0 \mid 0 \mid 1 \mid 1 \mid 0 \mid 1 \mid 0 \mid 0$ $w \mid 0 \mid 1 \mid 0 \mid 2 \mid 0$ x | 0 0 0 1 1 1 1 1x | 1 1 2 0 1y | 0 0 0 0 0 0 0 1y | 0 0 0 1 0d G \mathbf{M} A

Figura 5: Matrizes de incidência (M) e adjacência (A) do grafo G

Fonte: (NEWMAN, 2003)

2.2.2 Centralidades

Os estudos de centralidade têm gerado uma vasta literatura. Clarificações conceituais, estatísticas e a organização metodológica foram provadas por diversos pesquisadores (BONACICH, 1987; BOORMAN; WHITE, 1976; BURT, 1978, 1980; COOK et al., 1983; FRANK, 1981; FREEMAN, 1979, 1980; HAGE; HARARY, 1984; JOHANNISSON, 1987; MIZRUCHI; BUNTING, 1981; WHITE; BOORMAN; BREIGER, 1976)

De acordo com Freeman, os três conceitos básicos de centralidade são grau (degree), proximidade(closeness) e centralidade de intermediação (betweenness). "O grau do ponto pi é simplesmente a contagem de número de encontros com outros pontos $pj(i \neq j)$ que são adjacentes a ele e que estão em contato direto." (FREEMAN, 1977). Já a medida de proximidade é relativa à distância entre pontos. Ela é baseada na distância entre um ponto e outro com a utilização dos caminhos mais curtos. Centralidade de intermediação é a frequência em que um ponto participa do caminho mais curto na conexão entre outros dois pontos.

Os estudos de Freeman se basearam em conceitos de redes sociais e iteração entre indivíduos. Neste caso, as medidas indicam como as centralidades podem afetar os processos em um grupo, relacionando as centralidades de graucom atividades, proximidadecom independência e intermediaçãocom controle. Todas essas medidas são feitas com a representação de grupos em forma de grafos onde os indivíduos são indicados vértices e suas inter-relações por arestas.

A Figura 6 apresenta uma rede social, com as conexões entre os atores. Esta rede servirá de exemplo de cálculos ao longo do trabalho.

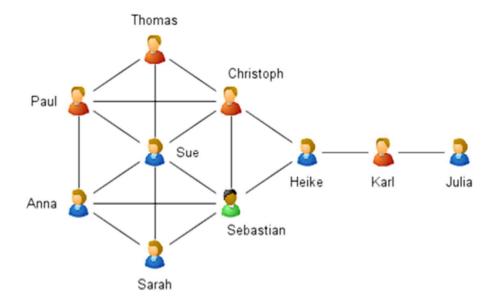


Figura 6 - Rede social exemplo - kyte network

Fonte: Autor

(1) Centralidade de Grau (DegreeCentrality)

A definição mais simples de centralidade de graué baseada na ideia de que pontos importantes devem ser os mais ativos, de forma que eles apresentem maior número de conexões com outros pontos do grafo. Deste modo, a medida de centralidade de grau de um ponto i é o número de pontos adjacentes a i. Dois pontos são considerados adjacentes se existe uma aresta que os conecta. A definição de centralidade de grau pode ser vista em(2)(NIEMINEN, 1974).

$$C_D(i) = \frac{k_i}{N-1} = \frac{\sum_{j \in G} a_{ij}}{N-1}$$
 (2)

Onde k_i é o grau do ponto i. N-I é o fator de normalização dos valores, pois é o limite máximo de conexões que um ponto poderá ter. assim $0 \le C_n(i) \le 1$.

A centralidade de grau foca nos atores mais visíveis da rede. Um ator com grau alto está em contato direto com muitos outros atores e é visto como um ponto central, importante e como um canal principal para comunicação.

Na Tabela 4 vemos os resultados de cálculos para as centralidades de grau na rede exemplo da Figura 6. Aqui, vemos que o indivíduo com a maior centralidade de grau é Sue, que possui conexões diretas com 6 pessoas, indicando que é o membro da rede com maior número de conexões.

Tabela 4 - Cálculo de Centralidade de Grau para Kyte Network

Pessoa	Centralidade de Grau
Sue	0,666667
Christoph	0,55556
Sebastian	0,55556
Paul	0,444444
Anna	0,444444
Sarah	0,333333
Thomas	0,333333
Heike	0,333333
Karl	0,222222
Julia	0,111111

Fonte: Autor

(2) Centralidade de Proximidade (ClosenessCentrality)

A centralidade de grau é uma medida de centralidade local. A definição de centralidade de um ator em escala global é baseada em quão perto este ator está de todos os outros atores. Neste caso a ideia é de que, o ator, enquanto ator central, pode rapidamente interagir com todos os outros não apenas com os vizinhos de primeiro grau. A definição de proximidadeé baseada no conceito de menor distância ou no caminho mais curto entre um nó e outro da rede d_{ij} , ou o inverso da média das distâncias entre um vértice para todos os outros vértices.(FREEMAN, 1979; SABIDUSSI, 1966; WASSERMAN; FAUST, 1994)

$$C_{C}(n) = \frac{1}{\overline{d_{n}}} = \frac{N-1}{\sum_{j \in G} d_{ij}}$$
 (3)

Onde d_n é a média das distâncias de um vértice i a todos os outros vértices. A normalização faz com que os valores fiquem na faixa $0 \le C_C(n) \le 1$. C_C é utilizado para a realização de medidas baseadas em independência(FREEMAN, 1979).

Como visto na Tabela 5 abaixo, o cálculo da centralidade de proximidade feito na rede exemplo apresenta Christoph e Sebastian como as pessoas com maior valor de centralidade, indicando que eles são os indivíduos que estão em uma posição que possui a menor distância total até todos os outros membros da rede. Neste caso, caso a distância fosse em quilômetros, por exemplo, seriam as pessoas que percorreriam menor distância para atingir todos os outros membros da rede.

Tabela 5 - Cálculo de Centralidade de Proximidade para kyte network

Pessoa	Centralidade de Proximidade
Christoph	0,642857
Sebastian	0,642857
Sue	0,600000
Heike	0,600000
Paul	0,529412
Anna	0,529412
Sarah	0,500000
Thomas	0,500000
Karl	0,428571
Julia	0,310345

Fonte: Autor

(3) Centralidade de Intermediação (*BetweennessCentrality*)

Interações entre dois pontos não adjacentes podem depender de outros vértices, espacialmente os que encontram-se no caminho entre estes pontos. Por esse motivo, pontos intermediários podem possuir controle estratégico e influência sobre outros pontos. A ideia a respeito da centralidade de intermediação é a de que um vértice é central se ele participa da maior quantidade de caminhos mais curtos entre os pontos de conexão da rede. Se n_{jk} é o número de conexões geodésicas entre dois componentes da rede j e k, e $n_{jk}(i)$ é o númerode conexões geodésicas entre i e k que contém o vértice i, a centralidade de intermediação de i pode ser definida como:(ANTHONISSE, 1971; FREEMAN, 1977, 1979):

$$C_B(i) = \frac{\sigma_n}{\sigma} \tag{4}$$

onde σ_n é o número de caminhos mais curtos que passam pelo nó n e σ é o número de caminhos mais curtos da rede.

Da mesma forma que nas centralidades anteriores, foi aplicado o cálculo de centralidade de intermediação na rede exemplo da Figura 6, vê-se na Tabela 6 que Heike é a pessoa com maior valor de centralidade de intermediação, ou seja, muitos caminhos curtos de comunicação entre os membros da rede passam por ele.

Tabela 6 - Cálculo de Centralidade de Intermediação para kyte network

Pessoa	Centralidade de Intermediação
Heike	0,388889
Christoph	0,231481
Sebastian	0,231481
Karl	0,222222
Sue	0,101852
Paul	0,023148
Anna	0,023148
Sarah	0,000000
Thomas	0,000000
Julia	0,000000

(4) Outras centralidades

Em particular, na maioria dos casos a comunicação não ocorre apenas nos caminhos mais curtos, e por isso, medidas mais realistas de betweenness devem incluir outros caminhos possíveis.

Na realização deste trabalho foi utilizada também a centralidade de fragilidade. Centralidade esta que representa a influência de um nó específico na capacidade da rede.

(a) Capacidade (Capacity)

De acordo com Da Silva (DA SILVA; MA; ZENG, 2008), capacidade é a propriedade da rede de medir sua robustez.

$$C = \sum_{i=1}^{n} \frac{1}{PL_i} \tag{5}$$

Neste caso, $n\acute{e}$ o número total de pares conectados na rede e $PL_i\acute{e}$ cada um dos caminhos mais curtos. A Figura 7 apresenta a diferença nos valores da centralidade de capacidade para redes com a mesma quantidade de nós, mas com alteração de topologia de conexões.

1 2 3 4 5 C=12.83 C=20

Figura 7:Diferenças no valor da centralidade de capacidade em duas redes.

(b) Centralidade de Fragilidade (*FragilityCentrality*)

Também proposto por Da Silva (2006), a centralidade de fragilidade é a medida de quanto a capacidade de uma rede será afetada na ocasião da remoção de um nó.

$$f(n) = 1 - \frac{C_n}{C_N} \tag{6}$$

Onde C_N é a capacidade de toda a rede e C_n é a capacidade da rede sem o nó n. Os valores de fragilidade variam entre 0 e 1.

Os valores de fragilidade calculados para a rede exemplo, indicam que a ausência de Heike causaria mais transtornos ou redução de capacidade de troca de informações entre os membros da rede que qualquer outra pessoa, individualmente. Os resultados podem ser vistos em Tabela 7.

Tabela 7 - Cálculo de Centralidade de Fragilidade para kyte network

Pessoa	Centralidade de Fragilidade
Heike	0,363897
Sebastian	0,255587
Christoph	0,255587
Sue	0,249284
Karl	0,243553
Anna	0,209169
Paul	0,209169
Sarah	0,191977
Thomas	0,191977
Julia	0,117479

2.3 Coeficiente de Correlação de Spearman - p

O coeficiente ρ de Spearman(1904) mede a intensidade da relação entre variáveis ordinais. Usa, em vez do valor observado, apenas a ordem das observações.

Deste modo, este coeficiente não é sensível a assimetrias na distribuição, nem à presença de *outliers*, não exigindo portanto que os dados provenham de duas populações normais. Aplica-se igualmente em variáveis intervalares/razão como alternativa ao R de Pearson, quando neste último se viola a normalidade. Nos casos em que os dados não formam uma nuvem "bem comportada", com alguns pontos muito afastados dos restantes, ou em que parece existir uma relação crescente ou decrescente em formato de curva, o coeficiente ρ de Spearmané mais apropriado(SPEARMAN, 1912).

Uma fórmula fácil para calcular o coeficiente ρ de Spearmané dada pela equação (7), em que n é o número de pares (x_i, y_i) e d_i = (ranking de x_i dentre os valores de x) – (ranking de y_i dentre os valores de y)

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n^{3} - n}$$
 (7)

Se os postos de x são exatamente iguais aos pontos de y, então todos os d_i serão zero e ρ será 1.

O coeficiente ρ de Spearman varia entre -1 e 1. Quanto mais próximo estiver destes extremos, maior será a associação entre as variáveis. O sinal negativo da correlação significa que as variáveis variam em sentido contrário, isto é, as categorias mais elevadas de uma variável estão associadas a categorias mais baixas da outra variável(SCHMID; SCHMIDT, 2007).

Como exemplo, temos a Tabela 8 que apresenta informações para correlacionamento de Quociente de Inteligência e horas assistidas de televisão.

Tabela 8 - Dados de QI e Horas assistindo TV

QI	Horas de TV por semana
106	7
86	0
100	27
101	50
99	28
103	29
97	20
113	12
112	6
110	17

Para o cálculo do coeficiente, é necessário ordenar os dados, primeiramente a coluna QI a ser considerada como X_i edepois a coluna Horas de TV, chamada Y_i .

A Tabela 9 já apresenta os dados ordenados. A coluna x_i apresenta o posto dos valores obtidos em X_i e a coluna y_i apresenta o posto dos valores apresentados em Y_i . A coluna d_i apresenta a diferença entre os valores de x_i e y_i e d_i ² contém os valores de d_i ao quadrado, ou seja, o quadrado da diferença.

QI (X _i)	Horas de TV por semana (Y _i)	Xi	yi	d_i	d_{i}^{2}
86	0	1	1	0	0
97	20	2	6	-4	16
99	28	3	8	-5	25
100	27	4	7	-3	9
101	50	5	10	-5	25
103	29	6	9	-3	9
106	7	7	3	4	16
110	17	8	5	3	9
112	6	9	2	7	49
113	12	10	4	6	36

Tabela 9 - Valores para cálculo de coeficiente de Spearman

Fonte: Autor

Vemos então que o somatório do quadrado das diferenças Σd_i^2 é 194 e n=10. Substituindo na equação (7) temos:

$$\rho = 1 - \frac{6 \times 194}{(10^3 - 10)}$$

Desta forma, vemos que $\rho = -0.1757576$, ou seja, indica que a correlação entre a quantidade de horas assistindo televisão e o quociente de inteligência é muito pequena.

2.4 Programa Anarede

Com o objetivo de disponibilizar às empresas do setor elétrico uma ferramenta computadorizada padrão para o estudo e simulações de Sistema de Potência, o Centro de Pesquisas de Energia Elétrica – CEPEL, junto da Universidade de Campinas (UNICAMP), da Universidade Federal de Juiz de Fora (UFJF) e o Núcleo de Computação Eletrônica da Universidade Federal do Rio de Janeiro (NCE/UFRJ), desenvolveu o Programa de Análise de Redes – ANAREDE, programa esse que agrupa novas técnicas, algoritmos e métodos eficientes, adequado a realização de estudos nas áreas de operação e planejamento de sistemas elétricos de potência. Sua estrutura consiste de ferramentas de: cálculo de fluxo de potência, equivalente de redes, análise de contingências, análise de sensibilidade de tensão, redespacho de potência ativa e fluxo de potência continuado.

Uma breve explicação da função dos programas que compõe o ANAREDE, aqui chamadas de ferramentas, e que serão utilizados na avaliação dos resultados obtidos neste

trabalho, pode ser vista abaixo. Informações mais detalhadas podem ser obtidas no manual do software.

2.4.1 Ferramenta de Cálculo de Fluxo de Potência

A ferramenta de cálculo de fluxo de potência tem como objetivo o cálculo do estado operativo da rede elétrica para definidas condições de carga, geração, topologia e determinadas restrições operacionais.

O processo iterativo do cálculo do estado operativo da rede elétrica para as condições impostas consiste na obtenção, de forma alternada, de soluções para o sistema CA e para o sistema CC, até que as variações entre interações consecutivas das potências injetadas na rede CA e pela rede CC sejam menores que uma determinada tolerância.

Dois métodos estão disponíveis para a solução das equações da rede elétrica CA:

- Método Desacoplado Rápido;
- Método de Newton.

2.4.2 Ferramenta de Análise de Contingências

A ferramenta de Análise de Contingências processa sequencialmente um conjunto de casso de contingências com a finalidade de detectas dificuldades operativas severas. Para cada caso de contingencia é executada uma solução de fluxo de potência e efetuada a monitoração do estado operativo simulado da rede elétrica. A monitoração da rede é trazida em termos de índices de severidade que, ao final do processamento, são ordenados decrescentemente para indicar os casos mais severos.

A lista de contingências a ser processada consiste de casos que são constituídos de qualquer combinação, simples ou múltipla, de perda de circuito, abertura de circuito em uma das extremidades, perda de elemento shunt, perda de geração e perda de carga. Um grau de prioridade pode ser associado a cada caso para permitir o processamento seletivo dos subconjuntos de casos de contingências de mesma prioridade.

As grandezas a serem monitoradas nos casos simulados de contingencias são os níveis de tensão em barramentos, potência reativa de barras de geração e fluxos de potência nos circuitos.

2.4.3 Ferramenta de Análise de Sensibilidade de Tensão

A ferramenta de Análise de Sensibilidade de Tensão tem como objetivo o cálculo de fatores de sensibilidade de primeira ordem, que traduzem o comportamento de determinadas grandezas da rede elétrica, denominadas variáveis dependentes, em relação à variação de uma grandeza de controle, denominada variável de controle. Podem também ser calculados os fatores de sensibilidade de uma variável dependente em relação a um conjunto de variáveis de controle.

As variáveis de controle consideradas são as magnitudes de tensão em barra de geração, injeções de potência reativa em barras de geração, injeções de potência reativa em barras de carga e *taps* de transformadores. Como variáveis dependentes são consideradas as magnitudes de tensão em barras de carga e gerações de potência reativa.

2.4.4 Ferramenta de Análise de Sensibilidade de Fluxo

A ferramenta de Análise de Sensibilidade de Fluxo tem como objetivo o cálculo de sensibilidade de primeira ordem, que traduzem o comportamento dos fluxos nos diversos circuitos da rede elétrica, denominados circuitos monitorados, em relação à variação de uma potência ativa ou reativa ou ainda a retirada de um circuito.

Para o cálculo dos fatores se sensibilidade, o sistema de equações que representa o comportamento da rede elétrica é linearizado em torno do ponto de operação. O modelo linear é obtido pela expansão destas equações em uma série de Taylor e da qual são considerados somente os termos de primeira ordem.

A matriz Jacobiana resultante desta formulação é formada e seus fatores triangulares são armazenados para o efetivo cálculo dos fatores de sensibilidade.

Estes fatores de sensibilidade obtidos são sempre dados em relação à variação das potências ou retirada dos circuitos feita de forma individual, não sendo permitido o cálculo dos fatores de sensibilidade em relação a uma perturbação composta por duas ou mais variações de potência ou retiradas de circuito.

3 REVISÃO BIBLIOGRÁFICA

Neste capítulo são apresentadas algumas aplicações de análise de vulnerabilidade, principalmente com utilização única ou conjunta de cálculo de centralidade de forma a explicitar o estadodaarte e as informações possíveis de se obter de um sistema complexo. Após, algumas aplicações de restauração com utilização de redes complexas.

3.1 Utilização de Grafos em Sistemas de Potência

Muitos estudos são direcionados à análise de vulnerabilidade de sistemas de potência. Onde se busca saber, da forma mais rápida e eficiente, quais são os pontos mais críticos da rede e quais os pontos que seriam mais vulneráveis em caso de ataques. Desta forma, ações adicionais de segurança e redundância podem ser tomadas para minimizar a probabilidade do sistema, ou parte significativa do sistema de potência, entre em colapso com ataques a pontos isolados.

Estudos de vulnerabilidade através da remoção de nós com maior centralidade de grau foram feitos por Albert et al (ALBERT; ALBERT; NAKARADO, 2004), onde os resultados foram testados em comparação com remoções aleatórias de nós, baseados na carga e falhas em cascata de forma a definir pontos mais críticos.

O trabalho de Holmgren (2006) apresenta a avaliação de vulnerabilidade através de simulação de ataques aos nós com maior centralidade de grau e a cada remoção uma nova avaliação da rede é feita para a definição do próximo no a ser atacado, com isso fez-se uma comparação de resultados entre a rede Nórdica e a rede Ocidental dos Estados Unidos.

A aplicação de teoria de redes complexas em redes elétricas é feita por (HINES; BLUMSACK, 2008) em seu trabalho. Através da utilização da centralidade de intermediação verificam que as redes elétricas, por suas conexões não possuem características de redes sem escala (RSE). No entanto, quando utilizada a impedância da rede como parâmetro de conexão entre os pontos, as características de RSE são claramente observadas. Como apenas alguns pontos são críticos para a rede, apresentando diversas conexões e alta centralidade de intermediação se mostram mais vulneráveis.

Com a utilização de redes neurais e técnicas *neuro-fuzzy* para avaliar a vulnerabilidade de Redes Elétricas de Potência, Haidar, Mohamed Al-Dabbagh e Hussain(HAIDAR et al., 2008), analisam a vulnerabilidade com foco na limitação de carga da rede em condições de contingência. Neste caso, uma rede neural é treinada através do aprendizado de diversas situações de perda de carga e depois utilizada para que ações sejam tomadas no sistema de forma rápida.

Através da utilização de pesos na rede baseados no cálculo da reatância inversa dos barramentos, Dwivedi, Yu e Sokolow(2009) avaliaram a vulnerabilidadea ataques randômicos e direcionados a nós com maior intermediação calculados com os pesos propostos.

Uma proposta de centralidade baseada na tensão e corrente injetada no barramento, bem como na admitância da rede é feita por Wang, Scaglione e Thomas (2010). Com a aplicação de outros pesos para evidenciar as características elétricas da rede, mostram a necessidade de se avaliar a rede para além de somente características topológicas.

No estudo de (WANG et al., 2011), foram utilizadas análises de redes complexas para a avaliação dos pontos mais críticos através da intermediação entre os pontos, ou seja, avaliando os pontos que possuem maior quantidade de conexões mais viáveis entre os outros nós da rede. Neste caso, além da conexão entre os pontos, é feito o cálculo do fluxo de corrente. Assim, a maior viabilidade dos caminhos pode ser avaliada com base nas impedâncias e no caminho da corrente e não a conexão física e distância geográfica entre os pontos.

De forma composta, (ZIO et al., 2012), se utilizam da união da análise da centralidade de intermediação da rede com a aplicação do algoritmo de *randomflow*, ou fluxo aleatório, onde é simulada uma falha em um ponto da rede, e se acompanha a distribuição do fluxo. As falhas ocorrem de acordo com uma distribuição de probabilidades já levantada pelo modelo, ou então através de dados históricos. Após algumas iterações no algoritmo, ficam definidas as rotas mais propensas a serem rotas de carga. Com essas informações, é avaliado a intermediaçãoda rede para levantar os pontos mais vulneráveis, onde a vulnerabilidade da rede foi avaliada através de modelo de fluxo de potência CC e cálculos de centralidade de intermediação. Nesta aplicação, o modelo de fluxo de potência possui um parâmetro referente à probabilidade de ocorrência de uma *hiddenfailure* em algum ponto da rede. Na execução do algoritmo, ao ocorrer a *hiddenfailure*, o sistema é recalculado para redistribuir o fluxo e avaliar sobrecargas. Os resultados foram avaliados através de geração de ataques, intencionais ou aleatórios e com o cálculo das centralidades sendo refeito sempre que um nó é tirado de operação pelo ataque.

A centralidade de intermediaçãode vértices foi utilizada por Ernster e Srivastva(ERNSTER; SRIVASTAVA, 2012) em seu trabalho, comparando os resultados com variações na carga gerada e no fluxo de potência durante contingências. Centralidades de grau, proximidade e intermediação para nós também foram utilizadas para comparação.

Já Wang, Yu, Megrath e Zhong(WANG et al., 2014) utilizam o cálculo do fluxo máximo entre nós. O fluxo de potência máximo é calculado partindo do nó fonte para o nó receptor e com isso definem índices de centralidade chamados de índice de centralidade de potência real e índice de centralidade de potência reativa. Após o cálculo destes índices aplicam métodos de lógica *fuzzy* para a obtenção de um índice composto e com isso adicionar aspectos elétricos à avaliação topológica das redes.

Tabela 10: Comparativo de técnicas de análise de vulnerabilidade

Autores	Técnica empregada	Proposta
Albert et al	Cálculo de centralidade de grau	Análise de vulnerabilidade através de remoção de nós com maior centralidade de grau
Holmgrem	Cálculo de centralidade de grau	Análise de vulnerabilidade através de remoção de nó com maior centralidade de grau, recalculando a rede antes de cada nova remoção
Hines e Blumsack	Cálculo de centralidade de intermediação	Avaliação de características da rede elétrica através de utilização de pesos como parâmetros de conexão
Haidar et al	Redes neurais e neuro-fuzy	Avaliação de vulnerabilidade em situações de contingência e treinamento de redes neurais
Dwivendi, Yu e Sokolow	Cálculo de centralidade de intermediação	Avaliação de vulnerabilidade em nós com maior centralidade de intermediaçãotendo reatância inversa como peso
Wang, Scaglione e Thomas	Cálculo de centralidade baseado em tensão e corrente de barramento	Comparação de resultados de cálculo de centralidades baseado em topologia de rede com cálculo de centralidades utilizando fatores elétricos como pesos.
Wang et al	Cálculo de centralidade de intermediação e fluxo de corrente	Avaliação de caminhos mais críticos baseados em características elétricas e não topológicas
Zio et al	Cálculo de centralidade de intermediaçãopararandomflowe loadflow	Avaliação de nós mais críticos na rede de transmissão utilizando como pesos para o cálculo de centralidade de intermediação valores obtidos com cálculo de <i>loadflow</i> erandomflow
Ernster e Srivastva	Cálculo de centralidades de grau, proximidade, <i>eigenvector</i> e intermediaçãode vértice e nós	Avaliação comparativa de resultados de cálculo de centralidades para análise de vulnerabilidade de Redes de Transmissão
Wang, Yu, Mcgrath e Zhong	Cálculo de centralidade de potência	Utilização de centralidade de potência (Power Centrality) para avaliação de vulnerabilidade de redes de transmissão

A Tabela 11 apresenta uma comparação entre os métodos avaliados na revisão bibliográfica e o método proposto por este trabalho em função do tipo de ferramentas utilizadas, método e variáveis em análise.

Tabela 11: Comparativo de métodos pesquisados com a metodologia proposta

Autores	Centralidade de Grau	Centralidade de Intermediação	Centralidade de proximidade	Centralidade de fragilidade	Redes Neurais	Utilização de informações de barramento	Fluxo de Corrente	RandomFlow	LoadFlow	Utilização de vértices	Pesos nas centralidades	Fluxo de Potência
Albert et al	✓	×	×	×	×	×	×	×	×	×	×	×
Holmgrem	✓	×	×	×	×	×	×	×	×	×	х	×
Hines e Blumsack	×	✓	×	×	×	×	×	×	×	×	×	×
Haidar et al	×	×	×	×	✓	×	×	×	×	×	×	×
Dwivendi, Yu e Sokolow	×	✓	×	×	×	×	×	×	×	×	×	х
Wang, Scaglione e Thomas	ж	✓	×	×	Х	✓	×	×	х	×	✓	×
Wang et al	х	✓	х	×	×	×	✓	×	×	×	х	×
Zio et al	х	✓	×	×	×	×	×	✓	✓	×	х	×
Ernster e Srivastva	✓	✓	✓	×	×	×	×	×	×	✓	х	×
Wang, Yu, Mcgrath e Zhong	×	×	ж	×	×	×	×	×	×	×	×	✓
Método proposto	✓	✓	✓	✓	×	✓	×	×	×	ж	✓	×

3.2 Outras Aplicações de Teoria de Redes em Sistemas de Potência

Inicialmente, (FINK; LIOU; LIU, 1995) trazem um apanhado em relação às estratégias de reconstrução, inclusive apresentando as três principais etapas de reconstrução: Preparação, Restauração do Sistema e Restauração e Carga, a primeira ocorrendo nos primeiros 30 a 60 minutos da parada do sistema, a segunda entre 3 a 4 horas e a última na extensão da finalização do processo, em torno de 12 horas. Para definição da estratégia de restauração, os autores apresentam um sistema baseado em *genericrestorationactions*, em tradução livre, ações genéricas de restauração (GRAs).

Em (CAO et al., 2011) é apresentado uma solução de otimização de caminhos para restauração de sistema baseado em uma abordagem híbrida entre teoria de grafos e o algoritmo de Dijkstra para a descoberta do caminho mais curto, com algoritmos genéticos. Neste caso, é calculado o menor caminho entre o *blackstart*o nó alvo e depois através de algoritmos genéticos é feita a otimização da sequência de restauração. Neste caso, o esqueleto do sistema é obtido tão logo o caminho tem um melhor atendimento dos requisitos, reduzindo o número de ações de controle.

No trabalho de (HUSSAN; MEKHAMER, 2006), outra solução para o problema de restauração é apresentada com utilização de Inteligência Artificial. Esta proposta se utiliza da separação do sistema em Esquemas de Restauração em Ilhas, e em cada ilha, redes neurais artificiais (RNA) são utilizadas para definir a sequência de chaveamento.

Outra proposta de divisão de redes para restauração é feita por (QUIRÓS-TORTÓS; TERZIJA, 2013) apresentam em seu trabalho uma proposta com a utilização de Teoria de Grafos e clusterização da rede. Neste caso, a rede do SP é dividida em ilhas através de algoritmo de Clusterização Espectral não-Linearizado, *Un-NormalizedSpectralClustering*(USC). Depois de dividida a rede, é feita uma avaliação nas ilhas verificando se as demandas de carga são condizentes com as demandas de geração. Como resultado, os caminhos de ligação serão sempre baseados no menor caminho possível.

Já (SANTOS; GARCIA, 1998) apresentam um método de auxílio para a restauração utilizando programação linear e adicionando um método de cálculo de fluxo de potência junto com a aplicação de redes fictícias. Este método resolve o problema de determinação de configuração para atendimento das cargas prioritárias na restauração do sistema.

A programação linear inteira mista (PLIM) é utilizada por (SUN; LIU; ZHANG, 2011) em seu trabalho e traz um resultado otimizado para a estratégia de recuperação dos geradores, com baixo custo computacional. Não leva em consideração outras variáveis práticas como transientes de chaveamento ou a instabilidade do sistema em geração com variações de carga e tensão.

4 METODOLOGIA

A proposta deste trabalho é a de analisar os sistemas de potência em função dos seus nós mais críticos em caso de contingência *n-1*. Para essa análise serão avaliadas as medidas de centralidades de grau, proximidade, intermediação e fragilidade das redes. Comparativamente às centralidades utilizadas, fatores elétricos como resistência, reatância, impedância e admitância das linhas também serão levados em conta para definição de pesos para os vértices e terão seus resultados comparados. Os resultados encontrados com as avaliações de centralidades serão confrontados com os resultados obtidos com o software ANAREDE ® nas mesmas condições de contingência.

Neste trabalho foi utilizada a linguagem de programação *python* por decisão e familiaridade do autor. Como o foco é a análise do algoritmo proposto e a adesão dos resultados, os tempos computacionais não são fator decisório. Podendo estes serem otimizados em algum trabalho futuro.

4.1 Etapas para execução da análise

As etapas necessárias para a execução do método proposto são:

a) Carregamento dos dados do sistema;

Leitura em python de arquivo contendo as informações de nós e arestas da rede.

b) Cálculo dos pesos das arestas;

Cálculo de pesos das arestas com as informações provenientes dos arquivos de rede.

c) Modelagem do sistema em forma de grafos;

Criação de grafo com as informações de conexão e pesos das arestas.

d) Cálculo das centralidades;

Execução de cálculos das centralidades propostas.

e) Ordenação dos resultados de centralidades;

Nós classificados pelo valor de sua centralidade em ordem decrescente.

f) Comparação com os resultados do ANAREDE;

Tabulação de resultados de forma a ser possível comparar posicionamento de nós entre resultados do método e resultados do ANAREDE;

g) Cálculo de coeficiente de Spearman;

Com os resultados, é feito o cálculo de coeficiente de *Spearman* para todos os resultados.

h) Análise de correlações.

Inicialmente, são necessários os dados de entrada das redes em teste. Como forma de padronizar as bases de trabalho nos estudos ao redor do globo, é disponibilizado pela *Power & Energy Society (PES)*, associação membra da IEEE, arquivos com informações de algumas redes. Estes arquivos possuem informações de redes com variados tamanhos, por exemplo 14, 39, 57, 118 e 300 barramentos. Todos esses dados baseados em informações reais. O objetivo da manutenção desta base de dados é a possibilidade de comparação de resultados entre os mais diversos estudos realizados na área. No primeiro momento deste trabalho, foi escolhida a rede IEEE 39 (OUTLINE, [s.d.]), tornando possível cruzar informações com os estudos de segmentação de (QUIRÓS-TORTÓS; TERZIJA, 2013) e (MEI; ZHANG; CAO, 2011).

Esta rede possui 10 geradores e 39 barramentos e 46 linhas de transmissão, representando a rede New England. Na Figura 8, verifica-se o diagrama unifilar da Rede. Já em Anexo Asão apresentados os dados das cargas e geradores. O Anexo B mostra as informações de conexão entre os pontos, com os dados de perdas das linhas.

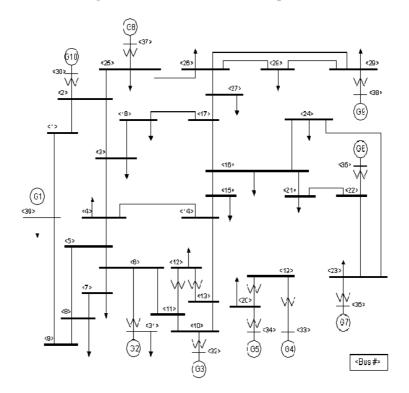


Figura 8: Rede IEEE 39 utilizada para teste

Fonte: ICSEG

4.3 Rede IEEE 30

A rede padrão IEEE 30 possui 30 barras, 6 geradores e 40 conexões, conforme visto na Figura 9 que apresenta seu diagrama unifilar.

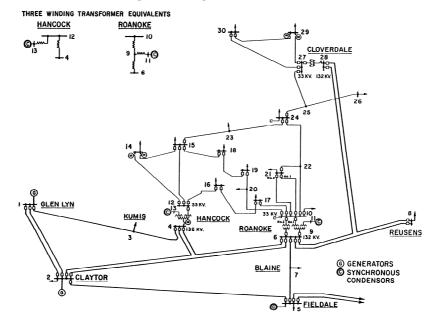


Figura 9: Diagrama Unifilar rede IEEE 30

Fonte: Dabbagchi

4.4 O modelo de rede SINSul

Como forma de avaliação da técnica proposta neste trabalho, além da utilização de redes padrões, como a IEEE39, foi analisado um modelo de representação do Sistema Interligado Nacional (SIN). Com base no conjunto de 6285 nós e 9282 conexões fornecido pelo ONS ("ONS - Ampliação e Reforços na Rede Básica - Casos de Referência - Regime Permanente", [s.d.]), foram utilizados os dados que representam a região Sul do Brasil, neste caso reduzindo o sistema em teste para 1419 nós e 1712 conexões conforme mapa apresentado em Figura 10. As áreas utilizadas e suas respectivas concessionárias podem ser vistas em Tabela 12.

Tabela 12: Áreas e Concessões para região SUL - SIN

Área	Nome
17	ITAIPU (50 E 60 HZ)
20	ELETROSUL
21	COPEL-GT
22	COPEL-D
23	CEEE-GT
24	CEEE-D
25	CELESC
26	ENERSUL
31	AES-SUL
32	RGE
34	AES URUGUAIANA
38	DEM AIS AGENTES SC
39	DEM AIS AGENTES RS
66	CONSUMIDOR LIVRE RS
68	CONSUMIDOR LIVRE PR
69	SANTA MARIA
70	CGTEE
75	DEM AIS AGENTES PR
124	OUTRAS DISTRIBUIDORAS DO RS
125	OUTRAS DISTRIBUIDORAS DE SC

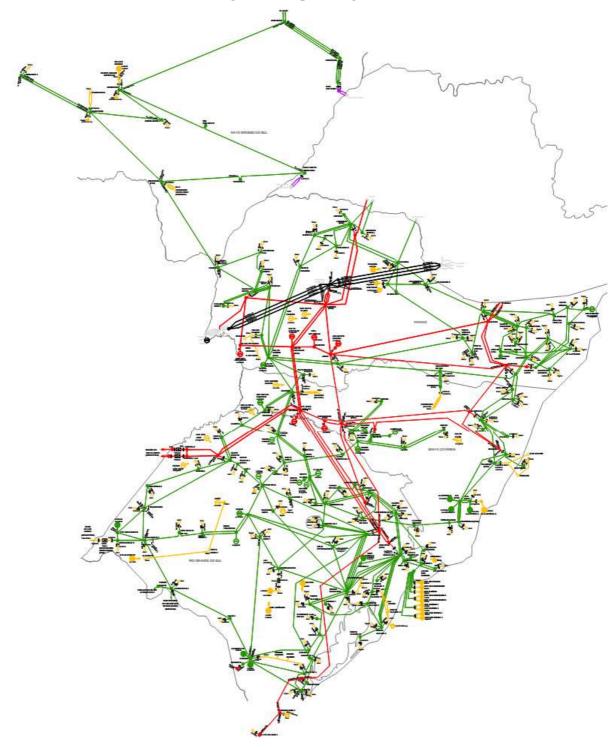


Figura 10: Mapa da Região SUL - SIN

Fonte: ONS

4.5 Metodologia para avaliação de eficácia

Como forma de testar a eficácia do método proposto, os resultados obtidos com o software ANAREDE serão tabulados junto dos resultados obtidos com os cálculos de

centralidade. Com isso, é possível observar as diferenças presentes tanto nos métodos, quanto nas variáveis selecionadas como peso das redes.

4.5.1 Ordenação dos resultados

Os resultados obtidos com o software ANAREDE classificam as contingências e severidades por arestas, já os resultados obtidos com os cálculos de centralidades são classificados por nós. Desta forma há necessidade de reordenar os dados de saída do ANAREDE para que seja possível comparar os resultados.

Foi avaliado grau de cada nó e para cada incidência se multiplicou a severidade da contingência. Assim, os nós participantes dos vértices de maior severidade são classificados como mais críticos para o sistema.

4.6 Cálculo de Centralidades e aplicação do Método

A aplicação do método de análise proposto, foi feita com a montagem da rede tendo os nós representando os pontos e as arestas representando as conexões entre eles. Representando diretamente a topologia da rede.

Foram aplicadas as centralidades de grau, proximidade, intermediação e fragilidade. Os resultados expressam a utilização da rede pura, avaliando apenas as conexões entre os nós, e também utilizando diversos fatores como pesos. Os valores de resistência (R) e reatância (X) das arestas são informados no arquivo com os dados da rede, já a impedância (Z), e a admitância (Y) foram calculadas no momento do carregamento do arquivo de dados pelo algoritmo criado em *python*.

Os valores de resistência são referentes à resistência elétrica dos condutores entre os dois pontos de conexão, sendo a parte passiva, já a parte ativa é indicada pelo valor de reatância. Com esses valores é possível calcular a impedância da aresta, bem como a admitância, sendo essa o inverso da impedância.

5 RESULTADOS OBTIDOS

Com a aplicação da técnica proposta, foram testadas diversas redes de Sistemas de Potência. Os resultados obtidos são apresentados nas próximas seções. Inicialmente foram utilizadas as redes padrões IEEE 30 e IEEE 39, como forma de testar em um sistema de grande escala, foi utilizado o modelo do SIN dividido em grupos.

5.1 Rede IEEE 30

Na Tabela 13 são apresentados os nós com maior valor de centralidade de intermediação (betweenness) para cada um dos pesos propostos, bem como os nós com maior valor de proximidade (closeness) e também os nós com maior valor da centralidade de fragilidade (fragility)egrau (degree) bem como o resultado apresentado pelo software ANAREDE classificando os nós por maior severidade de fluxo (PFSL). Neste caso não foram identificadas severidades de tensão. A representação em forma de grafos da rede pode ser vista em Figura 11.

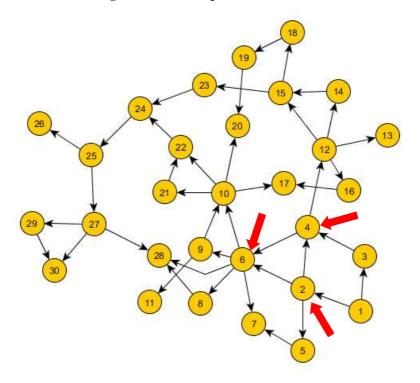


Figura 11: Grafo representando a rede IEEE 30

Fonte: Autor

Como exemplo podemos analisar os resultados obtidos para os três nós com maior severidade de fluxo (PFSL), neste caso os nós 2, 6 e 4. Vemos que o nó 2 aparece em diversas posições dentro da avaliação de centralidades, ainda assim, não se apresenta como um nó com maior valor de centralidade em nenhuma característica avaliada. Já os nós 6 e 4 se apresentam como nós com grande valor de centralidade em quase todos os itens avaliados, sendo ainda o nó 6 o nó informado como o mais central em 14 das 16 avaliações e também apresentado como

a segunda maior severidade de fluxo pelo software ANAREDE. O que já indica uma relação próxima entre os resultados.

Tabela 13: Resultados obtidos para rede IEEE 30

D	В	etwe	enn	ess			Clos	sene	SS		Degree		Fra	gilit	y		ANAREDE
Posição	Puro	Y	Z	X	R	Puro	Y	Z	X	R	Puro	Puro	Y	Z	X	R	PFSL
1	6	6	6	6	6	6	10	6	6	6	6	6	27	6	6	6	2
2	10	24	10	10	9	10	6	4	4	9	10	10	25	4	4	4	6
3	4	10	4	9	12	4	24	28	28	10	12	12	24	10	10	12	4
4	12	2	9	4	10	2	22	8	8	11	2	27	10	9	9	10	1
5	27	15	12	12	28	28	23	3	9	4	4	4	12	12	12	9	3
6	28	25	28	28	4	9	2	9	3	12	15	9	6	28	22	28	12
7	24	12	27	27	27	12	25	10	10	13	27	25	15	22	21	27	5
8	15	23	21	21	15	22	12	7	7	27	9	28	23	21	28	8	10
9	25	27	15	15	21	8	15	12	21	28	22	15	2	3	3	11	28
10	2	22	24	24	25	15	14	21	12	8	24	24	9	8	8	13	27
11	22	4	22	22	7	17	4	17	22	3	25	2	28	7	7	3	9
12	23	28	25	25	3	24	20	22	17	7	28	22	22	27	27	21	15
13	9	9	20	20	20	7	26	2	2	21	1	20	30	17	17	7	8
14	20	1	7	7	22	20	9	15	15	17	3	23	4	20	15	22	22
15	17	18	17	17	17	21	27	5	24	22	5	17	29	2	20	17	24
16	18	5	2	2	18	27	28	16	16	2	7	8	26	15	2	2	25
17	19	16	16	19	23	23	16	1	5	1	8	16	14	19	19	1	20
18	16	20	19	16	1	16	18	24	1	15	14	7	18	1	1	15	7
19	7	17	23	23	2	25	5	20	20	5	16	18	16	5	25	20	16
20	3	19	18	18	19	3	30	13	23	20	17	21	20	25	24	5	30
21	1	3	3	3	5	14	17	11	19	16	18	19	5	24	5	25	18
22	5	7	1	1	8	1	29	19	13	25	19	14	17	16	16	16	23
23	8	8	5	5	11	5	13	23	11	19	20	3	8	18	18	19	29
24	11	11	8	8	13	18	19	27	18	14	21	1	11	13	13	14	14
25	13	13	11	11	14	19	11	18	27	24	23	5	13	11	23	18	17
26	14	14	13	13	16	11	7	14	14	23	29	13	19	23	11	24	19
27	21	21	14	14	24	13	8	25	25	18	30	11	7	14	14	23	21
28	26	26	26	26	26	29	21	29	29	29	11	29	21	29	29	29	11
29	29	29	29	29	29	30	1	26	26	30	13	30	1	26	26	30	13
30	30	30	30	30	30	26	3	30	30	26	26	26	3	30	30	26	26

Tabela 14:Resultados de Avaliação Coeficiente de Spearman - Rede IEEE 30

	Peso	ρ
	Puro	0,6373749
	Y	0,6694105
Betweenness	Z	0,5363737
	X	0,5296997
	R	0,5555061
	Puro	0,658287
	Y	0,3121246
Closeness	Z	0,6093437
	X	0,5951057
	R	0,4518354
Degree	Puro	0,8593993

	Puro	0,6062291
	Y	0,3517241
Fragility	Z	0,6418242
	X	0,6240267
	R	0,5265851

Para o caso da rede IEEE 30, grande parte dos resultados apontaram coeficiente de Spearmanp superior a 0,4, o que indica uma boa adesão entre os resultados. Principalmente para a centralidade de grau(degree) que obteve ρ =0,86.

5.2 REDE IEEE 39

Da mesma forma que o apresentado na rede IEEE 30, os resultados para a rede IEEE 39 são apresentados na Tabela 15 e sua representação em forma de grafos é apresentada em Figura 12. Diferentemente dos resultados obtidos com a rede IEEE 30, esta análise apresentou também violações nos limites de tensão da rede (VSL).

Figura 12: Grafo representando a rede IEEE 39

Tabela 15: Resultados de Centralidades obtidos para rede IEEE 39

- · ·	В	etwe	eenn	ess			Clos	sene	SS		Degree		Fra	gilit	ty		ANAI	REDE
Posição	Puro	Y	Z	X	R	Puro	Y	Zj	X	R	Puro	Puro	Y	\mathbf{Z}	X	R	PFSL	VSL
1	16	16	16	16	16	16	14	16	16	16	16	16	16	16	16	16	16	22
2	14	14	17	17	17	3	4	17	17	17	2	26	26	6	6	6	26	21
3	4	15	14	14	4	4	15	15	15	18	6	19	2	19	19	17	27	13
4	17	4	3	3	14	14	16	3	3	3	26	2	25	17	17	10	24	10
5	3	2	15	15	27	17	3	18	18	15	3	17	19	10	10	19	3	6
6	2	13	4	4	15	15	17	14	14	24	4	14	14	2	2	5	2	11
7	15	3	13	13	5	18	2	24	24	14	5	25	1	3	3	11	6	14
8	5	26	5	2	26	2	25	4	4	4	8	4	29	5	5	4	4	23
9	26	25	2	21	3	5	26	13	13	21	10	6	13	11	11	3	39	26
10	19	17	21	18	18	27	18	21	2	5	11	3	39	14	26	22	1	27
11	25	19	18	5	6	13	1	2	21	6	13	15	4	26	14	23	17	19
12	13	27	27	27	22	19	27	10	10	31	14	10	3	13	13	13	15	24
13	27	12	19	19	21	21	19	5	5	27	17	22	12	4	4	14	8	16
14	6	1	26	26	19	24	29	11	11	13	19	23	15	15	15	26	11	20
15	18	21	22	22	2	25	13	6	6	10	22	5	23	22	22	31	5	32
16	21	24	10	10	13	26	39	27	27	32	23	29	17	18	18	21	13	33
17	24	11	6	6	10	6	28	19	25	11	25	27	27	8	25	27	14	35
18	8	8	11	11	8	1	5	25	19	2	29	13	9	25	8	18	23	31
19	10	39	8	8	9	8	21	7	7	30	1	20	6	21	21	8	25	36
20	1	6	25	25	20	10	12	8	8	22	7	18	22	20	20	2	10	4
21	22	9	20	20	29	12	8	26	26	35	9	21	11	23	23	15	22	34
22	23	22	23	23	25	30	37	22	22	7	12	24	20	7	7	20	19	1
23	20	23	29	28	28	22	30	30	30	19	15	8	28	24	24	7	29	2
24	29	5	9	29	23	23	9	20	20	8	18	11	8	27	27	24	18	3
25	11	10	1	9	11	11	11	33	33	23	20	1	21	29	29	32	12	5
26	39	20	39	1	7	20	38	32	32	26	21	9	37	32	32	35	7	7
27	9	29	7	7	39	9	20	23	23	20	24	39	24	33	33	25	20	8
28	7	7	12	39	1	29	33	35	35	33	27	12	10	35	35	36	9	9
29	12	18	24	12	12	39	22	37	37	12	28	7	30	30	30	33	21	12
30	28	28	28	24	24	28	24	34	34	36	39	28	5	9	9	9	28	15
31	30	30	30	30	30	33	23	1	1	34	30	30	18	34	37	29	34	17
32	31	31	31	31	31	37	34	12	12	9	31	37	38	37	34	12	37	18
33	32	32	32	32	32	7	6	9	9	1	32	33	31	12	1	30	36	25
34	33	33	33	33	33	31	35	36	36	39	33	31	36	1	12	34	31	28
35	34	34	34	34	34	32	7	31	31	25	34	32	33	28	28	39	32	29
36	35	35	35	35	35	35	31	28	28	37	35	35	34	36	36	37	33	30
37	36	36	36	36	36	36	36	39	39	28	36	36	7	31	31	1	30	37
38	37	37	37	37	37	34	10	29	29	29	37	38	35	39	39	28	35	38
39	38	38	38	38	38	38	32	38	38	38	38	34	32	38	38	38	38	39

Tabela 16: Resultados de Avaliação Coeficiente de Spearman - Rede IEEE 39

			ρ	
	Peso	Tensão	Fluxo	Misto
	Puro	0,8052632	0,2680162	0,6688259
	Y	0,8060729	0,2635628	0,6502024
Betweenness	Z	0,7117409	0,3153846	0,6631579
	X	0,6882591	0,3121457	0,6469636
	R	0,6995951	0,2797571	0,6319838
	Puro	0,7451417	0,1975709	0,5799595
	Y	0,5805668	-0,2174089	0,2568826
Closeness	Z	0,591498	0,3568826	0,5712551
	X	0,5967611	0,3481781	0,567004
	R	0,4508097	0,4020243	0,4906883
Degree	Puro	0,7491903	0,3437247	0,6408907
	Puro	0,7512146	0,3093117	0,7066802
	Y	0,6912955	0,0714575	0,5226721
Fragility	Z	0,6135628	0,465587	0,6801619
	X	0,6089069	0,4621457	0,6834008
	R	0,5299595	0,6265182	0,7210526

A rede IEEE 39, trouxe como informação a alta adesão aos resultados quando levado em conta as falhas em tensão, no caso apresentado ρ superior a 0,4 em todos os pesos avaliados. Quando a severidade de Fluxo é avaliada, o resultado já passa a ser bem divergente, com baixa relação entre os resultados obtidos com o método proposto e os resultados do ANAREDE, a única exceção é a centralidade fragilidade utilizando a resistência da linha como peso, que apresentou ρ =0,625. Já com uma classificação que soma as severidades de fluxo e tensão, a adesão do método se apresenta maior.

5.3 Rede Sul

Numa expansão do horizonte de testes, os resultados da análise para a rede Sul-Sudeste são apresentados na Tabela 17. Neste caso, como demonstração do método, apenas os 50 nós com maior índice são apresentados. A Tabela 18 apresenta os coeficientes de *Spearman* para os resultados da rede. Verifica-se na Figura 13 **Erro! Fonte de referência não encontrada.**o grafo representando a Rede Sul. Neste caso, a distribuição dos nós é feita de forma a trazer mais harmonia ao desenho, não sendo representativa em relação ao posicionamento geográfico dos nós.

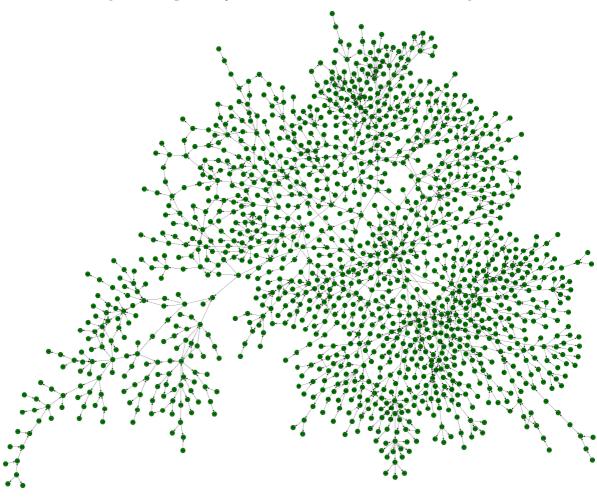


Figura 13: Representação do modelo de SIN - Sul em formato de grafos

Tabela 17: Resultado de Cálculo de Centralidades para Rede Sul

		Bet	weenn	iess			Cl	osene	SS		Degree		F	ragili	ty		ANAI	REDE
Posição	Puro	Y	Z	X	R	Puro	Y	Z	X	R	Puro	Puro	Y	Z	X	R	PFSL	VSL
1	955	1047	964	964	9873	955	85	964	964	1100	9873	978	1086	9873	9873	1019	1210	1210
2	933	1069	955	955	9731	933	1101	955	995	1101	1258	1086	978	9939	9939	1002	1258	1258
3	979	1041	976	976	9939	979	1100	995	955	1103	1047	1047	1204	9879	9879	1003	9873	9873
4	2458	839	2458	995	9819	934	1103	996	996	1119	1210	2458	980	9880	9880	1239	1016	980
5	978	1281	938	1060	821	999	9584	9738	9738	9682	1890	955	1047	9881	9881	1174	1890	1016
6	1047	1243	933	2458	955	964	9764	976	938	85	9731	1082	1101	9882	9882	979	980	1890
7	1086	1258	995	938	822	938	9588	1030	976	955	1239	1140	1069	9883	9883	9818	939	939
8	934	1291	896	896	933	959	9766	938	946	933	890	1231	1100	9884	9884	1173	1035	1035
9	999	934	1060	978	9738	1047	993	946	1030	9738	1035	934	85	9885	9885	2458	1028	1028
10	980	884	978	897	979	995	984	933	933	9739	1140	979	814	9886	9886	896	1047	814
11	896	978	897	1210	1210	895	9583	824	979	915	9939	1230	1041	9887	9887	999	814	2401
12	1210	1086	1210	933	2458	1060	9765	979	824	916	2401	1210	1140	9888	9888	9820	2401	9939
13	938	843	959	1086	965	980	1069	1060	1060	1030	2423	9822	839	9889	9889	9822	9939	1047
14	960	2458	1086	959	818	9738	1047	856	856	800	2889	1148	1082	9900	9900	978	2423	890
15	939	827	979	979	960	956	1041	959	959	801	816	9263	1103	9819	9731	1028	1082	2423
16	1078	814	960	980	938	1030	954	965	965	824	869	9873	1142	9731	9819	1027	840	1082
17	995	1299	980	960	976	856	852	1191	1191	995	980	933	2458	9940	9940	9873	890	1144
18	1069	962	999	1028	829	1069	1228	956	956	996	1016	1069	1148	9941	9941	955	1144	840
19	976	1028	1028	999	946	834	934	1210	1192	810	1259	2359	1145	9942	9942	1170	956	956
20	964	954	1027	1027	964	976	1281	895	1210	811	1267	834	843	9943	9943	1172	816	816
21	814	1031	1078	1078	939	824	839	112	9547	856	2090	1142	934	9944	9944	1267	947	2090
22	1060	829	939	939	820	960	1226	113	895	956	2760	1320	834	9945	9945	933	992	992
23	839	1142	9738	934	959	896	829	980	112	925	814	960	1281	9946	9946	959	1015	869
24	959	1228	1191	9738	995	829	9327	9542	113	926	818	814	1138	9947	9947	1086	948	1015
25	895	819	965	1191	999	1041	1213	800	980	1060	820	980	1843	9807	9807	1210	887	887
26	1041	963	934	946	1028	9818	918	1192	934	823	821	1131	61	9808	9808	1259	2090	962
27	1258	1140	946	965	1027	939	1279	897	9542	934	823	1258	1106	9895	9895	995	962	1058
28	1142	1128	1046	1258	1259	839	1048	934	939	9335	840	2090	1859	978	978	960	1198	1204
29	1028	2387	1045	814	815	965	2896	9547	800	9336	848	939	829	9953	9953	956	1058	948
30	834	1210	814	895	1191	1258	1031	939	897	964	860	1041	2896	9954	9954	9819	1204	9731
31	1138	2896	895	1047	978	852	1316	1313	1313	979	874	9731	1258	9955	9955	964	1069	947
32	1191	1199	1258	1046	896	814	1317	9739	1315	976	884	1843	1131	9948	9948	939	2387	1198
33	1085	834	947	1085	1060	1027	843	999	9739	946	887	1204	1210	9949	9949	9263	9731	1142
34	1075	830	1085	947	1267	823	1275	66	1198	965	933	1859	1228	9950	9950	965	869	2387
35	1082	837	1075	1045	9537	897	9988	953	999	1191	939	2889	1857	1086	1086	1191	1142	1069
36	954	1198	1138	1075	831	946	1306	896	66	808	951	9841	2701	9809	9809	938	960	960
37	1243	1239	1047	1138	2353	9335	922	925	9569	809	955	1163	962	9810	9810	980	1267	2749
38	1046	2474	1082	821	1890	1210	1291	823	953	897	962	1078	2889	9811	9811	1045	839	839
39	9818	9408	821	1082	1046	954	920	2458	896	999	985	829	2094	9812	9812	1231	9264	1041
40	1140	1249	1142	1142	1045	898	1071	960	925	953	1007	1243	1231	9896	9896	976	2478	1267
41	821	960	1313	1313	980	1015	1325	810	823	66	1028	9938	884	9897	9897	814	1041	1007
42	1027	2701	878	878	856	1281	963	977	960	938	1041	896	1144	955	955	821	1007	2458
43	1198	840	1267	1236	889	1045	1028	821	821	9284	9264	2832	1230	999	999	946	2458	1140
44	1249	1145	822	1267	814	1020	2897	822	822	1210	1082	1239	2760	2458	1358	947	2383	9264
45	1015	1194	1121	9569	9860	1204	9841	1315	1258	9212	1142	895	1243	1028	1028	1204	2749	2383
46	822	1191	9818	822	895	2458	2701	1258	2458	980	1215	9818	827	967	2458	1258	1140	2478
47	1045	2760	1015	1121	1047	66	1062	9349	977	959	1243	2423	1246	9866	967	9739	940	1243
48	2896	1138	1140	1140	1029	1218	840	1248	1248	896	1262	9939	840	9776	9776	1246	985	1191
49	829	888	856	1015	956	936	1283	1198	9349	977	1320	1857	1239	1027	9866	1046	1191	1057
50	1131	1082	1236	1192	947	1267	1292	947	810	2458	2359	951	888	2086	1027	1266	1266	1278

Tabela 18: Resultados de Avaliação Coeficiente de Spearman - Rede Sul

			ρ	
	Peso	Tensão	Fluxo	Misto
	Puro	0,72201117	0,7259125	0,7238256
	Y	0,671319469	0,6768952	0,6730078
Betweenness	Z	0,705498668	0,7079493	0,7079869
	X	0,706064742	0,7091048	0,7085161
	R	0,698047996	0,7016161	0,7004674
	Puro	0,405824531	0,4250099	0,4142317
	Y	0,337834892	0,3490663	0,3521124
Closeness	Z	0,385012306	0,3940182	0,3868837
	X	0,384913084	0,3949533	0,3865649
	R	0,299506748	0,29971	0,2989872
Degree	Puro	0,764310415	0,7654589	0,7638187
	Puro	0,653086135	0,6658315	0,6553411
	Y	0,584718707	0,6001133	0,5982568
Fragility	Z	0,517880571	0,5173406	0,5056296
	X	0,515862671	0,514678	0,5030994
	R	0,517896879	0,5197022	0,5151319

Os resultados obtidos com a rede Sul, mostram que o cálculo de centralidades possui boa adesão aos resultados do software ANAREDE, com exceção da centralidade de proximidade que obteve índices baixos para todos os pesos utilizados tanto em severidade de fluxo quanto em severidade de tensão. Já a centralidade de grau obteve um índice em torno de 0,76 em todas as avaliações.

Neste caso, verifica-se que as severidades em casos de contingências *n-1* em redes de grande escala possuem maior relação com a quantidade de conexões entre as barras, podendo ser verificado também pelos índices obtidos com o cálculo de centralidade de intermediação.

6 CONCLUSÃO

Este trabalho mostra que, mesmo sendo viável a aplicação de centralidades para avaliação de contingências, o método precisa de algum aperfeiçoamento para resultados com uma correlação mais direta aos resultados obtidos com o cálculo de Fluxo de Potência. No entanto, alguns outros fatores podem ser observados através do método, independente da convergência do cálculo do fluxo.

A avaliação topológica em grandes redes, como no caso do SIN, indica como visto no cálculo das centralidades apresentados em Tabela 13, Tabela 15 e Tabela 17 a importância de alguns nós na ligação entre áreas e regiões. Fator esse que é mais importante para que o sistema mantenha a interligação completa. Ainda assim, são pontos de menos influência para casos de contingência, onde as áreas tendem a se ilhar para manter sua capacidade.

Através do exposto em Tabela 14, Tabela 16 e Tabela 18, pode-se perceber que os resultados obtidos com as análises de centralidade, apesar de não representar exatamente os resultados obtidos com o software ANAREDE, ainda assim possuem certa adesão. Muito desta diferença observada se dá pelos atributos avaliados.

As divergências encontradas entre os resultados das avaliações topológicas e obtidos coma análise do fluxo de potência, demonstram quealterações dinâmicas do sistema em casos de contingência não conseguem ser expressados apenas pelo comportamento enquanto indivíduo de seus componentes conforme os resultados apresentados na Seção 5. Mesmo com a utilização de seus parâmetros elétricos como pesos das arestas dos grafos consegue-se compreender a tendência da iteração, mas não prever todo o seu comportamento.

Em casos de pequenas redes, com reduzido número de caminhos, fatores topológicos tem influência direta na dinâmica do fluxo como visto nas representações da rede na Seção 4. Em redes de grande escala, com diversos caminhos e geradores, restrições de fluxo tem maior influência. Além disso, sistema de potência de grande escala possuem características que os deixam robustas a contingências do tipo *n-1*como redundâncias de conexão e circuitos alternativos.

As informações de contingência não são possíveis de serem avaliadas pelo software ANAREDE de forma direta para redes grandes, sendo necessária a avaliação por áreas, diferentemente da aplicação desenvolvida. Para o ANAREDE, a matriz Jacobiana de cálculo do fluxo se torna muito grande, principalmente em casos que envolvem a área que abrange Foz do Iguaçu e Furnas.

O método proposto, devido aos seus resultados, pode ser utilizado como ferramenta de pré filtragem de contingências, indicando os nós que devem ser avaliados com maior atenção e prioridade no sistema. Ou então identificar regiões prioritárias para a execução de análise completa pelo ANAREDE.

6.1 Trabalhos Futuros

Como sugestão de trabalhos futuros, indica-se a aplicação de técnica mista envolvendo a utilização do resultado do cálculo de Fluxo de Potência com peso de arestas, de forma a expandir o estudo de redes complexas para as redes de transmissão. Podendo o cálculo ser independente da complexidade de cálculo ou mesmo envolvendo hardware digital dedicado à otimização do tempo de cálculo.

Oura sugestão é o desenvolvimento de uma ferramenta de cálculo de centralidades diretamente para o software ANAREDE, ampliando assim a aplicação do sistema de forma padronizada a todos os atores envolvidos no sistema de transmissão de energia. Desenvolvimento este que necessita de suporte do CEPEL.

REFERÊNCIAS

ALBERT, R.; ALBERT, I.; NAKARADO, G. L. Structural Vulnerability of the North American Power Grid. p. 1–10, 7 jan. 2004.

ANTHONISSE, J. M. **The Rush in a Directed Graph**. [s.l.] Stichting Mathematisch Centrum. Mathematische Besliskunde, 1971.

BONACICH, P. Power and centrality: A family of measures. **American journal of sociology**, p. 1170–1182, 1987.

BONDY, J.; MURTY, U. Graph theory with applications. [s.l: s.n.].

BOORMAN, S. A.; WHITE, H. C. Social structure from multiple networks. II. Role structures. **American journal of sociology**, p. 1384–1446, 1976.

BURT, R. S. Cohesion versus structural equivalence as a basis for network subgroups. **Sociological Methods & Research**, v. 7, n. 2, p. 189–212, 1978.

BURT, R. S. Models of network structure. **Annual review of sociology**, p. 79–141, 1980.

CAO, M. et al. Optimization of restoration paths considering topological characteristics of power system network. **2011 International Conference on Advanced Power System Automation and Protection**, p. 836–839, out. 2011.

COOK, K. S. et al. The distribution of power in exchange networks: Theory and experimental results. **American journal of sociology**, p. 275–305, 1983.

DA SILVA, M. R. Bioinformatics tools for the visualization and structural analysis of metabolic networks. [s.l.] Techinsche Universität Braunschweig, 2006.

DA SILVA, M. R.; MA, H.; ZENG, A.-P. Centrality, Network Capacity, and Modularity as Parameters to Analyze the Core-Periphery Structure in Metabolic Networks. **Proceedings of the IEEE**, v. 96, n. 8, p. 1411–1420, ago. 2008.

DEKKER, A. H.; COLBERT, B. D. **Network robustness and graph topology**Proceedings of the 27th Australasian conference on Computer science-Volume 26. **Anais**...2004

DWIVEDI, A.; YU, X. Y. X.; SOKOLOWSKI, P. Identifying vulnerable lines in a power network using complex network theory. **2009 IEEE International Symposium on Industrial Electronics**, n. ISIE, 2009.

ERNSTER, T. A.; SRIVASTAVA, A. K. Power system vulnerability analysis - Towards validation of centrality measures. **Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference**, p. 1–6, 2012.

FINK, L.; LIOU, K.; LIU, C. From generic restoration actions to specific restoration strategies. **Power Systems, IEEE Transactions ...**, v. 10, n. 2, p. 745–752, 1995.

FRANK, O. A survey of statistical methods for graph analysis. **Sociological methodology**, v. 12, p. 110–155, 1981.

FREEMAN, L. C. **A Set of Measures of Centrality Based on BetweennessSociometry**, 1977. Disponível em: http://www.jstor.org/stable/3033543?origin=crossref>

FREEMAN, L. C. Centrality in social networks conceptual clarification. **Social networks**, v. 1, n. 3, p. 215–239, 1979.

FREEMAN, L. C. The gatekeeper, pair-dependency and structural centrality. **Quality and Quantity**, v. 14, n. 4, p. 585–592, 1980.

FREEMAN, L. C.; BORGATTI, S. P.; WHITE, D. R. Centrality in valued graphs: A measure of betweenness based on network flow. **Social Networks**, v. 13, n. 2, p. 141–154, 1991.

HAGE, P.; HARARY, F. **Structural Models in Anthropology**. [s.l.] Cambridge University Press, 1984.

HAIDAR, A. M. A. et al. Vulnerability assessment and control of large scale interconnected power systems using neural networks and neuro-fuzzy techniques 2008 Australasian Universities Power Engineering Conference. Anais... 2008

HINES, P.; BLUMSACK, S. A Centrality Measure for Electrical Networks. **Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008)**, p. 185–185, jan. 2008.

HOLME, P. et al. Attack Vulnerability of complex networks. **Physical Review E - Statistical, Nonlinear, and Soft Matter Physics**, v. 65, n. 5, p. 341–349, jan. 2002.

HOLMGREN, Å. J. Using graph models to analyze the vulnerability of electric power networks. **Risk Analysis**, v. 26, n. 4, p. 955–969, 2006.

HUSSAN, M.; MEKHAMER, S. Intelligent techniques for electrical power system restoration. **Power Systems ...**, p. 498–502, 2006.

JIN, S.; HUANG, Z. A novel application of parallel betweenness centrality to power grid contingency analysis. **Parallel & Distributed ...**, 2010.

JOHANNISSON, B. Beyond process and structure: social exchange networks. **International Studies of Management & Organization**, p. 3–23, 1987.

LATORA, V.; MARCHIORI, M. A measure of centrality based on network efficiency. **New Journal of Physics**, v. 9, n. February 2008, 2007.

LISCOUSKI, B.; ELLIOT, W. Final report on the august 14, 2003 blackout in the united states and canada: Causes and recommendations. **A report to US Department of Energy**, n. April, 2004.

LUNA, H. P.; GOLDBARG, M. C. Otimização combinatória e programação linear. **Rio de Janeiro: Campus**, 2000.

MEI, S.; ZHANG, X.; CAO, M. **Power Grid Complexity**. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

MIZRUCHI, M. S.; BUNTING, D. Influence in corporate networks: An examination of four measures. **Administrative Science Quarterly**, p. 475–489, 1981.

MOTTER, A. E.; LAI, Y. C. Cascade-based attacks on complex networks. **Physical Review E** - **Statistical, Nonlinear, and Soft Matter Physics**, v. 66, n. 6, p. 2–5, 2002.

NEWMAN, M. E. J. The structure and function of complex networks. **Dialogues in clinical neuroscience**, v. 45, p. 167–256, 2003.

NIEMINEN, J. On the centrality in a graph. **Scandinavian Journal of Psychology**, v. 15, n. 1, p. 332–336, 1974.

ONS - Ampliação e Reforços na Rede Básica - Casos de Referência - Regime Permanente.

Disponível

http://www.ons.org.br/plano_ampliacao/casos_refer_regime_permanente.aspx. Acesso em: 29 jul. 2015.

OUTLINE, G. IEEE 10 Generator 39 Bus System. [s.d.].

PANIGRAHI, P. Topological Analysis of Power Grid to Identify Vulnerable Transmission Lines and Nodes. [s.l.] National Institute of Technology, Rourkela, 2013.

PERIM, A. G. L. et al. **Boletim Mensal de Monitoramento do Sistema Elétrico Brasileiro**. [s.l: s.n.]. Disponível em: http://www.mme.gov.br/See/Menu/Publicacoes.Html>.

QUIRÓS-TORTÓS, J.; TERZIJA, V. A graph theory based new approach for power system restoration. **PowerTech** (**POWERTECH**), **2013** ..., 2013.

RUOHONEN, K. Graph theory. [s.l.] Tampere University of Technology 2008, 2013.

SABIDUSSI, G. The centrality index of a graph. **Psychometrika**, v. 31, n. 4, p. 581–603, 1966.

SANTOS, J. C. DOS; GARCIA, A. Métodos Analíticos Para Auxílio à Restauração Após Blecautes de Sistemas de Energia Elétrica. **Métodos Analíticos Para Auxílio à Restauração** 1998.

SCHMID, F.; SCHMIDT, R. Multivariate extensions of Spearman's rho and related statistics. **Statistics & Probability Letters**, v. 77, p. 407–416, 2007.

SPEARMAN, C. The Proof and Measurement of Association between Two Things. **The American Journal of Psychology**, v. 15, n. 1, p. 72–101, 1904.

SPEARMAN, C. The theory of two factors. **British Journal of Psychology**, v. V, p. 53, 1912.

SUN, W.; LIU, C.; ZHANG, L. Optimal generator start-up strategy for bulk power system restoration. **Power Systems, IEEE Transactions ...**, v. 26, n. 3, p. 1357–1366, 2011.

WANG, J. et al. Identifying Line Vulnerability in Power System Using Maximum Flow Based Complex Network Theory. 2014.

WANG, K. et al. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load. **Physica A: Statistical Mechanics and its Applications**, v. 390, n. 23-24, p. 4692–4701, nov. 2011.

WANG, Z.; SCAGLIONE, A.; THOMAS, R. J. Electrical centrality measures for electric power grid vulnerability analysis Proceedings of the IEEE Conference on Decision and Control. Anais...2010

WASSERMAN, S.; FAUST, K. Social network analysis: Methods and applications. [s.l.] Cambridge university press, 1994. v. 8

WHITE, H. C.; BOORMAN, S. A.; BREIGER, R. L. Social structure from multiple networks. I. Blockmodels of roles and positions. **American journal of sociology**, p. 730–780, 1976.

ZIO, E. et al. Application of the load flow and random flow models for the analysis of power transmission networks. **Reliability Engineering & System Safety**, v. 103, p. 102–109, jul. 2012.

ZIO, E.; PICCINELLI, R. Randomized flow model and centrality measure for electrical power transmission network analysis. **Reliability Engineering & System Safety**, v. 95, n. 4, p. 379–385, abr. 2010.

APÊNDICE A - RESULTADOS DE VIOLAÇÃO DE FLUXO PARA ANÁLISE DE CONTINGÊNCIA NA REDE IEEE 39 - ANAREDE

x	FLUXO	x					х
NUMERO	INDICE	(%)INDICE		IDENTIFICACAO	DA	CONTINGENCIA	
VIOLACOES S	SEVERIDADE	SEVERIDADE	DE	NOME DE P.	ARA	NOME PARA	CIRC.
		:x-		X-			хх
3	5.0	5.0	21	BARRA-021	22	BARRA-022	1
3	3.4	3.4	6	BARRA-006	11	BARRA-011	1
2	2.9	2.9	13	BARRA-013 BARRA-026	14	BARRA-014 BARRA-027	1
2	2.6	2.6	26	BARRA-026	27	BARRA-027	1
2	2.5	2.5	10	BARRA-010 BARRA-023	13	BARRA-013 BARRA-024	1
2	2.5	2.5	23	BARRA-023	24	BARRA-024	1
1	1.5	1.5	10	BARRA-010 BARRA-022	32	BARRA-032 BARRA-035	1
1	1.4	1.4	22	BARRA-022	35	BARRA-035	1
1	1.4	1.4	19	BARRA-019 BARRA-016	33	BARRA-033	1
1	1.3	1.3	16	BARRA-016	21	BARRA-033 BARRA-021	1
1	1.3	1.3	6	BARRA-006			1
1	1.3	1.3	23	BARRA-006 BARRA-023	36	BARRA-031 BARRA-036	1
1	1.2	1.2	10	BARRA-010			1
1	1.2	1.2	20	BARRA-010 BARRA-020	34	BARRA-011 BARRA-034	1
1	1.2	1.2	4	BARRA-004	14	BARRA-014	1
1	1.1	1.1	16	BARRA-004 BARRA-016	19	BARRA-019	1
1	1.1				20	BARRA-020	1
0	0.0	0.0	17	BARRA-019 BARRA-017	18	BARRA-018	1
0	0.0	0.0	16	BARRA-016		BARRA-024	1
0	0.0	0.0	3			BARRA-018	1
0	0.0	0.0		BARRA-003		BARRA-004	_ 1
0	0.0	0.0	16	BARRA-016	17	BARRA-017	1
0	0.0	0.0	15	BARRA-016 BARRA-015	16	BARRA-017 BARRA-016	1
0	0.0	0.0	14	BARRA-014	15	BARRA-015	1
0	0.0	0.0		BARRA-014 BARRA-005		BARRA-013	1
0	0.0					BARRA-013	1
0	0.0	0.0	12	BARRA-012 BARRA-005		BARRA-015	1
0				D3DD3 001	2	DADDA 000	1
	0.0	0.0		BARRA-UUI	20	BARRA-002 BARRA-039	
0	0.0	0.0		BARRA-001	39	BARRA-039	1
0	0.0	0.0	25	BARRA-025 BARRA-025	20	BARRA-026 BARRA-037	1
0	0.0	0.0	25	BARRA-U25			1
	0.0	0.0	22	BARRA-022		BARRA-023	1
0	0.0	0.0		BARRA-007		BARRA-008	1
0	0.0					BARRA-038	1
0	0.0	0.0		BARRA-002		BARRA-003	1
0	0.0	0.0	6	BARRA-006	7	BARRA-007 BARRA-030	1
0	0.0	0.0	2				1
0	0.0		28	BARRA-028	29	BARRA-029 BARRA-039	1
0	0.0	0.0	9				1
0	0.0	0.0	4	BARRA-004	5	BARRA-005 BARRA-028	1
0	0.0						1
0	0.0			BARRA-026		BARRA-029	1
0	0.0	0.0	12	BARRA-012	11	BARRA-011	1
0	0.0	0.0	8	BARRA-012 BARRA-008 BARRA-002 BARRA-017	9	BARRA-009	1
0	0.0	0.0	2	BARRA-002	25	BARRA-025	1
0	0.0	0.0	17	BARRA-017	27	BARRA-027	1

APÊNDICE B - RESULTADOS DE VIOLAÇÃO DE TENSÃO PARA ANÁLISE DE CONTINGÊNCIA NA REDE IEEE 39 - ANAREDE

NUMERO	INDICE	(%)INDICE		IDENTIFI	CACAO DA	CONTINGENCIA	
VIOLACOES	SEVERIDADE	SEVERIDADE	DE	NOME 1	DE PARA	NOME PARA	CIRC.
5	12.2					BARRA-027	1
5	11.5	436.2		BARRA-016		BARRA-024	1
7	6.0	228.7	1	BARRA-001 BARRA-015	39	BARRA-039	
8	5.1	195.8	T2	BARRA-015	16	BARRA-016	1
7	4.2	160.5	3	BARRA-003 BARRA-002	4	BARRA-004 BARRA-003	1
3	3.5	133.0	2	BARRA-002	3	BARRA-003	1
7	2.9	110.4	1/	BARRA-017 BARRA-022	18	BARRA-018 BARRA-023	1
6	2.7						1
5 5	2.6 2.6		12	BARRA-012 BARRA-005	13	BARRA-013 BARRA-008	1 1
							1
5 2	2.6	99.3	12	BARRA-012 BARRA-025	11	BARRA-011 BARRA-026	1
	2.6						
5 5	2.6	99.1	17	BARRA-007	25	BARRA-008	1
5	2.6	98.1	10	BARRA-017 BARRA-019	27	BARRA-027	1
5	2.6 2.6	97.8	19	BARRA-U19	20	BARRA-020	1 1
5		97.1	3	BARRA-003 BARRA-006	10	BARRA-018	
5	2.5	96.4	10	BARRA-006	11	BARRA-007	1 1
5	2.5	95.0	10	BARRA-010 BARRA-014	11	BARRA-011 BARRA-015	
	2.5	94.9	14	BARRA-U14	15		1
6 5	2.5	94.1	16	BARRA-016 BARRA-006	1/	BARRA-017	1
	2.5	93.9	0	BARRA-006	11	BARRA-011 BARRA-005	1 1
5	2.5	93.3	4	BARRA-004 BARRA-004	1.4	BARRA-005	
5	2.4	92.3	4	BARRA-004	14		1
3	2.4 2.4	92.3	9	BARRA-009 BARRA-005	39	BARRA-039 BARRA-006	1 1
3		91.5		BARRA-005		BARRA-006 BARRA-013	1
3	2.4 2.4					BARRA-013	1
2	2.4	31.1	16	BARRA-013 BARRA-016	21	BARRA-014 BARRA-021	1
3							1
2	2.4	09.4	22	BARRA-008 BARRA-023	24	BARRA-009 BARRA-024	1
3	2.3	00.0	23	BARRA-U23	24	BARRA-024 BARRA-034	1
3	2.3 2.2	07.2	20	BARRA-020 BARRA-002	24	BARRA-034	1
3	2.2	03.9	25	DARRA-UUZ	25	BARRA-025	1
3	2.2	02.2	25	BARRA-025 BARRA-001	37	BARRA-002	1
2		02.2	J.	BARRA-UUI	20		1
2	2.1	01.5	20	BARRA-026 BARRA-023	20	BARRA-028 BARRA-036	1
2	2.1 2.1	70.4	23	BARRA-025	30	BARRA-036 BARRA-029	1
2	2.1	70.4	26	BARRA-026 BARRA-006	23	BARRA-029	
2	2.0	76.7	16	BARRA-006		BARRA-031	1
2		76.7	21	DARRA-UIO	13		
2	2.0 2.0	76.0	20	BARRA-021 BARRA-028	22	BARRA-022 BARRA-029	1 1
2	2.0	75.0	10	DARKA-UZO	23		
2	2.0	/3.8 75.1	10	BARRA-010 BARRA-019	32	BARRA-032 BARRA-033	1
2	2.0	/3.1 7/ 6	7.3	DARKA-019	33		1
1	2.0	14.0 71 6	22	BARRA-022 BARRA-002	35	BARRA-035 BARRA-030	1
1		74.0 71 6	20 1	DARKA-002	20	BARRA-030 BARRA-038	
Ţ	2.0	74.0	29 h	DARKA-UZ9	38	OCU-ANAA	1

APÊNDICE C -OUTRA ABORDAGEM PARA ANÁLISE DE CENTRALIDADES

Como possibilidade de se obter resultados mais diretamente próximos dos resultados apresentados pelo ANAREDE é possível avaliar a utilização de redes invertidas. Alguns testes iniciais foram realizados. A seguir são apresentados o método de inversão e alguns resultados preliminares.

Por não ser um dos objetivos específicos deste trabalho, estes resultados são apresentados como sugestão de trabalhos futuros. Alguns estudos devem ser aprofundados para o estabelecimento de pesos nas arestas e também a avaliação da necessidade de se aplicar alguma técnica mista que envolva o cálculo de Fluxo de Potência, diferente da proposta deste trabalho que é a utilização do cálculo de centralidades como um substitutivo do Fluxo de Potência.

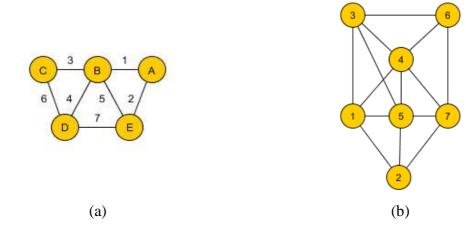
6.1.1 Método para Inversão de Redes

As informações referentes às contingências avaliadas pelo software ANAREDE são dadas em função das conexões (barramentos) Como forma de fazer com que o cálculo das centralidades também representasse as linhas ao invés dos nós foi desenvolvido um algoritmo em *python*que inverte as redes de forma a comparar os resultados. No entanto, os resultados do ANAREDE utilizam o cálculo de fluxo de potência e também violações de limites de tensão para definir os pontos mais críticos.

No caso testado, nenhum peso foi utilizado nas redes para o cálculo das centralidades, diferentemente dos cálculos de centralidade utilizados nas redes não invertidas. O motivo da não utilização de pesos é o fato de que os parâmetros elétricos fornecidos com as redes não são diretamente aplicáveis aos novos nós e vértices obtidos necessitando de adaptação. Outra opção seria a utilização também do fluxo de potência, mas a proposta do trabalho é evitar este cálculo por ser computacionalmente dispendioso.

Inversão de Rede

Entrada:G, rede a ser invertida


Saída:H, rede invertida.

Passos:

- Percorrer todos os vértices da rede G e criar na rede H um nó para cada vértice encontrado em G, mantendo as informações de nó de origem e nó de destino provenientes da rede G;
- Percorrer todos os nós criados na rede H e criar um vértice entre ele e todos os novos nós que possuírem, na rede de entrada, o mesmo nó de origem ou nó de destino;

A Figura 14 apresenta um algoritmo de inversão de rede, onde em (a) vê-se a rede original e em (b) a rede após a inversão.

Figura 14: Exemplo de inversão de rede. (a) Rede original. (b) Rede invertida pelo algoritmo

6.1.2 Rede invertida

Através de uma implementação em Python do algoritmo de inversão apresentado anteriormente as redes foram invertidas. Os nós da rede representam as conexões da rede original e as arestas representam as interações entre os nós e as linhas. Desta forma, a topologia representa como base as conexões e suas ramificações. É notável o aumento do número de arestas, devido à redundância e às derivações da topologia original.

Neste caso foram aplicadas somente as centralidades puras como mencionado anteriormente.

6.1.3 Rede IEEE 39

A representação da rede IEEE 39 pode ser vista na Figura 15.

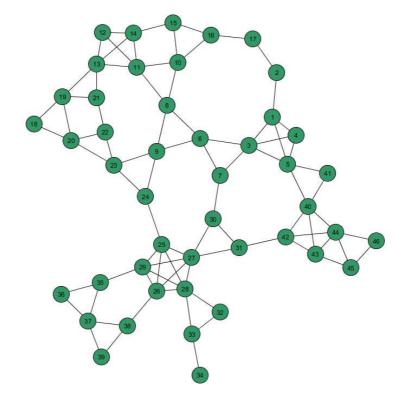


Figura 15: Grafo representando a rede IEEE 39 invertida

A Tabela 19**Erro! Fonte de referência não encontrada.** apresenta os resultados da rede invertida para as centralidades de intermediação, proximidade, grau e fragilidade e os resultados obtidos no software ANAREDE.

Tabela 19: Resultado de centralidades obtido para rede IEEE 39 invertida.

Dania a	Betw	veenness	Clo	oseness	De	gree	Fr	agility	ANA	AREDE
Posição	Nó	Edge	Nó	Edge	Nó	Edge	Nó	Edge	PFSL	VSL
1	25	15-16	9	4-14	27	16-17	28	16-19	1-2	26-27
2	24	14-15	24	14-15	28	16-19	27	16-17	29-38	16-24
3	27	16-17	6	3-4	3	2-3	25	15-16	28-29	1-39
4	8	4-5	7	3-18	5	2-25	8	4-5	26-29	15-16
5	3	2-3	25	15-16	11	5-6	6	3-4	26-28	3-4
6	9	4-14	27	16-17	13	6-11	24	14-15	26-27	2-3
7	6	3-4	3	2-3	25	15-16	3	2-3	25-37	17-18
8	23	13-14	30	17-18	26	16-24	23	13-14	25-26	22-23
9	5	2-25	8	4-5	29	16-21	9	4-14	23-36	12-13
10	31	17-27	23	13-14	40	25-26	5	2-25	23-24	5-8
11	28	16-19	31	17-27	44	26-29	31	17-27	22-35	12-11
12	40	25-26	26	16-24	1	1-2	40	25-26	22-23	25-26
13	42	26-27	28	16-19	6	3-4	42	26-27	21-22	7-8
14	11	5-6	29	16-21	8	4-5	33	19-20	20-34	17-27
15	7	3-18	5	2-25	9	4-14	26	16-24	19-33	19-20
16	30	17-18	11	5-6	10	5-8	29	16-21	19-20	3-18
17	26	16-24	1	1-2	14	6-7	11	5-6	17-27	6-7
18	29	16-21	40	25-26	19	10-11	7	3-18	17-18	10-11

19	10	5-8	42	26-27	20	10-13	30	17-18	16-24	14-15
20	1	1-2	10	5-8	23	13-14	1	1-2	16-21	16-17
21	20	10-13	4	2-30	37	22-23	13	6-11	16-19	6-11
22	44	26-29	20	10-13	42	26-27	10	5-8	16-17	4-5
23	35	21-22	22	12-13	43	26-28	20	10-13	15-16	4-14
24	38	23-24	35	21-22	4	2-30	44	26-29	14-15	9-39
25	13	6-11	38	23-24	7	3-18	16	8-9	13-14	5-6
26	33	19-20	41	25-37	12	6-31	19	10-11	12-13	10-13
27	2	1-39	44	26-29	15	7-8	35	21-22	12-11	13-14
28	16	8-9	43	26-28	16	8-9	38	23-24	10-32	16-21
29	22	12-13	33	19-20	21	12-11	14	6-7	10-13	8-9
30	17	9-39	32	19-33	22	12-13	22	12-13	10-11	23-24
31	19	10-11	13	6-11	24	14-15	2	1-39	9-39	20-34
32	43	26-28	2	1-39	30	17-18	4	2-30	8-9	2-25
33	14	6-7	16	8-9	31	17-27	43	26-28	7-8	25-37
34	21	12-11	14	6-7	33	19-20	21	12-11	6-31	1-2
35	15	7-8	15	7-8	35	21-22	15	7-8	6-11	26-28
36	37	22-23	19	10-11	38	23-24	37	22-23	6-7	23-36
37	45	28-29	12	6-31	45	28-29	17	9-39	5-8	26-29
38	4	2-30	21	12-11	2	1-39	12	6-31	5-6	6-31
39	12	6-31	18	10-32	17	9-39	41	25-37	4-14	16-19
40	18	10-32	17	9-39	18	10-32	32	19-33	4-5	21-22
41	32	19-33	37	22-23	32	19-33	18	10-32	3-18	28-29
42	34	20-34	36	22-35	36	22-35	45	28-29	3-4	10-32
43	36	22-35	39	23-36	39	23-36	36	22-35	2-30	19-33
44	39	23-36	45	28-29	41	25-37	39	23-36	2-25	22-35
45	41	25-37	46	29-38	46	29-38	46	29-38	2-3	2-30
46	46	29-38	34	20-34	34	20-34	34	20-34	1-39	29-38

Tabela 20: Resultados de Avaliação Coeficiente de Spearman - Rede IEEE 39 invertida

		ρ	
	Peso	Tensão	Fluxo
Betweenness	Puro	-0,01301	0,49405
Closeness	Puro	0,03608	0,39957
Degree	Puro	-0,08578	0,33074
Fragility	Puro	0,00574	0,46963

Fonte: Autor

Através da avaliação do coeficiente de Spearman, vê-se uma discrepância entre os índices obtidos na análise de severidade de tensão e severidade de fluxo. Neste caso, os resultados obtidos com as centralidades não são aderentes aos resultados de severidade de tensão, sendo ρ muito próximo a zero. Já na severidade de fluxo, ρ está próximo de 0,4, indicando alguma correlação entre os resultados obtidos.

ANEXO A – DADOS DOS BARRAMENTOS REDE IEEE 39

			Car	ga		Gerac	lor
Barramento	Tipo	Tensão	MW	Mvar	MW	Mvar	Número Gerador
1	PQ	-	0,0	0,0	0,0	0,0	
2	PQ	-	0,0	0,0	0,0	0,0	
3	PQ	-	322,0	2,4	0,0	0,0	
4	PQ	-	500,0	184,0	0,0	0,0	
5	PQ	-	0,0	0,0	0,0	0,0	
6	PQ	-	0,0	0,0	0,0	0,0	
7	PQ	-	233,8	84,0	0,0	0,0	
8	PQ	-	522,0	176,0	0,0	0,0	
9	PQ	-	0,0	0,0	0,0	0,0	
10	PQ	-	0,0	0,0	0,0	0,0	
11	PQ	-	0,0	0,0	0,0	0,0	
12	PQ	-	7,5	88,0	0,0	0,0	
13	PQ	-	0,0	0,0	0,0	0,0	
14	PQ	-	0,0	0,0	0,0	0,0	
15	PQ	-	320,0	153,0	0,0	0,0	
16	PQ	-	329,0	32,3	0,0	0,0	
17	PQ	-	0,0	0,0	0,0	0,0	
18	PQ	-	158,0	30,0	0,0	0,0	
19	PQ	-	0,0	0,0	0,0	0,0	
20	PQ	-	628,0	103,0	0,0	0,0	
21	PQ	-	274,0	115,0	0,0	0,0	
22	PQ	-	0,0	0,0	0,0	0,0	
23	PQ	-	247,5	84,6	0,0	0,0	
24	PQ	-	308,6	-92,0	0,0	0,0	
25	PQ	-	224,0	47,2	0,0	0,0	
26	PQ	-	139,0	17,0	0,0	0,0	
27	PQ	-	281,0	75,5	0,0	0,0	
28	PQ	-	206,0	27,6	0,0	0,0	
29	PQ	-	283,5	26,9	0,0	0,0	
30	PV	1,0475	0,0	0,0	250,0	-	Gen10
31	PV	0,9820	9,2	4,6	-	-	Gen2
32	PV	0,9831	0,0	0,0	650,0	-	Gen3
33	PV	0,9972	0,0	0,0	632,0	-	Gen4
34	PV	1,0123	0,0	0,0	508,0	-	Gen5
35	PV	1,0493	0,0	0,0	650,0	-	Gen6
36	PV	1,0635	0,0	0,0	560,0	-	Gen7
37	PV	1,0278	0,0	0,0	540,0	-	Gen8
38	PV	1,0265	0,0	0,0	830,0	-	Gen9
39	Vθ	1,0300	1104,0	250,0	1000,0	-	Gen1

ANEXO B – DADOS DA LINHA DE TRANSMISSÃO E TRANSFORMADORES REDE IEEE39

	Dados de	Linha			Transf	ormador
Barramento Origem	Barramento Destino	R	X	В	TAP	Ângulo
1	2	0,0035	0,0411	0,6987	0	0
1	39	0,001	0,025	0,75	0	0
2	3	0,0013	0,0151	0,2572	0	0
2	25	0,007	0,0086	0,146	0	0
3	4	0,0013	0,0213	0,2214	0	0
3	18	0,0011	0,0133	0,2138	0	0
4	5	0,0008	0,0128	0,1342	0	0
4	14	0,0008	0,0129	0,1382	0	0
5	6	0,0002	0,0026	0,0434	0	0
5	8	0,0008	0,0112	0,1476	0	0
6	7	0,0006	0,0092	0,113	0	0
6	11	0,0007	0,0082	0,1389	0	0
7	8	0,0004	0,0046	0,078	0	0
8	9	0,0023	0,0363	0,3804	0	0
9	39	0,001	0,025	1,2	0	0
10	11	0,0004	0,0043	0,0729	0	0
10	13	0,0004	0,0043	0,0729	0	0
13	14	0,0009	0,0101	0,1723	0	0
14	15	0,0018	0,0217	0,366	0	0
15	16	0,0009	0,0094	0,171	0	0
16	17	0,0007	0,0089	0,1342	0	0
16	19	0,0016	0,0195	0,304	0	0
16	21	0,0008	0,0135	0,2548	0	0
16	24	0,0003	0,0059	0,068	0	0
17	18	0,0007	0,0082	0,1319	0	0
17	27	0,0013	0,0173	0,3216	0	0
21	22	0,0008	0,014	0,2565	0	0
22	23	0,0006	0,0096	0,1846	0	0
23	24	0,0022	0,035	0,361	0	0
25	26	0,0032	0,0323	0,513	0	0
26	27	0,0014	0,0147	0,2396	0	0
26	28	0,0043	0,0474	0,7802	0	0
26	29	0,0057	0,0625	1,029	0	0
28	29	0,0014	0,0151	0,249	0	0
12	11	0,0016	0,0435	0	1,006	0
12	13	0,0016	0,0435	0	1,006	0
6	31	0	0,025	0	1,07	0
10	32	0	0,02	0	1,07	0

19	33	0,0007	0,0142	0	1,07	0
20	34	0,0009	0,018	0	1,009	0
22	35	0	0,0143	0	1,025	0
23	36	0,0005	0,0272	0	1	0
25	37	0,0006	0,0232	0	1,025	0
2	30	0	0,0181	0	1,025	0
29	38	0,0008	0,0156	0	1,025	0
19	20	0,0007	0,0138	0	1,06	0

ANEXO C – DADOS DOS BARRAMENTOS REDE IEEE 30

D	Tr.	т ~	Са	ırga	Gera	ação
Barramento	Tipo	Tensão	MW	Mvar	MW	Mvar
1	Vθ	1,06	0,0	0,0	260,2	-16,1
2	PV	1,043	21,7	12,7	40,0	50,0
3	PQ	-	2,4	1,2	0,0	0,0
4	PQ	-	7,6	1,6	0,0	0,0
5	PV	1,01	94,2	19,0	0,0	37,0
6	PQ	-	0,0	0,0	0,0	0,0
7	PQ	-	22,8	10,9	0,0	0,0
8	PV	1,01	30,0	30,0	0,0	37,3
9	PQ	-	0,0	0,0	0,0	0,0
10	PQ	-	5,8	2,0	0,0	0,0
11	PV	1,082	0,0	0,0	0,0	16,2
12	PQ	-	11,2	7,5	0,0	0,0
13	PV	1,071	0,0	0,0	0,0	10,6
14	PQ	-	6,2	1,6	0,0	0,0
15	PQ	-	8,2	2,5	0,0	0,0
16	PQ	-	3,5	1,8	0,0	0,0
17	PQ	-	9,0	5,8	0,0	0,0
18	PQ	-	3,2	0,9	0,0	0,0
19	PQ	-	9,5	3,4	0,0	0,0
20	PQ	-	2,2	0,7	0,0	0,0
21	PQ	-	17,5	11,2	0,0	0,0
22	PQ	-	0,0	0,0	0,0	0,0
23	PQ	-	3,2	1,6	0,0	0,0
24	PQ	-	8,7	6,7	0,0	0,0
25	PQ	-	0,0	0,0	0,0	0,0
26	PQ	-	3,5	2,3	0,0	0,0
27	PQ	-	0,0	0,0	0,0	0,0
28	PQ	-	0,0	0,0	0,0	0,0
29	PQ	-	2,4	0,9	0,0	0,0
30	PQ	-	10,6	1,9	0,0	0,0

ANEXO D – DADOS DA LINHA DE TRANSMISSÃO E TRANSFORMADORES REDE IEEE39

	Dados de	Linha			Transf	ormador
Barramento Origem	Barramento Destino	R	X	В	TAP	Ângulo
1	2	0,0192	0,0575	0,0528	0	0
1	3	0,0452	0,1652	0,0408	0	0
2	4	0,057	0,1737	0,0368	0	0
2	5	0,0472	0,1983	0,0418	0	0
2	6	0,0581	0,1763	0,0374	0	0
3	4	0,0132	0,0379	0,0084	0	0
4	6	0,0119	0,0414	0,009	0	0
5	7	0,046	0,116	0,0204	0	0
6	7	0,0267	0,082	0,017	0	0
6	8	0,012	0,042	0,009	0	0
6	28	0,0169	0,0599	0,013	0	0
8	28	0,0636	0,2	0,0428	0	0
9	10	0	0,11	0	0	0
9	11	0	0,208	0	0	0
10	17	0,0324	0,0845	0	0	0
10	20	0,0936	0,209	0	0	0
10	21	0,0348	0,0749	0	0	0
10	22	0,0727	0,1499	0	0	0
12	13	0	0,14	0	0	0
12	14	0,1231	0,2559	0	0	0
12	15	0,0662	0,1304	0	0	0
12	16	0,0945	0,1987	0	0	0
14	15	0,221	0,1997	0	0	0
15	18	0,1073	0,2185	0	0	0
15	23	0,1	0,202	0	0	0
16	17	0,0524	0,1923	0	0	0
18	19	0,0639	0,1292	0	0	0
19	20	0,034	0,068	0	0	0
21	22	0,0116	0,0236	0	0	0
22	24	0,115	0,179	0	0	0
23	24	0,132	0,27	0	0	0
24	25	0,1885	0,3292	0	0	0
25	26	0,2544	0,38	0	0	0
25	27	0,1093	0,2087	0	0	0
27	29	0,2198	0,4153	0	0	0
27	30	0,3202	0,6027	0	0	0
29	30	0,2399	0,4533	0	0	0
4	12	0	25,6	0	0,932	0

6	9	0	20,8	0	0,978	0
6	10	0	55,6	0	0,969	0
28	27	0	39,6	0	0,968	0