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RESUMO

A integração de serviços de inteligência artificial e aprendizado de máquina na área da
saúde revolucionou o atendimento ao paciente, abrangendo desde o monitoramento de saúde
em tempo real até a análise complexa de imagens médicas. No entanto, a implementação des-
ses serviços de aprendizado de máquina no contexto de hospitais inteligentes apresenta desafios
significativos devido às diversas demandas de dados e preocupações com a privacidade. O
Aprendizado Federado emerge como uma solução promissora, permitindo que os dados perma-
neçam com os usuários enquanto os modelos de aprendizado de máquina são treinados de forma
colaborativa. O aprendizado federado garante a privacidade dos dados e oferece escalabilidade
ao possibilitar o aprendizado distribuído entre vários usuários.

Nesta pesquisa, estendemos o paradigma do aprendizado federado para o domínio dos hos-
pitais inteligentes e propomos o modelo "Hospital Federado"para enfrentar os desafios decor-
rentes da heterogeneidade entre diferentes departamentos hospitalares. Através da agregação
em vários níveis, a arquitetura do Hospital Federado é projetada para acomodar as diversas de-
mandas e situações de saúde dentro de cada departamento individual, fornecendo modelos de
aprendizado de máquina personalizados e precisos para cada usuário.

Por meio de experimentação extensa e avaliação em cenários distintos, incluindo distribui-
ções de dados homogêneas e heterogêneas, comparamos o desempenho do modelo do Hospital
Federado em relação às abordagens padrão de aprendizado de máquina e aprendizado federado.
Os resultados confirmam a eficácia de nossa proposta em termos de precisão, eficiência e velo-
cidade de convergência. Além disso, o processo de agregação em vários níveis na arquitetura
do hospital inteligente aprimora o desempenho do modelo, garantindo a geração de modelos
de aprendizado de máquina personalizados específicos para as características únicas de cada
departamento.

O modelo do Hospital Federado demonstra seu potencial para melhorar a execução de servi-
ços orientados por aprendizado de máquina em hospitais inteligentes. Ao otimizar a precisão e
o desempenho dos modelos de aprendizado de máquina para diversos departamentos de saúde,
nossa proposta visa revolucionar a tomada de decisões baseada em dados, promovendo o atendi-
mento personalizado ao paciente e serviços de saúde eficientes. O próximo passo desta pesquisa
é implementar o Hospital Federado em hospitais reais na região metropolitana de Porto Alegre,
Rio Grande do Sul.

Palavras-chave: Aprendizado federado. hospitais inteligentes. Distribuição de dados desba-
lanceada.



ABSTRACT

The integration of artificial intelligence (AI) and machine learning (ML) services in health-
care has revolutionized patient care, ranging from real-time health monitoring to complex med-
ical image analysis. However, deploying these ML services in the context of smart hospitals
poses significant challenges due to varying data demands and privacy concerns. Federated
Learning (FL) emerges as a promising solution by allowing data to remain with users while
training ML models collaboratively. FL ensures data privacy and offers scalability by enabling
distributed learning across multiple users.

In this research, we extend the FL paradigm to the domain of smart hospitals and propose the
"Federated Hospital" model to address the challenges posed by heterogeneity among different
hospital departments. By leveraging multi-level aggregation, the Federated Hospital architec-
ture is designed to accommodate the diverse demands and health situations within individual
departments, providing personalized and accurate ML models for each user.

Through extensive experimentation and evaluation in distinct scenarios, including homoge-
neous and heterogeneous data distributions, we compare the performance of the Federated Hos-
pital model against standard ML and FL approaches. The results confirm the effectiveness of
our proposal in terms of accuracy, efficiency, and convergence speed. Moreover, the multi-level
aggregation process in the smart hospital architecture enhances model performance, ensuring
the generation of tailored ML models specific to each department’s unique characteristics.

The Federated Hospital model demonstrates its potential to improve the execution of ML-
oriented services in smart hospitals. By optimizing the accuracy and performance of ML models
for diverse healthcare departments, our proposal aims to revolutionize data-driven decision-
making, promoting personalized patient care and efficient healthcare services. The next step of
this research is to execute Federated Hospital in real hospitals in the metropolitan area of Porto
Alegre, Rio Grande do Sul.

Keywords: Federated Learning. Smart hospital. Unbalance data distribution.
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1 INTRODUCTION

The emergence of machine learning (ML) as a way to program a computer to learn and
improve automatically has dramatically innovated many areas. In some cases, the possible
applications of ML were so helpful that new sub-areas were forming (BURKOV, 2019). One
of the sub-areas that is constantly growing is ML applied to healthcare. Combining healthcare
data with data analysis and ML techniques to identify patterns of interest is commonly known as
health informatics (CALLAHAN; SHAH, 2017a). Even though the topic of health informatics
is growing gradually, issues such as data security and privacy are topics that come into the
debate because of the need for data from ML algorithms (ZHOU, 2023).

To address these challenges, federated learning (FL) has emerged as a promising solution.
FL aims to decentralize training data by conducting collaborative learning sessions on users’
devices (REHMAN MUHAMMAD HABIB UR, 2021). The users leverage pre-trained models
and collaboratively improve a central model through the aggregation of distributed model up-
dates. Figure 1 illustrates a standard FL diagram using the FedAvg protocol, where the global
model is updated through weighted averaging of the trained models’ weights until convergence.

Figure 1: Federated Learning diagram showing how communication proceeds between the ag-
gregating server and individual clients.
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However, sharing gradients in collaborative learning poses significant security risks, as
demonstrated by Zhu et al. (ZHU; HAN, 2020), who showed that pixel-wise accurate images
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and token-wise matching for texts can be recovered from shared gradients. This threat to privacy
becomes a critical concern in healthcare informatics, where models often rely on sensitive pa-
tient information (ZHU et al., 2023). In such scenarios, collaborative learning methods lacking
robust privacy measures may face resistance from users and healthcare institutions.

In this master’s thesis, we propose the Federated Hospital model, a novel computational
architecture tailored for executing federated learning services in intelligent hospitals. Our ap-
proach addresses the open issues in the literature, with a particular focus on model customiza-
tion when dealing with data heterogeneity. The main contributions of this work include the
proposed Federated Hospital architecture, a novel aggregation method centered around unbal-
anced data distribution, and the implementation of a prototype to evaluate different execution
scenarios.

1.1 Motivation

In the context of smart cities, hospitals are critical in providing healthcare services. These
services can range from answering an emergency call to monitoring a patient’s vital signs.
Within the scope of this work, we are looking for a method to improve FL services in smart
hospitals. More precisely, services aimed at cooperation between hospitals for the improvement
of ML models through the use of federated learning.

FL can be seen as a decentralized machine-learning technique that allows models to be
trained in local devices without sending data to a central server. Smart hospitals have a large
amount of sensitive data that needs to be protected, and FL can help ensure data privacy by
keeping local information on each device. Additionally, FL can be applied to improve the accu-
racy of machine learning models in smart hospitals, allowing models to be trained locally with
specific data from each hospital. While FL has several advantages, there are also disadvantages
to consider. One of the main issues is that model performance can be affected by the hetero-
geneity of local data, which can lead to less accurate models (DASARADHARAMI REDDY;
GADEKALLU et al., 2023). Additionally, FL requires a large amount of computational re-
sources to run, which can be a challenge for hospitals with limited resources.

The study by Xu et al. (XU et al., 2021) reviews FL techniques oriented to healthcare infor-
matics. The work shows some of the consequences of applying federated learning, for example,
the FedAvg not being efficient when averaging models with high weight divergence, the com-
munication overhead that may cause performance issues, and the privacy concerns about the
sharing gradients. Moreover, tackling the open problems when combining FL with healthcare
informatics, such as poor data quality and handling due to the absence of standardization.

In addition, services for the hospital may also be focused on the patients and their personal
devices, such as health monitoring using smartwatches and smartphones. When running train-
ing sessions, those services tend to overload the user’s device and need to be more efficient
regarding the time to compute the training. As training occurs several times during the execu-
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tion of an FL model, the dynamic execution of the model is still a problem that the user’s device
is in charge of. The survey from Nguyen et al. (NGUYEN et al., 2022) also presents future
directions in federated learning for healthcare, such as the privacy problem. In the mentioned
scenario, the systems deal with high-sensitivity data, and any attack or leakage can be a huge
problem.

Summarizing, while FL presents a promising solution for improving machine learning ser-
vices in smart hospitals, there are several open gaps that require further exploration and innova-
tion, such as:

• Data heterogeneity distribution: The heterogeneity of local data within smart hospitals
can significantly impact the performance of FL models. Addressing the challenge of
varying data distributions and characteristics across different hospital sections is essential
to ensure accurate and reliable ML models.

• Faster Aggregation Methods: As the Federated Hospitals architecture aims to improve
the efficiency and convergence time of ML models, exploring and developing better ag-
gregation methods will be crucial. Novel approaches to aggregating local gradients with
reduced communication overhead can significantly enhance the convergence speed of the
global model, leading to faster and more efficient training sessions.

• Privacy Concerns: Smart hospitals deal with sensitive and high-sensitivity data, making
privacy a paramount concern. Despite employing FL to preserve data privacy, additional
measures and advanced privacy-preserving techniques may be required to safeguard pa-
tient information effectively.

1.2 Research Question

The research question for this proposal is centered on exploring the effectiveness of a mul-
tilevel federated learning architecture for specialized training of service models in smart hos-
pitals. Despite the potential benefits of federated learning for smart hospitals, several gaps and
unresolved issues in the literature need to be addressed. One of the main gaps is the need for
more research on the effectiveness of federated learning for training models specific to each hos-
pital. Most studies in this area have focused on generalizing models across multiple hospitals,
which may need to be more effective in capturing the unique characteristics of each hospital.
Additionally, there is a need to explore the feasibility of a multilevel aggregation approach for
training specialized service models in each hospital ward.

The research question to be worked on is defined as: How can we effectively execute ma-

chine learning services in smart hospitals while addressing the of different hospital depart-

ments’ demands?

In the context of our research, the term "effectively" refers to the ability to efficiently and
accurately execute machine learning services in smart hospitals, leading to improved patient
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care, optimized resource utilization, and enhanced healthcare outcomes. And, "Heterogeneity"
pertains to the diversity and variation in data distribution, characteristics, and demands among
different hospital departments. In brief, this research aims to contribute to developing effec-
tive and efficient machine-learning models for smart hospitals. By exploring the potential of
federated learning for specialized training of service models, this project will provide valuable
insights into the application of machine learning in healthcare and help address the gaps and
limitations in the current literature.

1.3 Objectives

The main objective of this research is to develop and evaluate a multilevel federated learn-
ing model for specialized training of service models in smart hospitals. Inside this model, we
propose an architecture that will address current approaches’ limitations and improve the per-
formance of machine learning models in healthcare. The multilevel federated learning model
will consist of three main components: local models, global model, and aggregation algorithms.
Local models will be trained with specific data from each hospital ward, while the global model
will be trained by aggregating the local models. This multilevel federated learning model will
also incorporate a multilevel aggregation approach to improve the accuracy and performance of
the ML models. And an architecture that represents the execution flow and operability of the
proposal.

The primary objective is to design and implement a novel model that leverages federated
learning techniques to address the challenges of executing machine learning services in smart
hospitals. The model aims to preserve data privacy, accommodate the heterogeneity of different
hospital departments, and improve model accuracy and performance. By leveraging multilevel
aggregation, the model architecture enables personalized and specialized ML models for each
department, tailored to the unique characteristics of their data.

The specific objectives can be listed as follows:

(i) Raise the bibliographic concepts and evaluate state of the art to carry out this work.

(ii) Find the characteristics, similarities, and open gaps of the gathered works.

(iii) Design a multilevel federated learning model for specialized training of service models
in smart hospitals.

(iv) Evaluate the performance of the proposed model and compare it with existing approaches.

(v) Demonstrate the potential of federated learning for improving the accuracy and efficiency
of machine learning models in healthcare.

(vi) Contribute to the development of effective and efficient models for smart hospitals and
provide insights for the application of machine learning in healthcare.
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By achieving these goals, this research will contribute to advancing machine learning tech-
niques in healthcare and provide valuable insights for developing smart hospitals. The proposed
model can improve the accuracy and efficiency of machine learning models in healthcare while
also handling data heterogeneity. Overall, this work aims to significantly contribute to the field
of machine learning in healthcare and improve the quality of healthcare services in smart hos-
pitals.

1.4 Hypothesis

We have the following hypotheses for this work:

• Hypothesis 1: Compared to the standard FL approaches, the proposed multilevel feder-
ated learning architecture model will improve the accuracy of the models in smart hospi-
tals when dealing with unbalanced datasets;

• Hypothesis 2: The multilevel aggregation approach will effectively train specialized ser-
vice models in each hospital ward, leading to improved model accuracy.

1.5 Text organization

The proposal is organized into six other Chapters. First, Chapter 2 presents the theoretical
foundation related to this work, discussing the topics of artificial intelligence, Internet of things,
and healthcare informatics. Chapter 3 discusses the state-of-the-art analysis, presenting the
selection process and the academic proposals related to this work, as well as the open literature
gaps. Then, in Chapter 4, the Federated Hospital model is proposed, presenting the project
decisions, architecture and algorithms. Chapter 5 describes the evaluation methodology, while
Chapter 6 presents the results, also bringing discussions and limitations. Finally, Chapter 7
brings the conclusion of the document, highlighting contributions and future work, in addition
to analyzing the initial hypothesis.
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2 THEORETICAL FOUNDATION

This chapter presents the main topics related to this work. Starting with Section 2.1 dis-
cusses the concepts of IoT and the definitions of Fog and Edge used in this work. The next
part is Section 2.3, which describes AI and its evolution towards ML and, later, the creation and
development of federated learning. Lastly, Section 2.4 approaches the smart cities context and
discusses the possibilities regarding smart hospitals.

2.1 Internet of things

The Internet of Things (IoT) is a comprehensive environment that interconnects a large
number of heterogeneous physical objects or things to the Internet. An IoT system mainly
follows the architecture of the Cloud-centric Internet of Things (CIoT), in which the physical
objects are represented in the Web resources managed by the servers in the global Internet. The
standard IoT system involves three major technologies: embedded systems, middleware, and
cloud services. Although the CIoT model is a common approach to implementing IoT systems,
it faces growing challenges in IoT. Specifically, CIoT faces challenges in bandwidth, latency,
uninterrupted, resource-constraint, and security (BUYYA; SRIRAMA, 2019).

In the case of bandwidth, the increasingly large and high-frequent rate data produced by ob-
jects in IoT will exceed the bandwidth availability, and entirely relying on the distant Cloud to
manage things becomes impractical. Latency faces the challenges of achieving the requirement
of controlling the end-to-end within tens of milliseconds. Applications that rely upon low-time
responses cannot afford the consequences of latency in CIoT. The long distance between the
Cloud and the front-end IoT devices can face unstable and intermittent network connectivity
issues. Uninterrupted is crucial when a function cannot correctly execute due to the disconnec-
tion. Many front-end devices are typically resource-constrained and unable to conduct complex
computational activities; thus, CIoT systems typically require front-end devices to continu-
ously broadcast their data to the Cloud. However, such a design could be more feasible in many
battery-powered devices since end-to-end data transfer via the Internet still requires significant
energy. Many constrained front-end devices may need more resources to defend themselves
against cyberattacks. Outdoor-based front-end devices, in particular, which rely on the distant
Cloud to keep them updated with security software, can be targets for attackers, as the attackers
are capable of performing a malicious activity at the edge network where the front-end devices
are located and the Cloud does not have complete control over it (HERRERO, 2022).

In summary, CIoT has come a long way in the last decade. Several approaches have tried
to extend centralized computing to a more geo-distributed manner. Industry-led fog computing
architecture has gained the most attention. Academics and researchers have also explored mo-
bile cloud computing models. These research vanguards resulted in multiple proposals for the
meaning of Cloud, Fog, and Edge devices. For this reason, we present Figure 2, which eluci-
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Figure 2: Network paradigm definition terminology
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dates the regions and devices we are addressing as each specified terminology. In this work, we
consider edge computing as everything executed near the user, such as its personal computer or
smartphone. Fog computing happens when the processing is made in the local network or a set
of devices connected to the same environment. Lastly, cloud computing occurs when the load
is sent to execute in a data center. There is also the Fog-Cloud paradigm when the fog executes
and loads part of its processing to the Cloud. However, we will not address this topic in this
work.

2.2 Fog and Edge Computing

Fog computing is a conceptual model that addresses all the possibilities to extend the Cloud
to the edge network of CIoT. The industry-led fog computing architecture has gained the most
attention among the various approaches. For example, a fog-enabled IoT system can distribute
the simple data-classification tasks to the IoT devices at the edge and assign the more compli-
cated context reasoning tasks to the fog gateway devices. The decision of where the system
should assign the tasks depends on efficiency and adaptability (BUYYA; SRIRAMA, 2019).

In the early phases of fog, mist computing was an alternative. However, recent publica-
tions (BUYYA; SRIRAMA, 2019) have defined mist as a subset of fog. As a result, mist
elaborates on the necessity for deploying computational mechanisms to the IoT’s extreme edge,
where IoT devices are placed, to decrease communication delay between IoT devices in mil-
liseconds. Mist computing is primarily motivated by the need to provide IoT devices with self-
awareness through self-organizing, self-managing, and various self-mechanisms. As a result,
IoT devices will be able to work constantly even when the Internet connection is inconsistent. In
other words, fog can only deploy and manage itself by integrating edge computing technologies.

Fog and edge computing (FEC) supplements the Cloud in IoT by bridging the gap between
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Figure 3: Agents interact with environments through sensors and actuators.
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Source: Adapted from (RUSSELL; NORVIG, 2005).

the Cloud and the devices to offer service continuity. In FEC architectures, the edge is the
closest hardware to the user. Furthermore, there are five main advantages when using edge
computing. They are security, cognition, agility, short latency, and efficiency. Edge devices are
less exposed to attacks in the local network. In traditional CIoT architectures, even sensitive
data will go through the network to be processed, and this can be a problem for sensitive smart
systems, such as smart hospitals.

FEC architectures also allow decision-making from the user, the cognition guaranteeing not
only adaption on the edge device but also agility when compared to cloud services that depend
on business holders to establish, deploy, and manage the infrastructure. Lastly, if the time to
respond is crucial, the edge has the lowest latency of all of the players in CIoT architectures.
Moreover, in smart systems, large data flows are expected, and the execution in the local device
can increase the efficiency in execution time when communication bandwidth is limited.

2.3 Artificial intelligence

AI is one of the most recent scientific and engineering fields. Work began in earnest shortly
after World War II, and the name was created in 1956. AI now includes a wide range of sub-
fields, from the general (learning and perception) to the specific (playing chess, proving math-
ematical theorems, writing poetry, driving a car on a crowded street, and diagnosing diseases).
AI applies to any intellectual task (RUSSELL; NORVIG, 2005). In the field of AI, an agent is
defined as anything that perceives its environment through sensors and acts on that conscious-
ness through actuators. The term percept refers to the agent’s perceptual inputs at any given
time. The percept sequence of an agent is the complete history of everything the agent has ever
perceived. Figure 3 illustrates this concept.

According to (RUSSELL; NORVIG, 2005), there are five main types of agent programs.
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The first is the Simple reflex agents. The simple reflex agent is the most basic type of agent.
These agents choose actions based solely on the current percept, disregarding the rest of the per-
cept history. Even in complex environments, simple reflex behaviors occur. Consider yourself
the driver of an automated taxi. If the car in front of you brakes and its brake lights illuminate,
you should take notice and begin braking. To put it another way, some processing is done on
the visual input to determine the condition "The car in front is braking." This activates some
previously established connection in the agent program to the action "initiate braking." This is
known as the if-then rule.

The second type of agent is the Model-based reflex. The most effective way to deal with
partial observability is for the agent to keep track of what it cannot see. That is, the agent should
maintain some sort of internal state dependent on the percept history and thus reflects at least
some of the current state’s unobserved aspects. For the braking example, the internal state is
limited to the previous frame from the camera, allowing the agent to detect when two red lights
at the vehicle’s edge turn on or off simultaneously. Updating this internal state information over
time necessitates the inclusion of two types of knowledge in the agent program. First, we need
to know how the world evolves independently of the agent. Second, we need to know how the
agent’s actions affect the rest of the world.

The third approach is the goal-based agents. Understanding the current state of the envi-
ronment is only sometimes sufficient to decide what to do. For example, the taxi can turn left,
right, or continue straight at a road junction. The destination of the taxi determines the correct
decision. In other words, in addition to a current state description, the agent requires goal infor-
mation that describes desirable situations, such as arriving at the passenger’s destination. The
agent program can use this information in conjunction with the model to select actions that will
achieve the goal. A goal-based agent could reason that if the car in front of it has its brake lights
on, it will slow down. Given how the world typically unfolds, the only action that will achieve
the goal of not colliding with other cars is to brake. Although the goal-based agent appears
less efficient, it is more adaptable because the knowledge supporting its decisions is explicitly
represented and mutable.

The fourth agent is utility-based. In most situations, more than goals is required to generate
high-quality behavior. Many action sequences, for example, will get the taxi to its destination,
but some are faster, safer, more reliable, or less expensive than others. Goals are simply a binary
distinction. The utility function of an agent is an internalization of the performance measure. If
the internal utility function and the external performance measure agree, then an agent choosing
actions to maximize its utility will be rational regarding the external performance measure.
Furthermore, goals are insufficient in two cases, but a utility-based agent can still make rational
decisions. First, when competing goals can only be met in part, the utility function specifies the
appropriate trade-off. Second, when the agent has several goals to pursue, none of which can be
achieved with certainty, the utility allows the agent to weigh the likelihood of success against
the importance of the goals.
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Figure 4: Learning agent overview
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Source: Adapted from (RUSSELL; NORVIG, 2005).

Lastly, we have the Learning agents. This is now the preferred method for developing
cutting-edge AI systems in many fields. As previously stated, learning has another advantage:
it allows the agent to operate in initially unknown environments and become more competent
than its initial knowledge alone might allow. A learning agent is made up of four conceptual
components. The most crucial distinction is between the learning element, which is in charge
of improving, and the performance element, which is in charge of choosing external actions.

Four conceptual parts construct a learning agent. The performance element is what we pre-
viously thought of as the entire agent: it perceives and decides on actions. The critic informs the
learning element of the agent’s performance in relation to a predefined performance standard.
The critic is required because the percepts alone do not indicate the agent’s success. The learn-
ing element takes the critic’s feedback on how the agent is performing and determines how the
performance element should be modified to perform better in the future. The problem generator
is the final component of the learning agent. It is in charge of suggesting actions that will result
in new and informative experiences. Figure 4 summarizes the ideas of the learning agents.

In this proposal, we will be mainly addressing the definition of learning agents. An agent
learns if its performance on upcoming tasks increases due to its observations of the outside
world. Learning can range from trivial to complex tasks. We will focus on one type of learning
problem that appears limited but has broad applicability: learning a function that predicts the
output for new inputs from a collection of input-output pairs.
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2.3.1 Machine learning

An agent learns if it improves its performance on future tasks after making observations
about the world (RUSSELL; NORVIG, 2005). Learning can range from the mundane, such
as writing down a phone number, to the profound and complex, such as image recognition.
There are three main reasons why an agent should learn. For starters, the designers cannot
anticipate every possible situation in which the agent may find itself. A maze-navigating robot,
for example, must learn the layout of each new maze it encounters. Second, the designers can
only anticipate some changes over time; a program designed to forecast stock market prices
for tomorrow must learn to adapt when conditions shift from boom to bust. Third, human
programmers only sometimes know how to create a solution. Three types of feedback determine
the three main types of learning:

Unsupervised learning occurs when the agent learns patterns in the input without explicit
feedback. Clustering is the most common unsupervised learning task: detecting potentially
useful clusters of input examples. A taxi driver, for example, may gradually develop an under-
standing of "good traffic days" and "bad traffic days" without ever being given labeled examples
of each. The agent learns from a series of reinforcements—rewards or punishments—in rein-
forcement learning. For example, the lack of a tip at the end of the journey indicates to the taxi
driver that something went wrong. The two points for a win at the end of a chess game indicate
to the agent that something went well. It is up to the agent to determine which of the preceding
actions was most responsible for the reinforcement.

The agent observes some example input-output pairs and learns a function that maps from
input to output in supervised learning. The inputs in component 1 above are percepts, and the
output is provided by a teacher who says, "Brake!" or "Turn left." Component 2’s inputs are
camera images, and the outputs are again from a teacher saying, "That’s a bus." The braking
theory in 3 is a function of states and braking actions to stopping distance in feet. The output
value is obtained directly from the agent’s percepts (after the fact). In this case, the environment
is the teacher.

In this proposal, we will be tackling the supervised learning method. Even though there are
approaches to using reinforcement and unsupervised learning methods with FL, those topics are
out of the scope of this research. That said, the current state of the art in supervised learning is
around implementing different types of artificial neural networks.

2.3.1.1 Artificial neural networks

Neural network learning methods provide a robust approach to approximating real, discrete,
and vector-valued target functions. Artificial neural networks (ANNs) are among the most
effective learning methods for certain types of problems, such as learning to interpret complex
real-world sensor data. For example, the back-propagation algorithm has proven successful
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in many practical problems, such as learning to recognize handwritten characters, recognizing
spoken words, and recognizing faces, all of this back in the 1990s (MITCHELL, 1997).

The study of ANN has been inspired partly by the observation that biological learning sys-
tems are built on very complex webs of interconnected neurons. In a rough analogy, ANN is
built out of a densely interconnected set of simple units, where each unit takes several real-
valued inputs (possibly the outputs of other units) and produces a single real-valued output
(which may become the input to many other units).

One type of ANN system is based on a unit called a perceptron, illustrated in Figure 5. A
perceptron takes a vector of real-valued inputs, calculates a linear combination of these inputs,
then outputs a one if the result is more significant than some threshold and -1 otherwise. Learn-
ing a perceptron involves choosing values for the weights (wo, . . . , wn). Therefore, the space
H of candidate hypotheses considered in perceptron learning is the set of all possible real-valued
weight vectors.

Figure 5: A perceptron
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Source: Adapted from (MITCHELL, 1997)

2.3.2 Federated learning

Federated learning, a paradigm at the intersection of machine learning, data privacy, and
distributed systems, has emerged as a powerful approach to address the challenges of training
machine learning models on decentralized data sources. Traditional machine learning methods
often require centralizing data, which can raise concerns about data privacy, security, and legal
compliance. Federated learning, however, offers a compelling alternative by enabling model
training across multiple locations while keeping the data itself distributed and secure.

In the realm of federated learning, two primary processes come into play: model training
and inference. During model training, information is exchanged between participating parties,
but crucially, the raw data remains localized and protected. This safeguard ensures that sensitive
or private data is never exposed during the collaborative learning process. Once the model is
trained, it can be retained by a single party or shared among several, depending on the specific
use case and agreements in place (YANG et al., 2019).
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The advantages of federated learning are manifold. Firstly, it is inherently designed to pro-
tect user privacy and data security. By allowing model updates to be the only information
shared, it sidesteps the need for raw data transfer, a practice that can introduce significant pri-
vacy and security risks. Secondly, federated learning promotes collaboration among multiple
parties, enabling them to collectively train machine learning models that are superior to what
any individual entity could achieve independently. This collaborative approach can lead to en-
hanced model accuracy and performance.

However, like any technology, federated learning has its challenges. One key consideration
is the communication infrastructure between the owners of local data and the central aggregation
server. It must be fast and reliable to support the timely exchange of model updates. Addition-
ally, the scalability of federated learning can be complex, especially in scenarios where a large
number of participants, such as mobile users, are involved. The potential for many participants
can introduce instability and unpredictability into the system.

Data distribution disparities among federated learning participants can also pose issues. Dif-
ferent parties may have data with non-identical distributions, unbalanced numbers of data sam-
ples, or unique data characteristics. These disparities can lead to biased models or even hinder
the training process altogether. Consequently, when designing a federated learning system, it is
imperative to account for these variations and implement strategies to mitigate their impact on
model quality.

The establishment of a federated learning ecosystem extends beyond technical considera-
tions; it is an economic challenge as well. Creating mechanisms that ensure fair and transparent
profit distribution among participating parties is crucial for fostering long-term engagement and
incentivizing involvement. These mechanisms must also serve as deterrents against malicious
participants who may seek to undermine the integrity of the federated learning process.

As federated learning continues to evolve, it draws from a diverse array of disciplines. Its
foundation in machine learning and statistics is complemented by insights from information
security, encryption techniques, model compression, and game theory. Economic principles
and mechanism design play a pivotal role in structuring federated learning ecosystems that
encourage collaboration while safeguarding against potential pitfalls. This interdisciplinary
approach reflects the multifaceted nature of federated learning and its expanding applications in
diverse domains.

2.4 Healthcare Informatics and ML in Healthcare

Health Informatics started as Medical and Nursing Informatics in the 1970s, a period de-
scribed as undergoing exponential development due to the increasing availability of steadily
less expensive hardware, more robust software, and the introduction of microcomputers (HOV-
ENGA, 2010). During the 1980s, there was much interest in using computers to help with
medical decisions, including artificial intelligence. System linking emerged in 1989 when mul-
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tiple disciplines collaborated to develop integrated systems utilizing new database technology
and network power.

While Health Informatics strives to define its role in healthcare, other healthcare profes-
sionals continue incorporating the technologies into their respective fields. Computing systems,
for example, are widely used in radiological imaging. Among the lessons to be drawn from
the history of health informatics is that the discipline of health informatics must be aware of
and involved in the goals and activities of health care itself. Technologies are becoming more
widely available, with ever more powerful tools enabling healthcare workers to create systems
for their own benefit easily.

With the expansion of multi-modality data in the last decade, the role of data analytics in
health informatics has expanded fast. This has also increased interest in developing analytical,
data-driven models in health informatics based on ML (RAVÌ et al., 2016). ML has facilitated
the development of more data-driven solutions in health informatics by allowing for the auto-
matic generation of features, reducing the amount of human intervention in this process. This
benefits many health informatics problems and has eventually supported a significant leap for-
ward for unstructured data such as those generated by medical imaging, medical informatics,
and bioinformatics.

In a growing industry of smartwatches, smart wristbands, and devices that constantly collect
a plethora of health data, the use of ML to analyze this data is gaining traction. ML may be the
answer to both lowering healthcare costs and improving patient-doctor relationships. ML and
big data solutions can be used for various health-related purposes, including assisting doctors in
developing more personalized prescriptions and treatments for patients and assisting patients in
determining when and if they should schedule follow-up appointments (BHARDWAJ; NAM-
BIAR; DUTTA, 2017).

ML techniques applied to EHR data can yield actionable insights ranging from improving
patient risk scoring systems to predicting disease onset and streamlining hospital operations.
Statistical models that take advantage of the variety and richness of EHR-derived data (rather
than a small set of expert-selected and/or traditionally used features) are still uncommon. How-
ever, they represent an exciting avenue for future research. New data sources, such as wearables,
bring with them new opportunities and challenges (CALLAHAN; SHAH, 2017b).
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3 RELATED WORK

Based on the research topic, works that encompass the same scope or that solve similar
problems were analyzed. These serve as a basis for possible solution attempts. That said, a
search for related works was conducted to survey the available scientific works. The remainder
of this chapter presents in Section 3.1 the process of selecting and choosing related works.
Section 3.2 presents the chosen papers and their proposals. Finally, Section 3.3 analyzes the
works and open gaps.

3.1 Selection process

The selection process was based on three steps. 1) Definition of the search. 2) Job filtering.
3) Analysis and correlation of topics. The search strings were created based on the three main
topics covered by this work: FL, FOG/EDGE, and HC. The searches were based on the last five
years, using combinations of the mentioned terms such as "federated learning on healthcare,"
"fog/edge federated learning on smart hospitals," and "federated learning on edge and fog for
healthcare informatics."

We chose five databases to conduct the searches: ACM, IEEE Xplore, Google Scholar,
Science Direct, and Springer. The search was based on articles published from 2017 to 2022.
In total, we found more than 300 articles in the databases. The next step was to carry out
the filtering of the works. In the first stage of selecting pages, duplicate works were removed,
and articles containing more than five pages were selected. Then, the titles and abstracts of
the works were evaluated to validate the cohesion with the theme sought. The search focused
on the architecture of federated learning projects for healthcare, focusing mainly on edge/fog
computing. The surveys were removed from the related works. However, they were separated
for further analysis as open issues were found that could be tackled. By objective, all the works
that presented the architecture proposal related to the search theme were the last ones, thus
defining a scope. Finally, nine works were left at the end of the filtering processes.

3.2 Analyzing the State-of-the-Art

Sanyal et al. (SANYAL et al., 2019) present a framework for executing federated learning in
IoMT devices constrained in power and computational capabilities. They propose an alternative
solution to the issues of energy efficiency, latency, and privacy for resource-constrained that
are present on those. The framework predicts a data matrix using aggregated model average,
computes and delivers filter parameters for the IoMT devices, and performs decision-making
using the aggregated data matrix. They also present a workaround for the generated eigenvalue
perturbation of the data matrix, using Matrix Perturbation Theory to help to fix this issue.

Guo et al. (GUO et al., 2020) propose a federated edge learning system for efficient privacy-
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preserving mobile healthcare. Specifically, an edge-based training task offloading strategy to
improve training efficiency. During model training, the model uses Gaussian perturbation to
prevent gradient leaking. This is necessary since they use an offloading mechanism without
using a homomorphically encrypted weight matrix when aggregating the models. They imple-
mented a system prototype to evaluate the training efficiency, inference performance, and noise
sensitivity. Overall, the architecture reduces the resource requirements of the mobile device
and improves the efficiency of training models, compromising a small quantity of the model
performance due to the privacy scheme.

Hakak et al. (HAKAK et al., 2020) propose an Edge-assisted data analytics framework that
uses Federated Learning to re-train local ML models using user-generated data. This framework
could leverage pre-trained models to extract user-customized insights while preserving privacy
and Cloud resources. They discuss applications such as disease management/prevention, mental
health tracking, and real-time health monitoring, as well as the challenges of this technology,
for example, cyberattacks and acceptance of the technology. The paper is only a conceptual
framework, so the authors do not present an evaluation methodology or further results.

Rahman et al. (RAHMAN et al., 2020) present a lightweight hybrid FL framework in which
blockchain smart contracts manage the edge training plan, trust management, and authentica-
tion of participating federated nodes, the distribution of global or locally trained models, the
reputation of edge nodes, and their uploaded datasets or models. The framework also supports
the complete encryption of a dataset, the model training, and the inferencing process. Each
federated edge node performs additive encryption, while the blockchain uses multiplicative
encryption to aggregate the updated model parameters. The framework supports lightweight
differential privacy to support the total privacy and anonymization of the IoMT data. Moreover,
this work mainly focuses on the security and privacy of FL in IoT rather than the FL execution
method itself.

Wu et al. (WU et al., 2020) develop a cloud-edge-based federated learning framework
for in-home health monitoring, which learns a shared global model in the cloud from mul-
tiple homes at the network edges and achieves data privacy protection by keeping user data
locally and using homomorphic encryption aggregation. To cope with the imbalanced and non-
independent and identically distributed distribution inherent in the user’s monitoring data, they
designed a generative convolutional autoencoder to achieve accurate and personalized health
monitoring by refining the model with a generated class-balanced dataset from the user’s per-
sonal data.

Zhao et al. (ZHAO et al., 2020) propose a system that uses edge devices to implement activ-
ity and health monitoring locally and applies federated learning to facilitate the training process.
The devices use the Databox platform to manage sensor data collected in people’s homes, con-
duct activity recognition locally, and collaboratively train a deep neural network model without
transferring the collected data into the cloud. The paper results show that the processing time of
local inference on an edge device is acceptable. Meanwhile, the inference accuracy of the sys-
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tem can converge to a sufficient and stable level after a few rounds of communication between
the clients and the server. Still, this architecture remains susceptible to DLG.

Połap et al. (POłAP et al., 2021) propose an architecture of a system that ensures the secu-
rity of private data and allows the addition and modification of the used classification methods.
The main advantages of the proposed system are based on the implementation of blockchain
technology elements and threaded federated learning. The individual elements are located on
the agents who exchange information. Additionally, they propose building an agent with a con-
sortium mechanism for classification results from many ML solutions. This offers a new model
of agents that can be implemented as a system for processing medical data in real-time. They
compared the approach with other methods and showed that the proposition could improve the
IoMT solutions by presenting a new idea of a multi-agent system that can separate different
tasks like security or classification and, as a result, minimize operation time and increase accu-
racy.

Xue et al. (XUE et al., 2021) explicitly consider the problem of decentralized clinical deci-
sion problem for sequential clinical treatment. Using a double deep Q-Network based on a fully
decentralized federated framework enabled by an integrated system named SMEC. Provides a
way to infer real-time treatment policy from large amounts of distributed observational elec-
tronic medical records. The system’s performance shows good results for real-time sequential
clinical treatment policy for patients when implementing clinical decision support systems.

Wang et al. (WANG et al., 2022) propose a privacy protection scheme for federated learn-
ing under edge computing. They first propose a lightweight privacy protection protocol based
on a shared secret and a weight mask based on a random mask scheme of secret sharing. It
can protect gradient privacy without losing model accuracy and resist equipment dropping and
collusion attacks between devices. Secondly, they design an algorithm based on a digital sig-
nature and hash function, which achieves the integrity and consistency of the message, as well
as resisting replay attacks. Lastly, they propose a periodic average training strategy to prove
that their model is faster than deferential privacy ones. Meanwhile, compared with classical
federated learning, their system efficiency is slightly lower but ensures data safety.

3.3 Analysis and Opportunities

From the selected related works, a grouping was performed. This grouping is based on
the most common topics covered in the works. We aim to highlight the less tackled areas
that arouse the ideas of open works. The topics highlighted were: proposal of aggregation
method, use of fog-computing, use of edge-computing, use of encryption methods for privacy,
architecture focused on smart hospitals, architecture focused on home healthcare, and analysis
in heterogeneous data. Table 1 summarizes the ideas presented by the analyzed works. Each
column represents one of the mentioned topics, respectively. Each marking with "X" represents
whether the referring work addresses one of the mentioned topics.
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Table 1: Related work analysis.

Reference Aggregation Fog Edge Encryption Hospital Home Heterog. data
(SANYAL et al., 2019) X X X X
(GUO et al., 2020) X X X
(HAKAK et al., 2020) X X X
(RAHMAN et al., 2020) X X X X X
(WU et al., 2020) X X X X X X
(ZHAO et al., 2020) X X
(POłAP et al., 2021) X X
(XUE et al., 2021) X X X X X
(WANG et al., 2022) X X X X

Source: Made by the author

Looking at the current state-of-art, it is noticeable that there are open issues to be tackled.
We mainly point out the lack of model specification based in data heterogeneity. Only one of
the analyzed papers brings user models customization as the main topic and focuses on having a
model that adapts better for each system user. Moreover, in IoMT, privacy is crucial, and since
the DLG attacks a system without the use of homomorphic encryption or any other differential
privacy approach is susceptible to data reconstruction. Some of the open questions pointed out
coincide with those found in the surveys that served as a motivational basis for the beginning
of this dissertation. Thus, this means the searches for related works are under the chosen scope
and available themes in the literature. Reiterating the main gaps found were:

• Lack of model adaptation based on data heterogeneity in federated learning systems;

• Only a couple of works used some encryption for gradient leakage prevention;

• Multi-aggregation methods were not found in the literature.
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4 PROPOSAL: FEDERATED HOSPITAL MODEL

Based on the related works analysis and the surveys in the literature, here we are presenting
the Federated Hospital model in order to fill out the aforementioned gaps. In particular, the pro-
posed model executes federated learning services in the context of smart hospitals taking into
account heterogeneity data distribution from the users and addressing this problem with a multi
layer architecture proposal. The rest of this chapter is organized in other four sections. First,
Section 4.1 presents some motivational situations, highlighting where we can employ the de-
veloped model. Secondly, Section 4.2 presents the project decisions, detailing our premises and
project scope. Moreover, Section 4.3 describes the architecture, giving examples of problems
and how the solution addresses data heterogeneity in different scenarios. Lastly, Section 4.4
presents the algorithms and the system operability.

4.1 Use cases

In this section, we highlight some motivation scenarios where the current proposal could
bring health benefits for the society. The proposed multilevel architecture for federated learn-
ing in smart hospitals offers a plethora of use case scenarios, showcasing its versatility and
potential impact. Firstly, in the context of patient monitoring, the architecture can be utilized
to train personalized models for each hospital section, capturing unique patient behaviors and
characteristics. This enables accurate real-time monitoring of vital signs, disease progression,
and treatment responses, leading to timely interventions and improved patient outcomes.

Secondly, in the domain of predictive analytics, the architecture allows for localized model
training on historical patient data within specific hospital sections. This empowers healthcare
professionals to develop predictive models tailored to their section’s patient population, en-
abling early detection of disease patterns, optimal resource allocation, and effective preventive
measures.

Lastly, in the area of medical image analysis, the architecture can facilitate the training
of specialized models for different imaging modalities within each hospital section. This en-
hances diagnostic accuracy and efficiency, supporting radiologists in detecting abnormalities,
prioritizing critical cases, and facilitating timely treatment decisions. The proposed architec-
ture addresses critical challenges in these scenarios, such as the need for personalized models,
localized expertise, and efficient utilization of data resources, making it a valuable solution for
improving healthcare delivery in smart hospitals.

4.2 Design Decisions

In developing the proposed Federated Hospitals, several design decisions were made to
guide the implementation and evaluation process. The key design decisions are as follows:
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1. Prototype Development: To validate the effectiveness and feasibility of the proposed ar-
chitecture, a prototype will be developed. This prototype will simulate the expected ex-
ecution flow and aggregation steps of the architecture within a controlled environment.
The prototype will serve as a proof of concept and enable us to assess the architecture’s
performance and potential benefits in a practical setting.

2. Evaluation Metrics: The evaluation of the proposed architecture will focus on comparing
the performance of the initial root model and the converged ward-specific models. The
evaluation metrics will include classification accuracy and convergence speed. By mea-
suring these metrics, we can assess the improvement achieved by the multilevel federated
learning approach and the effectiveness of the specialized ward-specific models.

3. Scope Limitations: Due to the focused nature of this research project, certain aspects
such as network security, gradient leakage, and privacy-preserving techniques will not
be explicitly addressed in this stage. While these aspects are important considerations
for real-world implementation, their exploration is beyond the immediate scope of this
proposal. However, the impact of these factors can be considered in future works to
enhance the architecture’s robustness and privacy preservation capabilities.

By making these design decisions, we aim to develop a prototype that demonstrates the
expected flow of execution and aggregation steps of the Federated Hospital. Through the eval-
uation of the initial root model and the converged ward-specific models, we can gain insights
into the architecture’s effectiveness and potential for improving model performance in health-
care settings. While the scope limitations focus the project’s efforts, future works can explore
network security, gradient leakage, and privacy-preserving techniques to further enhance the ar-
chitecture’s practical implementation and ensure the privacy and security of sensitive healthcare
data. Also, it is worth mentioning that the architecture was designed and developed based on
the needs and open gaps in the topic of FL in smart hospitals. However, this does not preclude
its use in another scenario.

4.3 Architecture

To address the challenges posed by the heterogeneity of data and the need for specialized
services in smart hospitals, we propose a novel multilevel architecture for federated learning.
Our architecture is designed to leverage the similarities of behaviors within hospital sections
while capitalizing on the specialized services provided in each area. This multilevel approach
consists of three levels: local training, global aggregation, and local-global refinement. The
overview of the architecture is presented in Figure 6.

At the local level, models are trained within specific hospital sections using localized data.
This enables the capture of section-specific patterns and nuances, enhancing the model’s per-
formance for local users. By training models on data specific to each section, the architecture
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accounts for variations in patient demographics, disease prevalence, and treatment protocols.
This localized training facilitates the customization of services to meet the specific needs of
each hospital section, ultimately promoting better patient outcomes.

Moving to the global level, the local models are aggregated into a centralized global model
using the federated averaging technique. This aggregation process combines the expertise from
multiple hospital sections, enabling the global model to achieve better generalization and cap-
ture broader trends across the entire hospital. By incorporating diverse perspectives and knowl-
edge from various sections, the global model ensures a balanced representation and enhances
its ability to recognize global patterns and trends in healthcare data.

Once the global model is aggregated, it is sent back to the section level for local-global
refinement. At this stage, the global model is aggregated with the local models again, but using
a weighted averaging approach. This refinement step aims to strike a balance between the global
knowledge captured by the centralized model and the specialized expertise gained at the local
level. By employing weighted averaging, the refinement process ensures that the final models
maintain both the global perspective and the section-specific specialization, thus optimizing the
accuracy and relevance of the models for each hospital section.

Figure 6: Architecture overview of the system
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The proposed architecture offers several advantages. Firstly, it leverages the inherent simi-
larities within hospital sections, allowing for targeted model training and service customization.
This promotes personalized healthcare delivery and improved patient outcomes. Secondly, the
global aggregation step enables knowledge sharing and enhances the global model’s general-
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ization capabilities by incorporating insights from various sections. Lastly, the local-global
refinement process ensures a balance between local specialization and global representation,
resulting in accurate and context-aware models.

The proposed architecture holds immense potential for smart hospitals. It addresses the
challenges of heterogeneity and specialized services by capitalizing on local expertise while
capturing global trends. Through this multilevel approach, our architecture facilitates enhanced
model performance, optimized resource utilization, and improved decision-making in intelli-
gent healthcare systems.

4.4 Algorithms

In this section we describe the algorithms that will be in use by the architecture. The main
algorithm that will be in use is the FedAvg (MCMAHAN et al., 2016). The algorithm uti-
lizes FedAvg for local aggregation and global model update, and weighted averaging for the
aggregation of the local model with the new global model.

Algorithm 1 Multilevel Federated Learning Aggregation for Smart Hospitals
Input: Local training datasets D1, D2, ..., DN for N hospital sections
Output: Global model Mglobal

Initialize global model Mglobal with random parameters;
for each round t = 1 to T do

for each hospital section i = 1 to N do
Local model update: Mi ← FedAvg(Mglobal, Di);

end
Global model aggregation: Mglobal ← FedAvg(M1,M2, ...,MN);

end
for each hospital section i = 1 to N do

Weighted averaging for local model: Mi ← α ·Mi + (1− α) ·Mglobal;
end
return Mglobal

In Algorithm 1, T represents the number of communication rounds, Mi denotes the local
model for hospital section i, and α is a weighting factor for the weighted averaging at the local
level. The FedAvg function performs the federated averaging algorithm, which aggregates the
models or updates by taking their average.

This demonstrates the iterative process of training the local models within each hospital sec-
tion, aggregating them at the global level, and then performing weighted averaging to combine
the global model with the local models. The algorithm captures the multilevel aggregation ap-
proach of the proposed architecture, enabling specialization and collaboration among hospital
sections while maintaining a cohesive global model.
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5 EVALUATION METHODOLOGY

In this research, we employed a comparative evaluation methodology to assess the perfor-
mance of the proposed Federated Hospitals architecture in smart hospitals. Due to the absence
of well-established benchmarks for FL in healthcare, we compared our approach against two
standard models: traditional ML approach and FL using FedAvg. The remainder of this chapter
describes how we assembly the evaluation of the presented model. First, we detail the employed
technologies to develop a prototype. Second, we detail the considered input workload. Third,
we present the evaluation scenarios and their input parameters. Lastly, for each scenario we
present a set of metrics for evaluation purposes.

5.1 Prototype

For the prototype, we used Python 3.11 for the modules code, Keras for the machine learning
and federated learning implementation. Also, Pandas and Numpy for the data process and
analysis. As depicted in Figure 7, the flowchart illustrates the step-by-step implementation of
our proposed architecture, realized through a programming library. This library encompasses a
well-structured set of functions that execute the various stages of the architecture’s flow. Such
an approach enhances manageability and flexibility, as it allows for easy parameterization and
adaptation of the modules to accommodate different FL algorithms within the architecture.

Figure 7: Prototype implementation flowchart
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By encapsulating the flowchart into a programming library, the implementation becomes
highly modular and extensible. This modularity empowers researchers and practitioners to cus-
tomize and fine-tune the modules according to the specific requirements and complexities of
different federated learning scenarios. As a result, the prototype offers a robust and adaptable
platform for testing and experimenting with various FL algorithms within the proposed archi-
tecture.
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Figure 8: Example data from MNIST dataset

Source: Made by author

5.2 Input workload

For the benchmark of the proposal, we opt to use the MNIST dataset (DENG, 2012). The
MNIST is a widely used benchmark dataset in the field of machine learning and computer
vision. It consists of a collection of handwritten digit images, where each image is a grayscale
28x28 pixel representation of a single digit from 0 to 9. The dataset is divided into a training
set with 60,000 examples and a test set with 10,000 examples. MNIST serves as a standard
dataset for evaluating and comparing the performance of various image classification algorithms
and models. It provides a diverse range of digit samples with varying styles and handwriting,
making it a suitable choice for assessing the effectiveness and generalization capabilities of
models trained through federated learning in the context of smart hospitals. In our case we will
be using it to compare the different scenarios and how the architecture performs in comparison
to standard machine learning approach, standard federated learning approach using FedAvg,
and the proposed model. Figure 8 presents a sample of the dataset.

To evaluate the performance of our proposed Multilevel Federated Learning Architecture
for Smart Hospitals, we partitioned the MNIST dataset into distinct subsets for training, vali-
dation, and testing. Initially, a portion of the dataset was dedicated to training the first global
model. This allowed the global model to gain initial knowledge and capture broad patterns
in digit classification, we created a subset containing 10,000 examples for the global model.
Figure 9a shows the data distribution for the first training set. The remaining data was then di-
vided into five groups, representing each hospital ward within the smart hospital infrastructure.
Each group was carefully curated to exhibit a high level of class heterogeneity, ensuring that the
models trained on these subsets would specialize in recognizing the specific patterns. This divi-
sion into distinct groups enabled localized training and expertise within each section. Figure 9
presents the label distribution in multiple shards. Each shard can be view as data produced by
a hospital ward while running a service. The subdivision of the test group into five divisions
was done without any specific reason, as the same test could be conducted with any number of
subdivisions, allowing for flexibility in evaluating the proposed architecture.

Additionally, we have a separate set exclusively for testing the models and assessing the
classifier’s accuracy. This evaluation set served as an objective benchmark, allowing us to gauge
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Figure 9: Train data distribution for the global model and each hospital section
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the generalization capabilities and overall performance of the trained models across all hospital
sections. By employing this data division strategy, we aimed to simulate real-world scenarios
within smart hospitals while providing a robust framework for evaluating the effectiveness of
our proposed architecture.

5.3 Scenarios and parameters

To comprehensively evaluate the performance of the proposed Federated Hospitals, we con-
ducted experiments in two distinct evaluation scenarios. Their main difference is how the data
is split for training and evaluation.

• Scenario 1 - Homogeneous data distribution: The data from the MNIST is split into
equally distributed portions. The training procedure occurs for 200 epochs (100 epochs
for global model and more 100 epochs with FL) and the evaluation is done by using the
10,000 test dataset fraction. It is assessed the time to converge and the accuracy of the
final models;

• Scenario 2 - Heterogeneous data distribution: The data from the MNIST is split into
unequally distributed portions, as presented by Figure 9. The training procedure occurs
for 200 epochs (100 epochs for global model and more 100 epochs with FL) and the
evaluation is done by using the 10,000 test dataset fraction. It is assessed the time to
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converge and the accuracy of the final models.

The reasoning behind these evaluation scenarios lies in simulating real-world data distribu-
tion that could be encountered in smart hospitals and healthcare settings. By designing these
distinct scenarios, we aimed to comprehensively evaluate the performance of the proposed Fed-
erated Hospitals architecture under varying data distribution conditions. As well as understand-
ing its performance under a controlled environment.

Each scenario encompassed a standard machine learning approach, a standard federated
learning approach utilizing FedAvg, and our novel Federated Hospital approach. We defined
specific parameters for testing and evaluating each scenario, allowing for a comparative analysis
of their respective outcomes.

Every model is using the same feed-forward neural network designed for classification tasks.
It takes input data with 784 features from MNIST, which are flattened into a vector. The network
consists of two fully connected layers and a non-linear activation function applied in between.
The network applies a linear transformation with a ReLU activation function, and then applies
another linear transformation to produce the final output of size 10, which represents the scores
for each class in a classification task. The batch size is set to 64, and the learning rate 0.001.

• Evaluation Model 1 - Standard Machine Learning Approach: This evaluation model is
a traditional machine learning approach using the MNIST dataset. We trained a single
model on the entire dataset, disregarding any hospital-specific information. The model
was trained solely on the training set and evaluated on the separate testing set;

• Evaluation Model 2 - Standard Federated Learning Approach (FedAvg): For the second
model, we implemented a standard federated learning approach, utilizing the popular
FedAvg algorithm. We divided the MNIST dataset into multiple groups, simulating the
hospital wards within the smart hospital. Each group represented a separate hospital
section, and the models were trained independently on their respective local datasets. The
parameters for this scenario included the fraction of data sampled from each hospital for
local training, and the aggregation algorithm. The global model was updated iteratively
by aggregating the local models’ weights. The final model’s performance was evaluated
using the separate testing set;

• Evaluation Model 3 - Federated Hospital Approach: In the novel Federated Hospital
scenario, we implemented our proposed Multilevel Federated Learning Architecture for
Smart Hospitals. Similar to the standard federated learning approach, we divided the
MNIST dataset into groups representing hospital sections. The parameters for this sce-
nario encompassed the same parameters as the standard federated learning approach,
along with additional parameters specific to our architecture. These additional parameters
included the allocation of data and models across hospital sections, and the aggregation
mechanism used at each level. The final model’s performance was evaluated using the
testing set, and compared with the results from the other scenarios.
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To compare the performance of the two scenarios, we assessed metrics such as classifica-
tion accuracy and convergence speed. Given the problem statement, using accuracy as a metric
is a reasonable choice because it provides a straightforward measure of the model’s perfor-
mance in correctly classifying images. By comparing the results across the scenarios, we aimed
to identify the advantages and limitations of each approach, highlighting the effectiveness of
the Federated Hospital architecture in improving local model performance while maintaining a
strong global representation.
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6 RESULTS

The results chapter presents a comprehensive analysis of the proposed Federated Hospi-
tals architecture in smart hospitals. Through two distinct evaluation scenarios as outlined in
Section 5.3, we compare the performance of our approach against standard ML and FL models
using FedAvg. The evaluation encompasses accuracy and convergence time, providing valuable
insights into the effectiveness of our architecture. The remainder of this Chapter is organized
as follows. Section 6.1 details our models conversion speed time and our prototype setup. We
present the first evaluation scenario in Section 6.2. Moreover, we detail the results from the
second scenario in Section 6.3. Lastly, we discuss the results in Section 6.4.

6.1 Models training performance

Each model was trained for 200 epochs in each scenario. The standard ML approach un-
derwent training for 200 epochs, with a learning rate of 0.001 and a batch size of 64. For the
standard FL and the FedHospital scenarios, the global model was trained for 100 epochs, fol-
lowed by an additional 100 epochs for the federated learning part. The batch size and learning
rate for both federated approaches were set to the values used in the standard ML training.

Figure 10 illustrates the loss incurred by each of the models under evaluation during the 200
epochs. Notably, both federated approaches consisted of five sections, and Figure 10c displays
the individual loss values for each hospital section in the FedHospital scenario.

Figure 10: Loss across training sessions. For each chart, X-axis represents each epoch, and
Y-axis is the loss value for that epoch.
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The time taken to train each of the models for 200 epochs varied across the different sce-
narios. In the standard ML approach, the training process lasted around 800 seconds. However,
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Figure 11: Time in seconds to execute 200 epochs for each model
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as we transitioned to FL scenarios, counter-intuitively, the training time decreased significantly,
we believe this is due to the smaller batch size, the parallelism of FL, and the smaller subsets
of data used for training the local models. In the standard FL scenario, the global model un-
derwent training for 100 epochs before initiating the federated learning process, where each
local model in the five sections was further trained for another 100 epochs. The decentralized
nature of federated learning ended up reducing the overall training time compared to the stan-
dard ML approach. For the FedHospital scenario, the training process involved similar steps as
the standard FL scenario, but with the added local-global refinement stage. The global model
was aggregated with the local models at each hospital section using weighted averaging. Al-
though this refinement introduced an additional aggregation step, the training time remained
comparable to that of the standard FL scenario.

It is essential to note that the time to train each model may vary depending on the hard-
ware and computational resources available. In our experiments, we used an Intel® Core™
i7-10750H as the processor, and utilized the NVIDIA’s 1660Ti GPU to accelerate the training
process. While FL methods can sometimes demonstrate faster training times, we should con-
sider that we are using a simulated environment and the FL users may not have this type of
hardware in a real world scenario. However, this does not invalidate the proposed multilevel
architecture solution. In Figure 11 we disclose the time to execute the mentioned epochs.

It is important to highlight that the results presented for execution time and loss were com-
puted using the second scenario. The same tests and analysis were conducted for the first sce-
nario, but the outcomes were found to be nearly identical. The training time and loss per epoch
exhibited negligible differences, which did not warrant further discussion. Therefore, we have
chosen to present the results from only one of the scenarios to avoid redundant information. In
both scenarios, the execution time and loss metrics demonstrated consistency and stability, vali-
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dating the robustness of the proposal. The close alignment of results between the two scenarios
provides further confidence in the architecture’s performance and effectiveness across various
healthcare settings and datasets. By focusing on the more informative scenario and presenting
results that capture the architecture’s essence, we ensure a clear and concise presentation of the
research findings. The chosen approach allows us to maintain the text’s clarity and readability
while providing valuable insights into the architecture’s potential and benefits for smart hospital
applications.

6.2 Scenario 1 - Homogeneous data distribution

In this section, we present the results obtained from Scenario 1, where we distributed the
data using its label in a homogeneous manner. This distribution ensured that each hospital
section had the same, or nearly the same, amount of labeled data, facilitating a fair and balanced
comparison between the models. We evaluated three models in this scenario: the standard
machine learning (ML) model, the standard federated learning (FL) model, and our proposed
Federated Hospital (α is set to 0.7). Table 2 showcases the accuracy achieved by each model
based on the data label.

Table 2: Accuracy achieved by each model based on homogeneously distributed data label. The
Federated Hospital (FH) accuracy is computed by averaging the accuracy of each section. We
used five sections with the α set to 0.7.

Label Accuracy (%)
0 1 2 3 4 5 6 7 8 9

ML 98.06 97.53 90.50 91.29 94.30 87.44 94.99 92.12 90.35 89.99
FL 98.16 97.62 89.05 91.09 93.38 86.43 94.36 91.83 88.71 89.10
FH 97.88 97.49 88.39 90.85 92.64 85.47 94.17 91.45 88.19 88.9

Source: Made by the author

The standard ML model demonstrated the best overall results with 92.75% accuracy. The
standard FL model, operating in a decentralized manner, showcased comparable accuracy across
labels, illustrating its ability to leverage localized data and achieve balanced results. Even out-
performing the standard ML for labels ’0’ and ’1’, with the final 91,97% accuracy. Lastly, our
proposal enabled the architecture to leverage the specialized knowledge of each hospital section
while capturing global trends. However, it did not outperform any of the other models within
any specific label. The final accuracy for the Federated Hospital was 91.54%.

6.3 Scenario 2 - Heterogeneous data distribution

In this section, we present the results obtained from Scenario 2, where we distributed the
data using its label in a heterogeneous manner. This distribution ensured that each hospital
section had varying quantities of labeled data, simulating real-world scenarios where data dis-
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tribution is not uniform across sections, as described in Section 5.2. We compared the perfor-
mance of three models in this scenario: the standard ML model, the standard FL model, and our
proposed Federated Hospital (α is set to 0.7). Table 3 displays the accuracy achieved by each
model based on the data label.

Table 3: Accuracy achieved by each model based on heterogeneous distributed data label. For
the Federated Hospital α set to 0.7.

Label Accuracy (%)
0 1 2 3 4 5 6 7 8 9

ML 98.06 97.53 90.50 91.29 94.30 87.44 94.99 92.12 90.35 89.99
FL 97.76 97.36 86.92 89.41 92.26 82.62 93.32 89.88 86.04 87.91
FH Sec. 0 98.67 97.18 87.89 90.10 90.22 85.09 94.05 89.69 87.37 91.87
FH Sec. 1 97.55 97.89 87.60 93.56 92.97 82.96 94.47 90.86 86.45 88.80
FH Sec. 2 97.65 97.53 88.37 90.10 95.21 84.30 95.62 91.25 86.86 86.22
FH Sec. 3 97.65 97.44 87.60 89.31 93.38 89.35 93.32 93.58 86.86 86.52
FH Sec. 4 97.86 97.00 90.41 89.50 92.16 83.52 94.05 90.76 91.79 88.21

Source: Made by the author

It is important to disclose that the standard ML model was trained on the entire dataset,
so it is performance will remain consistent when compared to the previous data distribution.
That said, the standard ML exhibited a consistent accuracy across labels, keeping the same
92.75% overall accuracy. However, this time our proposal, outperformed both the standard
ML and standard FL models significantly when evaluating the local levels. By capitalizing
on the multilevel aggregation approach, the architecture effectively addressed the heterogeneity
challenge. The specialized models in each hospital section demonstrated high accuracy for their
respective labels, while the global aggregation process ensured a cohesive and comprehensive
model representation. The final accuracy for the Federated Hospital was 91.17%.

In contrast the standard FL model, did not outperformed any of the other models this time. It
is accuracy varied across labels based on data availability, but, the Federated Hospital approach
consistently achieved superior accuracy for it is specialized models. Also, the architecture have
the ability to combine localized expertise with global knowledge sharing proved invaluable in
recognizing patterns across the hospital while preserving the uniqueness of each section. The
final accuracy for the standard FL was 90.34%

6.4 Discussion

The comparison of resource usage and convergence time revealed our proposed model to be
significantly advantageous. In a controlled environment, using the same hardware, it achieved
200 epochs within an impressive 155 seconds. This marginal improvement over the standard
FL approach can be attributed to the distinct aggregation methodologies employed.

While the standard FL approach aggregates all models and the global model at each round,
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our proposal performs aggregation only twice: once at the end of the 200th epoch to combine
local models with the global model, and another to propagate the updated global model to each
local model. This streamlined aggregation process contributes to the efficiency of our Federated
Hospital architecture, resulting in faster convergence and more efficient resource utilization.

Regarding inference performance, Scenario 1 demonstrated our proposal’s capability to han-
dle homogeneous data distribution effectively. Although it did not surpass the accuracy of the
other approaches, it provided a comparable performance, particularly when compared to the
standard FL model. Notably, the standard FL model even outperformed the standard ML model
for some labels under homogeneous data distribution, showcasing its ability to leverage local-
ized data for enhanced accuracy.

However, the true potential of our proposal emerged in Scenario 2, where we introduced
heterogeneous data distribution. The results from this scenario demonstrated the substantial
benefits of the proposed Federated Hospital architecture in handling varying data distributions
within smart hospitals. The architecture’s adaptability to localized data patterns and robust-
ness in capturing global trends underscore its potential for revolutionizing intelligent healthcare
systems.

With this, we list our main achievements as follow:

• Efficient Resource Utilization: Our proposed Federated Hospital architecture demon-
strated significant advantages in resource usage and convergence time. With a 155-second
completion time for 200 epochs, it outperformed the standard FL approach due to stream-
lined aggregation methodologies.

• Handling Heterogeneous Data Distribution: The true potential of our proposal emerged in
Scenario 2, where we introduced heterogeneous data distribution. The results highlighted
the substantial benefits of the Federated Hospital architecture in adapting to varying data
distributions within smart hospitals.

We also point the main limitation of our proposal:

• Privacy and Security Concerns: While FL offers data privacy advantages, ensuring robust
security measures is crucial to safeguard patient information against potential threats.

The Federated Hospital architecture empowers smart hospitals to train specialized ma-
chine learning models for each department, leading to tailored and more effective patient care.
The proposed architecture optimizes model accuracy by leveraging localized data patterns and
global trends, contributing to better healthcare decision-making and treatment outcomes. In
summary, this proposal could be beneficial for patient care and the improvement of personal-
ized models. With the model being used in a hospital, we could give better classification results
for possible diseases, control stress levels from hospital staff more precisely, and overall, in-
crease life quality from its users.
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7 CONCLUSION

In this proposal, we introduced the Federated Hospital: A Multilevel Federated Learning Ar-
chitecture for Smart Hospitals, aimed at leveraging the benefits of federated learning in the con-
text of intelligent healthcare systems through specialized models. Our architecture addressed
the challenges of model adaptation based on data heterogeneity. By dividing the MNIST dataset
into hospital sections and training specialized models at each level, we achieved promising re-
sults that showcased the advantages of our approach. Through extensive evaluation in two
distinct scenarios using three models, including a standard machine learning approach, a stan-
dard federated learning approach using FedAvg, and our novel Federated Hospital approach,
we were able to compare their performance and highlight the contributions of our proposed
architecture.

The results demonstrated that the Federated Hospital approach outperformed the standard
machine learning approach in terms of accuracy, especially when considering the hospital sec-
tion specific characteristics of data. Compared to the standard federated learning approach, our
architecture exhibited improved performance for local users in terms of patient-level accuracy
and convergence speed, while maintaining a strong global representation.

In Section 1.4 we presented our hypotheses for this proposal. With the development of this
work, we can take the following conclusion: Hypotheses 1 - Confirmed. Our experimental
results confirmed Hypothesis 1, demonstrating that the Federated Hospitals architecture out-
performed the standard federated learning approach in terms of accuracy when dealing with
unbalanced datasets; Hypothesis 2 - Confirmed. We can also confirm the second hypothesis,
the multilevel aggregation approach was able to create specialized service models for each hos-
pital ward, having performed better even when compared to standard ML method.

The evaluation metrics revealed significant improvements in classification accuracy, con-
vergence speed, and resource utilization when compared to both the standard machine learning
approach and the standard federated learning approach. The results demonstrated that the Fed-
erated Hospital architecture effectively captured the local characteristics and behaviors within
each hospital ward, while maintaining a strong global representation.

Our contribution lies in bridging the gap between localized expertise and global knowledge
sharing. The Federated Hospital architecture effectively combines the strengths of both ap-
proaches, resulting in accurate models that specialize in local data while maintaining a cohesive
global representation.

Overall, our proposed Federated Hospital architecture offers a promising solution for ad-
dressing the challenges of heterogeneous data distribution in smart hospitals. By combin-
ing the power of federated learning with the localized expertise within hospital sections, we
demonstrated improved performance, patient-level accuracy, and convergence speed. The ar-
chitecture’s flexibility, efficiency, and superior inference performance highlight its potential to
revolutionize data-driven decision-making in healthcare, promoting improved patient care and
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tailored services across diverse hospital environments.

7.1 Contributions

The contributions of our proposal are twofold. First, we introduced a multilevel architecture
that enables specialized training at local levels while ensuring effective aggregation at a global
level. This architecture provides a practical solution for utilizing localized expertise within
smart hospitals, enhancing the accuracy and efficiency of healthcare services.

Secondly, our evaluation highlighted the effectiveness and advantages of the Federated Hos-
pital approach. By leveraging the unique characteristics of each hospital section, our approach
achieved improved performance for local users, ensuring personalized and accurate predictions
while maintaining the global knowledge representation.

7.2 Publications

During the development of this mater thesis, we had a set of publications. First we detail a
list of articles that were important to develop this work, but does not comprehend the core of
the current proposal.

• PriBB: A Benchmark Proposal to Analyze Blockchain Applications Performance - Con-
ference: 2020 XLVI Latin American Computing Conference (CLEI);

• Blockchain in the reverse agrochemical supply chain: a systematic mapping study - Jour-
nal: International Journal of Business Information Systems, 2021;

• Fuzzy time series for predicting phenological stages of apple trees - Conference: SAC
’21: The 36th ACM/SIGAPP Symposium on Applied Computing;

• Machine learning through the lens of e-commerce initiatives: An up-to-date systematic
literature review - Journal: Computer Science Review, 2021;

• Otimizando o diagnóstico automatizado de glaucoma a partir de imagens de fundo de olho
- Conference: XXII Escola Regional de Alto Desempenho da Região Sul (ERAD-RS),
2022;

• Development and testing of methods for detecting off-wrist in actimetry recordings -
Journal: Sleep, Volume 45 Issue 8, 2022;

• Fraud detection and prevention in e-commerce: A systematic literature review - Elec-
tronic Commerce Research and Applications, 2022;

• Aiding Glaucoma Diagnosis from the Automated Classification and Segmentation of
Fundus Images - Book: Intelligent Systems, 2022;
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• A Blockchain-Based End-to-End Data Protection Model for Personal Health Records
Sharing: A Fully Homomorphic Encryption Approach - Journal: Sensors, 2023.

In addition, to the afford mentioned set of publication we also have a group of closed related
research papers.

• Unindo Aplicações Críticas e Sensores IoT com QoS Individual e Adaptativo em Hos-
pitais Inteligentes - Conference: Simpósio Brasileiro de Computação Aplicada à Saúde
(SBCAS) 2021;

• Looking at Smart Cities Through the Lens of a Pandemic Era: A Systematic Literature
Review - Journal: International Journal of Technology Management, 2022;

• Uma arquitetura escalável e segura para a execução de aprendizado federado no contexto
de hospitais inteligentes - Conference: XXII Escola Regional de Alto Desempenho da
Região Sul (ERAD-RS), 2022;

• Tracking machine learning models for pandemic scenarios: a systematic review of ma-
chine learning models that predict local and global evolution of pandemics - Network
Modeling Analysis in Health Informatics and Bioinformatics, 2022.

7.3 Future works

While our research on the Multilevel Federated Learning Architecture for Smart Hospitals
has yielded promising results, there are several limitations that need to be acknowledged. These
limitations open up avenues for future work and research to further enhance the proposed archi-
tecture:

1. Privacy and Security: Although federated learning preserves data privacy by keeping
the data within each hospital section, potential privacy and security concerns should be
thoroughly addressed. Developing robust mechanisms for secure model aggregation, pre-
venting model poisoning attacks, and ensuring compliance with privacy regulations are
important aspects that require further investigation.

2. Generalizability: While our research demonstrates the efficacy of the proposed architec-
ture within the specific context of smart hospitals, further investigation is needed to assess
its generalizability to other domains and application scenarios. Exploring its applicabil-
ity in diverse healthcare settings, such as outpatient clinics or remote healthcare systems,
could provide valuable insights into its versatility and adaptability.

By addressing these limitations and advancing research in these areas, we can unlock the
full potential of the Multilevel Federated Learning Architecture for Smart Hospitals and pave
the way for intelligent, privacy-preserving healthcare systems that optimize patient care and
enable data-driven decision-making.
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