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RESUMO

A busca pela utilização efetiva dos ativos de produção tem sido constante, principalmente em
indústrias com mecanização em evolução. Desta forma, a gestão da manutenção ganha
visibilidade por ser responsável por garantir a disponibilidade dos ativos. A manutenção
preditiva (MP) é uma das principais estratégias de gestão da manutenção. Permite a detecção
precoce de falhas, evitando paradas não programadas e custos desnecessários. À medida que
as tecnologias avançaram, a manutenção preditiva contribui para que gestão e prognóstico de
saúde seja aperfeiçoada e fornece os meios para reconhecer padrões, entender anomalias e
estimar a vida útil restante do equipamento. Paralelamente, tecnologias como internet das
coisas, aprendizagem de máquina e computação em nuvem permitem a digitalização de ativos,
proporcionando uma manufatura inteligente. No entanto, este cenário torna a MP uma tarefa
complexa e cara quando aplicada a sistemas com equipamentos interligados em série. Por um
lado, os dados são abundantemente gerados, coletados e armazenados. Por outro lado, há
dificuldade em converter os dados em informações úteis para suportar MP e gestão e
prognóstico de saúde. Diante das lacunas referentes a MP e confiabilidade, sugerimos nesta
tese o Prognosis and Health Management System (PHMS) que é suportado por um framework
analítico que utiliza um conjunto de técnicas e modelos aprendizagem de máquina. Para
avaliar a proposição, realizamos um estudo de caso com dados reais da indústria de processo.
No desenvolvimento do framework usamos aprendizagem de máquina semi-supervisionado
com Autoencoder (AE) para construção do limiar operacional e identificação de anomalias.
Para a etapa de identificação de variáveis aplicamos o XGBoost e o método SHAP. Na
sequência, testamos diferentes arquiteturas de aprendizagem profunda para previsão de vida
útil restante do sistema. Na previsão vida útil restante apresentamos diferentes arquiteturas de
aprendizagem profunda. Neste sentido, destacamos a arquitetura de aprendizagem profunda
N-BEATS como uma alternativa importante, em comparação com arquiteturas tradicionais
como Redes Neurais Recorrentes (RNN). Por meio do framework aplicado ao estudo de caso,
foi possível identificar uma anomalia, o comportamento das variáveis mais relevantes para a
falha, e prever a vida útil restante do equipamento com R2 superior a 90% com o N-BEATS.
Desta forma, de acordo com os resultados apresentados, as equipes de operação e manutenção
podem realizar ações preventivas evitando paradas não programadas do sistema produtivo.
Neste sentido, o desenvolvimento do framework contribui para a adoção de tecnologias
emergentes em processos reais. Além dos benefícios apresentados, destacamos o
desenvolvimento de estudos de MP em dados reais desconhecidos do ambiente acadêmico.
Chamamos atenção para este ponto, pois a ampla maioria dos estudos de confiabilidade são
realizados sobre dados amplamente conhecidos e tratados.

Palavras-chave: Tomada de decisão. Indústria 4.0. Internet das Coisas. Aprendizagem de
máquina. Confiabilidade. Vida útil restante.



ABSTRACT

The search for the effective use of production assets has been constant, mainly in industries with
evolving mechanization. In this way, maintenance management gains visibility as it ensures
asset availability. Predictive maintenance (PDM) is one of the main maintenance management
strategies. Allows early detection of failures, avoiding unscheduled downtime and unnecessary
costs. As technologies have advanced, predictive maintenance improves Prognosis and Health
Management (PHM). It provides the means to recognize patterns, understand anomalies and
estimate the equipment’s remaining useful life (RUL). At the same time, technologies such as
the internet of things (IoT), machine learning (ML), and cloud computing enable the digitization
of assets, providing intelligent manufacturing. However, this scenario makes PDM a complex
and expensive task when applied to systems with equipment connected in series. On the one
hand, data is abundantly generated, collected, and stored. On the other hand, it is difficult
to convert data into useful information to support PDM and PHM. Given the gaps related to
PDM and reliability, we suggest the Prognosis and Health Management System (PHMS) in this
thesis, which is supported by an analytical framework that uses a set of techniques and ML.
First, we performed a case study to evaluate the proposition with real data from the process
industry. In developing the framework, we used semi-supervised ML with Autoencoder (AE)
to build the operational threshold and identify anomalies. For the Feature Identification step,
we applied XGBoost and the SHAP method. Next, we test different deep learning architectures
to predict the RUL of the system. In the RUL prediction, we present different deep learning
architectures. In this sense, we highlight the N-BEATS deep learning architecture as an essential
alternative to traditional architectures such as Recurrent Neural Networks (RNN). Through the
framework applied to the case study, it was possible to identify an anomaly and the behavior
of the most relevant variables for the failure and predict the RUL of the equipment with R2

greater than 90% with N-BEATS. In this way, according to the results presented, the operation
and maintenance teams can carry out preventive actions, avoiding unscheduled stops of the
production system. In this sense, the development of the framework contributes to the adoption
of emerging technologies in real processes. In addition to the benefits presented, we highlight
the development of PDM studies on real data unknown in the academic environment. We draw
attention to this point, as most reliability studies are based on widely known and treated data.

Keywords: Decision-making. Industry 4.0. Internet of Things. Deep learning. Machine
Learning. Reliability. Remaining Useful Life.
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1 INTRODUCTION

Technology has supported and catalyzed advances in different industries and processes in
recent years (WANG et al., 2018). In this context, in production systems, it is essential to
adapt to the needs and requirements of different markets, such as a high product mix, low life
cycle, and constant introduction of new competitors (GÄRTNER, 2018). Therefore, production
models need to differ from linear models, where processes are like silos without interaction and
communication between operations. For this, a new paradigm of production system emerges
as a solution, which has as its primordial requirement the use of technology for the integration
of devices and digital systems (Kagermann; WAHLSTER; HELBIG, 2013; TERRISSA et al.,
2016).

The German government first declared the Fourth Industrial Revolution (a.k.a Industry 4.0

(I4.0)) at the Hannover Fair in 2011, viewed as a high-tech strategy for 2020, and notably
based on the development of cyber systems (HENNING LUKAS WOLF-DIETER, 2011).
Modern industrial systems are complex systems that integrate physical, software, and network
components into so-called cyber-physical systems (CPS) (LIU et al., 2018). Under this
perspective, a production system consists of several interconnected types of equipment with
different functions. In process industries comprising a wide variety of manufacturing systems,
from petrochemical facilities to glass, food, and pharmaceutical manufacturing, the adoption
of technology has been constant, mainly to increase the availability of production plants
(PERNO; HVAM; HAUG, 2022). Thus, continuous advances in several areas have increased
expectations about the performance of these systems in terms of reliability and responsiveness
to support decision-making (SÉNÉCHAL; TRENTESAUX, 2019; SIAFARA et al., 2017).

One of the Predictive maintenance (PDM) main objectives is to determine how long a
system will run by analyzing data from its component equipment (FILZ et al., 2021;
MÁRQUEZ et al., 2020). However, implementing PDM at the system level is a complex and
costly task when assets are interconnected. However, the results tend to offset the adoption
efforts (LARRINAGA et al., 2018). Furthermore, technological advances driven by I4.0, such
as the IoT, Artificial Intelligence (AI), and cloud computing, enable the digitalization of assets
creating smart manufacturing. Thus, they contribute to PDM being at the center of attention of
researchers and the business area. Thus, through technologies, PDM becomes viable in the
industry in complex environments (PERNO; HVAM; HAUG, 2022; CHRISTOU et al., 2022).

In the smart manufacturing context, using technologies provides several gains, especially for
assets with Condition Monitoring (CM). In this regard, Condition-based Maintenance (CBM)
has evolved through equipment data. Condition-based monitoring consists of monitoring a
machine condition parameter so that a deviation indicates a developing fault and may be related
to a specific variable, enabling the system to trigger a warning or alarm (CALLE et al., 2019).
As technologies have advanced, CBM has evolved into Prognosis Health Management (PHM),
which provides robust capabilities for dynamic pattern identification and enables understanding
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and estimating the Remaining Useful Life (RUL) of equipment and systems (KONG et al., 2020;
CALLE et al., 2019). Therefore, the enabling technologies play an important role in CBM
and PHM adoption, allowing for early fault detection and avoiding losses for organizations
(CAIAZZO et al., 2022; PERNO; HVAM; HAUG, 2022; SCHWARTZ et al., 2022; ROSATI et
al., 2022).

Early anomaly detection is the starting point for understanding a potential failure. When
an abnormal condition is detected in the PHM approach, a possible action is to estimate the
time until the equipment or system does not meet the functional requirements. In this sense, the
interval between anomaly detection and failure consists of the equipment’s RUL. Thus, a clear
understanding of the system is essential for fault diagnosis and prognosis, and this is currently
made possible through the advancement of enabling technologies (ROSATI et al., 2022; CHEN
et al., 2021; YANG; ZHENG; QI, 2020; KRAUS; FEUERRIEGEL, 2019).

Approaches for anomaly detection and maintenance estimation are typically used to
identify failure in a system component or subcomponent (ZOU et al., 2022). In essence,
prognosis provides the predictive element complementing the diagnostic capabilities to
identify and quantify the potential defect (SCHWARTZ et al., 2022). From an operator and
maintainer’s perspective, the provision of the warning time for useful life or failure is what
separates prognosis from diagnosis. Therefore, prognostics is the PHM component that
estimates the time until a failure occurs, enabling operators and maintainers to take preventive
actions (CAIAZZO et al., 2022; SCHWARTZ et al., 2022). According to Figure 1, detection
and correction actions should be as close to the anomaly as possible. Thus, managing the
relationships between diagnostics and prognostics is of utmost importance to avoid unplanned
downtime and consequent unnecessary costs.

Studies addressing PHM point to the need to improve the forecasts’ reliability. Regarding
accuracy, it is crucial since RUL is still a developing subject (FERREIRA; GONÇALVES,
2022; ROSATI et al., 2022). Therefore, anomaly detection is critical, particularly in an
environment in which the data is noisy, such as the industrial environment (YANG et al., 2022;
BENKER et al., 2021). However, getting consistent samples to train ML models for new types
of equipment and peripherals takes a lot of work. As such, this field is highly relevant and
challenging, especially for estimating RUL in a real industrial environment (BENKER et al.,
2021; MA; MAO, 2021).

According to Figure 1, the cornerstone of a successful fault detection and prognosis
approach lies in Feature Identification (FI) (OMRI et al., 2020). When developing a CBM and
PHM approach for complex systems, converting raw sensor data is critical since it is how to
generate information (CALLE et al., 2019). The application of PHM gains greater importance
when applied to systems since recent studies focus particularly on equipment (CHRISTOU et
al., 2022). In this sense, when studies address the term system, they refer to equipment
components and peripherals, such as bearings, fasteners, and electrical systems. Thus, studies
addressing systems’ PHM, considering different equipment and peripherals, still represent a
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Figure 1 – PHMS - Prognosis and Health Management System and anomaly progression
timeline.
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gap to be explored (CHRISTOU et al., 2022).

1.1 Motivation

The reliability of systems supported by PDM has motivated not only research whose
objective is to highlight the importance of the topic for decision-makers. Moreover, with the
computational power and abundant data generation resulting from technological advances, the
subject of reliability has promoted studies where sophisticated computational models are used
to improve the prediction of equipment failures (CHEN et al., 2020; SAHAL; BRESLIN; ALI,
2020).

However, it is possible to see through the current literature that addresses PDM to have
focused on equipment-centric decisions that do not encompass the entire production system
(LAZAROVA-MOLNAR; MOHAMED, 2019; NAPOLEONE; MACCHI; POZZETTI, 2020;
VOGL; WEISS; HELU, 2019). Thus, the prioritization of maintenance and operation actions
end up not being effective since knowing the conditions of the equipment is fundamental for
the strategies of the maintenance team (SELLITTO, 2005). However, if the equipment is not a
bottleneck, directing efforts to this system may not offer gains for the entire organization
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(CHEN et al., 2020; SAHAL; BRESLIN; ALI, 2020). This way, using the latest
manufacturing technologies in synergy with computational power opens opportunities to
improve the business’s strategic levels.

Knowing when a failure in equipment or system will occur contributes to better decisions
in this context. Generally, when a specific action needs to be performed in an emergency,
the available alternatives are reduced without prior planning, and the cost increases. Figure 1
presents the central point at which decision-making is of fundamental strategic importance for
the business. In this way, the PHMS, as shown in Figure 1, is an alternative approach to increase
system reliability through more efficient asset management.

1.2 Research Question

The motivation was confirmed through a systematic review related to systems’ reliability
as a support for decision-making. Thus, some open challenges and opportunities were listed,
particularly as already presented, the possibility of using PDM of systems strategically to
support better decisions that contribute to increasing the availability of the systems. From the
observed opportunities and challenges, the following research question was listed:

How to develop a prognosis and health management for a production system for support
decision-making using data from equipment and operation for anomaly detection and failure
prediction in Industry 4.0?

The research question, as well as the proposal’s theme, are related to:

• Possibility to increase system reliability by applying the PHMS;

• Evaluate the benefits of I4.0, such as IoT and ML, to improve the performance of
industrial operations considering operation and maintenance;

• Provide support for decision-making operation and maintenance teams with data analysis.

1.3 Scientific Contributions

The main scientific contributions of this work are:

1. Propose a taxonomy with reliability constructs for decision-making in I4.0;

2. Develop an ML pipeline for treatment, analyze and predict failures in a process industry;

3. Create an operational threshold considering data from different equipment with peripheral
systems and operational features applying Deep Learning (DL);

4. Develop a framework for PHMS that aims to identify an anomaly, the possible root cause,
and the prediction of the RUL;
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5. Provide the scientific community with a contextualized dataset from a real environment
for future research.

In addition to the scientific contributions, this work was able to point out some technological
contributions, such as: use of a dataset without publications related to the problem of predicting
the RUL, evaluate different DL architectures for RUL prediction in real and noisy environments;
adoption of interpretability of FI models in the field of PDM.

1.4 Objectives

The general objective of this study is to present an intelligent maintenance approach. To
do this, we take as a backdrop Figure 1 and propose the PHMS as a pipeline. This provides a
robust method that can enrich the decision-making process in maintenance and operations.

1.4.1 Specific Objectives

Specific objectives include:

1. A detailed review of the state of the art, challenges, and applications related to decision-
making in the context of systems reliability in I4.0;

2. Develop a case study with real data from a petrochemical plant to evaluate the proposed
framework;

3. Present a FI model considering the features of the production system and highlighting the
most relevant to generate abnormal conditions over time in a process industry;

4. Test the adherence of different DL architectures in time series with noisy and
non-stationary data to predict the RUL of the system;

The proposed objectives aim to offer decision-makers a robust asset or operations
management approach. In line with the presented gaps and opportunities, the objectives also
provide consistent advances for academia in terms of PDM. Thus, the following subsection
presents the outline of this thesis.

1.5 Document Organization

Having completed the introductory part, this work is organized into seven chapters.
Chapter 2 presents the theoretical foundation and the background of the contents used to
formulate this thesis proposal, information about I4.0, reliability, maintenance management,
and IoT. Chapter 3 highlights the related works based on the previously published Souza et al.
(2020) systematic review. This Chapter justifies the intention and hypotheses for carrying out
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this work. Chapter 4 describes the general structure of the proposed framework for PHMS.
Chapter 5 details the methodological procedures to meet the objectives of this thesis. Finally,
Chapter 6 presents and discusses the results obtained based on the previously published
research Souza et al. (2021). Finally, the conclusion in Chapter 7, along with future work.
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2 BACKGROUND

At first, to identify the main concepts to be studied and their relationships, a systemic map
displayed in Figure 2 was created. With the systemic diagram, it is possible to visualize the
benefits of adopting technologies to production systems, especially the IoT. Systemic diagrams
facilitate understanding of the causal relationships between the topics addressed in the research
and highlight the gains obtained with the technologies. When reading the systemic structure,
we have the relationships represented by colors and meaning. For example, solid black lines
represent directly proportional effects. The red dotted lines represent an inversely proportional
relationship (SOUZA; RODRIGUES; MORANDI, 2018). In this way, we can say that the
more "Investments in IoT", the more "connected devices" and the more "connected devices",
the more "generated data"; the more "generated data", the greater the "analysis complexity" and
thus, the more "Machine Learning" and the more "Machine Learning", the better "Maintenance
strategies" can be used. Following the reasoning, the better the "Maintenance strategy", the less
"Unplanned maintenance" and the less "Spare parts" and with that, the less "Operating costs".
Through this analysis, the most relevant themes are evident, which justifies attention in this
section.

Figure 2 – Systemic background scope map: Green clouds represent the focus of this research.
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In the systemic map, the concepts are related and converge to a focal point of financial
increment for the organization. Financial gains are not part of the scope of this thesis and are
highlighted in blue in Figure 2. However, for financial gains to become a reality, we position
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the IoT technology driven by I4.0 as a fundamental link concerning the approaches proposed in
this research. In this way, we started detailing these concepts, outlining the reliability obtained
through the maintenance processes and, following with the challenges and technologies applied
to the I4.0, which are fundamental themes for the elaboration of this thesis.

2.1 Reliability

According to Ziegel (2004), the first paper published to address the term reliability was in
1963 in the IEEE Journal. In this way, Kirkmant (1963) defines reliability as the probability
that a technological system will operate correctly for a given period in a given environment.
However, in this study, we use reliability definitions according to standards such as ISO1 8402
and BS2 4778, as described in the sequence.

Reliability is the ability of an item to perform a necessary function, under environmental

and operational conditions over a defined period (ISO 8402).

• The expression "item" in this case indicates equipment, subsystem, or system that can be
an entity;

• An essential role can be a single role or a set of functions required to provide a particular
service.

Countless efforts have been made since the 1970s in the field of reliability to evaluate
equipment and systems, as well as to meet the requirements for which they were designed
(BURDICK et al., 1977; ZIEGEL, 2004).

Preliminary reliability studies typically classify systems based on mutually exclusive states
working or failed (KIRKMANT, 1963). However, the need for improvement in reliability
studies has evolved along with the requirements of products and processes (BLACK; MEJABI,
1995; Kagermann; WAHLSTER; HELBIG, 2013; LIN; CHANG, 2012; NGUYEN et al.,
2016).

With the concept of reliability presented and positioned within this research, the next step
is to understand how this concept relates to equipment briefly.

2.1.1 Equipment Reliability

The equipment’s reliability corresponds to the mission of meeting the requirements, and
the performance expected by the manufacturing systems (BIANCHINI; PELLEGRINI; ROSSI,
2019; USTUNDAG; CEVIKCAN, 2018). The equipment is subject to continuous degradation,
depending on the operations in which it performs.

1International Organization for Standardization
2British Standard
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Traditional equipment monitoring models are focused on analyzing availability where the
times between failure and the times between repairs are recorded and provide information for
calculating availability. It is possible to describe the Availability Equation 2.1 employing the
Mean Time Between Failures (MTBF) and the Mean Time to Repair (MTTR)
(GOPALAKRISHNAN et al., 2019; ZIEGEL, 2004; SALUNKHE; FUMERO, 2017).

Aav =
MTBF

MTBF +MTTR
(2.1)

With the data used to calculate availability, it is possible to estimate the probability
distribution that best corresponds to the failure mode of the equipment (HASHEMIAN;
BEAN, 2011; LAZAROVA-MOLNAR; MOHAMED, 2019). The principal probability
distributions used are; exponential, Weibull, gamma, and log-normal (SAGE; ROUSE, 1999).
With the reliability distribution that best represents the failure mode, it is possible to analyze
the equipment’s health. The bathtub curve, Figure 3, has been used to determine the best
maintenance strategy based on the time of operation (KIRKMANT, 1963; ZIEGEL, 2004).

Figure 3 – The bathtub curve.
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In the bathtub curve, the authors propose three phases, as well as the maintenance strategy,
suggested for the equipment (CANITO et al., 2017; KIRKMANT, 1963; MACCHI et al., 2012):

• Infant Mortality: in this region, premature failures occur, such as failures or errors in
the manufacturing, installation, or operation processes. In this situation, the best strategy
for the period is corrective maintenance, analyzing and resolving the causes of premature
failures;

• Useful Life: in this phase, the equipment has a constant failure rate, originated by random
failures, as an insufficient safety factor or errors in the operation process. In this case, the
maintenance strategy indicated would be PDM;

• Wear-out: in this region, the failure rate has a gradual increase as time progresses,



23

caused by usage time, fatigue, or wear. At this moment, the indicated strategy would be
preventive maintenance.

In the survey conducted by (HASHEMIAN; BEAN, 2011), he pointed out that few
industries benefit from PDM techniques (HASHEMIAN; BEAN, 2011). Instead, the engineers
use PHM to detect anomalies or defects in the equipment and its systems (NEMETH et al.,
2018). This maintenance is usually done in an invasive manner, being visually and physically
on the machine where, in some cases, it is necessary to shut down the system (CANITO et al.,
2017).

Although maintenance based on periodic reviews is the most applied and used method,
these techniques are an unproductive and unreliable approach, according to recent research
classification (GAO et al., 2015). This reliability management model is less efficient and
expensive due to unplanned downtime, and possible damage to equipment (BIANCHINI;
PELLEGRINI; ROSSI, 2019). Also, in some cases, the need for a large number of spare parts
in stock, which would not be necessary in many cases, ends up increasing costs for the
company (KINNUNEN et al., 2018; KOLINSKA; KOLINSKI, 2018; LIN; CHANG, 2012).

The evolution of technology collaborated with PDM, providing advanced and less invasive
techniques with passive monitoring (CANIZO et al., 2017). The use of wireless devices and
Supervisory Control and Data Acquisition (SCADA) provides companies with new ways to
collect information about the performance of their industrial assets (NEMETH et al., 2018).
These systems can obtain more data in a more straightforward and less complicated manner
(KIANGALA; WANG, 2018; NEMETH et al., 2018; MCA; MCA; MANDA, 2018). Therefore,
the volumes and variety of data available are more significant. However, a problem that arises
is identifying which data is the most important and which is not. Consequently, the challenge is
to know how to obtain valuable information from this data and generate knowledge to support
decision-making processes (KIANGALA; WANG, 2018; ZHONG et al., 2017).

As part of new technologies, Data Analytic (DA) algorithms have started to extract
information from historical data. Such algorithms allow us to identify industrial equipment’s
behavior over time and estimate possible future failures based on the extracted information
(ZHONG et al., 2017). This technological approach used in the industries has been gaining
importance and speed due to the movement provided by I4.0 (BOUSDEKIS; MENTZAS,
2017). It has its bases centered on information technology and which, in turn, provides the
collection, storage, and analysis of a large amount and a variety of data (GAO et al., 2015;
Kagermann; WAHLSTER; HELBIG, 2013; LAZAROVA-MOLNAR; MOHAMED, 2019;
ZHONG et al., 2017).

Like the human body, production systems are composed of several operations. In this
analogy, systems composed of different equipment must be operating within the best
conditions for the production to deliver the expected results (BIANCHINI; PELLEGRINI;
ROSSI, 2019; KIANGALA; WANG, 2018). That is, they need the system’s reliability to be
the best possible. Therefore, in the next topic, we place this concept within the scope of this
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research.

2.1.2 Systems Reliability

Currently, changes in the context of productive systems have been persistent. The diversity
of products with distinct characteristics has been a requirement of different markets (CHEN
et al., 2020). Regardless of the sector and the activity, the production systems’ features are
similar, where high productivity, low cost, and demand with high variability are competitive
factors (NGUYEN et al., 2016).

Researchers have suggested different maintenance strategies to save system reliability and
meet production requirements along with the manufacturing change context. A system typically
comprises several subsystems and components that are interconnected so that the system can
perform a set of necessary functions (ZIEGEL, 2004).

It is necessary to analyze the system as a whole, design, manufacture, and application to
meet markets’ requirements, such as demands for high reliability and durability. Therefore, it is
required to maximize reliability throughout the product’s life cycle(BOUSDEKIS; MENTZAS,
2017; CHEN et al., 2020). Thus, companies’ competitiveness is deeply related to the reliability
of the manufacturing system (LEE, 2020).

To some extent, the trouble-free operation capability of the manufacturing system
determines the level of inherent reliability formed in the manufacturing process
(BOUSDEKIS; MENTZAS, 2017). The traditional reliability modeling of manufacturing
systems tends to follow the classic methods of the reliability block diagram, Fault Tree
Analysis, Petri Nets, and so on (LEE, 2020). These methods provide a comprehensive analysis
of the manufacturing system. However, they end up being complicated or inconvenient,
considering that it depends on the prior analysis of the subsystem and equipment reliability
individually (LEE, 2020; MEJÍA; PEREIRA, 2020; ZIEGEL, 2004)

The introduction of technology to efficiently check the equipment’s condition is currently
one of the most relevant maintenance tools, contributing to predictive models’ improvements.
Detecting failures or threats on a device before they occur and suggesting repairs to reduce
the likelihood of failure is an essential contribution to productive systems. According to this
scenario, PDM, which uses monitoring and data analysis techniques to predict when a failure
may occur in equipment, gains even more relevance in maintenance management (KIANGALA;
WANG, 2018; TERRISSA et al., 2016).

2.1.3 PDM - Predictive Maintenance

PDM has gained prominence in the scientific field in several multidisciplinary research
groups. Combining data collection, infrastructure, storage, and AI disciplines has allowed the
development of consistent lines of research. This section is intended to highlight some of the
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most important topics for understanding and adopting the PDM (LAMONACA et al., 2018;
RODRÍGUEZ-MAZAHUA et al., 2016).

Data generated and collected from various sensors in industrial environments provide
alternative opportunities for system or equipment lifecycle prediction solutions. The notion
that a PDM can provide an intervention schedule based on equipment performance or
condition becomes crucial for the industry’s future. Data from different stages of the
production system is one of the critical requirements for effective PDM execution. As a result,
this can save maintenance costs, and downtime, as well as improve productivity and quality
(KIANGALA; WANG, 2018; YAN et al., 2017).

One of the fundamental concepts related to PDM is PHM, which provides for managing the
life cycle of industrial systems and employs four maintenance techniques: corrective, preventive
at fixed intervals, failure detection, and CBM. The activity is monitored using sensors and
mathematical methods that make it possible to assess the RUL of the equipment. PDM is
one of the key technologies that is being implemented in I4.0 environments to enable smart
manufacturing (KWON; DO; KIM, 2020; NEMETH et al., 2018; RUIZ-SARMIENTO et al.,
2018).

2.1.4 PHM - Prognostics and Health Management

Prognostics and Health Management is a field of study that entails forecasting a system’s
future performance and health and then implementing measures to maximize that performance
and prolong the system’s life (BENKER et al., 2021; LEE et al., 2013). This may include
monitoring the equipment for indicators of wear or deterioration and utilizing this data to
estimate when maintenance or repairs will be required. PHM is applicable to a wide variety of
systems, including mechanical, electrical, and biological systems (FERREIRA;
GONÇALVES, 2022; BERRI; VEDOVA; MAININI, 2021; OMRI et al., 2020; TERRISSA et
al., 2016).

PHM and PDM are related but distinct fields. PDM is a repair technique that utilizes data
and analytics to forecast when equipment is likely to break so that maintenance can be planned
proactively in advance of the failure. This may assist in decreasing equipment downtime and
increasing its lifespan (WEN et al., 2021; XIA et al., 2018; LEE et al., 2014).

PHM is a broader strategy than anticipating equipment breakdowns. It entails projecting a
system’s future performance and health and then taking steps to maximize that performance and
prolong the system’s life. This may include monitoring the equipment for indicators of wear or
deterioration and utilizing this data to estimate when maintenance or repairs will be required.
It also covers decision-making and maintenance action optimization. Thus, PDM is a subset
of PHM as a particular application of PHM that focuses on failure prediction, and maintenance
schedule (FERREIRA; GONÇALVES, 2022; MA; MAO, 2021; BERRI; VEDOVA; MAININI,
2021; OMRI et al., 2020).
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According to several researches, PHM can offer several benefits driven by I4.0, such as
ML and IoT (FERREIRA; GONÇALVES, 2022; WEN et al., 2021; MA; MAO, 2021; BERRI;
VEDOVA; MAININI, 2021; BENKER et al., 2021; CHEN et al., 2021; MAO et al., 2020;
OMRI et al., 2020; VOGL; WEISS; HELU, 2019; XIA; XI, 2019; FERREIRO et al., 2016;
LEE et al., 2014; LEE et al., 2013). These benefits including:

1. Increased uptime: By predicting when equipment is likely to fail, PHM can help to
schedule maintenance proactively and reduce downtime.

2. Extended equipment life: By monitoring equipment for signs of wear or degradation,
PHM can help to identify issues early and take action to extend the life of the equipment.

3. Cost savings: PHM can help lower maintenance and repair costs by reducing downtime
and extending equipment life.

4. Improved safety: By identifying potential equipment failures before they occur, PHM can
help to prevent accidents and improve overall safety.

5. Better decision-making: By providing accurate and actionable information about the
health and performance of equipment, PHM can help to inform decisions about
maintenance and repair.

6. Better optimization of maintenance actions: By providing information about the health
state of the equipment and the Autoencoder (AE), PHM can help to optimize the timing
and scope of maintenance actions, avoiding unnecessary or early maintenance.

7. Predictive Maintenance: By providing information about the state of the equipment, PHM
can support PDM to schedule maintenance proactively before the failure occurs, reducing
downtime and costs.

In this sense, PHM, in the context of I4.0, has started to receive special attention to
increasing the competitiveness of the business.

2.2 Industry 4.0

I4.0 refers to the current trend of automation and data exchange in manufacturing
technologies including IoT, AI, and cloud computing. PDM is a strategy that uses data from
sensors and other monitoring devices to predict when equipment is likely to fail so that
maintenance can be performed before failure occurs. In this way, I4.0 contributes significantly
to improving maintenance techniques and helping to reduce downtime, improve efficiency and
extend equipment life. (ROSATI et al., 2022; DALZOCHIO et al., 2020; ADU-AMANKWA
et al., 2019; GÄRTNER, 2018).
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Maintenance techniques associated with reliability need constant evolution to continue
with the advancement of technologies embedded in products and manufacturing equipment
(SONY; NAIK, 2020). Coupled with advancing technologies, quality in manufacturing is a
prerequisite for continuously producing reliable products, and proactive product reliability
assurance is always a crucial routine for production. In this scenario, I4.0 provides a favorable
environment for the evolution of reliability models (HE et al., 2019; LI et al., 2019).

The goal of I4.0 is to integrate factories with modern technologies such as CPS, IoT, and
Internet of Services, to enhance agility and efficiency of manufacturing systems and to account
for changing business environments (Kagermann; WAHLSTER; HELBIG, 2013;
RUIZ-SARMIENTO et al., 2018; GÄRTNER, 2018). CPS’s background provided
technologies such as Digital Twin, which simulate the production system and monitor the
health of equipment and products (CHENG et al., 2018; ROSEN et al., 2015).

Thus, the technological advances promoted by I4.0 provide continuous monitoring in
real-time of several assets, generating and sending alerts based on predictive and prescriptive
techniques, that it is possible to use ML models (NING et al., 2020; SCHEER, 2019;
GÄRTNER, 2018). However, monitoring conditions in real-time only promotes a certain level
of reliability, in which unpredictable and unexplained failures still occur. Unforeseen failures
tend to have a significant impact, and in some cases, harm the organization as a whole (HE et
al., 2018).

Several authors have focused their reliability studies, using advanced analytical techniques
to I4.0 data (MOSAVI; LOPEZ; VARKONYI-KOCZY, 2018). However, these studies are, in
general, limited to descriptive analysis without considering the possible impacts in financial
results and quality service with suppliers or customers. As such, they do not address the
potential of integrating I4.0 technologies with customer needs, equipment health, and suppliers
(NAPOLEONE; MACCHI; POZZETTI, 2020; PREUVENEERS; JOOSEN; ILIE-ZUDOR,
2018; SANDENGEN et al., 2016; TERRISSA et al., 2016).

2.2.1 Internet of Things

IoT refers to the concept that any device, component, asset, or another item that can
connect to a network and send data can become a data source that can be used in some way.
Miniaturization and falling prices of sensors that measure things like temperature, pressure,
humidity, and vibration have contributed to this growing trend (ROSATI et al., 2022;
LAMONACA et al., 2018).

As sensors and devices cannot have a lot of storage space or processing power, they need
energy efficiency. Most IoT-related approaches, such as cloud computing, need data
distribution and storage strategies, even with cutting-edge methods such as fog and edge
computing in some instances. In this sense, IoT consistently contributes to maintenance
strategies gaining the spotlight (ROSATI et al., 2022; LAMONACA et al., 2018). However, as
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the data supply increases, the models become more complicated because the treatment and
training steps consume a lot of computational resources and analysts’ knowledge
(SHCHERBAKOV; SAI, 2022; CHO et al., 2018).

As shown in Figure 4, implementing technologies such as IoT follows a journey that is not
always linear. However, from I4.0 onwards, the data generated by the equipment begins to
create value for the business. Through connectivity, as shown in Figure 4, in stage 3, visibility,
data collected from sensors begins to be transformed into information providing value to the
organization. The gains for the organization with IoT are usually perceived by improving the
availability of operations, mainly with the reduction of operating costs with downtime.

Figure 4 – Stages in the Industry 4.0 development path, through IoT and the benefits.
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Source: Prepared by the author, adapted from Gärtner (2018).

IoT is often used to implement PDM, as IoT devices collect real-time data from the system
or equipment. Using ML, the collected data can be analyzed to identify patterns or anomalies
that could indicate the possibility of future failures. Based on this information, those responsible
for maintenance can take steps to correct problems before they occur, extending the life of the
system or equipment and preventing downtime. In addition, IoT can also be used to monitor
maintenance performed on a system or equipment, allowing maintenance personnel to track
progress and ensure jobs are being performed efficiently and effectively (GUNGOR; ROSING;
AKSANLI, 2022; SHCHERBAKOV; SAI, 2022; XIA et al., 2020; MÁRQUEZ et al., 2020;
VOGL; WEISS; HELU, 2019).

In the context of I4.0, IoT plays an important role, as it contributes to system
maintainability. Concerning industrial processes, maintainability measures the ease with which
a system or component can be modified to correct errors, adapt to new needs, or improve. This
includes making it easier to find and fix system problems and making changes and updates to
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improve or enhance the system. Maintainability is an important quality criterion for systems,
as a poorly maintained system can be difficult and expensive to maintain and upgrade, leading
to performance issues and system downtime (SHCHERBAKOV; SAI, 2022; VOGL; WEISS;
HELU, 2019).

2.2.2 Machine Learning

In the context of I4.0, ML is used to analyze and make sense of the large amounts of data
generated by the various connected devices and systems. This data is used to optimize and
improve industrial processes, such as PDM, quality control, and energy management (CHEN et
al., 2020; ZHOU; LIU; ZHOU, 2016).

One of the key benefits of ML in I4.0 is the ability to detect patterns and anomalies in the
data that would be difficult or impossible for humans to detect. This can be used to improve
the efficiency and productivity of industrial systems, as well as to detect and prevent problems
before they occur (JIMENEZ et al., 2020; CHEN et al., 2020).

There are several specific ways ML is being used in I4.0, such as:

1. Predictive maintenance: ML models can predict when equipment is likely to fail, allowing
maintenance to be scheduled before a breakdown occurs and reducing downtime and
maintenance costs.

2. Quality control: ML models can be used to monitor and control the quality of products
being produced in real-time, identifying and correcting issues before they reach the end
customer.

3. Optimization of industrial processes: ML models can be used to optimize the parameters
of industrial processes, such as energy consumption, to improve efficiency and reduce
costs.

4. Autonomous systems: ML is a key technology in the development of autonomous
systems, such as self-driving cars and drones, which are becoming increasingly relevant
in the industrial context.

As shown in Figure 4, the development of I4.0, mainly in stages 1 and 2, makes it possible
to connect devices through IoT and store a larger volume of data. With this, the evolution to
stages 4 and 5, where ML gains relevance, is made possible. In this way, the application of ML
contributes significantly to decision support (MOSAVI; LOPEZ; VARKONYI-KOCZY, 2018;
GÄRTNER, 2018).

ML can be a powerful tool to help with PHM in several ways, as following:

1. Data analysis: analyze large amounts of sensor data from equipment, looking for patterns
and trends that indicate potential issues.
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2. Failure prediction: predict when equipment is likely to fail based on sensor and historical
failure data.

3. RUL prediction: predict the RUL of equipment based on sensor data and degradation
models.

4. Anomaly detection: detect abnormal equipment behavior, indicating potential issues.

5. Decision-making: support decision-making by providing recommendations for
maintenance and repair actions based on the equipment’s health and performance.

6. Optimization: optimize maintenance actions by providing information about the RUL and
the health state of the equipment.

7. Online monitoring: monitor the equipment in real-time and detect any abnormal behavior,
providing early warning of potential failures.

8. Self-learning: learn from historical data and improve over time, providing better
predictions and better decision-making.

Adopting ML techniques in PHM can provide a more accurate and automated system for
predicting equipment failure and optimizing maintenance actions, thus reducing downtime and
costs and improving safety.

2.2.2.1 Machine Learning to anomaly detection

Anomaly detection plays a crucial role in I4.0 as it allows monitoring and analyzing the
data from sensors and identifying abnormal behavior or patterns. This can help improve the
efficiency and performance of industrial processes and reduce the likelihood of equipment
failure or other issues. For example, in manufacturing, anomaly detection can be used to
monitor the performance of machines and detect any potential problems before they lead to
breakdowns, which can minimize downtime and reduce maintenance costs (YU; KIM;
MECHEFSKE, 2021; JIMENEZ et al., 2020).

Notably, the choice of an ML model for anomaly detection depends on the type of data
generated in the process, the nature of the anomaly, and the application’s requirements. As the
main ML models, we can highlight the PCA and the AE. The choice between using PCA or
an AE for anomaly detection depends on the specific characteristics of the data and the task at
hand (JIMENEZ et al., 2020; YANG; ZHENG; QI, 2020).

PCA can be a good option for linear data as it is computationally efficient and easy to
interpret. However, if the data is non-linear or high-dimensional, PCA may not be able to
capture the relevant features, and an AE may be a better choice. AE can also be useful for
handling missing or noisy data (FERREIRA; GONÇALVES, 2022; JIMENEZ et al., 2020).
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Regarding anomaly detection, the AE approach can be effective as it can learn a compressed
representation of the normal data and then detect anomalies based on reconstruction loss.
However, it is sensitive to the quality of the training data, and it may not be suitable for
detecting certain types of anomalies, such as rare events or novel classes. Other techniques,
such as one-class Support Vector Machine (SVM), Isolation Forest, and Local Outlier Factor
(LOF), can be an option to detect the anomalies in such cases (DALZOCHIO et al., 2020;
DIEZ-OLIVAN et al., 2019). These methods have their trade-offs, and it is important to test
multiple algorithms to find the best one for a specific dataset and problem (YU; KIM;
MECHEFSKE, 2021; KRAUS; FEUERRIEGEL, 2019; VERMA; CHANDRA; DWIVEDI,
2016).

2.2.2.2 Autoencoder for anomaly detection

An AE is a type of neural network that is used for unsupervised learning. It aims to learn a
compressed representation (encoding) of the input data and reconstruct the original input from
that encoding. The network typically comprises two parts: an encoder that maps the input to a
lower-dimensional encoding and a decoder that maps the encoding back to the original input
space. The training aims to minimize the difference between the original input and the
reconstructed loss. Autoencoders have been used for many tasks, such as anomaly detection,
dimensionality reduction, and generative modeling (FERREIRA; GONÇALVES, 2022;
SCHWARTZ et al., 2022; KONG et al., 2020).

For anomaly detection, the basic concept is to train the AE on a dataset that contains only
"normal" examples and then use it to detect anomalies in new, unseen data. The intuition
behind this approach is that the AE has learned a compressed representation of the "normal"
data during training and will have difficulty reconstructing examples significantly different
from this "normal" data. One way to use the AE for anomaly detection is to calculate the
reconstruction loss, which is the difference between the input and the reconstructed loss. If the
reconstruction loss is high for a given input, the input is likely an anomaly. Another way is
using the encoded output to compute the anomaly score (GOODFELLOW; BENGIO;
COURVILLE, 2016; LECUN; BENGIO; HINTON, 2015; SOCHER et al., 2012).

In the PDM field, data from machines can be analyzed to detect patterns or anomalies that
indicate an imminent failure, allowing maintenance to be scheduled before failure occurs. In
this way, anomaly detection provides the ability to identify and respond to abnormal behavior,
leading to more efficient, reliable, and cost-effective industrial processes. However, due to
the complexity of the models and the analyzed system, identifying which process variable or
equipment parameter is responsible for an anomaly is of paramount importance in the context
of PHM (VOGL; WEISS; HELU, 2019).
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2.2.2.3 Feature identification for anomaly detection

In PHM, feature importance is used to identify which sensor data or operating conditions are
most strongly associated with the health and performance of a system. For example, in aircraft
engine health management, feature importance can be used to identify which sensor data, such
as vibration or temperature readings, are most strongly associated with the likelihood of engine
failure (ALFEO; CIMINO; VAGLINI, 2022).

SHAP (SHapley Additive exPlanations) and Random Forest (RF) are two different
methods for determining feature importance in ML. SHAP is a model-agnostic method that
can be used to explain the output of any ML model. It assigns each feature an importance
value for a particular prediction by calculating the average marginal contribution of that
feature to all possible coalitions of features. The method is based on Shapley values from
cooperative game theory, which assigns the average marginal contribution to each player
(feature) to all possible coalitions (predictions). This method has been proven to have several
desirable properties, such as consistency concerning the feature importance measures obtained
by different methods (YANG, 2021; ZHANG et al., 2020; AGIUS et al., 2020).

On the other hand, RF is a specific ML model often used for feature selection. It is an
ensemble of decision trees, and the feature importance is calculated based on the average
decrease in impurity over all trees in the forest. RF is a robust algorithm for classification and
regression problems, and it is beneficial for high-dimensional datasets and datasets with many
features.

In summary, SHAP is a model-agnostic method that can explain any ML model’s output,
while RF is a specific ML model often used for feature selection (CAMPBELL et al., 2022). In
this sense, due to the complexity of identifying which feature is most important for the health
of equipment and systems, we applied SHAP for FI in the framework proposed.

For the implementation of PHM, the RUL prediction step is of paramount importance. In
this sense, with the abundance of data and powerful algorithms, the task of the RUL gains
prominence in I4.0 (KRAUS; FEUERRIEGEL, 2019).

2.2.2.4 Machine Learning to RUL prediction

Nowadays, there are several techniques for RUL forecasting. However, DL has gained
relevance with the increasing data generation and computational power. DL is a subset of ML
that involves training multi-layered neural networks to learn complex patterns in data. These
networks can automatically extract features from incoming data, making them suitable for
tasks such as RUL prediction involving large amounts of data with complex patterns (ALFEO;
CIMINO; VAGLINI, 2022; LI et al., 2020; ZHAO; WANG; CHU, 2019).

RUL prediction with DL is to use sensor data from the system as input to the model. This
data could include temperature, vibration, pressure, and other relevant measurements. The
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model would then learn to identify patterns in this data that correspond to different stages of the
system’s life and use those patterns to predict when the system is likely to fail. DL models such
as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural
Network (CNN), and others can be used for this task, depending on the nature and structure of
the data (YU; KIM; MECHEFSKE, 2021; JIMENEZ et al., 2020). With the evolution of DL
models, several architectures have received attention due to the results. In this sense, neural
basis expansion analysis for interpretable time series forecasting (N-BEATS) appears as an
alternative to be tested due to the results obtained in forecasting time series (MAKRIDAKIS;
SPILIOTIS; ASSIMAKOPOULOS, 2022; ZHANG; SUZUKI; SHIOYA, 2022; ORESHKIN et
al., 2021; ORESHKIN et al., 2019).

N-BEATS is a neural network architecture for time series forecasting. It is a generalization
of the traditional feedforward neural network, where the model learns to predict the next value
in a time series based on a fixed number of past values. N-BEATS allows the model to learn
the underlying patterns in the time series data and make predictions based on those patterns.
The architecture comprises the "backstage" and the "forecast" model. The "backstage" model
is a stack of fully connected layers that extract features from the input time series, while the
"forecast" model is a stack of fully connected layers that use those features to make predictions.
The model is trained end-to-end to minimize the prediction error on the training data (ZHANG;
SUZUKI; SHIOYA, 2022; ORESHKIN et al., 2021; ORESHKIN et al., 2019).

2.3 Final Remarks

As presented in this chapter, PDM collaborates so that PHM increases system availability.
In this sense, the reliability and maintainability of systems can be considerably improved
through PHM. However, as the connectivity of devices advances and the generation of data
from different sources advances, the complexity of analysis tends to increase in proportions
that are often unequal. In this sense, while I4.0 enables greater data generation, ML models
also evolve and enable better decisions to be taken.

In this sense, to meet this research’s general and specific objectives, we shed light on data
analysis, anomaly detection, and RUL prediction. With these applications combined, it is
possible to develop robust applications. Given this scenario, we position the PHMS, that is, the
application of the PHM in a systemic way, considering several equipments in a production
system and applying combined techniques for anomaly detection, anomaly identification, and
RUL prediction.



34

3 RELATED WORK

This chapter groups together the main works related to supporting the proposed solution
and collaborating with developing a robust methodology. We divided the chapter into four
sections. The first and second sections have a broader level of detail, as it presents the
step-by-step development of the survey methodology concerning the state of employment of
systems reliability for decision-making. These sections also show related works to support and
justify the relevance of this research. The third section presents the results and discussions
obtained from the related works. On the other hand, Section four addresses the opportunities
and motivations presented by the related works.

As an initial step in developing comprehensive research that contemplates related works and
exposes opportunities and motivations, we have defined the main research question preceded by
four other sub-questions. As highlighted at the beginning of this chapter, we detail each step
employed in the next sections. As a starting point, we begin with the research question.

3.1 Research Question

Having defined the challenges and the desired scientific results, we now formulate the main
question (MQ) and the corresponding sub-questions (SQ) that guide this review. Table 1
presents these questions.

Table 1 – Research Questions
Identifier Issue
MQ What types of interactions are used by reliability in Industry 4.0 to Decision-Making?
SQ1 How are the researches on reliability to support decision-making in the context of

Industry 4.0?
SQ2 What are the technical methods applied in reliability to support decision-making?
SQ3 How would be a taxonomy using the terms found for reliability applications in the

Industry 4.0?
SQ4 How has reliability helped the value chain management in the context of Industry 4.0?

Source: Prepared by the author.

The MQ was formulated to report how reliability has been applied to I4.0 to support
decision-making. SQ1 lists the primary means of disseminating research following reliability
to support decision-making in the I4.0. SQ2 understands which main methods and models are
applied in reliability studies to support decision-making. SQ3 searches the main terms found,
for the creation of standardization and presentation of the taxonomy proposal. SQ4 analyzes
the kind of processes integration the reliability has support in the decision-making for the I4.0.
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3.2 Search Strategy

The search string was focused on decision-making using reliability applied in I4.0, based on
previous readings, we identified the need to carry out a literature review and evaluate the types
of decision-making applying concepts of reliability making use of the approach of I4.0.

The string was constructed considering that reliability is associated, most of the time, with
the several commonly used maintenance strategies in the industry. Figure 5 shows the string
used in the search.

Figure 5 – Search String

((("decision-making") and ( reliability  or  availability) and ("industry 4.0"  or
"fourth industrial revolution" or  "smart factory"  or  "intelligent factory"  or
“digital factory”) and (prescriptive or predictive or diagnostic or descriptive)))

Source: Prepared by the author.

3.2.1 Selected studies

We applied the string in Figure 5 until 2019 on Google Scholar. We filtered out papers
published earlier than 2011 and also patents and quotations, resulting in 4040 research papers.
Our screening intended to evaluate the search string to return a more significant number of
studies, for responding to the MQ and SQ.

Out of this analysis, we cataloged papers following the criteria listed in Table 2.

Table 2 – Criteria used to filter out research out of the scope of this paper
Section Description
Criterion 1 Papers published earlier than 2011
Criterion 2 Papers without abstract
Criterion 3 Books, technical reports, dissertations and theses
Criterion 4 Studies less than 4 pages long which are not in English
Criterion 5 Publications that do not use the search terms Industry 4.0, intelligent factory, smart

factory, Fourth Industrial Revolution and reliability in the abstract or keywords
Criterion 6 Publications that do not address Industry 4.0, intelligent factory, smart factory, Fourth

Industrial Revolution and reliability as to decision-making

Source: Prepared by the author.

After the cataloging performed in Google Scholar, we performed the same procedure on
the bases of ACM, IEEE, ScienceDirect, Scopus, Springer, Engineering Village, and Web of
Science. The resulting search strategy is shown in Figure 6.

Enhance the selection strategy of articles that were part of the study is fundamental.
According to criterion 1, the date for searching began in 2011, when the term was coined
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Zhou, Liu e Zhou (2016), resulting in 5412 articles. After that, we removed duplicate titles,
after which 2177 papers remained. We then applied criteria 2, 3, and 4, resulting in only 223
studies. Then, criterion 5 was applied, where 136 articles remained. We then carefully read
these articles while applying criterion 6. Some studies presented the concepts of reliability but
not applied to I4.0. The articles’ validity to compose the literature review should consider I4.0
concepts in reliability to support decision-making.

Figure 6 – Screening of research
Definition of Research Question

Review Scope

Method definition

Create String

5412 studies returned from searches on bibliographic
bases between 2011 and 2019

Studies cleaning duplicates - 2177

Studies selected after applied criteria 2,3 and 4  - 223

Studies selected based on criteria 5 - 136

Studies selected based on reading the full text, criteria 6 - 54

Search - 122
publications 

between 
2011 and 2019

Google 
Academic Sciencedirect Scopus IEEE

Search - 30
publications

between 
2011 and 2019

ACM Proquest Engeneering
Village

Search - 475
publications 

between 
2011 and 2019

Search - 148
publications

between 
2011 and 2019

Springer

Search - 13
publications

between 
2011 and 2019

Web of 
Science

Search - 8
publications

between 
2011 and 2019

Search - 4040
publications 
between   

2011 and 2019

Search - 253 
publications 

between 
2011 and 2019

Search - 323
publications

between 
2011 and 2019

Source: Prepared by the author.

In the Appendix E and F, are shown the resulting selected articles, which list the year of
each publication and the publisher. The separation between journal and conference aims to
highlight differences in the methodological approaches and objectives of the studies according
to the type of publication.

In Appendix E, we present the selected articles which list the year of each publication, the
publisher, and journal where the papers were published.

The resulting selected articles are shown in Appendix F, which lists the year of each
publication, the publisher, and the conference where the papers were published.

In the following section, we present the results and discussion in response to scientific
challenges and research questions based on the studies selected in the literature review.
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Figure 7 – Total aggregate distribution of publications by Publisher.

Source: Prepared by the author.

3.3 Results and Discussion

3.3.1 How are the researches on reliability to support decision-making in the context of I4.0?

In this subsection, we discuss and respond to how research on reliability support decision-
making in the context of I4.0 are being reported. In Appendix E and F we summarize the answer
to the research question. The tables show the types of publications, publishers, and names of
the articles that compose the study corpus. In Figure 7, the number of publications is distributed
by the publisher, where we can observe that the publishers Springer, Elsevier and, IEEE have
the highest representativeness of publications.

Although I4.0 has the fundamentals in different technologies, publishers such as the ACM
still do not provide a representative amount of publications when associated with decision-
making through reliability studies. However, it is possible to observe in Figure 7, that the bar
graph presents a multidisciplinary characteristic, that is, the publications are in several areas of
knowledge. Meanwhile, Figure 8 shows the ratio of paper by type.

Also show in Figure 8, the pie chart with journals and conference distributions. Moreover,
we can observe that journals have more representability in publications selected to compose the
survey corpus.

In Figure 9, we show the annual evolution of publications, with an emphasis on 2016 and
rapid growth where the trend line confirms it. One factor that can be highlighted is the growing
expansion of IoT and the advanced models of ML in I4.0 as responsible.

Accompanying the rapid growth of publications from 2016, we show that articles
published in the journal had a significant increase in 2018, according to Figure 10. Such
evolution collaborates with the relevance of the theme in the academic and scientific
environment. However, understanding what types of publications the scientific academia has
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Figure 8 – Distribution of publications by Type

Source: Prepared by the author.

contributed is necessary. In this matter, Figure 11 presents an extract with a methodological
division used in the studies that compose the present survey.

As we can detect in Figure 11, publications applying case studies have occurred more
frequently. The greater representativeness of this type of research indicates that the reliability
studies for decision-making in the context of I4.0 have been directing efforts to practical
applications with organizations. Such evolution was, until mid-2016 studies, focused on trends
and architectures, which can be noticed in Figure 11. These trends are in line with what is
proposed by Kagermann, Wahlster e Helbig (2013) in the study entitled, Recommendations for
I4.0 Implementation, which suggests that enablers technologies should be used for
problem-solving and decision-making.

To summarize and collaborate with the answer to the research question SQ1, we produced
Appendix G with the division between the corpus articles and the individual approach employed
in conducting the research that was intended to be solved.

After answering the research question, How are the researches on reliability to support
decision-making in the context of I4.0?. The next step will be using the studies that compose
the survey and answer the second question that guides the present study.

3.3.2 What are the technical methods applied in reliability to support decision-making?

To answer this question, we used different contexts to evaluate the articles. First, we
analyzed information related to the main methods and techniques applied in reliability of
systems studies to support decision-making. Second, we examined the methods and techniques
applied according to the purposes of the studies. Third, we discuss the techniques and methods
used according to the main focus of studies.
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Figure 9 – Distribution of publications by year with exponential tendency.

Source: Prepared by the author.

3.3.2.1 The main methods and techniques

Initially, we performed a classification of each technique applied in the articles selected
for the corpus. The subdivision was carried according to the primary technique related to the
main focus of the study (ISMAIL; TRUONG; KASTNER, 2019; KRUMEICH et al., 2014;
LIU et al., 2018; QIAO et al., 2012; REHMAN et al., 2016; SAHAL; BRESLIN; ALI, 2020;
SAWANT; SHAH, 2013). Thus, we present in Figure 12 the proportion of techniques applied
in the articles: Communication, Ingestion, Analysis and Storage.

• We catalogued as Communication the technique which the articles address sensor
applications, integration, micro-services, CPS propositions, IoT on the shop floor, better
equipment information capture techniques, multi-agent proportion, and wireless
architectures (SALAZAR et al., 2019; LEE; ZHANG; NG, 2017; LEE et al., 2014;
MOURTZIS; VLACHOU, 2018; ZHENG et al., 2018).

• Ingestion is the technique related to the ability to validate, clean, transform, noise
reduction, and integration of data from equipment and systems (ISMAIL; TRUONG;
KASTNER, 2019; MOURTZIS; VLACHOU, 2018; O’DONOVAN et al., 2015;
REHMAN et al., 2016; SAWANT; SHAH, 2013).

• The main methods that we grouped in this category are: Feature Extraction (FE) to
evaluate sensors in IoT systems, computer simulation to evaluate failure signals in
systems and test models Schreiber et al. (2019), Syafrudin et al. (2018), Thoppil, Vasu e
Rao (2019), Wang et al. (2017), and also, the method Fault Tree, employed to identify
variables that are most representative for use in the decision model (FUMAGALLI et al.,
2016).
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Figure 10 – Distribution of publications by Type of year

Source: Prepared by the author.

• The analysis is associated with data modeling using statistical methods and algorithms
(ISMAIL; TRUONG; KASTNER, 2019; SAWANT; SHAH, 2013). In this group, we
consider the use of ML to analyze Big Data sources for decision-making. As an
example, the use of the RF method for adaptive maintenance with the purpose of PDM
(CANIZO et al., 2017). In this same way, Decision Tree was used with a Simulation
method, to simulate the equipment failure (SEZER et al., 2018). Clustering methods
were also applied for PDM to building models with a hybrid approach to improve
machine availability (CAO et al., 2019; CHO et al., 2018; SIAFARA et al., 2017).

• In the analysis technique, mathematics methods, such as Petri Network, Weibull
distribution, and computer simulation, were applied in PDM studies with a focus on
reducing costs of maintenance (HE et al., 2018; KŁOS; PATALAS-MALISZEWSKA,
2019; MYERS; TICKEM; EVANS, 2016). With similar objectives in lowering costs, a
probabilistic economic method was used to analyze the quality of PDM associated with
rework (KLEIN; BERGMANN, 2018; RIMPAULT; BALAZINSKI; CHATELAIN,
2018; TSAO et al., 2020).

• With the storage for this aggregation of techniques, we considered the articles in which the
technical focus was linked to the data storage process (ISMAIL; TRUONG; KASTNER,
2019; SAWANT; SHAH, 2013). Thus, research focused on both platform development,
information security, and CPS with cloud computing has been classified as a storage
technique.

Studies, where the technical focus is on data storage, have different application purposes.
Taking as an example, a platform for Big Data in an industrial environment using RHadoop, to
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Figure 11 – Methodological application of the study by year

Source: Prepared by the author.

increase the quantity and quality of data and build better PDM studies (KU, 2018). However,
as well as the quantity and quality of data, the concern with information security is an essential
factor (TAN et al., 2017). Graph-theory was applied in the study in which the purpose was to
analyze information security in a smart factory (HÄCKEL et al., 2019).

When the storage technique is related to architectures and trends, the main approaches are
related to CPS (BALOGH et al., 2018; LEE et al., 2014; TERRISSA et al., 2016). Some authors
comment that the use of CPS provides a significant competitive advantage by facilitating the
capture and management of data (BALOGH et al., 2018; TERRISSA et al., 2016). In this way,
the analysis that deal with the type of maintenance can present a better performance. As more
data is collected and made available, better models can be built, and more confident decisions
are possible (TAN et al., 2017).

3.3.2.2 Methods and techniques applied according to the purposes of the studies

In the second context considered to answer SQ2, we classified the techniques and methods
linked to the purposes of the analyzed articles. In SQ1, we categorized according to the purpose,
being Trends, Architecture, and Case Study. With these definitions, we were able to analyze
according to the techniques and methods used, as seen on the Appendix H.

In case studies, the vast majority of reviews are grouped in Ingestion and Analysis according
to the Appendix H. In the technique Ingestion, algorithms, such as RF and Deep Belief Network
(DBN) are used for FE and data preprocessing (CANIZO et al., 2017; LI et al., 2019; SEZER
et al., 2018; SYAFRUDIN et al., 2018; WANG et al., 2017). Traditional methods such as
computer simulation are also utilized for Ingestion in which the main objective is to validate the
data for reliability analysis (SCHREIBER et al., 2019).
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Figure 12 – Articles per technique applied for the studies in reliability to support decision-
making.

Source: Prepared by the author.

For analysis, the methods applied are the most diverse. Weibull distribution and Decision
Tree are used for cost-oriented PDM (HE et al., 2018; SEZER et al., 2018). Decision Tree is
also used for real-time PDM using Big Data environment (CANIZO et al., 2017). Fractal
Analysis was proposed for monitoring the machine maintenance in the manufacturing
(RIMPAULT; BALAZINSKI; CHATELAIN, 2018).

The main objectives of communication in case studies are associated with the use of sensors
to build CPS environments (PREUVENEERS; JOOSEN; ILIE-ZUDOR, 2018; SHIHUNDLA;
MPOFU; ADENUGA, 2019). When the applied technique is linked to Storage, the methods are
centered on the construction of Big Data and risk assessment of the environment (KU, 2018;
TAN et al., 2017).

In articles in which the objective was classified as architecture, the predominant methods
are linked to communication techniques. The proposed architectures use different approaches
such as microservice, blockchain, and multi-agent systems to build architecture for Big Data
(SALAZAR et al., 2019; LEE; ZHANG; NG, 2017; MOHAMED; AL-JAROODI, 2019;
PALAU; DHADA; PARLIKAD, 2019). For the development of CPS, some studies focus on
the use of sensors to capture data with the equipment (BOUSDEKIS; MENTZAS, 2017;
SANDENGEN et al., 2016; ZHENG et al., 2018).

In the articles in which we classified as trends, the prevalence centered on the main
methods in proposing tables or scripts addressing the technologies of I4.0 for data collection
and preparation (LAZAROVA-MOLNAR; MOHAMED, 2019; LEE et al., 2014). In these
situations, the results presented are oriented towards theoretical and conceptual models
(LAZAROVA-MOLNAR; MOHAMED, 2019; LEE et al., 2014; NEMETH et al., 2018).
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3.3.2.3 Techniques and methods used according to the main focus

Finally, we discuss the third context. For this purpose, we present Appendix I with the main
applied techniques pointed out, as well as the predominant focus related to reliability.

As the main focus shown in Appendix I, we call attention to advanced approaches linked
to maintenance strategies. As an example, diagnostics and prognoses that aim to provide a
structure to predict the degradation and maintenance of machines and devices (XIA et al., 2018;
XIA; XI, 2019). Another important point to highlight is the proactive maintenance because
different from the preventive and PDM, it provides actions that aim at the causes of the failure,
not just the symptoms (CANITO et al., 2017).

According to the results found and presented in Appendix I, the technique that prevails in
reliability studies for decision-making is linked to communication. When we analyzed the main
techniques and methods together with the main focus of the studies, we realized that the efforts
are centered on the collecting and processing data, bearing in mind that "PDM", "Diagnosis and
prognosis" and "Operation based on conditions" are the main objectives of studies involving
communication in reliability found in this research.

With SQ2, we realized that the vast majority of reliability studies focus on two main
purposes when addressing the concepts of I4.0. We found articles in which methods and
techniques are focused on the development of environments for data collection and preparation
(CANIZO et al., 2017; KU, 2018; WANG et al., 2017). On the other hand, some studies have
focused on the development of computational models to support decision-making (CHO et al.,
2018; LI et al., 2019; LEE et al., 2015).

Figure 13 – Evolution of the techniques used over the years.

Source: Prepared by the author.

When we analyzed the proportion of each technique in the studies that were part of this
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survey, we realized that storage has the lowest representativeness. This is more evident when
compared to other technologies, such as communication and ingestion, according to Figure 13.
One possible explanation is related to the researchers interest in proposing architectures to ease
the collection of data generated by equipment and systems.

We realized that part of the interest in this topic is related to the diversity of manufacturers,
which have their middleware and communication protocols (CANITO et al., 2017;
PÉREZ-LARA et al., 2018; ZHENG et al., 2018). As a result, some systems end up not
communicating natively with other solutions (LEE; ZHANG; NG, 2017). In this way, they end
up limiting communication between systems produced by different manufacturers (SALAZAR
et al., 2019). And with that, they generate a movement that has raised interest in proposing
architectures to get around communication problems.

3.3.3 How would be a taxonomy using the terms found for reliability applications in the I4.0?

To respond to the third sub-question of search, we performed separation of terms and
proposed a taxonomy for reliability in the I4.0. Figure 14, shows the adopted methodological
sequence. The taxonomy construction process begins with technical and scientific
contributions, that were presented in the opening chapters of this article. This step is crucial
because it will guide the research questions. With the research questions defined and the
articles selected, we started to separate, discuss, and analyze the results. For this step, we use
the VOSviewer tool as a support and to assist in visualizing the main terms covered in the
selected articles.

Figure 14 – Methodology to generate the taxonomy

Source: Prepared by the author.

To establish logical reasons in the taxonomic definition process, we adopted three criteria to
create the taxonomy for I4.0, focusing on reliability for decision-making.

Firts criterion: In the first step, a map and cluster were generated using VOSviewer,
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which applies the smart local moving algorithm and optimization (KLAVANS; BOYACK,
2017). For the VOSviwer map and cluster construction process, we imported the bibliometric
data from the corpus and utilized the filters related by keyword and co-occurrences
(NAUKKARINEN; BRAGGE, 2016). Co-occurrence analysis consists of analyzing the
relationships between words and terms using the natural language algorithm
(NAUKKARINEN; BRAGGE, 2016). To avoid redundancy, we applied a grouping of similar
terms according to Figure 15. We adopted this action to prevent synonymous words and terms,
writing, or even meaning from being plotted on the map and cluster separately.

Figure 15 – Co-occurrence terms configuration replaced by unique term.
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Second criterion: In the second criterion, the objective is to verify all terms hierarchically
related to the term I4.0, focusing on reliability. Through VOSviewer, it was possible to build a
network of relationships in Figure 16 and Heat Map Figure 17 of the main terms of the articles
selected in the literature review. Still, in this criterion, we aim to highlight how the terms
decision-making and reliability are related to I4.0 and synonyms.

In Figures 16 and 17, we can see that the term I4.0 is far from the term decision-making
as well as reliability. On the other hand, we note that enabling technologies, as well as I4.0
synonyms, are close in the network formed by terms found in the studies.

From criterion 2, it was possible to highlight the main terms found for I4.0, focusing on
reliability in Figure 18. With criterion 2 completed, the next step, criterion 3, is to identify
which terms are closest and related to decision-making and reliability.

Third criterion: For each relevant term presented in Figure 18, a representation was made
to generate the taxonomic tree with the most relevant links. Thus, it was possible to verify the
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Figure 16 – The relevance of clusters that form a network between relationships with the main
terms, linking reliability and decision-making in I4.0.

energy efficiency

sensors

Source: Prepared by the author.

existence of direct relations and select the terms that belong to the same cluster as Figure 19
and Figure 20.

Figure 19 presents the primary connections with the respective terms: manufacturing,
supply chain, maintenance management, manufacturing systems, quality, planning, and
information systems. When we look at the term decision-making, it is clear that essential terms
that guide the main actions of companies are slightly close. However, when compare with
enabling technologies in I4.0, we note that there is still a gap between decision types and
techniques.

The reliability cluster in Figure 20 presented the mapping of the central relationships and
the following terms: PDM, condition-based maintenance, prognostics, and health
management, manufacturing, and emerging economies. However, when the term reliability is
analyzed, greater interaction with I4.0 and enabling technologies is noticed. According to the
analyzed studies and the built clusters, we evidenced a strong connection and contribution of
I4.0 in reliability researches. As noted in Figure 20, the terms Big Data and IoT are the ones
that are most closely related to reliability. When it comes to decision-making, reliability acts
as a link to I4.0. Thus, Figures 19 and 20 confirm the importance of reliability in
decision-making processes.

To summarize criterion 2 of the taxonomy construction, we show the clusters resulting from
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Figure 17 – A heat map with the strength of the connections between the main terms of decision-
making, and reliability with I4.0: where the intense red shows a high amount of relation with
the other terms, and the blue one a low connection with the additional terms.

Source: Prepared by the author.

mapping with critical terms in Table 3. Behind the elaboration of the clusters, it was possible to
analyze the types of decision-making, as well as the relations with the reliability. We were able
to identify the existing relationships that underpinned the construction of the taxonomy and thus
answer the second research question according to this study.

After defining the criteria, we elaborate on the taxonomy in Figure 21, with the main terms
associated with reliability in I4.0 to support decision-making. We develop taxonomy based on
the clusters generated in the second criterion. Throughout the analysis, we noted that
reliability studies in I4.0 can be divided into applications with local and global purposes
(PREUVENEERS; JOOSEN; ILIE-ZUDOR, 2018; SANDENGEN et al., 2016). In Figure 21
it is possible to perceive the global goals in the region highlighted in blue and the local goals in
green. In the construction of taxonomy, the different decision levels were considered, where it
is feasible to prioritize actions aimed at the overall gain of the organization and the network
where the company is part. This approach is the main contribution of the developed taxonomy.

Conceptually I4.0 is divided into three types of integration: vertical, horizontal, and
end-to-end (Kagermann; WAHLSTER; HELBIG, 2013). Several authors define end-to-end
integration as I4.0, the main contribution (Kagermann; WAHLSTER; HELBIG, 2013;
GÄRTNER, 2018; WANG et al., 2016). However, for the gains to be realized, the vertical and
horizontal integration must be present and actively operating, using the technologies that
provide the application of a smart factory (UHLMANN; FRAZZON, 2018).

Vertical integration in I4.0, when applied in reliability studies, is related to the traditional
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Figure 18 – Key terms to generate a group for I4.0 with focus on reliability.

Source: Prepared by the author.

types of maintenance practiced. The goal of vertical integration is to combine the subsystems
with the production and process into the company (CHO et al., 2018; GRACEL, 2018;
UHLMANN; FRAZZON, 2018). The leading technologies and approaches are similar to those
already employed in maintenance reliability studies. As a significant difference, we present
Figure 21 highlighting the objectives of vertical integration over traditional models of
reliability-centered maintenance (NEMETH et al., 2018; SANDENGEN et al., 2016).

Horizontal integration is intended to provide value to the entire network where the
organization is a part (SANDENGEN et al., 2016). Reliability, therefore, plays a crucial role in
ensuring reliable and flexible production. Unreliable processes can affect the entire supply
chain increasing costs, reducing competitiveness, and cooperation between companies,

Table 3 – Key terms and related clusters mapped
Key terms Clusters

Big Data CPS, smart manufacturing, cloud computing, IoT, sustainability, energy efficiency,
Digital Twin and digital manufacturing

Reliability predictive maintenance, condition based maintenance, asset management, e-
maintenance, prognostics and health management

Data
Analytics

artificial intelligence, data mining, deep learning and machine learning

Decision-
making

maintenance management, product life cycle management, supply chain, innovation,
flexibility, digital transformation, product development, additive manufacturing,
production planning, simulation, optimization, quality, innovation and social media

Source: Prepared by the author.
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Figure 19 – Clusters formed with the central relationships between types of decision-making in
I4.0, focusing on links with decision-making.

energetic effiency

Source: Prepared by the author.

negatively impacting the benefits from I4.0 (LEE et al., 2015; TAN et al., 2017). Intelligent
supply chain management, on the other hand, provides key performance indicators by
analyzing historical data, including different sources such as financial data and market
demand, thereby predicting and quantifying critical indicators based on various factors
(MADHIKERMI et al., 2018). Finally, past health and condition information can feed back
into machinery and equipment designs to continually redesign the life cycle. These actions
offer consumers and users the possibility to enjoy higher productivity while minimizing
reliability concerns. And for companies, they provide quick response and flexibility in
satisfying customer demand (CANITO et al., 2017; MADHIKERMI et al., 2018;
PREUVENEERS; JOOSEN; ILIE-ZUDOR, 2018; SANDENGEN et al., 2016; TERRISSA et
al., 2016). These concepts were fundamental to the development of taxonomy and discussions
about the application of reliability for decision-making.

After the construction of the taxonomy, it was possible to analyze the different types of
decision-making that reliability studies provide in the context of I4.0. The taxonomy developed
is fundamental to answer the fourth guiding question of this research because we highlighted
the essential concepts linked to the value chain. Thus, we can answer the following question:
How has reliability helped the value chain management in the context of I4.0?
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Figure 20 – Clusters formed with the central relationships between reliability and I4.0.

Source: Prepared by the author.

3.3.4 How has reliability helped the value chain management in the context of I4.0?

Intelligent production systems consist of three approaches to decision support, where we
can separate them vertically, horizontally, and from end-to-end (SCAPOLO et al., 2014;
UHLMANN; FRAZZON, 2018). Being a vertical approach, where there is an integration
between the company’s internal operations, horizontal external processes are used with inputs
for decision support. End-to-end integration is where business cooperation takes place. The
first two approaches are considered the main ones in I4.0 (Kagermann; WAHLSTER;
HELBIG, 2013; GÄRTNER, 2018).

Figure 22 presents, in a simplified way, how horizontal and vertical integration interact.
Distinct colors represent vertical integration, and the group of colors represent horizontal
integration process in the organization (Kagermann; WAHLSTER; HELBIG, 2013). Vertical
integration is the process of limited interaction between boundaries. As for horizontal
integration, processes flow across the organization, allowing production, development, and
post-production information to be used as feedback for process improvements (GRACEL,
2018).

During the analysis of the selected studies, we noticed the occurrence of approaches where
the purpose was the focus on local equipment decisions. This type of study is linked to
traditional reliability search. The so-called conventional and reliability articles concentrate on
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Figure 21 – Taxonomy created with reliability application for decision-making in the I4.0
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analyzing the health of the machine through predictive or preventive maintenance and, in some
cases, evolving to prescriptive models. In the studies of Bousdekis e Mentzas (2017), Ferreiro
et al. (2016) the concepts of Big Data were employed. However, the main objectives of the
research were the health of the equipment. In these cases, the benefits made possible by
applying Big Data were not realized when decisions were centered solely on the machine.

In Appendix J, we gather the studies we classified as focusing on equipment, and this
summary is interesting when compared to Appendix G because it shows that the proportion of
case studies is higher compared to the other research proposals.

A significant point that articles classified as focus on equipment bring is the proposal of
applying Big Data technologies for information collection (GODREAU et al., 2019; KLEIN;
BERGMANN, 2018; SYAFRUDIN et al., 2018). Because collecting and maintaining
information extracted from different sources is a critical factor for success in I4.0
(LAZAROVA-MOLNAR; MOHAMED, 2019). Thus, as shown in Figure 23, decisions such
as: when will it fail, as in the studies of Myers, Tickem e Evans (2016), Rimpault, Balazinski
e Chatelain (2018), is useful when the intention is to analyze the specific conditions of
equipment. In addition, integration models with intelligent processes Preuveneers, Joosen e
Ilie-Zudor (2018), Xu et al. (2019) are helpful to support decisions of the type when revising
the assets. However, when the goal is to understand what happened to the equipment
Bianchini, Pellegrini e Rossi (2019), Sezer et al. (2018), Thoppil, Vasu e Rao (2019), it is
essential to support managers.

Thus, decision-making based on the principles and types of taxonomy maintenance focuses
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Figure 22 – Typical process flow along the value chain: the colors individually represent vertical
integration, and the union of colors represent the horizontal integration.
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on decisions at local levels within organizations. Figure 23 presents decisions that are
predominant to equipment. In this type of decision-making, the dominant technologies of I4.0
are applied to maximize equipment performance (CANITO et al., 2017; FERREIRO et al.,
2016; HE et al., 2018; KIANGALA; WANG, 2018; LI et al., 2019; TERRISSA et al., 2016).
Equipment-focused decisions are primarily intended to ensure equipment availability (CAO et
al., 2019). However, great locations do not always provide a great overall result.

During the construction of the taxonomy, it was possible to realize that the expected
decisions characterize the types of integration that are conceptualized in the context of I4.0
(PREUVENEERS; JOOSEN; ILIE-ZUDOR, 2018; SANDENGEN et al., 2016). Vertical
integration is characterized by arrangements where the goal goes beyond equipment issues.
Figure 24, we graphically simplify how the main types of decisions occur in the main
resolution employed in vertical processes. In this case, we can cite decisions such as how
much to produce and what level of inventory must be maintained to preserve the organization’s
gain (KIANGALA; WANG, 2018).

Still, in this context, the definition of labor resources is an essential factor for the business’s



53

Figure 23 – Types of decision-making applied reliability in I4.0 with equipment focus.
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profitability. Soon having the ability to estimate the need for this type of support becomes a
significant competitive factor. In the studies, Lee, Zhang e Ng (2017), Mourtzis e Vlachou
(2018), Schreiber et al. (2019), the search for better use of human capital is made possible
through the use of technologies that come from intelligent factories. However, in the
environment of vertical decisions, a recurring concern is linked to production in the right
quantity, just in time, and with the expected quality. In the studies analyzed, we noticed that
this concern is presented in research related to reliability and I4.0. Information improvements
make it possible to deliver quality in products and processes (LEE et al., 2014; TAN et al.,
2017). These are examples of applying Big Data and analytics that provide value to the
organization (TERRISSA et al., 2016).

Figure 24 – Types of decision-making applied reliability in I4.0 with equipment and
productivity focus.
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In the Appendix K, we summarized the articles in which we selected with the approaches
used in the context of vertical decisions. Appendix K shows that the prevalence of articles with
the case study approach was higher in comparison with other methods. This result is relevant
because it shows applied research where the type of decision goes beyond the boundaries
between machine and process. Such a purpose is expected in I4.0 applications. Another point
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that articles characterized as applied to verticalization addresses is that the vast majority still
have productivity and optimization.

According to the studies summarized in the vertical decision type, it is essential to
highlight the diversity of decision types that have been found in the literature. Decisions not
only involving human resources, such as operators and maintainers, but also decisions
connected to the production environment. As an example, research involving ecological issues
Siafara et al. (2017), where equipment operating under normal conditions will be
environmentally viable. A vital consideration to reflect is preparing the environment for I4.0
approaches to be applied. That is, an ecosystem must be assembled and operational so that the
collected data can be used to generate relevant and consistent insights.

With a significant data infrastructure utilizing CPS connected to IoT devices, data-centric
decision-making produces better decisions. Another significant benefit is the velocity with
which critical business decisions are made. Depending on the severity of events, data-driving
decisions have better effectiveness. According to this context, studies analyzing sensor
applications and management employed in equipment are essential for smart factories
(FORDAL; RØDSETH; SCHJØLBERG, 2019).

In a framework of CPS, it is possible to analyze employing ML to be used to estimate
equipment life (KU, 2018; LEE et al., 2014). With models based on massive amounts of data,
greater assertiveness in decisions is achieved (CANIZO et al., 2017; CHO et al., 2018). With
possibilities where uncertainties are minimized, the costs involved tend to be reduced
(PALAU; DHADA; PARLIKAD, 2019; VOGL; WEISS; HELU, 2019). An example of the
benefit of this type of arrangement is with early equipment replacements or unforeseen
breakdowns (NEMETH et al., 2018). This type of decision is made possible by connected
systems providing data for more certain choices (FUMAGALLI et al., 2016). Benefits like this
prevent equipment from being considered disposable, where parts replacement is performed
outside the economic life of the machine (ADU-AMANKWA et al., 2019; HE et al., 2018;
SÉNÉCHAL; TRENTESAUX, 2019; WANG et al., 2017).

Despite the possibility of important decisions, vertical integration is limited to
organizational boundaries, and a company is usually embedded in an industry, or productive
sector (SCHEER, 2019; UHLMANN; FRAZZON, 2018). Thus, managers need to make
conclusions beyond the company border. Furthermore, as evidenced by taxonomy, this kind of
arrangement is defined as decisions at the horizontal level (GÄRTNER, 2018).

In Figure 25, decisions arising from horizontal integration, applying I4.0 technologies, are
intended to use business-focused reliability (LEE et al., 2015). In other words, decisions from
a horizontal perspective search results where global objectives are reached, according to
Figure 20. It can be observed that reliability is even addressed in social networks, supply chain
management, and enterprise resource planning (TAN et al., 2017). Thus, decisions about the
lens of horizontal integration have an impact on the whole organization (BALOGH et al.,
2018; LEE; ZHANG; NG, 2017; LEE et al., 2014; PREUVENEERS; JOOSEN;
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ILIE-ZUDOR, 2018; WAN et al., 2018).
Among the leading technologies of I4.0, as shown Figure 25, there is the Digital Twin,

which associated with production strategies that enable a flexible reconfiguration of
manufacturing strategies (STRAKA et al., 2018). The facility with which alternatives
combined to production, processes, and market are examples of the benefits of technologies
associated with I4.0 in business focus (CHENG et al., 2018; ROSEN et al., 2015).

Figure 25 – Types of decision-making applied reliability in I4.0 with business focus.
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In the analysis of the selected articles, we extracted in Appendix L the studies positioned
where the objectives go beyond the processes of the organization. It should be noted that the
amount of case study is still limited compared to the other approaches that have been proposed
in the construction of taxonomy. In selected articles, where the case study was applied, the main
focus is on the product. As an example, studying the impacts related to PDM on product quality,
the purpose of the decision is beyond the organization (TSAO et al., 2020) boundary. Likewise,
identifying barriers and understanding the after-sales impact when applying PDM is essential
information for decision-makers (SALAZAR et al., 2019; MADHIKERMI et al., 2018).

As shown in Figure 26, there is an interconnection between companies where one
organization cannot be independent of another (Kagermann; WAHLSTER; HELBIG, 2013).
This type of integration is the core of I4.0 (GÄRTNER, 2018). Because there is
interconnection between the companies, it is possible to quickly adjust product inventory levels
when there is a problem with suppliers or customers (ZHOU; LIU; ZHOU, 2016). However, if
there are no interconnected processes, there is a delay between the occurrence of the events
and the corrective actions (GRACEL, 2018; SCAPOLO et al., 2014). Similarly, the ability to
make internal adjustments to the company based on demand is an essential competitive
advantage (NGUYEN et al., 2016; XIA; XI, 2019). Reliability studies are, therefore, of great
importance to the I4.0 (SCHEER, 2019). It should be noted that in the event of a failure in the
organization’s internal equipment, the harm generated may damage the supply chain and may
even cause customer dissatisfaction (MEHDIYEV et al., 2017; PÉREZ-LARA et al., 2018).

A relevant fact that we highlighted is related to the number of studies in which the target is
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to propose or develop architecture for data collection (LEE et al., 2015; SANDENGEN et al.,
2016). Another important technology to be considered with reliability is Digital Twin,
especially in product designs, since the manufacturing can be accelerated, due to the
possibility of emulating real systems in virtual environments (KUEHN, 2018; LIM; ZHENG;
CHEN, 2020; MADNI; MADNI; LUCERO, 2019).

Figure 26 – Interconnection and cooperation of companies in a worldwide business network,
the core of I4.0.

Source: Acatech 2013

Source: Adapted by the author.

Reliability has been in the researchers’ agendas, as we can present in the analysis of the
selected articles. However, in our research, it was possible to note that the main efforts are
focused on integrating and collecting data. The data collection, storage, and processing is a
critical stage. We noticed as a significant part of the studies analyzed that the main focus was
the development of Big Data management architecture (MADHIKERMI et al., 2018; ROSSIT;
TOHMÉ; FRUTOS, 2019). These findings confirm the importance of the data-driven stage for
decision-making. In this case, it reaffirms the importance of data management in the context
of I4.0 to generate gains for the organization and value chain (KLINGENBERG; BORGES;
ANTUNES, 2021; LEE et al., 2015; PÉREZ-LARA et al., 2018; SANDENGEN et al., 2016).
The next step is to understand which challenges and future directions that I4.0 is immersed in,
concerning reliability for decision-making.

3.4 Opportunities and Motivations

It is now possible to generate a large amount of data from machines and processes, as the
number of sensors and IoT devices are becoming more widespread. However, there is still a
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contrast between device opportunities and reality. Technologies have improved at higher rates
than the need for machine replacement. Another adversity is that while new machines and
equipment are already produced with several sensors, old machines are difficult to connect due
to obsolete controllers and different manufacturers (BALOGH et al., 2018; ROCHA;
BARRETO; SEMAN, 2019).

Equipment manufacturers have realized the advantages of adopting IoT systems, and many,
especially the largest, have already migrated to connected systems. Either way, small and
midsize businesses need a viable strategy to realize the benefits of using IoT systems to be
competitive (BALOGH et al., 2018; CANIZO et al., 2017; CHO et al., 2018; RIMPAULT;
BALAZINSKI; CHATELAIN, 2018; TERRISSA et al., 2016).

As a relevant factor for the business to be competitive, asset management should be an
essential item on the decision-makers agenda (SCHEER, 2019). Given that, not providing a
customer as a result of unplanned downtime may expose the client to the competitor. In this
scenario, reliability proves to be fundamental for the organization since asset management,
considering reliability, helps improve results in general (GRACEL, 2018).

However, employing reliability taking into account only equipment and peripherals, limits
the achievement of maximized results for the business. Thus, it is essential to analyze issues
such as inventory level, material and sales prices, logistics issues, and the market as a whole
(GRACEL, 2018; SANDENGEN et al., 2016; SCAPOLO et al., 2014). In this context, we
present Figure 27 as an iceberg of possibility and opportunity for I4.0 (SCHEER, 2019;
GÄRTNER, 2018).

Figure 27 summarizes the areas of the corporation and also symbolizes the order flow,
upward and downward, the stream of production. It is observed in Figure 27 that the
production process is visible, that is, having a higher perspective in reliability studies
(BALOGH et al., 2018; FERREIRO et al., 2016; FORDAL; RØDSETH; SCHJØLBERG,
2019; KIANGALA; WANG, 2018; KŁOS; PATALAS-MALISZEWSKA, 2019; KU, 2018;
LEE et al., 2015; MOURTZIS; VLACHOU, 2018; NEMETH et al., 2018; PREUVENEERS;
JOOSEN; ILIE-ZUDOR, 2018; RUIZ-SARMIENTO et al., 2018; SYAFRUDIN et al., 2018;
TSAO et al., 2020; WANG et al., 2017; ZHENG et al., 2018). In addition to production
control, services, and development, there are already studies that address this issue associated
with reliability, even if to a limited extent (MADHIKERMI et al., 2018; PÉREZ-LARA et al.,
2018).

The vast majority of authors considered and had excellent prospects for applying
decision-making reliability (ESMAEILIAN; BEHDAD; WANG, 2016; Kagermann;
WAHLSTER; HELBIG, 2013; SCHEER, 2019; GÄRTNER, 2018). Decisions go beyond
vertical integration and find the entire heat chain and corporate structure, as shown in
Figure 27. Examples of opportunities include:

Production Flexibility: With digital factory and horizontal integration, custom production
is feasible as it will be possible to identify the most important consumer needs. With smaller
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Figure 27 – Opportunities and Challenges for the business in I4.0.

Source: Prepared by the author.

batch production, the variety of products can be significant. In this scenario, the reliability of
production equipment should receive special attention, as equipment fault tolerance must be
minimal. Another significant impact on customized production is related to logistics processes,
as the number of suppliers tends to increase, and the company’s dependence on specific
suppliers tends to decrease. In this way, the production chain will have a faster response in
meeting the particular wishes of customers (RYCK; VERSTEYHE; SHARIATMADAR,
2020). Manufacturing flexibility assists in the rapid reconfiguration of the production system,
where it can be automated through a Digital Twin to simulating different scenarios (CHENG et
al., 2018; ROSEN et al., 2015).

Planning: Important questions refer to such decisions - when to produce, how much to
produce, how much to buy, and how much to store. In all planning decisions, reliability has a
high magnitude function, because when such choices are optimized, availability of equipment
is considered. Failure to meet availability in many cases causes significant damage to the
corporation.

Environmental: Monitoring equipment and minimizing unnecessary interventions,
replacing still functional parts, is a way to save environmental resources. Another point to note
is the possibility of optimizing materials with the production of defective items. In this way,
I4.0 makes it possible to use resources efficiently Szalavetz (2017). Still, on this topic, the
consumption of renewable resources, such as energy, can be reduced with the use of
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energy-oriented reliability to promote the application of sustainable manufacturing. Thus,
integrating the energy attribute to dynamically schedule preventive maintenance intervals as
performed in the study by Xia et al. (XIA et al., 2018).

A vision of computing in I4.0: from computing in the scenarios presented, it will play a
key role, as enabling technologies of I4.0 are predominantly digitally connected. So to take
advantage of the ecosystem providing integration of all processes, information technology will
be crucial for organizations. Thus, the area of computing should have a cross-sectional
combination with the entire corporation. As a result, the data generated in different
departments will be used to build numerous models to support decision-making. These
scenarios emerge as a future challenge for applied computing.

Reliability for decision-making: according to the results found, in some systems reliability
studies, the concept is still linked only to the equipment. We can see this in the response
of SQ4, where the vast majority of articles analyzed, addressed issues related to equipment
health, productivity, and operating costs (BALOGH et al., 2018; XU et al., 2019). However,
according to the future perspectives presented, reliability has a role that goes beyond and must
be considered so that companies’ strategic decisions are made efficiently (SANDENGEN et al.,
2016).

When decisions covering the value chain are required, only sophisticated algorithms for
measuring and determining equipment availability are no longer sufficient (BORGI et al., 2018;
GAO et al., 2015). According to what was presented in response to SQ2, the data are critical
factors for the use of sophisticated forecasting models (PÉREZ-LARA et al., 2018; ROSSIT;
TOHMÉ; FRUTOS, 2019). Therefore, the performance and options provided by the models are
dependent on the data that is used (LEE; ZHANG; NG, 2017; ROSSIT; TOHMÉ; FRUTOS,
2019).

Thus, the collection and conditioning of data are critical factors for the algorithms to
deliver expected results (NEMETH et al., 2018). So data and modeling must be following the
type of desirable decision. The need to include aspects related to the entire value chain in the
reliability models are fundamental prerequisites for there to be a perception of gain in the use
of technologies linked to I4.0.

This environment is conducive to the application of I4.0 technologies. However, decisions
are still just the visible part of an iceberg of possibilities. Research, where reliability models
consider not only the local environment but the existing connections in the systems, must be
made so that the value provided by the I4.0 is perceived throughout the value chain.

3.5 Final Remarks

The related works to this research show that most research focuses on improvements in
communication techniques and data ingestion. In addition, according to Figure 12, They address
questions related to information collection. As for research related to analytics, the vast majority
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use already-known datasets in the quest to improve predictive models laterally.
In this sense, we perceive the need to move forward with ML applications for real and

complex environments, given that investment in technology is only valid if there are benefits
for the sponsor. Another finding we noticed through the literature review is the gap in
applications that explore systems in the form of horizontal integration. In this way, with the
proposed framework, we intend to offer an approach that makes it possible to benefit from I4.0
to increase the reliability of the systems applying the PHMS.

With a comprehensive and careful review of the related works, it was possible to confirm
the academic motivations and shed light on specific gaps that this research aims to elucidate.
For this purpose, in the next chapter, the proposed method adopted in this research will be
introduced and detailed.
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4 FRAMEWORK TO SUPPORT DECISION-MAKING IN THE I4.0 CONCEPT

We divided the framework development that supports the PHMS into three subtopics. The
first subsection below discusses the AE model for anomaly detection. The second subsection
presents the model development for FI of the main variables related to the failure. Finally, the
third discusses the activities that make up the system’s RUL prediction stages.

4.1 Framework overview

Figure 28 shows the general structure of the framework. The objective is to develop an
approach in which anomalies are detected, and preventive actions are carried out. In addition,
using the framework provides strategic decisions regarding asset availability. Thus, the main
features of the proposed framework will be discussed in the following sections.

Figure 28 – Framework to support the decision-making in I4.0 concept.
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The Figure 28 illustrates the proposed structure, which was divided into two tiers. The first
tier is data collection from various sources and storage, which allows all relevant devices and
data sources to be used for process control and monitoring and later stored. The second tier
consists of anomaly detection, FI, and AE. Finally, the framework provides decision support,
especially on the PHMS. The techniques and systems contained within the framework’s tiers
are detailed in the following sections.

4.2 Tier 1: Data collection from several sources and storage

CPS is an essential element among the enabling technologies for I4.0, as it integrates
physical and virtual processes. As an example, the integration of operational equipment with
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cloud computing or networks. In this way, it is possible to capture and manipulate data from
operations, communicating with physical devices, and receiving feedback from the executed
actions on the entire system and vice versa.

The CPS module plays an important role and provides the basis for intelligent
manufacturing. The CPS module’s main contribution is to give the manufacturing system
understanding and perception, i.e., perceiving its condition and the surrounding environment’s
state. In other words, to integrate operations as a system consisting of different operations and
devices. Equipment, production process, and product constitute a single manufacturing system
in which the production conditions are monitored by connecting the sensors and equipment
that constitute the respective system.

In the context of the framework presented in Figure 28, the CPS provides the integration
between the different systems and provides feedback on the process’s conditions according to
the actions performed. Thus, providing bases for maintenance and production teams to carry
out specific interventions.

According to the concept presented, the CPS in this framework consists of a link between
physical equipment and virtual systems. Thus, in the following subsection, we address the data
and the source that make up the framework.

4.2.1 Instrumentation and sensors

In a smart factory, knowledge automation is manifested by multi-agent collaboration in a
distributed environment. In the smart factory environment, multiple agents collaborate and act
in combination to execute specific predefined actions. IoT devices are applied for monitoring
and control purposes in the petrochemical industry and production management and control
purposes. Online data systems in the petrochemical industry consist of sensing and
measurement, industrial networks, and various measurement and analysis systems. To access
the production data in real-time usually, the following infrastructure usually requires APIs
(application programming interfaces) and UIP (user interface program) (MIN et al., 2019).

Automation systems are based on controllers and offer, in some cases, control possibilities
ranging from simple to advanced constraints where optimal parameters are predefined. This
means it is possible, under stable conditions, to come near to the optimal operation. Standard
rules in this case, as in petrochemical and oil refining in general, are the capacities of heat
exchangers, pumps, valves, and other process devices, whose connections and capabilities
interact to form a connected system (LI, 2016).

4.2.2 Industrial control systems

Industrial Control Systems (ICS) are composed of a complex set of sensors, actuators, and
control agents, such as control systems, including Supervisory Control and Data Acquisition
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(SCADA) and Distributed Control System (DCS) (MCA; MCA; MANDA, 2018). ICS are
widely employed in different critical operations, where it plays an essential role in monitoring
and controlling physical and chemical products. These systems are responsible for receiving
the signal coming from an instrument, such as flow control, and provide the operators with
the possibility of making adjustments if necessary. This type of system also enables remote
operation, i.e., based on a target value, the system automatically adjusts the output signals to
search for the defined target (MOKHTARI et al., 2021; BALADOR; ERICSSON; BAKHSHI,
2017).

In the petrochemical industry, the DCS operation is critical. This system acts as a "brain"
for production, providing operators with the possibility to intervene to keep output in optimal
condition and ensure the system’s safety. In conjunction with DCS in industrial environments,
historians are generally used to converting data and directing it to the data warehouse to be
available for future analysis (LI, 2016). Thus, the CPS can be considered a set of industrial
equipment that is reproduced virtually, with communication and feedback(MOKHTARI et al.,
2021; ISMAIL; TRUONG; KASTNER, 2019; BALADOR; ERICSSON; BAKHSHI, 2017).

Due to the inherent operational complexity of petrochemical processes, this industry is
considered the forerunner of industrial automation. Thus, with the introduction of the fourth
industrial revolution, this industry can be considered a propitious environment for the use of
new technologies. Data mining can help operators identify hidden patterns due to the immense
amount of variables that operators usually need to control (ISMAIL; TRUONG; KASTNER,
2019). The proposed framework provides an advantage because patterns shuffled among the
monitored variables can be displayed and ranked according to the priority level regarding
operational interventions using an analytical model (LI, 2016; MIN et al., 2019).

4.2.3 Data source

Together with the CPS, IoT is the primary driver of I4.0. Therefore, as the main element of
Data Sources, we can consider the IoT as a direct role. It enables all common objects that
integrate operations in the enterprise to perform independent functions and realize the
connection between physical and virtual systems.

The function of the IoT in the Data source module is primarily data transmission. Data
collected by sensors in the device is transmitted to local databases or cloud data centers via
the IoT for real-time or subsequent use. Some plant equipment is equipped with supervisory
control and a data acquisition system DCS to monitor its equipment.

In the anomaly detection module, sensor data from the DCS equipment can be fused to
extract pertinent rules in-depth and, consequently, the system’s health status and subsequently
analyzed and diagnosed. Data from the entire operational area will be considered regarding the
framework’s source of data, focusing on the plant’s reaction. The data come from different
types of equipment and therefore have distinct characteristics. The data source block was
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subdivided into two parts, data coming from the DCS and data acquisition. The acquisition
part is linked to the collection point, while the DCS consists of controlling the equipment and
directing the data. The data is processed in the DCS and then directed to the company’s
operational database. The data is stored in relational databases and is available for future
analysis. In the context of the main objectives that guide this research, the data source will be
the raw material that feeds the proposed architecture’s next block. Furthermore, thus, enable
data-driven management considering the reliability of the system. The following Tier consists
of utilizing equipment data and applying data mining to identifying anomalies that can put the
plant’s operational continuity at risk.

4.3 Tier 2: PHMS with data-driven approaches

This section will present the core of this research, contextualizing the PHMS model, which
is not limited only to identifying anomalies but also provides insights for strategic actions. We
have separated this section into sub-sections to facilitate understanding and shed light on the
importance of each stage in the desired result.

4.3.1 Anomaly detection

Connectivity through sensors connected with equipment allows for an abundance of data.
The main challenge for manufacturing is using these large amounts of available data and extract
useful information, making it possible to reduce costs, optimize capacity and maintain asset
availability. In this panorama, the most recent ML and data analysis resources emerge as an
excellent possibility to improve managers’ decisions. For this step, an AE model was applied
through a CNN type architecture. In Section 5.2.1.1, we discuss the implementation of the
model in more detail.

In this scenario, anomaly detection (or outlier detection) has been applied to assist reliability
engineering using advanced ML techniques. Anomaly detection identifies rare elements, events,
or observations that arouse suspicion as they differ substantially from most data. Anomalous
data can usually be linked to some problem or rare event, such as bank fraud, medical problems,
structural defects, equipment malfunction. This connection is useful to identify which data
points can be considered abnormal since identifying these occurrences is usually strategic from
an operational point of view.

Thus, it guides us to one of this model’s main objectives: to identify whether the data points
generated by the different sensors are normal or anomalous? As in Figure 29, analysis through
data visualization can provide relevant information to decision-makers in some simple cases.
However, in production environments, the number of features is high, and analysis utilizes
graphics as Figure 29 becomes a considerable challenge.

Any equipment, whether of the rotary type (pump, compressor, gas, or steam turbine, among



65

Figure 29 – Anomaly detection considering two variables.

Anomaly

Source: Prepared by the author.

others) or stationary (heat exchanger, distillation column, pressure, and level control valves),
will eventually reach a stage in which health is deficient. This point may not necessarily lead to
real failure, but conditions in which the equipment is not operating under ideal conditions. This
signals that there may be a need for some intervention in maintenance to restore all operational
potential or even some operational adjustment.

The most common way to perform condition monitoring is to examine each measurement
of the equipment’s sensor and assign a minimum and maximum acceptable value limit. If the
measured value is within limits, the equipment or system is normal. On the other hand, if the
measured value is outside the limits, it is considered unhealthy, and an alert is sent.

This strategy of imposing alert limits is known to send many false alarms, alarms for
situations where the measures represent acceptable states for the equipment and systems. On
the other hand, in some cases, alerts are missing, that is, problematic situations that should be
alerted. The first problem wastes time, effort, and equipment availability, as an improper repair
stop reduces operational availability. The second problem is more crucial, leading to real
damage with associated impacts and production losses.

Both problems result from the same cause: the condition of an equipment or system cannot
be reliably assessed based on the analysis of each measurement alone, as illustrated in
Figure 29. Thus, we must consider a combination of the various measures to obtain a more
accurate indication of the analyzed system’s real condition.

In this research, the identification of anomalies contributes to decision-making by different
areas. The environment in which it will be developed is a complex system consisting of different
equipment types with different measurements. Therefore, traditional anomaly identification
techniques usually do not show satisfactory results for this type of problem. Thus, to guide
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the maintenance and production teams’ actions by identifying anomalies, the combination of
advanced ML techniques is presented as a viable alternative (SAHAL; BRESLIN; ALI, 2020;
BIANCHINI; PELLEGRINI; ROSSI, 2019). Among the possible techniques, the selection
of variables has been successfully applied in several studies (VOGL; WEISS; HELU, 2019;
ZHANG et al., 2018; XU et al., 2019; WANG et al., 2017). That said, in the next section, we
outline the application of variable selection in the context of this research.

4.3.2 Feature Identification

The anomaly identification step helps to identify the existence of a measure outside an
established standard. Undoubtedly, the identification of anomalies is relevant to highlight the
need to take some action (FERNANDES et al., 2019; HU et al., 2018). However, in complex
systems, identifying which measure or measures are responsible for a particular anomaly
becomes difficult (SAHAL; BRESLIN; ALI, 2020). In this way, FI techniques have
contributed to reducing the complexity of determining which variables are responsible for a
specific abnormal condition (LIU et al., 2021). Figure 30 presents a simplification of the flow
of identification and selection of the main variables to identify the system’s unusual state.

Figure 30 – Simplified flow of Feature Selection.
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The most relevant features are extracted in the first place by transforming data captured in
different domains, for example, statistical domain, frequency, and time-frequency, to obtain
representative and relevant information. FI is then applied to improve the relevance and reduce
redundancy between features before feeding the ML model (MOKHTARI et al., 2021;
MUTLU; ALTUNTAS, 2019). Thus, the performance of the developed model reduces the
dependence only on the optimization of the algorithms. Typically, feature extraction and
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identification are time-consuming and dependent on domain knowledge (MOORTHY;
GANDHI, 2020). In Section 5.2.1.3, we discussed the implementation of the model in more
detail.

Traditional feature selection applications have focused on extracting latent variables that
predict a particular action or event (TSAI; SUNG, 2020; CHEN et al., 2020). The framework
proposed to apply the identification of variables to, in advance, identify which variables are
responsible for an eventual anomaly in the process. Thus, with the variables ranked at the
level of importance, a manager can perform operational and maintenance actions, and eventual
failures can be avoided, thereby increasing systems’ reliability.

After presenting the FI step, the following subsection presents the step of the AE of the
system. This contributes to the maintenance team’s direction and decision-making.

4.3.3 RUL - Remaining Useful Life

Maintenance actions have traditionally been based on information representing the
equipment’s current conditions, which researchers have called "based on a non-predictive
condition" (LI, 2016; TERRISSA et al., 2016; WEN et al., 2021). The notable aspect of PDM
is using methods and models to estimate additional conditions and RUL (AYDEMIR; ACAR,
2020; LI et al., 2019; SCHREIBER et al., 2019; GUO et al., 2017; TERRISSA et al., 2016).
PDM differs from traditional CM maintenance in which it recommends maintenance actions
based on information extracted through CM, and the goal is in the current condition, compared
to establishing a prevision when using PDM (WEN et al., 2021; WU et al., 2021; LIU et al.,
2021; CHEN et al., 2021; AYDEMIR; ACAR, 2020).

Figure 31 – An illustration of RUL forecast.
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A RUL estimate of a failed component, the assignment of uncertainty thresholds to the trend
curve that will provide the maintainer with the earliest and latest time (with increasing risk)
to perform maintenance, and the associated risk factor when maintenance action is delayed
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are necessary to answer the maintainer’s question. Figure 31 presents the RUL concept as a
function of time and the system’s Health Index (AYDEMIR; ACAR, 2020; WEN et al., 2021).

Several studies have focused on developing models to provide greater equipment
availability. However, DL has provided excellent results among ML models, especially when
the system’s complexity is high (CHEN et al., 2021; LIU et al., 2021; XIA et al., 2020; GUO
et al., 2017). In this sense, in Session 5.2.2, procedures used to carry out this critical step in the
proposed framework will be presented in detail.

4.3.3.1 Machine Learning for RUL prediction

In the PHM context, answering the following question is one of the main goals of the PHM
approach: "What is the RUL of a machine or component after a malfunction situation is
detected, isolated, and identified"? In this regard, we propose an approach called PHMS, as
presented in Figure 1, which aims to analyze the system’s health.

This study sheds light on advanced DL techniques for estimating the system’s RUL.
Therefore, we compared different DL techniques applied in HI to estimate the system’s RUL.
Furthermore, we consider using the Neural Basis Expansion Analysis For Interpretable Time
Series Forecasting (N-BEATS) architecture to estimate the system’s RUL as a contribution of
this study. This architecture has promising results compared to traditional methods for time
series prediction (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2022; ORESHKIN et
al., 2019). Figure 32 summarizes the architectures we used in the RUL prediction step.

In Figure 32, we present the N-BEATS architecture, which is based on bi-directional
residual links and a very deep stack of fully connected layers. Moreover, we bring LSTM and
GRU architectures, which are RNN dealing with long-time dependencies in data sequences.
We use the MLP, a feedforward neural network that can learn dependencies in a sequence.
Finally, we present the CNN architecture, which can learn long-term dependencies on a
complex data sequence. In Subsection 5.2.2.3, we present in more detail the architectures and
the main differences.

4.4 Final Remarks

In this chapter, the steps for developing the framework were discussed. Each phase has
importance for the final result. First, however, the issue related to data collection is highlighted.
For example, when making an analogy with a car engine, we can say that the fuel is the data
because if we don’t use quality fuel, the engine won not work correctly. In this sense, there is
no point in using sophisticated models on inconsistent data, "garbage in, garbage out".

Tier 2 deals with the modeling phases, where each step already allows the visualization of
results. For example, anomaly detection signals that something may be out of behavior patterns.
However, it is not always clear where the efforts of the operation and maintenance teams should
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Figure 32 – Simplified DL architectures for RUL prediction. As input, standardized time series
windows and the models’ forecasts as output.
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be concentrated, especially in a complex system such as a petrochemical plant. In this sense, the
FI stage provides a north pointing possible causes of the anomaly detected and, thus, reducing
the time of action to correct the deviation. Finally, knowing how long the system can operate
before a failure is fundamental for allocating efforts and prioritizing actions. In this sense,
the RUL forecast stage gains relevance. Given these scenarios, the PHMS supported by the
framework is relevant to support decision-making in the context of intelligent manufacturing.

In the next chapter, it will be discussed how to operationalize the framework detailing each
step.
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5 MATERIALS AND METHODS

According to the framework proposed in Chapter 4, this chapter presents the methodological
procedures used to propose and validate the PHMS considering a real case study. Therefore, we
have divided this chapter into two tiers. The first deals with data acquisition and the criteria that
define the analysis periods considering the case study. The second tier describes data-driven
approaches and models used in the research and the validation criteria.

5.1 Tier 1: Data collection

The Styrene Monomer (SM) is a process industry that is intensive in control parameters due
to the criticality in which minor operational disturbances can cause damage to equipment and
production out of specification. In this sense, the equipment that has significant importance is
the compressor. For that matter, the possibility of analyzing all variables and detecting small
changes that may cause the compressor to fail would significantly benefit the business. For
example, in Figure 33, the main control variables are organized from X1 to X27. As the number
of parameters and control variables is massive, there is a need to develop a model in which it
is possible to identify the process variable that has tremendous significance in generating a
compressor shutdown.

Figure 33 – Simplified diagram with the equipment and instruments of the reaction area of the
petrochemical plant where we applied the study.
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The Chemical Industry is intensive in control and automation. For this, process data is
transmitted in real-time to the supervisors through electronic devices installed on the
equipment. The data from the assets, in the vast majority, is used to monitor the production
process in a DCS. In the case were carried out the study, the data management architecture
relies on the process monitoring software. It allows operators and managers to monitor in
real-time the main process parameters. Another benefit of this system is that it supports the
staff in investigating historical events since the data generated by the process is stored in a
Structured Query Language (SQL) database and is available for analysis when necessary.

Table 4 – Process variables with units of measure.
Variables Process measurements Unit
X1 Feed load t/h
X2 Condensed for cooling kg/h
X3 Injection of anti polymerization kg/h
X4 Compressor motor electrical current A
X5 Sealing water %
X6 Drum level control kg/h
X7 Drum level control %
X8 Compressor recirculation mmHgA
X9 Barrier steam Kgf/cm2g
X10 Discharge pressure Kgf/cm2g
X11 Speed control rmp
X12 Output temperature control °C
X13 Input temperature control °C
X14 - X27 Vibration sign mm/s

Source: Prepared by the author.

As shown in Figure 33 different equipment generate several types of data, according to
Table 4. Although the system usually provides data in real-time, in this study, the author defined
the frequency of data collection in an average interval of 30 minutes for variables presented in
Table 4. With this criterion to minimize possible noise in the indication of the instruments
(MIN et al., 2019). Therefore, high dimensionality is frequently present in information from
the instruments and sensors since it owns different measurement types.

The time interval selected was from Aug. 1 to Sep. 20, 2018, to train the model. This
first interval includes a reaction system and compressor operation within the normal condition
containing 2,377 data samples. The test set consists of twelve days before the compressor stops
on Oct. 1, with 553 data samples. This approach aimed to use a period within normal limits
for training the model, and with that, it identified a threshold allowing the recognition of the
occurrence of anomalies. With the model built and trained, and the threshold defined, the second
part of the dataset identified anomalies through the model.

The production of SM occurs through reactors with fixed-bed catalyst, overheated steam,
and negative pressure to facilitate the reaction of ethylbenzene converted into SM. However,
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the reaction system does not convert EB entirely to SM because of the by-products (DIMIAN;
BILDEA, 2019). The negative pressure is of paramount importance to minimize the generation
of other products that are not SM. For it, the production uses a compressor to reduce the pressure
of the reaction system (DIMIAN; BILDEA, 2019). The compressor also has a second important
function regarding the gases removed from the reactors, the most significant percentage being
hydrogen. They serve as fuel for the superheating furnace, which provides energy to promote
the reaction. Figure 33 presents in a simplified way the SM reaction process.

According to what was presented, the compressor has paramount importance in SM
production since the plant performance becomes compromised in possible compressor failure
and the consequent stoppage. The generation of by-products will increase because the reaction
will occur under positive pressure, in addition to the need for alternative fuel in overheating
furnaces (DIMIAN; BILDEA, 2019).

The maintenance and production teams put efforts to keep the compressor in operation,
considering that the impacts on the company’s results are significant in case of a failure in the
equipment. Therefore, an approach is necessary when it is possible to act in an anticipatory
manner and avoid a compressor failure. Traditionally the production team’s role is to control
the variables linked to the production trend, such as flow, pressure, temperature, and
manufacturing. On the other hand, the maintenance team monitors variables related to the
equipment, such as; vibration, axial and radial displacements, and motor current. Considering
that SM production occurs under high temperatures, and the generation of PS happens with
SM heating, there is an increased risk of polymerization in the compressor (DARVISHI;
RAHIMPOUR; RAEISSI, 2019). Traditionally the control of polymerization is carried out
using vibration and displacement sensors. However, early detection of failures of this
magnitude can prevent a system shutdown by increasing reliability.

After presenting the source of the data and selection criteria, the following section consists
of applying data mining techniques so that the system’s reliability is high and that the
operational interventions occur with greater assertiveness.

5.2 Tier 2: Data-driven approaches

For the models to perform better, data quality is an essential factor. Therefore, it is
imperative to select the most critical variables according to the analysis. A FI approach that
best represents the attributes is a fundamental step in modeling, focusing on the quality of the
model input data (AREMU et al., 2020). A benefit of selecting variables is the possibility of
reducing redundancy among features before feeding the ML model (WANG et al., 2018). As a
result, it is possible to improve the prediction models’ performance, reduce the overfitting,
increase precision, spend less computational resources, and many further benefits
(FERNANDES et al., 2019).

Among the powerful techniques for FI, the AE models are an efficient alternative. The study
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by Wang et al. (2018) introduced variants of AE models to assist in discovering features that
provided better performance for the model. In the article by Kong et al. (2020), they applied a
Deep Autoencoder model to select the most powerful features. The paper conducted by Li et
al. (2020) proposed a method using CNN to identify the equipment’s degradation.

AE is an unsupervised learning algorithm to extract characteristics from input data without
initial label information. It mainly consists of two parts, including encoder and decoder. In
Figure 34 a simplification architecture of AE is presented (LI et al., 2020; WANG et al., 2018;
SHAO et al., 2017). The encoder can perform data compression, especially when dealing with
high dimensional input, by mapping the input to a hidden layer.

Figure 34 – Autoencoder architecture.
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In the first part there is an input x = {x1, x2, ..., xn}, which is converted into hidden layers,
encoder h = {h1, h2, ..., hm}, through an activation function that can be symbolized as follows:

h = ϕact (W + b) (5.1)

where ϕact denotes the activation function and W is the weight matrix, b is a bias vector,
and the dimension hm is usually smaller than xn.

In the second part, decoder can reconstruct the input approach, where the hidden layer
h = {h1, h2, ..., hm} is converted into an output x̂ = {x̂1, x̂2, ..., x̂n} through an activation
function, which can be expressed as follows:
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x̂ = ϕact (W’h + b’) (5.2)

where W ′ is the weight matrix and b′ is a bias vector. The parameters of the AE are trained
by minimizing the reconstruction error (loss function) between the input and output using Back-
propagation (BP) algorithm (RUMELHART; HINTON; WILLIAMS, 1986). As an example of
a loss function, we mention the Mean Squared Error (MSE), that can be symbolized as the
Equation 5.3 (KONG et al., 2020):

L (θ)AE =
1

N

N∑
i=1

(x− x̂)2 (5.3)

where i varies to N {i = 1, 2, ..., N}, N represents the number of samples, and θ is the
parameter set which can be indicated as θ = {W, b,W ′, b′}.

In the research carried out by Wang et al. (2018), they made a comparison highlighting
the characteristics of CNN and AE models. The authors validate the benefits of using CNN
algorithms in AE architectures (KONG et al., 2020; MAO et al., 2020; REN et al., 2018). The
essential characteristics of the CNN need fewer parameters, which in some cases reduce the time
and computational resources for training (KONG et al., 2020; LECUN; BENGIO; HINTON,
2015). This feature makes it possible to test the combination of different hyperparameters and
thereby improve the accuracy of the models (RUMELHART; HINTON; WILLIAMS, 1986;
LECUN; KAVUKCUOGLU; FARABET, 2010; WANG et al., 2018). Thus, when the data
to be analyzed contains high dimensionality and noise, the use of CNN in AE architecture is
appropriate (WANG et al., 2018).

Multi-layer CNNs are experts at learning complex, high-dimensional, nonlinear mappings
of large amounts of data (LECUN et al., 1998; LI et al., 2020; KIM, 2014). Convolution
models can also assist in removing noise from the input data (LI et al., 2020). Due to the
ability to identify and maintain the most relevant characteristics, researchers have been widely
applying them in several fields, such as image and speech recognition, among other
applications (LECUN; BENGIO; HINTON, 2015; KIM, 2014; XIA et al., 2018; LECUN;
KAVUKCUOGLU; FARABET, 2010; ZEILER; FERGUS, 2014).

CNN assumes local dependencies in input measurements, like local receptive fields in an
image. In this study, the measures are dependent and structured (CHE et al., 2020). For
example, an increase in the load flow, represented by variable X1, will impact all other
measurements, as it is an integrated operating system (KANG; CATAL; TEKINERDOGAN,
2020). Therefore, using a CNN model is a viable solution for the present study.

In general, the purpose of CNN is to identify the new data’s generic features, using a specific
configuration of convolutional and grouping layers. The convolutional layer is named based
on its operation to convince filters with raw input data to generate different resources. The
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grouping layer extracts the most representative local resources by applying a sliding window to
the previous layer’s features. A summary construction of CNN is presented as follows (LI et
al., 2020; CHEN et al., 2020).

The input data with N in length is represented by x = [x1, x2, ..., xN ]. Each xi can be
one-dimensional, two-dimensional, or even higher dimensional. In this study, the relationship
between process data and compressor condition monitoring (vibration and displacement
signals) and compressor failure is considered. The input data, in this case, is one-dimensional.
The convolution operation in each feature map is represented as:

a = g
(
W T × xi:i+KL−1

+ b
)
, i = 1, 2, 3, ..., N −KL + 1 (5.4)

which W is the filter with length KL, b is the bias and g is the activation function. In
this work as activation function we selected the Rectified Linear Unit (ReLU) i.e., g(x) =

max(0, x) (CHEN et al., 2020). With the output, it is possible to understand the most important
characteristics learned concerning the input data. After layers of convolution, CNN uses a
pooling to summarize the previous layer’s output in the same map of features. This operation
makes it possible to reduce the dimensions and consequently reduce the overfitting of the model.
The features resulted after convolution layers are expressed as a = [a1, a2, ..., an]. Then, the
function that defines a pooling is:

F = {max{ai:i+PL−1}, i = sl − s+ 1, l = 1, 2, 3, ...} (5.5)

where PL is the window size, and s is the stride of pooling function.

In ML, the models’ interpretability is as crucial as the forecasting accuracy for most
problems (BAPTISTA et al., 2018). As in health research, where understanding the model is of
paramount importance, in industrial applications, the results of the model must be interpretable
(QI, 2012; WANG et al., 2018). To be used in industrial applications, DL analytical solutions,
despite their enormous potential, need to be understood by decision-makers. Otherwise,
stakeholders can ignore the recommendations and decisions generated (WANG et al., 2018).
DL models are generally considered a black box due to the inherent complexity, especially if
the network becomes deeper (MAO et al., 2020; KONG et al., 2020).

It is difficult to interpret and explain the computation and reproduction procedures of the
features. Thus, as suggested in the study by (WANG et al., 2018), to complement and facilitate
to understand the abstract resources learned by the network, the fusion with other ML
techniques can contribute to a more effective model.

Generally, there are three groups of FI algorithms: filter, wrapper, and embedded models
(TSAI; SUNG, 2020). The wrapper’s significant advantage and embedded compared to filter
models is that they take into account the effects of the FI subset with predictor algorithm
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performance (HU et al., 2018; KASONGO; SUN, 2020).

This research proposes a model in which it provides subsidies for maintenance and
production managers to support evaluation. That said, the model must also be interpretable and
friendly to decision-makers and provide accuracy to address the problem. Otherwise, it may
not be helpful for the purposes due to the limited understanding of the model’s results (QI,
2012; WANG et al., 2018). Considering that a CNN model identifies anomalies and brings a
challenge to understand the results, a complementary approach is necessary.

5.2.1 Anomaly detection

We subdivide into three subtopics the framework elaboration that supports the PHMS. The
first subsection below discusses the AE model for anomaly detection. The second subsection
presents the model development for FI of the main variables related to the failure. Finally, the
third discusses the activities that make up the steps for forecasting the system’s RUL.

5.2.1.1 CNN Autoencoder

Architecturally, in a simplified way, an AE is a feedforward neural network. Similar to
single-layer perceptrons, AE resembles a multilayer perceptron (MLP), where it contains an
input layer, an output layer, and one or more hidden layers. However, the output layer has the
same number of neurons as the input layer to reconstruct the input data.

An essential step in building the model consists of pre-processing the data. Due to the
difference in scale among values of features, we normalized the data before feeding the model.
This action aims to avoid a possible model bias. For this activity, we used the Scikit-learning1

pre-processing tool to scale the input variables the model. Therefore we used the MinMaxScaler

function and put the data in a range of [0,1].

After pre-processing the data, the AE model is built using the hyperparameters shown in
Figure 35. Moreover, in Figure 35, the encoder structure is in gray, the decoder structure is in
yellow, and the convolution layers by dashed lines. Finally, for implementation, we apply the
Python programming language with packages for developing ML models and Tensorflow and
Keras frameworks to build the CNN AE Network.

In the convolution layers, used the Exponential Linear Unit (ELU) (PEDAMONTI, 2018;
CLEVERT; UNTERTHINER; HOCHREITER, 2016) activation function, Batch Size of 32, and
150 Epochs to train the model since it presented an enhanced performance in the analysis. In the
same way, to avoid overfitting used the Callback2 function of Keras and EarlyStopping metrics
and 15% of the training data for validation and calculated the loss.

In identifying anomalies, the purpose is to use the AE network to compact the control and

1MinMaxScaler
2https://keras.io/api/callbacks/

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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Figure 35 – The proposed convolutional neural networks Autoencoder model for anomaly
detection.
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sensor variables’ data readings. Thus, it is possible to obtain a reduced dimension that
represents the interactions among the monitored variables. In the proposed model, the AE
trains with data {x(1), x(2), ..., x(i)} that describes the normal operating condition to
compress and then reconstruct the input variables {x̂(1), x̂(2), ..., x̂(i)}. Moreover, the error
expressed by the Equation 5.6 becomes reduced, considering each data sample x(i) ∈ Rn is
described by n different samples (HAROON, 2017).

MSE(x, x̂) =
1

N

N∑
i=1

(xi − x̂i)
2 (5.6)

With dimensionality reduction, the network learns the interactions among several variables
and must reconstruct the original ones in the output layer. The main idea is that as the monitored
equipment presents some degradation, it might affect the interaction among the variables, such
as temperature, pressure, vibration, flow rate, and liquid level. When this happens, there will
be an increase in the network reconstruction error with the input features. By monitoring the
reconstruction error, it’s possible to estimate the monitored equipment condition, considering
that the error tends to increase as the equipment degrades.

The proposed method used the error probability distribution of the input data reconstruction
to identify whether a data point is normal or abnormal, higher than the threshold. The definition
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of the limit depends on the research problem. This study defines the standard limit based on a
real data set from a petrochemical company.

The MSE distribution for reconstructing the region considered normal operating conditions
can then limit value to consider it abnormal. From the Reconstruction Loss (RL), we can,
for example, define a loss > 0.15 as an anomaly. The evaluation of the method to detect the
equipment degradation then calculates the RL and compares the data points to the threshold. As
a result, they are abnormal or normal.

This subsection aimed to present the methodological procedures applied to identify an
anomaly in the system. In the following subsection, the objective is to offer the approaches in
developing the model to determine which variables significantly contribute to the anomaly
detected.

5.2.1.2 Model to FI

We used a supervised learning model to select the variables that contributed to the system
failure. In supervised learning, we needed to present the model with a feature to be predicted,
so we used the AE model’s RL. In this step, we used the decision tree-based algorithms
Random Forest Regressor (RFR)3 and XGBoost4. We chose these algorithms due to their
ability to handle high-dimensional data and the consistent results presented in different
applications (LUNDBERG et al., 2020; DENG et al., 2021; MITCHELL; FRANK, 2017;
BUITINCK et al., 2013; GEURTS; ERNST; WEHENKEL, 2006). As a metric for model
evaluation, we defined that the values of R2 should be greater than > 90% on test data.

For model training, we employed the exhaustive search technique of the GridSearchCV
method. For defining the hyperparameters of the models, we used the GridSearchCV method
available in the API Scikit-learn5. GridSearchCV involves testing all possible combinations of
hyperparameters and selecting the one with the best performance in a search space (BUITINCK
et al., 2013).

In order to present the model’s interpretation, we show the results of the SHAP method
applied in this study in Section 6.2.

5.2.1.3 FI with SHAP

In this step, we use the RL and threshold developed in the previous session and already
published in Souza et al. (2021). However, this study differs regarding the resource
identification phase. In order to do this, we used the SHAP method (SHapley Additive
exPlanations) (LUNDBERG; ERION; LEE, 2018; SAYRES et al., 2019). The SHAP
technique is a tool for interpreting ML models.

3Random Forest Regressor
4XGBoost
5GridSearchCV

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Several methods have been proposed to explain the ML model predictions. The SHAP
method has shown great results in explaining the results in various applications, including in
health care, where interpreting the model’s results is a fundamental requirement. To this end,
the SHAP method uses game theory to calculate each feature’s contribution to the model’s
result. The SHAP method determines the most relevant local characteristics of each feature
in the model’s result (CAMPBELL et al., 2022; AGIUS et al., 2020; ZHANG et al., 2020;
SAYRES et al., 2019; LUNDBERG; ERION; LEE, 2018; YANG, 2021; ARIZA-GARZON et
al., 2020).

There are three key ideas presented in the SHAP. The first is that the explanation of an ML
model is the sum of the contributions of each feature. The second is that the contribution of
each feature is the difference between the model prediction with and without the feature. The
third is that the contribution of each feature is the difference between the model prediction
with and without the feature, weighted by the feature’s value (CAMPBELL et al., 2022;
SAYRES et al., 2019; LUNDBERG; ERION; LEE, 2018; YANG, 2021). Therefore, we
propose the following three steps for identifying the main variables related to the fault and
consequent system downtime.

1. In terms of overall interpretability, the sum of the SHAP values can reveal each
predictor’s positive or negative impact on the outcome. Similar to the variable
importance graphic, but with the additional ability to display whether or not each
variable positively or negatively correlates with the outcome.

2. The second type is local interpretability and refers to the fact that each observation has
unique SHAP values. We can articulate the reasoning behind a prediction and the roles
played by the many predictors. The results of traditional variable significance methods
are shown only globally and not separately for each instance. Because of local
interpretability, we can isolate the effects of each element and compare them.

3. And third, unlike other approaches that rely on surrogate models, such as linear regression
or logistic regression, SHAP values can be derived for any tree-based model. Accessible
on a global scale, a SHAP value graphic can illustrate positive or negative associations
between predictors and the outcome variable.

This study uses SHAP to explain tree-based models, such as random forests, decision trees,
and gradient-boosted trees, which are popular nonlinear predictive models (LUNDBERG et al.,
2020). Therefore, for us to use SHAP for FI, we first need to train an ML model. In this sense,
the following section presents the model used.

5.2.2 RUL - Remaining Useful Life

PHM predict future behavior regarding the existing operating state and schedule
maintenance activities required to preserve a system’s health. In this sense, the following



81

subsection presents the step to define the system’s HI, which will be the basis for estimating
the system’s RUL.

5.2.2.1 Defining the System’s Health Index

In this study, we normalized the RL output from AE and generated the time series
representing the system’s Health Index (HI). In order to do so, we applied Equation 5.7
(SCHWARTZ et al., 2022).

HI = 1−
[

Xi −min(Xi)

max(Xi)−min(Xi)

]
(5.7)

Where Xi relates to the i value of RL over time. That is, according to Equation 5.7, the
system’s HI is calculated from the RL, where the values are normalized between (0 and 1).
Thus, the value closest to 1 indicates that the system is healthy, while the value close to 0
indicates that the system is more degraded with compromised health (SCHWARTZ et al., 2022;
ZOU et al., 2022; YANG et al., 2022).

5.2.2.2 Data Preparation

Data preparation is an important step for the success of any ML project. We prepared the
data for training and testing the models in this step. As input, the models will receive a previous
data set, and, as output, they will produce a new predicted observation. To this end, we divided
the HI time series into individual instances to train the model. As an example, we consider the
following univariate data series: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The series can be divided into a collection of input/output patterns, with a one-time
window acting as input and three-time steps working as output for a one-window prediction.
The following sequence shows the division of the series into size 3 windows. The first input
window is [1, 2, 3], and the corresponding output window is [4, 5]. The second input window
is [2, 3, 4], and the corresponding output window is [5, 6]. And so on, as shown in Table 5.

Table 5 – Input and output example for a multi-step time series forecast.

Input: Output:

[ 1, 2, 3 ] [ 4, 5 ]
[ 2, 3, 4 ] [ 5, 6 ]
[ 3, 4, 5 ] [ 6, 7 ]

...
...

...
...

...

Source: Prepared by the author.
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We grouped the HI measurements over a three-hour average because we considered there
were no significant variations in the series over this interval. The training windows consider
intervals of 1.5 days (36 hours), while the testing window considers one day (24 hours).
Figure 36 presents in simplified form the steps involved in data preparation. Considering the
collection, the AE model derivating the RL, which are inputs for the FI and HI steps, proceeds
to divide the time windows to feed the models for predicting the system’s RUL

Figure 36 – Data preparation for RUL prediction and FI.
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In the next subsection, we present the Benchmarking step of the DL models for estimating
the system’s RUL.
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5.2.2.3 Building the models

In the following subsection, we address the main differences between the architectures
presented in Section 4.3.3.1 concerning the purpose of this research.

5.2.2.4 N-BEATS architecture

Each N-BEATS block is mathematically described as a series of fully connected layers with
a prediction/backcast bifurcation at the end. A block "removes the signal that can approximate
well". Then, the block focuses on the remaining error the previous blocks failed to correct. Each
block makes a partial prediction based on the local time series. The stack gathers incomplete
predictions into its blocks and delivers them to the next stack. Stacks consider a lookback
window to find non-local trends in time series. Finally, the partial forecasts are combined into
a model-level global prediction, as shown in Figure 37 (ORESHKIN et al., 2019).

Figure 37 – Neural Basis Expansion Analysis For Interpretable time series Forecasting
Architecture.
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Given the results obtained in different time serie applications, N-BEATS has drawn
researchers’ attention in several fields, such as: sewage treatment prediction (ZHANG;
SUZUKI; SHIOYA, 2022); atmospheric drag on spacecraft dynamics (STEVENSON et al.,
2022); stock market prediction (SINGHAL; MATHEW, 2022); and electricity demand
(ORESHKIN et al., 2021). Given these scenarios, we bring this architecture to compare the
RUL’s prediction results with traditional models
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5.2.2.5 MLP architecture

The MLP is a simpler neural network since it approximates a mapping function from input
to output variables. This ability is important for time series. In this regard, it can handle the
noise often present in time series. Figure 38 presents the MLP architecture in simplified form.

Figure 38 – MLP architecture.
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The MLPs are resistant to noise in the input data and the mapping function. Moreover,
they allow learning and prediction even with missing values. Another important feature is that
they make no assumptions regarding the mapping function and can learn linear and non-linear
connections. These characteristics are important in time series processing and provide robust
applications, especially in prediction (GOODFELLOW; BENGIO; COURVILLE, 2016).

For quality predictions to be made, the MLP needs a meaningful input mapping to learn the
most important time series characteristics. On the other hand, MLP networks can have any
number of inputs and outputs in the mapping function. Thus, they can be applied to
multivariate time series predictions and still perform multi-period predictions
(GOODFELLOW; BENGIO; COURVILLE, 2016; SUTSKEVER; VINYALS; LE, 2014;
GRAVES; SCHMIDHUBER, 2005). Therefore, MLP networks can be effective for time series
prediction, especially regarding this study’s objective.
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5.2.2.6 CNN architecture

In this study, we adopted the CNN comprising two convolutional layers to extract spatial
characteristics and the fully connected neural network to obtain a regression model (LECUN
et al., 1998). CNN were intended to process image data effectively. They have provided great
results in demanding computer vision challenges, including image categorization and object
localization, image captioning, and several applications in the computer vision field. They can
learn and map characteristics from raw data for TS prediction. A CNN model can filter and
refine a time series as a one-dimensional image (YANG et al., 2015; LECUN et al., 1998;
LECUN; BENGIO et al., 1995). Figure 39 presents an abstraction of the CNN architecture.

Figure 39 – Simplified architecture of a CNN.
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The CNNs obtain the advantages of Multilayer Perceptrons (MP) for time series prediction,
including multivariate series and learning complex functional connections, with the benefit that
the model does not learn directly with a time lag. Instead, the model can learn from an input
sequence the most important representation for prediction (YANG et al., 2015; LECUN et al.,
1998; LECUN; BENGIO et al., 1995). The CNN has shown consistent results when applied
to identifying anomalies, such as bearing failure (KONG et al., 2020) and estimating RUL in
industrial components (ZHANG et al., 2021).
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5.2.2.7 LSTM architecture

LSTM is a type of RNN, a special neural network designed for sequence problems. Thus,
given a standard feedforward MLP network, an RNN can be understood as adding loops to the
architecture. For example, each neuron can pass its signal forward (laterally) in a given layer
and transfer it to the next layer. The network’s output can feedback as an input to the network
with the next input vector, and so on. Recurrent connections add state or memory to the network
and allow it to learn and take advantage of the ordered nature of time series (HOCHREITER;
SCHMIDHUBER, 1997). Figure 40 presents an abstraction of the LSTM architecture.

Figure 40 – Simplified architecture of LSTM.
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LSTM can handle time series where feedforward networks do not perform satisfactorily
using fixed-size time windows. In addition to the general benefits of using neural networks for
sequence prediction, temporal dependence of the data benefits RNNs. In other words, the
network receives one observation of the sequence at a time as an input, which contributes to
learning from previous relevant observations and, thus, the predictions of the analyzed
sequence. Because of this ability to learn long-term correlations in a sequence, LSTM
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networks eliminate the need for a specific time window and can accurately model complex
multivariate sequences (HOCHREITER; SCHMIDHUBER, 1997).

However, LSTM does not adequately capture the non-stationary information of a time
series. Another LSTM limitation is dealing with autoregression with important information
within a small time series window. In this case, an MLP network may be more efficient than
LSTM (MA; MAO, 2021; SUTSKEVER; VINYALS; LE, 2014). The LSTM’s limitation in
dealing with nonstationary data may not even be the best option for predicting RUL (MA;
MAO, 2021). However, since LSTM has shown consistent results in time series prediction,
especially in classification problems, such as anomaly detection (KONG et al., 2020), RUL
estimation in industrial components (ZHANG et al., 2021), and engine failure prediction (MA;
MAO, 2021), we bring in LSTM for RUL prediction and analyze the result by benchmarking
the models.

5.2.2.8 GRU architecture

The GRU was proposed by (CHUNG et al., 2014) to allow each recurrent unit to record
dependencies on multiple time scales adaptively. The GRU, similarly to the LSTM unit,
includes gated units that control the information flow within the unit. However, it requires
separate memory cells.

The most remarkable similarity shared by LSTM and GRU is the additive component of
their memory cell upgrade. The classic RNN changes the activation or contents of a unit with
a new value calculated from the current input and the previous hidden state. However, over
time, the LSTM and GRU units retain the most relevant information. Figure 41 presents an
abstraction of the GRU architecture.

Although they are RNNs, LSTM and GRU have subtle differences. Regulated disclosure of
memory contents is a feature of the LSTM unit that GRU does not have. The output port on
the LSTM unit controls the amount of memory content visible to or used by other units on the
network. On the other hand, GRU exposes all its material without any restriction. Another
distinction is the placement of the entry gate or the reset gate in the GRU case. When updating
the candidate activation, the GRU controls the information flow from the previous activation
using a recurrent memory update gate. Applications of RNNs, such as asset integrity
monitoring, have shown promising results (WANG et al., 2017; ZHANG et al., 2021). In this
regard, we use GRU to predict RUL and analyze the result by benchmarking the models

After the presentation of the neural network models, next, we present the methodology for
evaluating the models.
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Figure 41 – Simplified architecture of GRU.
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5.2.2.9 RUL model performance metrics

We used different evaluation methods to assess the performance of the DL model
predictions. Therefore, we used the Mean Absolute Error (MAE) Equation 5.8, MSE
Equation 5.9, Mean Absolute Percentage Error (MAPE) Equation 5.10, and the Root Mean
Squared Error (RMSE) Equation 5.11.

The MAE is defined as the mean of the absolute value of the errors, Equation 5.8.

MAE =
1

N

N∑
i=1

|RULi −RULŷi | (5.8)

The MSE is defined as the mean squared errors, Equation 5.9.
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MSE =
1

N

N∑
i=1

(RULyi −RULŷi)
2 (5.9)

The MAE is more robust toward outliers, while the MSE assigns a higher penalty to larger
errors. The MSE is a more popular error measure than the MAE because the MSE assigns a
larger penalty to larger errors. It is also easier to interpret, as the MSE is the variance of the
errors (CHEN, 2021).

The MAPE is defined as the average of the absolute value of the errors divided by the actual
value, Equation 5.10.

MAPE =
1

N

N∑
i=1

|RULyi −RULŷi |
RULyi

(5.10)

The RMSE is defined as the square root of the MSE Equation 5.11.

RMSE =

√√√√ 1

N

N∑
i=1

(RULyi −RULŷi)
2 (5.11)

We applied the Coefficient of Determination R2 to evaluate the quality of the predictions.
The R2 is a measure of how well the predicted values fit the observed values. The R2 is a value
between 0 and 1 for regression data, where 0 means the model does not explain the variability of
the data around its mean, and 1 means the model explains all the variability of the data around
its mean. The R2 is defined by Equation 5.12 (CHEN, 2021).

R2
RUL = 1−

∑N
i=1(RULyi −RULŷi)

2∑N
i=1(RULyi −RULȳi)

2
(5.12)

where i varies for N {i = 1, 2, ..., N}, where N represents the number of samples and
RULyi is the actual value and RULŷi is the predicted value of RUL, respectively. The total
number of RUL true targets in the respective test set N .

The next section addresses the results obtained through the methodological procedures
applied in a real case study.

5.3 Final Remarks

This chapter presented the methodological procedures for implementing the framework,
evolving from the PHM, focused on specific equipment, to the PHMS. Initially, we approach
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the stages of data collection and treatment. To contextualize this step, the environment in which
the case study will be carried out was used. Next, ML activities were treated. Initially, the details
and importance of the AE for anomaly detection were explained, followed by the FI with the
model validation criteria, and finalized with the RUL prediction stage. For RUL prediction,
different DL architectures were explored and what draws attention is N-BEATS, which has
shown consistent results for series predictions with noise and non-stationary.

For validation of the framework and methodological procedures, the next chapter will
present the case study putting into practice the steps explained in this chapter.
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6 RESULTS

This chapter presents the results of the framework through a case study applied in the
petrochemical industry. This sector was chosen due to the digitalization maturity and to be
intense in industrial automation and the researcher’s knowledge in this operation, in addition to
the relevance of this industry in revenue and complexity operation. In the petrochemical
industry, the impacts of unplanned downtime are often severe for the organization, as financial
losses tend to increase beyond damaged equipment.

For the development of the chapter, the problem to be treated is initially presented. Next, we
present the development stages guided by the proposed framework and methodology. Finally,
we conclude with a discussion of the results.

6.1 Case study

I4.0 provides massive data collection. As a benefit, it can provide the current state of the
machines or processes through Big Data Analytics (AYDEMIR; ACAR, 2020; SAHAL;
BRESLIN; ALI, 2020; RAUCH; LINDER; DALLASEGA, 2020). This approach provides
support for the decision of business managers in the intelligent manufacturing process
(ATZORI; IERA; MORABITO, 2010; DIEZ-OLIVAN et al., 2019; LU, 2017; ROY et al.,
2016; RUBMANN et al., 2015; YOKOYAMA, 2015; SAHAL; BRESLIN; ALI, 2020;
AYDEMIR; ACAR, 2020).

Process industries, such as petrochemicals, control parameters are usually liquid level,
pressure, temperature, speed of pumps and compressors (TEWARI; DWIVEDI, 2019; MIN et
al., 2019). In many cases, the control parameters monitor the quality of the product, the
facilities’ safety, and the people involved in these activities (CHENG; YAO; WU, 2013;
MUTLU; ALTUNTAS, 2019). However, to maintain stability and continuity of operations, the
equipment must be fully operational, with high standards of reliability (NAKAYAMA;
SPÍNOLA; SILVA, 2020). Since the risks of an eventual accident due to equipment failure can
damage the facilities and the community surrounding the plant (WANG et al., 2018;
PANDARAKONE; MIZUNO; NAKAMURA, 2019).

In unplanned interruptions with process equipment failure, the impact ends up being caused
by production costs, which reduces the company’s competitiveness (AYDEMIR; ACAR, 2020).
To assist in this approach, technicians and operators usually using control and signaling sensors
to monitor indications of failures, such as vibration, acceleration signals, and temperature of
abnormal equipment (MIN et al., 2019; ZHANG et al., 2015; WANG et al., 2018; LEE et
al., 2013). In this way, manufacturing processes with these characteristics are responsible for
driving Big Data in the context of I4.0. Therefore, it becomes an ideal environment for Big Data
Analytics to support decisions and collaboration to guide managers towards the best judgment.

Several reliability studies have been carried out in the Petrochemical Industry to monitor
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equipment and detect anomalies using sensors installed at strategic points (MUTLU;
ALTUNTAS, 2019; ZHANG et al., 2015; CHENG; YAO; WU, 2013; MULUBRHAN;
MOKHTAR; MUHAMMAD, 2014; JIA et al., 2018; CHEN et al., 2017). This possibility has
become an essential mode of increasing equipment availability (AYDEMIR; ACAR, 2020).
However, when monitoring is performed only on specific equipment, the effects of operating
conditions may not be perceived or evaluated.

Since the Petrochemical Industry is intensive in data generated through connected devices
for the most diverse controls, the following arises: why not use process variables to help identify
future anomalies? The process variables have fingerprints, which are known parameters for
operation within the control points. However, small changes in isolated variables sometimes are
not simple tasks for operators to notice, and even a minor disturbance might cause equipment
failure. On the other hand, the maintenance sector monitoring the equipment in isolation may
not be enough to predict possible failures effectively (AYDEMIR; ACAR, 2020; WANG et al.,
2018; WANG; ZHENG; ZHANG, 2020).

Therefore, we believe that asset management that includes operational and monitoring
critical equipment data benefits the organization. With this, the maintenance sector achieves
better monitor and control assets, and production increases equipment availability. In this way,
a model is needed to qualify which feature is more relevant to identify a possible failure Wang
et al. (2018), Wang, Zheng e Zhang (2020) and, therefore, provide insights for preventive
decision-making (ZHAO; WANG; CHU, 2019; SOUZA et al., 2020; WANG; ZHENG;
ZHANG, 2020).

For this reason, this chapter aims to apply the PHMS framework to support decision-making
in a petrochemical company and presents the following main contributions:

1. Apply a DL model for anomaly detection on a production system;

2. Propose an FI model considering process and equipment data to identify the possible root
cause;

3. Compare the main DL architectures for RUL prediction in a noisy and non-stationary
time series;

4. Performs system RUL prediction given an abnormal condition.

The following sections of this chapter detail each step to realizing the case study.

6.2 Development and results

One of the principal equipment to optimize an SM plant’s efficiency is the compressor,
which is responsible for reducing the system pressure and reusing the gas generated in the
reaction. This way, it becomes essential to use a model that can anticipate an adjustment in
preventive maintenance to avoid a system stop.
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As discussed in Chapter 5, the data used in the model is from the reaction process. For the
proposed model, all process variables may contain relevant insights to prevent system failure.
As an example, we can mention the variable X1 on Table 4 that represents the feed load of
the plant. This measure is essential since there is an impact on the system pressure in case
of sudden variations, and therefore the compressor will have an overload. Another critical
variable consists of the temperature parameters since the SM polymerization becomes facilitated
in high-temperature conditions. The polymerization inside the compressor is usually crucial,
considering cleaning the system and the expressive financial losses.

Detecting minor variations in process parameters is usually a complex activity for
operators and engineers due to the number of variables and instruments in the operational
process. However, with the AE, it is possible to identify small changes in the control
parameters and warn of possible equipment anomalies. Accordingly, in the following
subsection, it will be applied to identify a possible abnormal condition.

6.2.1 Autoencoder model to anomaly detection

To build the model, we need to separate the data in training and testing. For this activity,
those responsible for the process provided production and maintenance reports to identify time
windows in which the compressor operated under normal conditions. Also, to test, 12 days until
the compressor stops, as shown in Figure 42. In Appendix A, we present the measured values
in different ranges to facilitate the visualization of each feature. In Appendix B, we present a
table with summary statistics with all Features.

Figure 42 – Features included in the study with the periods used under normal conditions to
train and pre-failure to test the model.
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With the data sets defined, we applied the model shown in Figure 35, and to track training
accuracy, we used 15% of the training data set for validation after each epoch. The complete
model and the used data set are available in the GitHub repository1. In Figure 43, we presented
the adjustment of the model in training and testing. In Appendix D, we presented a small
summary of the hyperparameters tested. As we used the EarlyStopping parameter, the model
stopped in epoch 53, although we defined it as the initial parameter with 150 epochs for training.
This approach contributes to avoiding overfitting the model.

Figure 43 – Train and validation loss.

Source: Prepared by the author.

With the training set, it is possible to trace the calculated loss distribution and verify the
appropriate threshold to identify an anomaly, as shown in Figure 44. It becomes evident that a
value above the threshold can be considered statistically as an anomaly.

From the loss distribution Figure 44, we can consider a threshold of > 0.15 as a possible
anomaly. With this, we calculate the loss in the test set to verify when it crosses the anomaly
threshold.

Next, we estimated the training set metrics and merged the test data into a unique data set.
We could visualize the AE model’s result with loss distribution and threshold and verify the
period until the compressor stopped. In Figure 45, it is possible to observe that there were signs
of an anomaly in September, and there is a tendency towards the threshold, which remains until
the failure occurs on Oct. 1.

According to the proposed method, we used a new data set to validate the model and the
limit considered for an anomaly. In this sense, we extracted a new set of data with 38 days
with different compressor operating conditions. In the time interval, the compressor normally
presented minor disturbances and a more serious fault, which generated a shutdown.

By applying the model to the new data set, it was possible to detect the anomalies in which
the compressor operated and, finally, notice the equipment’s shutdown. We observed an

1Repository

https://github.com/mlhoffmann/Academic
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Figure 44 – Distribution of reconstruction loss for healthy equipment.

Source: Prepared by the author.

anomaly after Sep. 15, shown in Figure 46, and it demonstrated the equipment operating close
to the threshold. This statement becomes evident when, in early October, there was a
shutdown. Thus, we considered that the model, and the threshold, are relevant to support the
operational and maintenance areas in managing this vital equipment.

After identifying the existence of an anomaly, it is necessary to determine which variables
are responsible for the compressor failure. For this purpose, we employed a new step in which
consists of the feature identification accountable for the abnormal operating conditions.

6.2.2 Model to Feature identification

Distributing the RL input data across the AE model makes it possible to analyze which
features contribute most to the anomaly. This step is a relevant benefit in the PHMS proposal,
as it contributes to the effective implementation of previous actions. To do so, we used the
27 variables that make up the system as characteristics. And for the label, we used the RL
displayed in Figure 44 of the AE and already published in the study by Souza et al. (2021).

For defining the hyperparameters of the algorithms, we adopted the exhaustive search
technique as a session. In Table 6, we display an extract of the main hyperparameters obtained
for the models.

After running the models with the hyperparameters from Table 6, we obtained the following
results:

• XGBoost: R2 = 96.80%.

• Random Forest: R2 = 95.24%

According to the in-session validation criteria, we consider the model valid, as we obtained
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Figure 45 – The Autoencoder model results until compressor failure.
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R2 = 96.80% in test data. Thus, according to the adopted criteria, we consider XGBoost valid.
Then, we applied the SHAP method to explain the XGBoost results to identify which Features
are more relevant.

6.2.2.1 SHAP to Feature identification

Understanding the predictions of sophisticated models remains a significant difficulty, and
interpretations at the Feature level individually are usually of greater interest. Feature
interpretability receives greater relevance when it comes to black box models. Therefore, in
this research, using SHAP, we analyzed the behavior of the features in predicting the anomaly.
We used the XGBoost model, which showed the best performance. In Figure 47, we present
the global importance and local explanation summary of the features for training the model.

In Figure 47, the bar plot represents the average magnitude of the SHAP value. The most
important features are listed in descending order according to their significance for model
performance. The Beeswarm graphic 2 to the right of Figure 47 displays a dense summary of
information on how key features of the dataset affected the model output. A single point
represents each supplied instance. The SHAP value of the feature determines the X position of
the point, and the points accumulate along the sequence of each feature to show the density. In
the left plot in Figure 47, it shows that X13 is on average the most important feature. Whereas
the right image of Figure 47 shows that for an identified anomaly, smaller values (blue)
contribute less to the occurrence of the abnormal condition.

In particular, the Beeswarm plot to the right of Figure 47 provides the following information:

2Beeswarm

https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/beeswarm.html
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Figure 46 – Results of the model with new data set.

Source: Prepared by the author.

• Feature Importance: The Features are sorted from largest to smallest. The feature X13

is the most important, followed by X15 and X8.

• Impact: The horizontal position reveals whether the value positively or negatively
influences the forecast.

• Original value: For each observation, the color indicates whether the value of that
variable is high (in red) or low (in blue).

• Correlation: Having a high-temperature value (feature "X13") has a high impact on
the prediction of the identified anomaly. Red represents a "high" effect, and the X axis
represents a "positive" effect.

In order to analyze the dependency between features for local forecasts, we present
Figure 48. In "a" in Figure 48, we notice that when features X13 and X16 are low (blue) the
risk for anomalies is reduced. Whereas the image "c" in Figure 48 shows a strong relationship
between X8 and X16. That is, upon a certain condition of the recirculation of the X8 system,
the vibration X16 has a strong tendency for the anomaly to occur. This type of information
allows identifying conditions and relationships between features that can cause instability in
the system.

Finally, we analyze the contribution of each feature to the prediction of a single dataset
instance. Considering instance 138 as an example, the force graphic in Figure 49 provides the
following information:

• Output value f(x): is the prediction for observation 138 of the dataset.
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Table 6 – Best set of main hyperparameters using brute force according to the algorithm used.

Hyperparameters XGBoost Random Forest

n_estimators 2000 200

max_depth None 80

learning_rate 0.01 Na

colsample_bylevel 0.4 Na

colsample_bytree 0.8 Na

min_samples_split Na Na

max_features Na sqrt

min_samples_leaf Na 1

Source: Prepared by the author.

• Base value: is the predicted value if we knew no feature for the current value. In other
words, it is the average prediction of the validation dataset. In this case, the mean value
of the test is 0.07613.

• Red/blue: features that increase the prediction (to the right) are shown in red, and those
that move the prediction down are in blue.

Thus, we can observe that the feature X13 is the most important for predicting instance
138, followed by X15 and X8. Whereas the failure that occurred on October 1, 2018, occurred
due to the polymerization of the compressor discharge piping. According to the model results,
the feature X13 is a signal that the compressor input temperature rise indicates polymer
formation. Another relevant characteristic identified by the model was that X8, according to
the fault investigation, had the compressor recirculation opening to compensate for the
pressure in the compressor discharge piping. Thus, the model could identify the relationship
between the variables and the abnormal condition. We point out that with SHAP, it was
possible to analyze the contribution of each feature to the system failure locally. With the
results presented, preventive actions could be taken to avoid unplanned system downtime

We performed the FI step in the PHMS context in this subsection. In the next subsection,
we address the step dealing with RUL prediction.

6.2.3 Prediction RUL for the system

The RUL prediction is an important task in the PHM context. However, fully understanding
the dynamics of a complex system is difficult. In this sense, we performed the RUL prediction
for a system with several assets and different functions, raising the analysis’s complexity. In this
direction, we initially need the system’s HI for RUL prediction. In order to do so, we followed
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Figure 47 – Impact of each feature on the predictive model. On the left are average SHAP
values for each feature and on the right is the local explanation of each feature.
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the steps presented in section 5.2.2.3. As a first step, we applied Equation 5.7 to normalize the
RL of the AE. Figure 50 presents the resulting system’s HI characteristic curve.

The analysis period comprised the time frame from 01/08/2018 to 01/10/2018 according
to axis X of Figure 50. This interval contemplates stable operation until the failure in early
October. We performed the following dataset division for training and testing. For training,
we considered 60% of the sample from the beginning to 09/12/2018, and from this date on, we
used it for testing the prediction models.

6.2.3.1 Model performance benchmark for RUL prediction.

Regarding the models’ performance, we present a summary of the results in visual form in
Figure 51 and a comparison of the metrics in Figure 52 and Table 7. We can notice in Figure 51
that the model showing the highest compliance to the test data is N-BEATS, and we confirmed
it in Table 7 with the results for all models. This result can be explained by the fact that the
model can capture the temporal dynamics of the data even under non-stationary conditions. On
the other hand, the LSTM and GRU models underperformed since they failed to capture the
temporal dynamics in non-stationary data. The results obtained with RNNs corroborate studies
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Figure 48 – Combination of model local explanations. a, shows the relationship between
Input Temperature Control X13 and Vibration Control X16. b, Vibration Control X15 and
Compressor Recirculation X8. c, Compressor Recirculation X8 and Vibration Control X16.
d, Vibration Control X16 and Input Temperature Control X13.
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pointing out this type of RNN limitation (MA; MAO, 2021).

The results displayed in Table 7 and Figure 51 draw attention to the MLP model’s
performance because, despite being a simpler architecture, it was superior compared to more
complex networks. We can infer that the ability to approximate the mapping function from
input to output variables contributed to dealing with the existing noise in the HI time series.
Another important MLP characteristic that contributes to the model’s performance is the
absence of temporal structure. In other words, time steps are modeled as input resources,
meaning the network has no explicit manipulation or understanding of the temporal structure
or order between observations.

Our results also highlight CNN’s ability to handle the time series with HI characteristics.
This is justified because, like MLP, they handle multivariate input and output very well, do
not depend on temporal relationships, and learn arbitrary functional connections with higher



101

Figure 49 – Local SHAP value for a specific dataset observation.

Source: Prepared by the author.

Figure 50 – The characteristic curve of the health index of the system in which we carried out
the study.

Aug 5
2018

Aug 12 Aug 19 Aug 26 Sep 2 Sep 9 Sep 16 Sep 23 Sep 30

0

0.2

0.4

0.6

0.8

1

Source: Prepared by the author.

complexity (YANG et al., 2015).

6.3 Final Remarks

According to the results presented in this case study, we can infer that it is difficult to
deal with complex problems with a single approach. Therefore, for anomaly identification,
the unsupervised models are consistent alternatives since we do not always know the behavior
to be predicted. On the other hand, supervised models are more suitable for RUL prediction
problems. Thus, hybrid ML modeling can be a relevant alternative in complex environments,
such as industrial settings. Thus, as we present a framework approach, we can robustly handle
the complexity of using data for decision support.

In this study, we can organize the framework into different steps. In the anomaly
identification step, we applied AE, which makes it possible to reconstruct input data and,
through the latent representation of the data, detect anomalies hidden in the high
dimensionality of the features. In the feature detection stage, we used SHAP, which provides
an analysis that goes beyond visualizing which features are most relevant to the model result,
as it provides means of understanding the combination of feature states, as an example, the
relationships we present in Figure 48. As a final step, we used different DL models, which
enabled the prediction of the system’s RUL using the latent representation input data generated
by AE.

Using the framework proposed here, we sought to evolve regarding traditional PHM by
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Table 7 – Benchmark the forecast models for the RUL
Metrics N-Beats MLP CNN LSTM GRU

MSE 0.63 1.03 1.14 1.68 1.32

MAE 6.01 7.40 7.67 9.06 8.11

RMSE 7.93 10.15 10.68 12.96 11.49

MAPE 11.32 17.17 17.76 23.19 20.46

R2 91.36 87.01 87.16 82.35 85.55

Source: Prepared by the author.

providing a methodology that allows using different ML techniques. With this, it is possible
to progress toward analyzing not only a specific piece of equipment and its components but a
system comprising several pieces of equipment, components, and subsystems. In this sense, we
position the use of our proposition which we call PHMS. In our judgment, the implementation
of PHMS in industrial systems is made possible through a pipeline combining advanced ML
techniques.

Figure 53 in "a" demonstrates a prevention and reaction strategy. On the other hand, in
"b", it comprises a comprehensive analysis of system data and outputs with insights for
decision-makers. In the smart manufacturing context, PHMS enables maintenance and
operation actions to transition from preventive and reactive to predictive, preventive,
prescriptive, and CBM strategies. The benefits that can derive from PHMS are aligned with
smart manufacturing, which includes reducing costs, increasing system availability, reducing
energy consumption, improving production yield, and avoiding damage to the environment
due to accidents from critical system failures.

Although we have found the applied approach consistent and valid under real-world
conditions, we have limited ourselves to a specific case study. It is a restriction regarding the
application in other environments. In this regard, we consider replicating the research in
similar systems and different contexts, such as capital markets, fraud detection in financial
systems, and in the health of living beings, such as animals and humans. Despite the
peculiarities, the different contexts have the complexity of the systems in common, just like the
industrial processes.
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Figure 51 – Results of models for predicting the RUL in test data compared to real data. The
y axes represent the HI of the system and the x axes the analysis period. The light blue dashed
line shows the separation of test and training windows.
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Figure 52 – Performance of the models according to the metrics used in test set. Values are in
percent and the y axis on the right considers only R2 because of the scale.
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Figure 53 – In "a" preventive and reactive maintenance through local analysis. In "b", PHMS
is a data-driven pipeline for decisions in an intelligent manufacturing system.

a b

Source: Prepared by the author adapted from Storyset.
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7 CONCLUSION

This study was guided by the research question: “How to develop a PDM model in a
production system to support decision-making in the context of I4.0?”. In this sense, we
introduce the concept of PHMS to support decision-making in PDM and increase reliability in
the context of I4.0. This concept evolves concerning the traditional PHM as it includes a
production system. In this sense, within the scope of this research, a production system is
represented by various equipment and peripherals in addition to operating variables. The
PHMS is justified because, to model complex systems, the traditional maintenance and
reliability methods have limitations, as presented in the chapter 3 and previously published in
(SOUZA et al., 2020). Furthermore, chapter 3 shows that most recent research dealing with
reliability focuses on local improvements. In this way, PHMS allows investigations and
corrective activities to be performed quickly and efficiently on systems, as presented in
Figure 1 in the introduction section.

To answer the research question and meet the main specific objectives, we developed an ML
framework to support the PHMS. Then, we performed a case study with real data to evaluate
our proposition. With this, we highlight some essential contributions to the field of academia
and business where part of the results have already been published in (SOUZA et al., 2021).
As an initial step, we applied the AE to the system variables to map the latent representation of
the features and generate a threshold of normality and the RL. Then, it was possible to detect
anomalies in the system, perform the FI, generate the HI, and predict the RUL for the system.

Also, as an essential contribution, a taxonomy was created with the application of
reliability for decision-making in I4.0 published in (SOUZA et al., 2020). The taxonomy
presented the application types, principles, and integration model considering reliability in the
context of I4.0. We noticed that in vertical integration, the gains are more focused on internal
and local results. On the other hand, in horizontal integration, the benefits go beyond the
boundaries of organizations. In this sense, with the evolution of the digitization of operations
driven by I4.0, the use of data for decision support is a reality. However, when applied to
complex systems, there are limitations and a lack of convergence by which ML techniques to
apply. In this direction, we deem relevant the proposition of the framework that supports the
PHMS developed in this research.

PHMS relies on using sensors and other monitoring devices to continually collect data on
the performance and condition of system equipment. This data is then analyzed using the
framework with algorithms and ML techniques to identify patterns and trends that could
indicate a possible failure. Based on this analysis, tasks can be scheduled in advance, allowing
maintenance and operations teams to resolve potential issues before they occur. As a result,
PHMS can effectively streamline maintenance and operation activities and reduce costs,
allowing teams to focus on proactive actions rather than reactive ones. It can also help improve
equipment and system reliability and extend equipment life.
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We position PHMS as a type of strategy that uses data from different sources and, through
analysis, identify when the system is likely to fail, and with that, actions are taken in advance.
In this way, PHMS aims to avoid equipment failures and unplanned stops, which can interrupt
operations, reduce productivity and increase costs.

This research presents some considerable contributions regarding the ML techniques
proposed in the framework. In the first review, we noted the benefits of SHAP for
troubleshooting and health management of industrial equipment, as demonstrated in human
health research. The adoption of SHAP has provided advances concerning traditional FI
methods, where the averages of the characteristics are considered, as in (SOUZA et al., 2021).
Furthermore, we note that RNNs may not be the best option in short-term non-stationary time
series. In this scenario, we emphasize that simpler models, such as MLP, or complex ones,
such as CNN, present better results. A relevant relationship between MLP and CNN is that in
shorter time windows, the absence of time dependence contributed to better results than RNNs.
In addition, we highlight the promising result obtained with N-BEATS, since, in all validation
metrics, N-BEATS was superior. Thus, it is an effective option for predicting RUL in complex
and noisy environments, such as industrial processes.

7.1 Contributions

With the framework, it was possible to create an operational threshold to alert the existence
of an event outside the operational standards. The possibility of developing a maintenance alert
based on system data contributes significantly. In systems such as petrochemical, it is often
complex to define operation limits. Another benefit of the search is to detect the possible root
cause for anomalies since the time to act can be reduced. Concerning FI, the application of
SHAP to understand the relationship of features over time helped to understand the behavior of
the type of failure, as shown in the case study. Also noteworthy is the result obtained with N-
BEATS for forecasting a more complex time series. The contributions mentioned have already
been partially published in important journals. Next, the publications derived from this thesis
are presented

7.2 Publications

As partial contributions throughout the research, articles were produced for publication in
journals listed below:

• Published articles:

– SOUZA, Marcos Leandro Hoffmann et al. A survey on decision-making based on
system reliability in the context of Industry 4.0. Journal of Manufacturing Systems,
v. 56, p. 133–156, 2020.
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– SOUZA, Marcos Leandro Hoffmann et al. A feature identification method to
explain anomalies in condition monitoring. Computers in Industry, Elsevier, v.
133, 2021.

• Articles under review:

– SOUZA, Marcos Leandro Hoffmann et al. Proposition of a data-oriented pipeline
for PHMS in a production system using ML. Computers in Industry, Elsevier.

7.3 Limitations and future work

Despite the relevant results presented, the approach presented in the research has limitations.
As the main limitation, it can be highlighted that the data used in the study belong to the time
domain and the frequency domain. Thus, the proposed solution was not designed to deal with
discrete data. Another limitation is linked to the failure mode since, in electrical systems,
failures are usually random, making early identification and signaling as an anomaly difficult.
Finally, the amount of data available to evaluate different operating conditions. Furthermore,
we put little effort into testing DL hyperparameters for RUL prediction.

In continuity, this research intends to present results contributing to the academic area and
decision-makers in sectors similar to those discussed here. As a benefit, one can cite the RUL
forecast model and optimize the results, where the primary data are related to the market in
which the research is concentrated. Also, in future works, we consider evaluating the
information from the operators and the field maintenance team and investigating the benefits of
the model, mainly in the FI stage. In addition, the model can evolve and consider simulations
of critical operating conditions and follow the model’s performance. We also suggest including
Concept drift to monitor the model’s condition for changes in the system over time.



108

REFERENCES

ADU-AMANKWA, Kwaku et al. A predictive maintenance cost model for CNC SMEs in the
era of industry 4.0. International Journal of Advanced Manufacturing Technology, Springer
London, v. 104, n. 9-12, p. 3567–3587, 10 2019. ISSN 14333015. Disponível em: <http://link.
springer.com/10.1007/s00170-019-04094-2>.

AGIUS, Rudi et al. Machine learning can identify newly diagnosed patients with CLL at high
risk of infection. Nature Communications, Springer US, v. 11, n. 1, 2020. ISSN 20411723.
Disponível em: <http://dx.doi.org/10.1038/s41467-019-14225-8>.

ALFEO, Antonio L.; CIMINO, Mario G.C.A.; VAGLINI, Gigliola. Degradation stage
classification via interpretable feature learning. Journal of Manufacturing Systems, Elsevier
Ltd, v. 62, n. May 2021, p. 972–983, 2022. ISSN 02786125. Disponível em: <https://doi.org/
10.1016/j.jmsy.2021.05.003>.

AREMU, Oluseun Omotola et al. A relative entropy based feature selection framework for asset
data in predictive maintenance. Computers and Industrial Engineering, Elsevier, v. 145, n.
July 2019, p. 106536, 2020. ISSN 03608352. Disponível em: <https://doi.org/10.1016/j.cie.
2020.106536>.

ARIZA-GARZON, Miller Janny et al. Explainability of a Machine Learning Granting Scoring
Model in Peer-to-Peer Lending. IEEE Access, v. 8, p. 64873–64890, 2020. ISSN 21693536.

ATZORI, Luigi; IERA, Antonio; MORABITO, Giacomo. The Internet of Things: A survey.
Computer Networks, Elsevier B.V., v. 54, n. 15, p. 2787–2805, 2010. ISSN 13891286.
Disponível em: <http://dx.doi.org/10.1016/j.comnet.2010.05.010>.

AYDEMIR, Gurkan; ACAR, Burak. Anomaly monitoring improves remaining useful life
estimation of industrial machinery. Journal of Manufacturing Systems, Elsevier, v. 56, n.
February, p. 463–469, 2020. ISSN 02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.
2020.06.014>.

BALADOR, Ali; ERICSSON, Niclas; BAKHSHI, Zeinab. Communication middleware
technologies for industrial distributed control systems: A literature review. IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA, p. 1–6, 2017. ISSN
19460759.

BALOGH, Z. et al. Reference Architecture for a Collaborative Predictive Platform for Smart
Maintenance in Manufacturing. INES 2018 - IEEE 22nd International Conference on
Intelligent Engineering Systems, Proceedings, p. 000299–000304, 2018. Disponível em:
<https://ieeexplore.ieee.org/abstract/document/8523969/>.

BAPTISTA, Marcia et al. Forecasting fault events for predictive maintenance using data-driven
techniques and ARMA modeling. Computers and Industrial Engineering, Elsevier, v. 115,
n. October 2017, p. 41–53, 2018. ISSN 03608352. Disponível em: <https://doi.org/10.1016/j.
cie.2017.10.033>.

BENKER, Maximilian et al. Utilizing uncertainty information in remaining useful life
estimation via Bayesian neural networks and Hamiltonian Monte Carlo. Journal of
Manufacturing Systems, Elsevier Ltd, v. 61, n. November 2020, p. 799–807, 2021. ISSN
02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2020.11.005>.

http://link.springer.com/10.1007/s00170-019-04094-2
http://link.springer.com/10.1007/s00170-019-04094-2
http://dx.doi.org/10.1038/s41467-019-14225-8
https://doi.org/10.1016/j.jmsy.2021.05.003
https://doi.org/10.1016/j.jmsy.2021.05.003
https://doi.org/10.1016/j.cie.2020.106536
https://doi.org/10.1016/j.cie.2020.106536
http://dx.doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.jmsy.2020.06.014
https://doi.org/10.1016/j.jmsy.2020.06.014
https://ieeexplore.ieee.org/abstract/document/8523969/
https://doi.org/10.1016/j.cie.2017.10.033
https://doi.org/10.1016/j.cie.2017.10.033
https://doi.org/10.1016/j.jmsy.2020.11.005


109

BERRI, Pier Carlo; VEDOVA, Matteo D.L. Dalla; MAININI, Laura. Computational framework
for real-time diagnostics and prognostics of aircraft actuation systems. Computers in Industry,
Elsevier, v. 132, 2021. ISSN 01663615. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0166361521001305>.

BIANCHINI, Augusto; PELLEGRINI, Marco; ROSSI, Jessica. Maintenance scheduling
optimization for industrial centrifugal pumps. International Journal of System Assurance
Engineering and Management, v. 10, n. 4, p. 848–860, 2019. ISSN 09764348. Disponível
em: <http://link.springer.com/10.1007/s13198-019-00819-4>.

BLACK, John J.; MEJABI, O. O. Simulation of complex manufacturing equipment reliability
using object oriented methods. Reliability Engineering and System Safety, v. 48, n. 1, p.
11–18, 1995. ISSN 09518320.

BORGI, Tawfik et al. Big Data for Operational Efficiency of Transport and Logistics: A
Review. 6th IEEE International Conference on Advanced Logistics and Transport, ICALT
2017 - Proceedings, p. 184–188, 2018. Disponível em: <https://ieeexplore.ieee.org/abstract/
document/8547029/>.

BOUSDEKIS, Alexandros; MENTZAS, Gregoris. Condition-Based Predictive Maintenance
in the Frame of Industry 4.0. In: IFIP Advances in Information and Communication
Technology. [s.n.], 2017. v. 513, p. 399–406. ISBN 9783319669229. Disponível em: <http:
//link.springer.com/10.1007/978-3-319-66923-6_47>.

BUITINCK, Lars et al. API design for machine learning software: experiences from the scikit-
learn project. arXiv preprint arXiv:1309.0238, p. 1–15, 2013. Disponível em: <http://arxiv.
org/abs/1309.0238>.

BURDICK, G. R. et al. Phased Mission Analysis: A Review of New Developments and An
Application. IEEE Transactions on Reliability, R-26, n. 1, p. 43–49, 1977. ISSN 15581721.

CAIAZZO, Bianca et al. Towards Zero Defect Manufacturing paradigm: A review of the state-
of-the-art methods and open challenges. Computers in Industry, Elsevier, v. 134, p. 103548,
2022. ISSN 01663615. Disponível em: <https://doi.org/10.1016/j.compind.2021.103548>.

CALLE, Kerman López de et al. Dynamic condition monitoring method based on
dimensionality reduction techniques for data-limited industrial environments. Computers in
Industry, Elsevier, v. 112, 2019. ISSN 01663615. Disponível em: <https://www.sciencedirect.
com/science/article/pii/S0166361519301174>.

CAMPBELL, Thomas W. et al. Exact Shapley values for local and model-true explanations of
decision tree ensembles. Machine Learning with Applications, Elsevier Ltd., v. 9, n. May,
p. 100345, 2022. ISSN 26668270. Disponível em: <https://doi.org/10.1016/j.mlwa.2022.
100345>.

CANITO, Alda et al. An architecture for proactive maintenance in the machinery industry.
Advances in Intelligent Systems and Computing, v. 615, p. 254–262, 2017. ISSN 21945357.
Disponível em: <https://link.springer.com/chapter/10.1007/978-3-319-61118-1_31>.

CANIZO, Mikel et al. Real-time predictive maintenance for wind turbines using Big
Data frameworks. 2017 IEEE International Conference on Prognostics and Health
Management, ICPHM 2017, p. 70–77, 2017. Disponível em: <https://ieeexplore.ieee.org/
abstract/document/7998308/>.

https://www.sciencedirect.com/science/article/pii/S0166361521001305
https://www.sciencedirect.com/science/article/pii/S0166361521001305
http://link.springer.com/10.1007/s13198-019-00819-4
https://ieeexplore.ieee.org/abstract/document/8547029/
https://ieeexplore.ieee.org/abstract/document/8547029/
http://link.springer.com/10.1007/978-3-319-66923-6_47
http://link.springer.com/10.1007/978-3-319-66923-6_47
http://arxiv.org/abs/1309.0238
http://arxiv.org/abs/1309.0238
https://doi.org/10.1016/j.compind.2021.103548
https://www.sciencedirect.com/science/article/pii/S0166361519301174
https://www.sciencedirect.com/science/article/pii/S0166361519301174
https://doi.org/10.1016/j.mlwa.2022.100345
https://doi.org/10.1016/j.mlwa.2022.100345
https://link.springer.com/chapter/10.1007/978-3-319-61118-1_31
https://ieeexplore.ieee.org/abstract/document/7998308/
https://ieeexplore.ieee.org/abstract/document/7998308/


110

CAO, Qiushi et al. An ontology-based approach for failure classification in predictive
maintenance using fuzzy c-means and SWRL rules. Procedia Computer Science, v. 159, p.
630–639, 2019. ISSN 18770509.

CHE, Changchang et al. Domain adaptive deep belief network for rolling bearing fault
diagnosis. Computers and Industrial Engineering, Elsevier, v. 143, n. June 2019, p. 106427,
2020. ISSN 03608352. Disponível em: <https://doi.org/10.1016/j.cie.2020.106427>.

CHEN, Chih Wen et al. Ensemble feature selection in medical datasets: Combining filter,
wrapper, and embedded feature selection results. Expert Systems, v. 37, n. 5, p. 1–10, 2020.
ISSN 14680394.

CHEN, Li-Pang. Practical Statistics for Data Scientists: 50+ Essential Concepts Using R
and Python. [S.l.]: O’Reilly Media, 2021. 272–273 p. ISSN 0040-1706.

CHEN, Zhiqiang et al. Deep neural networks-based rolling bearing fault diagnosis.
Microelectronics Reliability, Elsevier Ltd, v. 75, p. 327–333, 2017. ISSN 00262714.
Disponível em: <http://dx.doi.org/10.1016/j.microrel.2017.03.006>.

CHEN, Zhenghua et al. Machine Remaining Useful Life Prediction via an Attention-Based
Deep Learning Approach. IEEE Transactions on Industrial Electronics, IEEE, v. 68, n. 3, p.
2521–2531, 2021. ISSN 15579948.

CHENG, Ching Wu; YAO, Hong Qing; WU, Tsung Chih. Applying data mining techniques
to analyze the causes of major occupational accidents in the petrochemical industry. Journal
of Loss Prevention in the Process Industries, Elsevier Ltd, v. 26, n. 6, p. 1269–1278, 2013.
ISSN 09504230. Disponível em: <http://dx.doi.org/10.1016/j.jlp.2013.07.002>.

CHENG, Ying et al. Cyber-physical integration for moving digital factories forward
towards smart manufacturing: a survey. International Journal of Advanced Manufacturing
Technology, Springer London, v. 97, n. 1-4, p. 1209–1221, 7 2018. ISSN 14333015. Disponível
em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045842061&doi=10.1007%
2Fs00170-018-2001-2&partnerID=40&md5=5a172289f8818e45b16ebfbb37afa27dhttp:
//link.springer.com/10.1007/s00170-018-2001-2>.

CHO, Sangje et al. A hybrid machine learning approach for predictive maintenance in smart
factories of the future. In: IFIP Advances in Information and Communication Technology.
[s.n.], 2018. v. 536, p. 311–317. ISBN 9783319997063. Disponível em: <http://link.springer.
com/10.1007/978-3-319-99707-0_39>.

CHRISTOU, Ioannis T. et al. End-to-end industrial IoT platform for Quality 4.0 applications.
Computers in Industry, Elsevier, v. 137, 2022. ISSN 01663615. Disponível em: <https://
www.sciencedirect.com/science/article/pii/S0166361521001986>.

CHUNG, Junyoung et al. Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. arXiv preprint arXiv:1412.3555, p. 1–9, 2014. Disponível em: <http:
//arxiv.org/abs/1412.3555>.

CLEVERT, Djork Arné; UNTERTHINER, Thomas; HOCHREITER, Sepp. Fast and accurate
deep network learning by exponential linear units (ELUs). 4th International Conference on
Learning Representations, ICLR 2016 - Conference Track Proceedings, p. 1–14, 2016.

https://doi.org/10.1016/j.cie.2020.106427
http://dx.doi.org/10.1016/j.microrel.2017.03.006
http://dx.doi.org/10.1016/j.jlp.2013.07.002
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045842061&doi=10.1007%2Fs00170-018-2001-2&partnerID=40&md5=5a172289f8818e45b16ebfbb37afa27d http://link.springer.com/10.1007/s00170-018-2001-2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045842061&doi=10.1007%2Fs00170-018-2001-2&partnerID=40&md5=5a172289f8818e45b16ebfbb37afa27d http://link.springer.com/10.1007/s00170-018-2001-2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045842061&doi=10.1007%2Fs00170-018-2001-2&partnerID=40&md5=5a172289f8818e45b16ebfbb37afa27d http://link.springer.com/10.1007/s00170-018-2001-2
http://link.springer.com/10.1007/978-3-319-99707-0_39
http://link.springer.com/10.1007/978-3-319-99707-0_39
https://www.sciencedirect.com/science/article/pii/S0166361521001986
https://www.sciencedirect.com/science/article/pii/S0166361521001986
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555


111

DALZOCHIO, Jovani et al. Machine learning and reasoning for predictive maintenance in
Industry 4.0: Current status and challenges. Computers in Industry, Elsevier, v. 123,
2020. ISSN 01663615. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0166361520305327>.

DARVISHI, Ali; RAHIMPOUR, Mohammad Reza; RAEISSI, Sona. A theoretical and
experimental study for screening inhibitors for styrene polymerization. Processes, v. 7, n. 10,
p. 1–18, 2019. ISSN 22279717.

DENG, Wenkai et al. A Data Mining Based System for Transaction Fraud Detection. 2021
IEEE International Conference on Consumer Electronics and Computer Engineering,
ICCECE 2021, p. 542–545, 2021.

DIEZ-OLIVAN, Alberto et al. Data fusion and machine learning for industrial prognosis:
Trends and perspectives towards Industry 4.0. Information Fusion, v. 50, p. 92–
111, 2019. ISSN 15662535. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/
S1566253518304706>.

DIMIAN, Alexandre C.; BILDEA, Costin Sorin. Energy Efficient Styrene Process: Design and
Plantwide Control. Industrial and Engineering Chemistry Research, v. 58, n. 12, p. 4890–
4905, 2019. ISSN 15205045.

ESMAEILIAN, Behzad; BEHDAD, Sara; WANG, Ben. The evolution and future of
manufacturing: A review. Journal of Manufacturing Systems, The Society of Manufacturing
Engineers, v. 39, p. 79–100, 2016. ISSN 02786125. Disponível em: <http://dx.doi.org/10.1016/
j.jmsy.2016.03.001>.

FERNANDES, Marta et al. Data analysis and feature selection for predictive maintenance: A
case-study in the metallurgic industry. International Journal of Information Management,
v. 46, p. 252–262, 2019. ISSN 02684012. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0268401218304699>.

FERREIRA, Carlos; GONÇALVES, Gil. Remaining Useful Life prediction and challenges:
A literature review on the use of Machine Learning Methods. Journal of Manufacturing
Systems, Elsevier Ltd, v. 63, n. May, p. 550–562, 2022. ISSN 02786125. Disponível em:
<https://doi.org/10.1016/j.jmsy.2022.05.010>.

FERREIRO, Susana et al. Industry 4.0 : Predictive Intelligent Maintenance for Production
Equipment. European Conference of the Prognostics and Health Management Society, n.
June 2016, p. 1–8, 2016. Disponível em: <http://papers.phmsociety.org/index.php/phme/article/
view/1667>.

FILZ, Marc André et al. Data-driven failure mode and effect analysis (FMEA) to enhance
maintenance planning. Computers in Industry, Elsevier, v. 129, 2021. ISSN 01663615.

FORDAL, Jon Martin; RØDSETH, Harald; SCHJØLBERG, Per. Initiating industrie
4.0 by implementing sensor management – Improving operational availability. Lecture
Notes in Electrical Engineering, Springer Verlag, v. 484, p. 200–207, 2019.
ISSN 18761119. Disponível em: <https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85059079009&doi=10.1007%2F978-981-13-2375-1_26&partnerID=40&md5=
37a8fee5d8e03b1c97629821b2df7564>.

https://www.sciencedirect.com/science/article/pii/S0166361520305327
https://www.sciencedirect.com/science/article/pii/S0166361520305327
https://linkinghub.elsevier.com/retrieve/pii/S1566253518304706
https://linkinghub.elsevier.com/retrieve/pii/S1566253518304706
http://dx.doi.org/10.1016/j.jmsy.2016.03.001
http://dx.doi.org/10.1016/j.jmsy.2016.03.001
https://www.sciencedirect.com/science/article/pii/S0268401218304699
https://www.sciencedirect.com/science/article/pii/S0268401218304699
https://doi.org/10.1016/j.jmsy.2022.05.010
http://papers.phmsociety.org/index.php/phme/article/view/1667
http://papers.phmsociety.org/index.php/phme/article/view/1667
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059079009&doi=10.1007%2F978-981-13-2375-1_26&partnerID=40&md5=37a8fee5d8e03b1c97629821b2df7564
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059079009&doi=10.1007%2F978-981-13-2375-1_26&partnerID=40&md5=37a8fee5d8e03b1c97629821b2df7564
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059079009&doi=10.1007%2F978-981-13-2375-1_26&partnerID=40&md5=37a8fee5d8e03b1c97629821b2df7564


112

FUMAGALLI, Luca et al. A Smart Maintenance tool for a safe Electric Arc Furnace. IFAC-
PapersOnLine, v. 49, n. 31, p. 19–24, 2016. ISSN 24058963. Disponível em: <http://www.
sciencedirect.com/science/article/pii/S2405896316328269>.

GAO, R. et al. Cloud-enabled prognosis for manufacturing. CIRP Annals - Manufacturing
Technology, v. 64, n. 2, p. 749–772, 2015. ISSN 17260604.

GÄRTNER, Bertolt. Industry 4.0 maturity index. Assembly, v. 61, n. 12, p. 32–35,
2018. ISSN 10508171. Disponível em: <https://www.ptc.com/-/media/Files/PDFs/IoT/
acatech_STUDIE_Maturity_Index_eng_WEB.PDF%0Ahttp://www.acatech.de/fileadmin/
user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/
acatech_STUDIE_Maturity_Index_eng_WEB.pdf%0Awww.acat>.

GEURTS, Pierre; ERNST, Damien; WEHENKEL, Louis. Extremely randomized trees.
Machine Learning, v. 63, n. 1, p. 3–42, 2006. ISSN 08856125.

GODREAU, Victor et al. Continuous improvement of HSM process by data mining. Journal
of Intelligent Manufacturing, Springer New York LLC, v. 30, n. 7, p. 2781–2788, 2019. ISSN
15728145. Disponível em: <http://link.springer.com/10.1007/s10845-018-1426-7>.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. MIT press,
2016. 1–3 p. Disponível em: <http://www.deeplearningbook.org/front_matter.pdf>.

GOPALAKRISHNAN, Maheshwaran et al. Machine criticality assessment for productivity
improvement: Smart maintenance decision support. International Journal of Productivity
and Performance Management, v. 68, n. 5, p. 858–878, 2019. ISSN 17410401. Disponível
em: <https://www.emeraldinsight.com/doi/abs/10.1108/IJPPM-03-2018-0091>.

GRACEL, Piotr Łebkowski Jarosław. Concept of Industry 4.0-Related Manufacturing
Technology Maturity Model (ManuTech Maturity Model–MTMM). Decision Making in
Manufacturing and Services, v. 12, 2018. Disponível em: <http://yadda.icm.edu.pl/yadda/
element/bwmeta1.element.baztech-e2e2199a-8f2d-47d9-8764-a944dcb44fc9>.

GRAVES, Alex; SCHMIDHUBER, Jürgen. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks, v. 18, n. 5-6,
p. 602–610, 2005. ISSN 08936080.

GUNGOR, Onat; ROSING, Tajana; AKSANLI, Baris. STEWART: STacking Ensemble for
White-Box AdversaRial Attacks Towards more resilient data-driven predictive maintenance.
Computers in Industry, Elsevier, v. 140, 2022. ISSN 01663615. Disponível em: <https://
www.sciencedirect.com/science/article/pii/S0166361522000574>.

GUO, Liang et al. A recurrent neural network based health indicator for remaining useful life
prediction of bearings. Neurocomputing, Elsevier B.V., v. 240, n. 16, p. 98–109, 2017. ISSN
18728286. Disponível em: <http://dx.doi.org/10.1016/j.neucom.2017.02.045>.

HÄCKEL, Björn et al. Assessing IT availability risks in smart factory networks. Business
Research, Springer, v. 12, n. 2, p. 523–558, 2019. ISSN 21982627.

HAROON, Danish. Python Machine Learning Solutions. [s.n.], 2017. ISBN 9781484228227.
Disponível em: <https://www.safaribooksonline.com/library/view/python-machine-learning/
9781787127692/>.

http://www.sciencedirect.com/science/article/pii/S2405896316328269
http://www.sciencedirect.com/science/article/pii/S2405896316328269
https://www.ptc.com/-/media/Files/PDFs/IoT/acatech_STUDIE_Maturity_Index_eng_WEB.PDF%0Ahttp://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acatech_STUDIE_Maturity_Index_eng_WEB.pdf%0Awww.acat
https://www.ptc.com/-/media/Files/PDFs/IoT/acatech_STUDIE_Maturity_Index_eng_WEB.PDF%0Ahttp://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acatech_STUDIE_Maturity_Index_eng_WEB.pdf%0Awww.acat
https://www.ptc.com/-/media/Files/PDFs/IoT/acatech_STUDIE_Maturity_Index_eng_WEB.PDF%0Ahttp://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acatech_STUDIE_Maturity_Index_eng_WEB.pdf%0Awww.acat
https://www.ptc.com/-/media/Files/PDFs/IoT/acatech_STUDIE_Maturity_Index_eng_WEB.PDF%0Ahttp://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acatech_STUDIE_Maturity_Index_eng_WEB.pdf%0Awww.acat
http://link.springer.com/10.1007/s10845-018-1426-7
http://www.deeplearningbook.org/front_matter.pdf
https://www.emeraldinsight.com/doi/abs/10.1108/IJPPM-03-2018-0091
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-e2e2199a-8f2d-47d9-8764-a944dcb44fc9
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-e2e2199a-8f2d-47d9-8764-a944dcb44fc9
https://www.sciencedirect.com/science/article/pii/S0166361522000574
https://www.sciencedirect.com/science/article/pii/S0166361522000574
http://dx.doi.org/10.1016/j.neucom.2017.02.045
https://www.safaribooksonline.com/library/view/python-machine-learning/9781787127692/
https://www.safaribooksonline.com/library/view/python-machine-learning/9781787127692/


113

HASHEMIAN, H. M.; BEAN, Wendell C. State-of-the-art predictive maintenance techniques.
IEEE Transactions on Instrumentation and Measurement, IEEE, v. 60, n. 10, p. 3480–3492,
2011. ISSN 00189456.

HE, Yihai et al. Cost-oriented predictive maintenance based on mission reliability
state for cyber manufacturing systems. Advances in Mechanical Engineering,
SAGE Publications Inc., v. 10, n. 1, 2018. ISSN 16878140. Disponível em:
<https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041566509&doi=10.1177%
2F1687814017751467&partnerID=40&md5=cb57dc5abfc2c2af58cdf71aaa887843>.

. Reliability-oriented design of integrated model of preventive maintenance and
quality control policy with time-between-events control chart. Computers and Industrial
Engineering, v. 129, p. 228–238, 2019. ISSN 03608352. Disponível em: <https://www.
sciencedirect.com/science/article/pii/S0360835219300518>.

HENNING LUKAS WOLF-DIETER, Wahlster Wofgang Kagermann. Industrie 4.0: Mitdem
Internet der Dinge auf demWegzur 4.industriellen Revolution. 2011. 13 p. Disponível
em: <http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie%257B/_%
257D4%257B/_%257D0%257B/_%257DMit%257B/_%257Ddem%257B/_%257DInternet%
257B/_%257Dder%257B/_%257DDinge%257B/_%257Dauf%257B/_%257Ddem%257B/_%
257DWeg%257B/_%257Dzur%257B/_%257Dviert>.

HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-Term Memory. Neural
Computation, v. 9, n. 8, p. 1735–1780, 11 1997. ISSN 08997667.

HU, Liang et al. Feature selection considering two types of feature relevancy and feature
interdependency. Expert Systems with Applications, Elsevier Ltd, v. 93, p. 423–434, 2018.
ISSN 09574174. Disponível em: <https://doi.org/10.1016/j.eswa.2017.10.016>.

ISMAIL, Ahmed; TRUONG, Hong Linh; KASTNER, Wolfgang. Manufacturing
process data analysis pipelines: a requirements analysis and survey. Journal
of Big Data, SpringerOpen, v. 6, n. 1, 2019. ISSN 21961115. Disponível em:
<https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059746810&doi=10.1186%
2Fs40537-018-0162-3&partnerID=40&md5=0ceb5cfbfc4d51b0186152664d1e128d>.

JIA, Feng et al. A neural network constructed by deep learning technique and its application
to intelligent fault diagnosis of machines. Neurocomputing, Elsevier B.V., v. 272, p. 619–628,
2018. ISSN 18728286. Disponível em: <https://doi.org/10.1016/j.neucom.2017.07.032>.

JIMENEZ, Juan José Montero et al. Towards multi-model approaches to predictive
maintenance: A systematic literature survey on diagnostics and prognostics. Journal of
Manufacturing Systems, Elsevier, v. 56, n. March, p. 539–557, 2020. ISSN 02786125.
Disponível em: <https://doi.org/10.1016/j.jmsy.2020.07.008>.

Kagermann; WAHLSTER, Wolfgang; HELBIG, Johannes. Recommendations for
implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0
WG, n. April, p. 82, 2013. ISSN 2405-8963.

KANG, Ziqiu; CATAL, Cagatay; TEKINERDOGAN, Bedir. Machine learning applications
in production lines: A systematic literature review. Computers and Industrial Engineering,
Elsevier Ltd, v. 149, n. April, p. 106773, 2020. ISSN 03608352. Disponível em: <https://doi.
org/10.1016/j.cie.2020.106773>.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041566509&doi=10.1177%2F1687814017751467&partnerID=40&md5=cb57dc5abfc2c2af58cdf71aaa887843
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041566509&doi=10.1177%2F1687814017751467&partnerID=40&md5=cb57dc5abfc2c2af58cdf71aaa887843
https://www.sciencedirect.com/science/article/pii/S0360835219300518
https://www.sciencedirect.com/science/article/pii/S0360835219300518
http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie%257B/_%257D4%257B/_%257D0%257B/_%257DMit%257B/_%257Ddem%257B/_%257DInternet%257B/_%257Dder%257B/_%257DDinge%257B/_%257Dauf%257B/_%257Ddem%257B/_%257DWeg%257B/_%257Dzur%257B/_%257Dviert
http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie%257B/_%257D4%257B/_%257D0%257B/_%257DMit%257B/_%257Ddem%257B/_%257DInternet%257B/_%257Dder%257B/_%257DDinge%257B/_%257Dauf%257B/_%257Ddem%257B/_%257DWeg%257B/_%257Dzur%257B/_%257Dviert
http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie%257B/_%257D4%257B/_%257D0%257B/_%257DMit%257B/_%257Ddem%257B/_%257DInternet%257B/_%257Dder%257B/_%257DDinge%257B/_%257Dauf%257B/_%257Ddem%257B/_%257DWeg%257B/_%257Dzur%257B/_%257Dviert
http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie%257B/_%257D4%257B/_%257D0%257B/_%257DMit%257B/_%257Ddem%257B/_%257DInternet%257B/_%257Dder%257B/_%257DDinge%257B/_%257Dauf%257B/_%257Ddem%257B/_%257DWeg%257B/_%257Dzur%257B/_%257Dviert
https://doi.org/10.1016/j.eswa.2017.10.016
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059746810&doi=10.1186%2Fs40537-018-0162-3&partnerID=40&md5=0ceb5cfbfc4d51b0186152664d1e128d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059746810&doi=10.1186%2Fs40537-018-0162-3&partnerID=40&md5=0ceb5cfbfc4d51b0186152664d1e128d
https://doi.org/10.1016/j.neucom.2017.07.032
https://doi.org/10.1016/j.jmsy.2020.07.008
https://doi.org/10.1016/j.cie.2020.106773
https://doi.org/10.1016/j.cie.2020.106773


114

KASONGO, Sydney Mambwe; SUN, Yanxia. A deep learning method with wrapper based
feature extraction for wireless intrusion detection system. Computers and Security, Elsevier
Ltd, v. 92, 2020. ISSN 01674048.

KIANGALA, Kahiomba Sonia; WANG, Zenghui. Initiating predictive maintenance for a
conveyor motor in a bottling plant using industry 4.0 concepts. International Journal of
Advanced Manufacturing Technology, v. 97, n. 9-12, p. 3251–3271, 8 2018. ISSN 14333015.
Disponível em: <http://link.springer.com/10.1007/s00170-018-2093-8>.

KIM, Yoon. Convolutional neural networks for sentence classification. EMNLP 2014 - 2014
Conference on Empirical Methods in Natural Language Processing, Proceedings of the
Conference, p. 1746–1751, 2014.

KINNUNEN, Sini Kaisu et al. Internet of things in asset management: Insights from
industrial professionals and academia. International Journal of Service Science,
Management, Engineering, and Technology, IGI Global, v. 9, n. 2, p. 104–119,
2018. ISSN 19479603. Disponível em: <https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85052116110&doi=10.4018%2FIJSSMET.2018040105&partnerID=40&md5=
e9ec2dc3db39846e84ec159515ec807d>.

KIRKMANT, Robert A. Failure Concepts in Reliability Theory. IEEE Transactions on
Reliability, R-12, n. 4, p. 1–10, 1963. ISSN 15581721.

KLAVANS, Richard; BOYACK, Kevin W. Which Type of Citation Analysis Generates the Most
Accurate Taxonomy of Scientific and Technical Knowledge? Journal of the Association for
Information Science and Technology, v. 68, n. 4, p. 984–998, 2017. ISSN 23301643.

KLEIN, Patrick; BERGMANN, Ralph. Data generation with a physical model to support
machine learning research for predictive maintenance. CEUR Workshop Proceedings, v. 2191,
p. 179–190, 2018. ISSN 16130073. Disponível em: <http://ceur-ws.org/Vol-2191/paper22.
pdf>.

KLINGENBERG, Cristina Orsolin; BORGES, Marco Antônio Viana; ANTUNES, José
Antônio Valle. Industry 4.0 as a data-driven paradigm: a systematic literature review on
technologies. Journal of Manufacturing Technology Management, v. 32, n. 3, p. 570–592,
2021. ISSN 1741038X.

KŁOS, Sławomir; PATALAS-MALISZEWSKA, Justyna. The use of the simulation method in
analysing the performance of a predictive maintenance system. In: Advances in Intelligent
Systems and Computing. Springer, Cham, 2019. v. 801, p. 42–49. ISBN 9783319996073.
Disponível em: <http://link.springer.com/10.1007/978-3-319-99608-0_5>.

KOLINSKA, Karolina; KOLINSKI, Adam. Analysis of Spare Parts in Terms of Their
Availability Management for the Production Processes Needs. Business Logistics in Modern
Management, v. 18, p. 191–204, 2018. Disponível em: <https://hrcak.srce.hr/ojs/index.php/
plusm/article/view/7888>.

KONG, Xianguang et al. A multi-ensemble method based on deep auto-encoders for fault
diagnosis of rolling bearings. Measurement: Journal of the International Measurement
Confederation, Elsevier Ltd, v. 151, p. 107132, 2020. ISSN 02632241. Disponível em:
<https://doi.org/10.1016/j.measurement.2019.107132>.

http://link.springer.com/10.1007/s00170-018-2093-8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052116110&doi=10.4018%2FIJSSMET.2018040105&partnerID=40&md5=e9ec2dc3db39846e84ec159515ec807d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052116110&doi=10.4018%2FIJSSMET.2018040105&partnerID=40&md5=e9ec2dc3db39846e84ec159515ec807d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052116110&doi=10.4018%2FIJSSMET.2018040105&partnerID=40&md5=e9ec2dc3db39846e84ec159515ec807d
http://ceur-ws.org/Vol-2191/paper22.pdf
http://ceur-ws.org/Vol-2191/paper22.pdf
http://link.springer.com/10.1007/978-3-319-99608-0_5
https://hrcak.srce.hr/ojs/index.php/plusm/article/view/7888
https://hrcak.srce.hr/ojs/index.php/plusm/article/view/7888
https://doi.org/10.1016/j.measurement.2019.107132


115

KRAUS, Mathias; FEUERRIEGEL, Stefan. Forecasting remaining useful life: Interpretable
deep learning approach via variational Bayesian inferences. Decision Support Systems, v. 125,
2019. ISSN 01679236.

KRUMEICH, Julian et al. Advanced planning and control of manufacturing processes in steel
industry through big data analytics: Case study and architecture proposal. Proceedings - 2014
IEEE International Conference on Big Data, IEEE Big Data 2014, IEEE, p. 16–24, 2014.

KU, Jin Hee. A Study on Prediction Model of Equipment Failure Through Analysis of Big Data
Based on RHadoop. Wireless Personal Communications, v. 98, n. 4, p. 3163–3176, 2018.
ISSN 1572834X. Disponível em: <http://link.springer.com/10.1007/s11277-017-4151-1>.

KUEHN, Wolfgang. Digital twins for decision making in complex production and logistic
enterprises. International Journal of Design and Nature and Ecodynamics, v. 13, n. 3, p.
260–271, 2018. ISSN 17557445.

KWON, Hweeung; DO, Thai Ngan; KIM, Jiyong. Comprehensive Decision Framework
Combining Price Prediction and Production-Planning Models for Strategic Operation of a
Petrochemical Industry. Industrial and Engineering Chemistry Research, v. 59, n. 25, p.
11610–11620, 2020. ISSN 15205045.

LAMONACA, F. et al. Internet of Things for Structural Health Monitoring. 2018 Workshop
on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2018 - Proceedings, n.
September, p. 95–100, 2018.

LARRINAGA, Felix et al. Implementation of a Reference Architecture for Cyber Physical
Systems to support Condition Based Maintenance. 2018 5th International Conference
on Control, Decision and Information Technologies, CoDIT 2018, p. 773–778, 2018.
Disponível em: <http://ebiltegia.mondragon.edu/xmlui/handle/20.500.11984/1174>.

LAZAROVA-MOLNAR, Sanja; MOHAMED, Nader. Reliability assessment in the context of
industry 4.0: Data as a game changer. Procedia Computer Science, Elsevier B.V., v. 151,
n. 2018, p. 691–698, 2019. ISSN 18770509. Disponível em: <https://doi.org/10.1016/j.procs.
2019.04.092>.

LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning. Nature, v. 521, n. 7553,
p. 436–444, 2015. ISSN 14764687.

LECUN, Yann; BENGIO, Yoshua et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, Cambridge, MA USA, v. 3361,
n. 1, p. 14, 1995. ISSN 17416485.

LECUN, Yann et al. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, v. 86, n. 11, p. 2278–2323, 1998. ISSN 00189219.

LECUN, Yann; KAVUKCUOGLU, Koray; FARABET, Clément. Convolutional networks and
applications in vision. ISCAS 2010 - 2010 IEEE International Symposium on Circuits and
Systems: Nano-Bio Circuit Fabrics and Systems, p. 253–256, 2010.

LEE, C. K.M.; ZHANG, S. Z.; NG, K. K.H. Development of an industrial Internet of things
suite for smart factory towards re-industrialization. Advances in Manufacturing, v. 5, n. 4,
p. 335–343, 12 2017. ISSN 21953597. Disponível em: <http://link.springer.com/10.1007/
s40436-017-0197-2>.

http://link.springer.com/10.1007/s11277-017-4151-1
http://ebiltegia.mondragon.edu/xmlui/handle/20.500.11984/1174
https://doi.org/10.1016/j.procs.2019.04.092
https://doi.org/10.1016/j.procs.2019.04.092
http://link.springer.com/10.1007/s40436-017-0197-2
http://link.springer.com/10.1007/s40436-017-0197-2


116

LEE, Hyunsoo. Development of real-time sketch-based on-the-spot process modeling and
analysis system. Journal of Manufacturing Systems, Elsevier, v. 54, n. December 2019,
p. 215–226, 2020. ISSN 02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2019.12.
006>.

LEE, Jay et al. Industrial Big Data Analytics and Cyber-physical Systems for Future
Maintenance & Service Innovation. Procedia CIRP, v. 38, p. 3–7, 2015. ISSN 22128271.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S2212827115008744>.

. Recent advances and trends in predictive manufacturing systems in big data environment.
Manufacturing Letters, Society of Manufacturing Engineers (SME), v. 1, n. 1, p. 38–41, 2013.
ISSN 22138463. Disponível em: <http://dx.doi.org/10.1016/j.mfglet.2013.09.005>.

. Prognostics and health management design for rotary machinery systems - Reviews,
methodology and applications. Mechanical Systems and Signal Processing, Elsevier, v. 42,
n. 1-2, p. 314–334, 2014. ISSN 08883270. Disponível em: <http://dx.doi.org/10.1016/j.ymssp.
2013.06.004>.

LI, Bao rui et al. Framework and case study of cognitive maintenance in Industry 4.0. Frontiers
of Information Technology and Electronic Engineering, v. 20, n. 11, p. 1493–1504, 11 2019.
ISSN 20959230. Disponível em: <http://link.springer.com/10.1631/FITEE.1900193>.

LI, Defang. Perspective for smart factory in petrochemical industry. Computers and Chemical
Engineering, v. 91, p. 136–148, 2016. ISSN 00981354. Disponível em: <https://www.
sciencedirect.com/science/article/pii/S009813541630059X>.

LI, Xiang et al. Deep learning-based adversarial multi-classifier optimization for cross-domain
machinery fault diagnostics. Journal of Manufacturing Systems, v. 55, n. November 2019, p.
334–347, 2020. ISSN 02786125.

LIM, Kendrik Yan Hong; ZHENG, Pai; CHEN, Chun Hsien. A state-of-the-art survey of
Digital Twin: techniques, engineering product lifecycle management and business innovation
perspectives. Journal of Intelligent Manufacturing, Springer Science and Business Media
LLC, v. 31, n. 6, p. 1313–1337, 2020. ISSN 15728145.

LIN, Yi Kuei; CHANG, Ping Chen. System reliability of a manufacturing network with
reworking action and different failure rates. International Journal of Production Research,
v. 50, n. 23, p. 6930–6944, 2012. ISSN 00207543. Disponível em: <http://www.tandfonline.
com/doi/abs/10.1080/00207543.2011.638939>.

LIU, Chao et al. A systematic development method for cyber-physical machine tools. Journal
of Manufacturing Systems, The Society of Manufacturing Engineers, v. 48, p. 13–24, 2018.
ISSN 02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2018.02.001>.

LIU, He et al. A generalized cauchy method for remaining useful life prediction of wind turbine
gearboxes. Mechanical Systems and Signal Processing, Elsevier Ltd, v. 153, p. 107471, 2021.
ISSN 10961216. Disponível em: <https://doi.org/10.1016/j.ymssp.2020.107471>.

LU, Yang. Industry 4.0: A survey on technologies, applications and open research issues.
Journal of Industrial Information Integration, Elsevier Inc., v. 6, p. 1–10, 2017. ISSN
2452414X.

https://doi.org/10.1016/j.jmsy.2019.12.006
https://doi.org/10.1016/j.jmsy.2019.12.006
http://www.sciencedirect.com/science/article/pii/S2212827115008744
http://dx.doi.org/10.1016/j.mfglet.2013.09.005
http://dx.doi.org/10.1016/j.ymssp.2013.06.004
http://dx.doi.org/10.1016/j.ymssp.2013.06.004
http://link.springer.com/10.1631/FITEE.1900193
https://www.sciencedirect.com/science/article/pii/S009813541630059X
https://www.sciencedirect.com/science/article/pii/S009813541630059X
http://www.tandfonline.com/doi/abs/10.1080/00207543.2011.638939
http://www.tandfonline.com/doi/abs/10.1080/00207543.2011.638939
https://doi.org/10.1016/j.jmsy.2018.02.001
https://doi.org/10.1016/j.ymssp.2020.107471


117

LUNDBERG, Scott M. et al. From local explanations to global understanding with explainable
AI for trees. Nature Machine Intelligence, Nature Publishing Group, v. 2, n. 1, p. 56–67, 2020.
ISSN 25225839. Disponível em: <http://dx.doi.org/10.1038/s42256-019-0138-9>.

LUNDBERG, Scott M.; ERION, Gabriel G.; LEE, Su-In. Consistent Individualized Feature
Attribution for Tree Ensembles. arXiv preprint arXiv:1802.03888, n. 2, 2018. Disponível em:
<http://arxiv.org/abs/1802.03888>.

MA, Meng; MAO, Zhu. Deep-Convolution-Based LSTM Network for Remaining Useful Life
Prediction. IEEE Transactions on Industrial Informatics, v. 17, n. 3, p. 1658–1667, 2021.
ISSN 19410050.

MACCHI, Marco et al. Maintenance management of railway infrastructures based on reliability
analysis. Reliability Engineering and System Safety, Elsevier, v. 104, p. 71–83, 2012. ISSN
09518320. Disponível em: <http://dx.doi.org/10.1016/j.ress.2012.03.017>.

MADHIKERMI, Manik et al. Key data quality pitfalls for condition based maintenance. 2017
2nd International Conference on System Reliability and Safety, ICSRS 2017, v. 2018-
Janua, p. 474–480, 2018.

MADNI, Azad M.; MADNI, Carla C.; LUCERO, Scott D. Leveraging digital twin technology
in model-based systems engineering. Systems, v. 7, n. 1, p. 7, 2019. ISSN 20798954. Disponível
em: <https://www.mdpi.com/2079-8954/7/1/7>.

MAKRIDAKIS, Spyros; SPILIOTIS, Evangelos; ASSIMAKOPOULOS, Vassilios. M5
accuracy competition: Results, findings, and conclusions. International Journal of
Forecasting, v. 38, n. 4, p. 1346–1364, 2022. ISSN 01692070.

MAO, Wentao et al. Online detection of bearing incipient fault with semi-supervised
architecture and deep feature representation. Journal of Manufacturing Systems, Elsevier,
v. 55, n. February, p. 179–198, 2020. ISSN 02786125. Disponível em: <https://doi.org/10.
1016/j.jmsy.2020.03.005>.

MÁRQUEZ, Adolfo Crespo et al. Designing CBM Plans, Based on Predictive Analytics and
Big Data Tools, for Train Wheel Bearings. Computers in Industry, v. 122, 2020. ISSN
01663615.

MCA, VijayaRamaraju Poosapati; MCA, Vedavathi Katneni; MANDA, Vijay Killu. Super
SCADA Systems: A Prototype for Next Gen SCADA System. Iaetsdjaras.Org, v. 5, n. 3,
p. 107–115, 2018. Disponível em: <http://iaetsdjaras.org/gallery/18-march-559.pdf>.

MEHDIYEV, Nijat et al. iPRODICT - Intelligent process prediction based on big data analytics.
CEUR Workshop Proceedings, v. 1985, p. 13–24, 2017. ISSN 16130073. Disponível em:
<https://pdfs.semanticscholar.org/469e/584be90e70cd7b77d43c2f23b5f3c0787bd1.pdf>.

MEJÍA, Gonzalo; PEREIRA, Jordi. Multiobjective scheduling algorithm for flexible
manufacturing systems with Petri nets. Journal of Manufacturing Systems, Elsevier, v. 54,
n. December 2019, p. 272–284, 2020. ISSN 02786125. Disponível em: <https://doi.org/10.
1016/j.jmsy.2020.01.003>.

MIN, Qingfei et al. Machine Learning based Digital Twin Framework for Production
Optimization in Petrochemical Industry. International Journal of Information Management,

http://dx.doi.org/10.1038/s42256-019-0138-9
http://arxiv.org/abs/1802.03888
http://dx.doi.org/10.1016/j.ress.2012.03.017
https://www.mdpi.com/2079-8954/7/1/7
https://doi.org/10.1016/j.jmsy.2020.03.005
https://doi.org/10.1016/j.jmsy.2020.03.005
http://iaetsdjaras.org/gallery/18-march-559.pdf
https://pdfs.semanticscholar.org/469e/584be90e70cd7b77d43c2f23b5f3c0787bd1.pdf
https://doi.org/10.1016/j.jmsy.2020.01.003
https://doi.org/10.1016/j.jmsy.2020.01.003


118

Elsevier, v. 49, n. May, p. 502–519, 2019. ISSN 02684012. Disponível em: <https://doi.org/10.
1016/j.ijinfomgt.2019.05.020>.

MITCHELL, Rory; FRANK, Eibe. Accelerating the XGBoost algorithm using GPU computing.
PeerJ Computer Science, v. 2017, n. 7, 2017. ISSN 23765992.

MOHAMED, Nader; AL-JAROODI, Jameela. Applying blockchain in industry 4.0
applications. 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference, CCWC 2019, p. 852–858, 2019. Disponível em: <https://ieeexplore.ieee.org/
abstract/document/8666558/>.

MOKHTARI, Sohrab et al. A machine learning approach for anomaly detection in industrial
control systems based on measurement data. Electronics (Switzerland), v. 10, n. 4, p. 1–13,
2021. ISSN 20799292.

MOORTHY, Usha; GANDHI, Usha Devi. Forest optimization algorithm-based feature
selection using classifier ensemble. Computational Intelligence, v. 36, n. 4, p. 1445–1462,
2020. ISSN 14678640.

MOSAVI, Amir; LOPEZ, Alvaro; VARKONYI-KOCZY, Annamária R. Industrial applications
of big data: State of the art survey. Advances in Intelligent Systems and Computing, v. 660,
p. 225–232, 2018. ISSN 21945357. Disponível em: <https://link.springer.com/chapter/10.1007/
978-3-319-67459-9_29>.

MOURTZIS, Dimitris; VLACHOU, Ekaterini. A cloud-based cyber-physical system for
adaptive shop-floor scheduling and condition-based maintenance. Journal of Manufacturing
Systems, v. 47, p. 179–198, 2018. ISSN 02786125. Disponível em: <http://www.sciencedirect.
com/science/article/pii/S0278612518300700>.

MULUBRHAN, Freselam; MOKHTAR, Ainul Akmar; MUHAMMAD, Masdi. Integrating
reliability analysis in life cycle cost estimation of heat exchanger and pump. Advanced
Materials Research, v. 903, p. 408–413, 2014. ISSN 10226680.

MUTLU, Nazli G.; ALTUNTAS, Serkan. Assessment of occupational risks In Turkish
manufacturing systems with data-driven models. Journal of Manufacturing Systems, Elsevier,
v. 53, n. October, p. 169–182, 2019. ISSN 02786125. Disponível em: <https://doi.org/10.1016/
j.jmsy.2019.09.008>.

MYERS, A.; TICKEM, D.; EVANS, J. People centred intelligent predict and prevent (PCIPP) a
novel approach to remote condition monitoring. In: IET Conference Publications. [S.l.: s.n.],
2016. v. 2016, n. CP701, p. 9 (6 .)–9 (6 .). ISBN 9781785611384.

NAKAYAMA, Ruy Somei; SPÍNOLA, Mauro de Mesquita; SILVA, José Reinaldo. Towards
I4.0: A comprehensive analysis of evolution from I3.0. Computers and Industrial
Engineering, Elsevier, v. 144, n. April, p. 106453, 2020. ISSN 03608352. Disponível em:
<https://doi.org/10.1016/j.cie.2020.106453>.

NAPOLEONE, Alessia; MACCHI, Marco; POZZETTI, Alessandro. A review on the
characteristics of cyber-physical systems for the future smart factories. Journal of
Manufacturing Systems, Elsevier, v. 54, n. August 2019, p. 305–335, 2020. ISSN 02786125.
Disponível em: <https://doi.org/10.1016/j.jmsy.2020.01.007>.

https://doi.org/10.1016/j.ijinfomgt.2019.05.020
https://doi.org/10.1016/j.ijinfomgt.2019.05.020
https://ieeexplore.ieee.org/abstract/document/8666558/
https://ieeexplore.ieee.org/abstract/document/8666558/
https://link.springer.com/chapter/10.1007/978-3-319-67459-9_29
https://link.springer.com/chapter/10.1007/978-3-319-67459-9_29
http://www.sciencedirect.com/science/article/pii/S0278612518300700
http://www.sciencedirect.com/science/article/pii/S0278612518300700
https://doi.org/10.1016/j.jmsy.2019.09.008
https://doi.org/10.1016/j.jmsy.2019.09.008
https://doi.org/10.1016/j.cie.2020.106453
https://doi.org/10.1016/j.jmsy.2020.01.007


119

NAUKKARINEN, Ossi; BRAGGE, Johanna. Aesthetics in the age of digital humanities.
Journal of Aesthetics and Culture, v. 8, n. January, 2016. ISSN 20004214.

NEMETH, Tanja et al. PriMa-X: A reference model for realizing prescriptive maintenance and
assessing its maturity enhanced by machine learning. Procedia CIRP, v. 72, p. 1039–1044,
2018. ISSN 22128271. Disponível em: <https://publik.tuwien.ac.at/files/publik_271447.pdf>.

NGUYEN, Dang Trinh et al. Fault diagnosis for the complex manufacturing system.
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, v. 230, n. 2, p. 178–194, 2016. ISSN 17480078.

NING, Fangwei et al. Manufacturing cost estimation based on a deep-learning method. Journal
of Manufacturing Systems, Elsevier, v. 54, n. December 2019, p. 186–195, 2020. ISSN
02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2019.12.005>.

OMRI, N. et al. Industrial data management strategy towards an SME-oriented PHM. Journal
of Manufacturing Systems, Elsevier, v. 56, n. November 2019, p. 23–36, 2020. ISSN
02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2020.04.002>.

ORESHKIN, Boris N. et al. N-BEATS: Neural basis expansion analysis for interpretable
time series forecasting. arXiv preprint arXiv:1905.10437, p. 1–31, 2019. ISSN 2331-8422.
Disponível em: <http://arxiv.org/abs/1905.10437>.

. N-BEATS neural network for mid-term electricity load forecasting. Applied Energy,
Elsevier Ltd, v. 293, n. April, p. 116918, 2021. ISSN 03062619. Disponível em: <https://doi.
org/10.1016/j.apenergy.2021.116918>.

O’DONOVAN, Peter et al. Big data in manufacturing: a systematic mapping study. Journal of
Big Data, v. 2, n. 1, 2015. ISSN 21961115. Disponível em: <https://www.biomedcentral.com/
openurl?doi=10.1186/s40537-015-0028-x>.

PALAU, Adrià Salvador; DHADA, Maharshi Harshadbhai; PARLIKAD, Ajith Kumar.
Multi-agent system architectures for collaborative prognostics. Journal of Intelligent
Manufacturing, Springer New York LLC, v. 30, n. 8, p. 2999–3013, 12 2019. ISSN 15728145.

PANDARAKONE, Shrinathan Esakimuthu; MIZUNO, Yukio; NAKAMURA, Hisahide.
Algorithm and Artificial Intelligence Neural Network. Energies, v. 12, p. 2105, 2019.

PEDAMONTI, Dabal. Comparison of non-linear activation functions for deep neural networks
on MNIST classification task. arXiv, n. 3, 2018. Disponível em: <http://arxiv.org/abs/1804.
02763>.

PÉREZ-LARA, Magdiel et al. Organizational systems convergence with the industry 4.0
challenge. In: Best Practices in Manufacturing Processes: Experiences from Latin
America. Cham: Springer International Publishing, 2018. p. 411–431. ISBN 9783319991900.
Disponível em: <http://link.springer.com/10.1007/978-3-319-99190-0_19>.

PERNO, Matteo; HVAM, Lars; HAUG, Anders. Implementation of digital twins in the process
industry: A systematic literature review of enablers and barriers. Computers in Industry,
Elsevier, v. 134, 2022. ISSN 01663615. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0166361521001652>.

https://publik.tuwien.ac.at/files/publik_271447.pdf
https://doi.org/10.1016/j.jmsy.2019.12.005
https://doi.org/10.1016/j.jmsy.2020.04.002
http://arxiv.org/abs/1905.10437
https://doi.org/10.1016/j.apenergy.2021.116918
https://doi.org/10.1016/j.apenergy.2021.116918
https://www.biomedcentral.com/openurl?doi=10.1186/s40537-015-0028-x
https://www.biomedcentral.com/openurl?doi=10.1186/s40537-015-0028-x
http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763
http://link.springer.com/10.1007/978-3-319-99190-0_19
https://www.sciencedirect.com/science/article/pii/S0166361521001652
https://www.sciencedirect.com/science/article/pii/S0166361521001652


120

PREUVENEERS, Davy; JOOSEN, Wouter; ILIE-ZUDOR, Elisabeth. Robust Digital
Twin Compositions for Industry 4.0 Smart Manufacturing Systems. Proceedings - IEEE
International Enterprise Distributed Object Computing Workshop, EDOCW, v. 2018-
Octob, p. 69–78, 2018. ISSN 15417719. Disponível em: <https://ieeexplore.ieee.org/abstract/
document/8536107/>.

QI, Yanjun. Ensemble Machine Learning. Ensemble Machine Learning, p. 307–323, 2012.

QIAO, Zhihua et al. PVAm–PIP/PS composite membrane with high performance for
CO<sub>2</sub>/N<sub>2</sub> separation. AIChE Journal, v. 59, n. 4, p. 215–228, 2012.
ISSN 12350621.

RAUCH, Erwin; LINDER, Christian; DALLASEGA, Patrick. Anthropocentric perspective
of production before and within Industry 4.0. Computers and Industrial Engineering,
v. 139, 1 2020. ISSN 03608352. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/
S0360835219300233>.

REHMAN, Muhammad Habib Ur et al. Big data reduction framework for value creation in
sustainable enterprises. International Journal of Information Management, Elsevier Ltd,
v. 36, n. 6, p. 917–928, 2016. ISSN 02684012. Disponível em: <http://dx.doi.org/10.1016/j.
ijinfomgt.2016.05.013>.

REN, Lei et al. Bearing remaining useful life prediction based on deep autoencoder and deep
neural networks. Journal of Manufacturing Systems, Elsevier, v. 48, n. November 2017, p.
71–77, 2018. ISSN 02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2018.04.008>.

RIMPAULT, Xavier; BALAZINSKI, Marek; CHATELAIN, Jean François. Fractal analysis
application outlook for improving process monitoring and machine maintenance in
manufacturing 4.0. Journal of Manufacturing and Materials Processing, v. 2, n. 3, p. 62,
2018. ISSN 25044494.

ROCHA, Lucio A; BARRETO, Fernando; SEMAN, Laio O. The Internet of Things in the
Industrial Sector. Springer International Publishing, 2019. 326 p. ISBN 978-3-030-24891-
8. Disponível em: <http://dx.doi.org/10.1007/978-3-030-24892-5_9%0Ahttp://link.springer.
com/10.1007/978-3-030-24892-5>.

RODRÍGUEZ-MAZAHUA, Lisbeth et al. A general perspective of Big Data: applications,
tools, challenges and trends. Journal of Supercomputing, v. 72, n. 8, p. 3073–3113, 8 2016.
ISSN 15730484. Disponível em: <http://link.springer.com/10.1007/s11227-015-1501-1>.

ROSATI, Riccardo et al. From knowledge-based to big data analytic model: a novel IoT and
machine learning based decision support system for predictive maintenance in Industry 4.0.
Journal of Intelligent Manufacturing, Springer US, 2022. ISSN 15728145. Disponível em:
<https://doi.org/10.1007/s10845-022-01960-x>.

ROSEN, Roland et al. ScienceDirect About The for. IFAC-PapersOnLine, p. 567–572, 2015.

ROSSIT, Daniel Alejandro; TOHMÉ, Fernando; FRUTOS, Mariano. A data-driven
scheduling approach to smart manufacturing. Journal of Industrial Information Integration,
Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca,
Buenos Aires CP 8000, Argentina, v. 15, p. 69–79, 2019. ISSN 2452414X. Disponível em:
<https://linkinghub.elsevier.com/retrieve/pii/S2452414X18300475>.

https://ieeexplore.ieee.org/abstract/document/8536107/
https://ieeexplore.ieee.org/abstract/document/8536107/
https://linkinghub.elsevier.com/retrieve/pii/S0360835219300233
https://linkinghub.elsevier.com/retrieve/pii/S0360835219300233
http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.013
http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.013
https://doi.org/10.1016/j.jmsy.2018.04.008
http://dx.doi.org/10.1007/978-3-030-24892-5_9%0Ahttp://link.springer.com/10.1007/978-3-030-24892-5
http://dx.doi.org/10.1007/978-3-030-24892-5_9%0Ahttp://link.springer.com/10.1007/978-3-030-24892-5
http://link.springer.com/10.1007/s11227-015-1501-1
https://doi.org/10.1007/s10845-022-01960-x
https://linkinghub.elsevier.com/retrieve/pii/S2452414X18300475


121

ROY, R. et al. Continuous maintenance and the future – Foundations and technological
challenges. CIRP Annals - Manufacturing Technology, CIRP, v. 65, n. 2, p. 667–688, 2016.
ISSN 17260604.

RUBMANN, Michael et al. Industry 4.0: World Economic Forum. [S.l.], 2015. 1–20 p.

RUIZ-SARMIENTO, J. R. et al. Analysis of data from the industrial machinery ithin the
hot rolling process for predictive maintenance. In: Frontiers in Artificial Intelligence and
Applications. Machine Perception and Intelligent Robotics Group, System Engineering and
Auto. Dept., University of Malaga, SpainInstitute of Biomedical Research of Malaga (IBIMA),
SpainACERINOX Europa S.A.U., Spain: IOS Press, 2018. (Frontiers in Artificial Intelligence
and Applications, v. 310), p. 122–133. ISBN 9781614999287. ISSN 09226389. Disponível em:
<http://dx.doi.org/10.3233/978-1-61499-929-4-122>.

RUMELHART, David E.; HINTON, Geoffrey E.; WILLIAMS, Ronald J. Learning
representations by back-propagating errors. Nature, v. 323, n. 6088, p. 533–536, 1986. ISSN
00280836.

RYCK, M. De; VERSTEYHE, M.; SHARIATMADAR, K. Resource management in
decentralized industrial Automated Guided Vehicle systems. Journal of Manufacturing
Systems, Elsevier, v. 54, n. June 2019, p. 204–214, 2020. ISSN 02786125. Disponível em:
<https://doi.org/10.1016/j.jmsy.2019.11.003>.

SAGE, Andrew P; ROUSE, William B. Handbook of systems engineering and management.
[S.l.]: John Wiley {\&} Sons, Inc., 1999. 378 p. ISSN 02786125. ISBN 9783540773405.

SAHAL, Radhya; BRESLIN, John G.; ALI, Muhammad Intizar. Big data and stream processing
platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. Journal
of Manufacturing Systems, Elsevier, v. 54, n. December 2019, p. 138–151, 2020. ISSN
02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2019.11.004>.

SALAZAR, Luis Alberto Cruz et al. Cyber-physical production systems architecture based on
multi-agent’s design pattern—comparison of selected approaches mapping four agent patterns.
International Journal of Advanced Manufacturing Technology, Springer London, v. 105,
n. 9, p. 4005–4034, 2019. ISSN 14333015.

SALUNKHE, Omkar; FUMERO, Patricia Quijada. Demonstration of real-time criticality
assessment using a test-bed. Chalmers Master thesis, 2017. Disponível em: <http://
publications.lib.chalmers.se/records/fulltext/250242/250242.pdf>.

SANDENGEN, Odd Christian et al. High Performance Manufacturing - An Innovative
Contribution towards Industry 4.0. atlantis-press.com, 2016. Disponível em: <https://www.
atlantis-press.com/proceedings/iwama-16/25862212>.

SAWANT, Nitin; SHAH, Himanshu. Big Data Application Architecture Q & A. Big Data
Application Architecture Q & A, 2013.

SAYRES, Rory et al. Using a Deep Learning Algorithm and Integrated Gradients Explanation
to Assist Grading for Diabetic Retinopathy. In: Ophthalmology. Red Hook, NY, USA: Curran
Associates Inc., 2019. (NIPS’17, 4), p. 552–564. ISBN 9781510860964. ISSN 15494713.

http://dx.doi.org/10.3233/978-1-61499-929-4-122
https://doi.org/10.1016/j.jmsy.2019.11.003
https://doi.org/10.1016/j.jmsy.2019.11.004
http://publications.lib.chalmers.se/records/fulltext/250242/250242.pdf
http://publications.lib.chalmers.se/records/fulltext/250242/250242.pdf
https://www.atlantis-press.com/proceedings/iwama-16/25862212
https://www.atlantis-press.com/proceedings/iwama-16/25862212


122

SCAPOLO, Fabiana et al. JRC Foresight Study: How will standards facilitate new production
systems in the context of EU innovation and competitiveness in 2025 ? Final Report.
Core.Ac.Uk, p. 144, 2014. Disponível em: <http://publications.jrc.ec.europa.eu/repository/
bitstream/JRC93699/jrc_27ap15_2rep_web.pdf>.

SCHEER, August-wilhelm. Enterprise 4.0-From disruptive business model to the
automation of business processes. [S.l.]: Saarbrucken: AWSi Publish, 2019. ISBN
9783981991604.

SCHREIBER, Martin et al. Integrated production and maintenance planning in cyber-physical
production systems. Procedia CIRP, Elsevier B.V., v. 79, p. 534–539, 2019. ISSN 22128271.
Disponível em: <https://doi.org/10.1016/j.procir.2019.02.095>.

SCHWARTZ, Sébastien et al. An unsupervised approach for health index building and for
similarity-based remaining useful life estimation. Computers in Industry, Elsevier, v. 141,
2022. ISSN 01663615. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0166361522001130>.

SELLITTO, Miguel Afonso. Formulação estratégica da manutenção industrial com base na
confiabilidade dos equipamentos. Production, v. 15, n. 1, p. 44–59, 2005. ISSN 1980-5411.

SÉNÉCHAL, Olivier; TRENTESAUX, Damien. A framework to help decision makers to be
environmentally aware during the maintenance of cyber physical systems. Environmental
Impact Assessment Review, v. 77, p. 11–22, 2019. ISSN 01959255. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S0195925517304882>.

SEZER, Erim et al. An Industry 4.0-Enabled Low Cost Predictive Maintenance Approach for
SMEs. 2018 IEEE International Conference on Engineering, Technology and Innovation,
ICE/ITMC 2018 - Proceedings, p. 8, 2018. Disponível em: <https://dspace.lib.cranfield.ac.uk/
handle/1826/14010>.

SHAO, Haidong et al. A novel deep autoencoder feature learning method for rotating machinery
fault diagnosis. Mechanical Systems and Signal Processing, Elsevier Ltd, v. 95, p. 187–204,
2017. ISSN 10961216. Disponível em: <http://dx.doi.org/10.1016/j.ymssp.2017.03.034>.

SHCHERBAKOV, Maxim; SAI, Cuong. A Hybrid Deep Learning Framework for Intelligent
Predictive Maintenance of Cyber-physical Systems. ACM Transactions on Cyber-Physical
Systems, v. 6, n. 2, 2022. ISSN 23789638.

SHIHUNDLA, Trevor Bogani; MPOFU, Khumbulani; ADENUGA, Olukorede Tijani.
Integrating product-service systems into the manufacturing industry: Industry 4.0 perspectives.
Procedia CIRP, Elsevier B.V., v. 83, p. 8–13, 2019. ISSN 22128271. Disponível em: <https:
//doi.org/10.1016/j.procir.2019.03.147>.

SIAFARA, Lydia C. et al. SAMBA: A self-aware health monitoring architecture for distributed
industrial systems. Proceedings IECON 2017 - 43rd Annual Conference of the IEEE
Industrial Electronics Society, v. 2017-Janua, p. 3512–3517, 2017. Disponível em: <https:
//ieeexplore.ieee.org/abstract/document/8216594/>.

SINGHAL, Vatsal; MATHEW, Jimson. Fusion of Wavelet Decomposition and N-BEATS
for improved Stock Market Forecasting. Research Square, p. 0–21, 2022. Disponível
em: <https://www.researchsquare.com/article/rs-2003731/v1?utm_source=researcher_app&
utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound>.

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC93699/jrc_27ap15_2rep_web.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC93699/jrc_27ap15_2rep_web.pdf
https://doi.org/10.1016/j.procir.2019.02.095
https://www.sciencedirect.com/science/article/pii/S0166361522001130
https://www.sciencedirect.com/science/article/pii/S0166361522001130
https://www.sciencedirect.com/science/article/pii/S0195925517304882
https://www.sciencedirect.com/science/article/pii/S0195925517304882
https://dspace.lib.cranfield.ac.uk/handle/1826/14010
https://dspace.lib.cranfield.ac.uk/handle/1826/14010
http://dx.doi.org/10.1016/j.ymssp.2017.03.034
https://doi.org/10.1016/j.procir.2019.03.147
https://doi.org/10.1016/j.procir.2019.03.147
https://ieeexplore.ieee.org/abstract/document/8216594/
https://ieeexplore.ieee.org/abstract/document/8216594/
https://www.researchsquare.com/article/rs-2003731/v1?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound
https://www.researchsquare.com/article/rs-2003731/v1?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound


123

SOCHER, Richard et al. Convolutional-recursive deep learning for 3D object classification.
Advances in Neural Information Processing Systems, v. 1, n. i, p. 656–664, 2012. ISSN
10495258.

SONY, Michael; NAIK, Subhash. Industry 4.0 integration with socio-technical systems theory:
A systematic review and proposed theoretical model. Technology in Society, Elsevier Ltd,
v. 61, n. August 2019, p. 101248, 2020. ISSN 0160791X. Disponível em: <https://doi.org/10.
1016/j.techsoc.2020.101248>.

SOUZA, Marcos Leandro Hoffmann et al. A survey on decision-making based on system
reliability in the context of Industry 4.0. Journal of Manufacturing Systems, v. 56, p. 133–
156, 2020. ISSN 02786125.

. A feature identification method to explain anomalies in condition monitoring. Computers
in Industry, Elsevier, v. 133, 2021. ISSN 01663615. Disponível em: <https://www.
sciencedirect.com/science/article/pii/S0166361521001354>.

SOUZA, Marcos Leandro Hoffmann; RODRIGUES, Luis Henrique; MORANDI, Maria Isabel
Wolf Motta. Design of a System Dynamics Model to Analyze the Styrene Demand in the
Brazilian Market. Systemic Practice and Action Research, Systemic Practice and Action
Research, v. 31, n. 1, p. 87–104, 2018. ISSN 1094429X.

STEVENSON, Emma et al. A deep learning approach to solar radio flux forecasting. Acta
Astronautica, Elsevier Ltd, v. 193, n. August 2021, p. 595–606, 2022. ISSN 00945765.

STRAKA, M. et al. Design of large-scale logistics systems using computer simulation
hierarchic structure. International Journal of Simulation Modelling, v. 17, n. 1, p. 105–118,
2018. ISSN 19968566.

SUTSKEVER, Ilya; VINYALS, Oriol; LE, Quoc V. Sequence to sequence learning with neural
networks. Advances in Neural Information Processing Systems, v. 4, n. January, p. 3104–
3112, 2014. ISSN 10495258.

SYAFRUDIN, Muhammad et al. Performance analysis of IoT-based sensor, big data processing,
and machine learning model for real-time monitoring system in automotive manufacturing.
Sensors (Switzerland), v. 18, n. 9, 2018. ISSN 14248220. Disponível em: <https://www.mdpi.
com/1424-8220/18/9/2946>.

SZALAVETZ, Andrea. The environmental impact of advanced manufacturing technologies:
Examples from Hungary. Central European Business Review, v. 6, n. 2, p. 18–29, 2017.
ISSN 18054862. Disponível em: <https://www.ceeol.com/search/article-detail?id=562089>.

TAN, Julian S.K. et al. Quality Analytics in a Big Data supply chain: Commodity data
analytics for quality engineering. IEEE Region 10 Annual International Conference,
Proceedings/TENCON, p. 3455–3463, 2017. ISSN 21593450. Disponível em: <https://
ieeexplore.ieee.org/abstract/document/7848697/>.

TERRISSA, Labib Sadek et al. A new approach of PHM as a service in cloud computing.
Colloquium in Information Science and Technology, CIST, v. 0, p. 610–614, 2016. ISSN
23271884.

https://doi.org/10.1016/j.techsoc.2020.101248
https://doi.org/10.1016/j.techsoc.2020.101248
https://www.sciencedirect.com/science/article/pii/S0166361521001354
https://www.sciencedirect.com/science/article/pii/S0166361521001354
https://www.mdpi.com/1424-8220/18/9/2946
https://www.mdpi.com/1424-8220/18/9/2946
https://www.ceeol.com/search/article-detail?id=562089
https://ieeexplore.ieee.org/abstract/document/7848697/
https://ieeexplore.ieee.org/abstract/document/7848697/


124

TEWARI, Saurabh; DWIVEDI, U. D. Ensemble-based big data analytics of lithofacies for
automatic development of petroleum reservoirs. Computers and Industrial Engineering,
Elsevier, v. 128, n. August 2018, p. 937–947, 2019. ISSN 03608352. Disponível em: <https:
//doi.org/10.1016/j.cie.2018.08.018>.

THOPPIL, Nikhil M.; VASU, V.; RAO, C. S.P. Failure Mode Identification and Prioritization
Using FMECA: A Study on Computer Numerical Control Lathe for Predictive Maintenance.
Journal of Failure Analysis and Prevention, Springer New York LLC, v. 19, n. 4, p. 1153–
1157, 2019. ISSN 18641245.

TSAI, Chih Fong; SUNG, Ya Ting. Ensemble feature selection in high dimension, low sample
size datasets: Parallel and serial combination approaches. Knowledge-Based Systems, Elsevier
B.V., v. 203, p. 106097, 2020. ISSN 09507051. Disponível em: <https://doi.org/10.1016/j.
knosys.2020.106097>.

TSAO, Yu Chung et al. Imperfect economic production quantity models under predictive
maintenance and reworking. International Journal of Systems Science: Operations and
Logistics, v. 7, n. 4, p. 347–360, 3 2020. ISSN 23302682. Disponível em: <https://www.
tandfonline.com/doi/full/10.1080/23302674.2019.1590663>.

UHLMANN, Iracyanne Retto; FRAZZON, Enzo Morosini. Production rescheduling review:
Opportunities for industrial integration and practical applications. Journal of Manufacturing
Systems, v. 49, p. 186–193, 2018. ISSN 02786125. Disponível em: <https://www.sciencedirect.
com/science/article/pii/S0278612518304308>.

USTUNDAG, Alp; CEVIKCAN, Emre. Industry 4.0: Managing The Digital Transformation.
Springer Series in Advanced Manufacturing, n. January, p. 1–283, 2018. ISSN 1860-
5168. Disponível em: <https://link.springer.com/content/pdf/10.1007/978-3-319-57870-5.
pdf%0Ahttp://link.springer.com/10.1007/978-3-319-57870-5%0Ahttp://www.springer.
com/series/7113%0Ahttps://www.researchgate.net/publication/322172971%0Ahttp:
//link.springer.com/10.1007/978-3-31>.

VERMA, Pushpak; CHANDRA, Tej Bahadur; DWIVEDI, A. K. Network security in big data:
Tools and techniques. Advances in Intelligent Systems and Computing, v. 433, n. 8, p. 255–
262, 2016. ISSN 21945357.

VOGL, Gregory W.; WEISS, Brian A.; HELU, Moneer. A review of diagnostic and prognostic
capabilities and best practices for manufacturing. Journal of Intelligent Manufacturing,
Springer New York LLC, v. 30, n. 1, p. 79–95, 2019. ISSN 15728145. Disponível em:
<http://link.springer.com/10.1007/s10845-016-1228-8>.

WAN, Shan et al. A collaborative machine tool maintenance planning system based on content
management technologies. International Journal of Advanced Manufacturing Technology,
v. 94, n. 5-8, p. 1639–1653, 2 2018. ISSN 14333015. Disponível em: <http://link.springer.com/
10.1007/s00170-016-9829-0>.

WANG, Jinjiang et al. Deep learning for smart manufacturing: Methods and applications.
Journal of Manufacturing Systems, The Society of Manufacturing Engineers, v. 48, p. 144–
156, 2018. ISSN 02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2018.01.003>.

. A new paradigm of cloud-based predictive maintenance for intelligent manufacturing.
Journal of Intelligent Manufacturing, v. 28, n. 5, p. 1125–1137, 2017. ISSN 15728145.
Disponível em: <http://link.springer.com/10.1007/s10845-015-1066-0>.

https://doi.org/10.1016/j.cie.2018.08.018
https://doi.org/10.1016/j.cie.2018.08.018
https://doi.org/10.1016/j.knosys.2020.106097
https://doi.org/10.1016/j.knosys.2020.106097
https://www.tandfonline.com/doi/full/10.1080/23302674.2019.1590663
https://www.tandfonline.com/doi/full/10.1080/23302674.2019.1590663
https://www.sciencedirect.com/science/article/pii/S0278612518304308
https://www.sciencedirect.com/science/article/pii/S0278612518304308
https://link.springer.com/content/pdf/10.1007/978-3-319-57870-5.pdf%0Ahttp://link.springer.com/10.1007/978-3-319-57870-5%0Ahttp://www.springer.com/series/7113%0Ahttps://www.researchgate.net/publication/322172971%0Ahttp://link.springer.com/10.1007/978-3-31
https://link.springer.com/content/pdf/10.1007/978-3-319-57870-5.pdf%0Ahttp://link.springer.com/10.1007/978-3-319-57870-5%0Ahttp://www.springer.com/series/7113%0Ahttps://www.researchgate.net/publication/322172971%0Ahttp://link.springer.com/10.1007/978-3-31
https://link.springer.com/content/pdf/10.1007/978-3-319-57870-5.pdf%0Ahttp://link.springer.com/10.1007/978-3-319-57870-5%0Ahttp://www.springer.com/series/7113%0Ahttps://www.researchgate.net/publication/322172971%0Ahttp://link.springer.com/10.1007/978-3-31
https://link.springer.com/content/pdf/10.1007/978-3-319-57870-5.pdf%0Ahttp://link.springer.com/10.1007/978-3-319-57870-5%0Ahttp://www.springer.com/series/7113%0Ahttps://www.researchgate.net/publication/322172971%0Ahttp://link.springer.com/10.1007/978-3-31
http://link.springer.com/10.1007/s10845-016-1228-8
http://link.springer.com/10.1007/s00170-016-9829-0
http://link.springer.com/10.1007/s00170-016-9829-0
https://doi.org/10.1016/j.jmsy.2018.01.003
http://link.springer.com/10.1007/s10845-015-1066-0


125

WANG, Junliang; ZHENG, Peng; ZHANG, Jie. Big data analytics for cycle time related
feature selection in the semiconductor wafer fabrication system. Computers and Industrial
Engineering, Elsevier, v. 143, n. December 2019, p. 106362, 2020. ISSN 03608352. Disponível
em: <https://doi.org/10.1016/j.cie.2020.106362>.

WANG, Shiyong et al. Implementing Smart Factory of Industrie 4.0: An Outlook.
International Journal of Distributed Sensor Networks, v. 2016, 2016. ISSN 15501477.
Disponível em: <https://www.engineeringvillage.com/share/document.url?mid=inspec_
606eee4915482d89354M635110178163171&database=ins>.

WEN, Pengfei et al. A generalized remaining useful life prediction method for complex systems
based on composite health indicator. Reliability Engineering and System Safety, Elsevier
Ltd, v. 205, n. December 2019, p. 107241, 2021. ISSN 09518320. Disponível em: <https:
//doi.org/10.1016/j.ress.2020.107241>.

WU, Ji Yan et al. A joint classification-regression method for multi-stage remaining useful life
prediction. Journal of Manufacturing Systems, Elsevier Ltd, v. 58, n. PA, p. 109–119, 2021.
ISSN 02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2020.11.016>.

XIA, Min et al. Fault Diagnosis for Rotating Machinery Using Multiple Sensors and
Convolutional Neural Networks. IEEE/ASME Transactions on Mechatronics, IEEE, v. 23,
n. 1, p. 101–110, 2018. ISSN 10834435.

XIA, Tangbin et al. An ensemble framework based on convolutional bi-directional LSTM with
multiple time windows for remaining useful life estimation. Computers in Industry, Elsevier
B.V., v. 115, p. 103182, 2020. ISSN 01663615. Disponível em: <https://doi.org/10.1016/j.
compind.2019.103182>.

XIA, Tangbin; XI, Lifeng. Manufacturing paradigm-oriented PHM methodologies for cyber-
physical systems. Journal of Intelligent Manufacturing, v. 30, n. 4, p. 1659–1672, 2019.
ISSN 15728145. Disponível em: <http://link.springer.com/10.1007/s10845-017-1342-2>.

XU, Gaowei et al. Data-driven fault diagnostics and prognostics for predictive maintenance:
A brief overview. In: IEEE International Conference on Automation Science and
Engineering. IEEE, 2019. v. 2019-Augus, p. 103–108. ISBN 9781728103556. ISSN 21618089.
Disponível em: <https://ieeexplore.ieee.org/document/8843068/>.

YAN, Jihong et al. Big-data-driven based intelligent prognostics scheme in industry 4.0
environment. 2017 Prognostics and System Health Management Conference, PHM-Harbin
2017 - Proceedings, 2017. Disponível em: <https://ieeexplore.ieee.org/abstract/document/
8079310/>.

YANG, Chuangyan et al. A novel based-performance degradation indicator RUL prediction
model and its application in rolling bearing. ISA Transactions, Elsevier Ltd, v. 121, p. 349–
364, 2022. ISSN 00190578. Disponível em: <https://doi.org/10.1016/j.isatra.2021.03.045>.

YANG, Jilei. Fast TreeSHAP: Accelerating SHAP Value Computation for Trees. arXiv
preprint arXiv:2109.09847, 2021. Disponível em: <http://arxiv.org/abs/2109.09847>.

YANG, Jian Bo et al. Deep convolutional neural networks on multichannel time series for
human activity recognition. IJCAI International Joint Conference on Artificial Intelligence,
v. 2015-Janua, n. Ijcai, p. 3995–4001, 2015. ISSN 10450823.

https://doi.org/10.1016/j.cie.2020.106362
https://www.engineeringvillage.com/share/document.url?mid=inspec_606eee4915482d89354M635110178163171&database=ins
https://www.engineeringvillage.com/share/document.url?mid=inspec_606eee4915482d89354M635110178163171&database=ins
https://doi.org/10.1016/j.ress.2020.107241
https://doi.org/10.1016/j.ress.2020.107241
https://doi.org/10.1016/j.jmsy.2020.11.016
https://doi.org/10.1016/j.compind.2019.103182
https://doi.org/10.1016/j.compind.2019.103182
http://link.springer.com/10.1007/s10845-017-1342-2
https://ieeexplore.ieee.org/document/8843068/
https://ieeexplore.ieee.org/abstract/document/8079310/
https://ieeexplore.ieee.org/abstract/document/8079310/
https://doi.org/10.1016/j.isatra.2021.03.045
http://arxiv.org/abs/2109.09847


126

YANG, Tianji; ZHENG, Zeyu; QI, Liang. A method for degradation prediction based on
Hidden Semi-Markov models with mixture of Kernels. Computers in Industry, Elsevier,
v. 122, 2020. ISSN 01663615. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S0166361520305297>.

YOKOYAMA, Atsushi. Innovative Changes for Maintenance of Railway by Using ICT-To
Achieve "smart Maintenance". Procedia CIRP, Elsevier B.V., v. 38, p. 24–29, 2015. ISSN
22128271. Disponível em: <http://dx.doi.org/10.1016/j.procir.2015.07.074>.

YU, Wennian; KIM, Il Yong; MECHEFSKE, Chris. Analysis of different RNN autoencoder
variants for time series classification and machine prognostics. Mechanical Systems and
Signal Processing, Elsevier Ltd, v. 149, p. 107322, 2021. ISSN 10961216. Disponível em:
<https://doi.org/10.1016/j.ymssp.2020.107322>.

ZEILER, Matthew D.; FERGUS, Rob. Visualizing and understanding convolutional networks.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), v. 8689 LNCS, n. PART 1, p. 818–833,
2014. ISSN 16113349.

ZHANG, Kang et al. Clinically Applicable AI System for Accurate Diagnosis, Quantitative
Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell,
Elsevier Inc., v. 181, n. 6, p. 1423–1433, 2020. ISSN 10974172. Disponível em: <https://doi.
org/10.1016/j.cell.2020.04.045>.

ZHANG, Qinghua et al. Vibration sensor based intelligent fault diagnosis system for large
machine unit in petrochemical industries. International Journal of Distributed Sensor
Networks, v. 2015, n. i, 2015. ISSN 15501477.

ZHANG, Xuewen et al. Time-Series Regeneration with Convolutional Recurrent Generative
Adversarial Network for Remaining Useful Life Estimation. IEEE Transactions on Industrial
Informatics, v. 17, n. 10, p. 6820–6831, 2021. ISSN 19410050.

ZHANG, Yuyan et al. Imbalanced data fault diagnosis of rotating machinery using synthetic
oversampling and feature learning. Journal of Manufacturing Systems, Elsevier, v. 48, n.
April, p. 34–50, 2018. ISSN 02786125. Disponível em: <https://doi.org/10.1016/j.jmsy.2018.
04.005>.

ZHANG, Yue; SUZUKI, Genki; SHIOYA, Hiroyuki. Prediction and Detection of Sewage
Treatment Process Using N-BEATS Autoencoder Network. IEEE Access, IEEE, v. 10, n.
October, p. 112594–112608, 2022. ISSN 21693536.

ZHAO, Dezun; WANG, Tianyang; CHU, Fulei. Deep convolutional neural network based
planet bearing fault classification. Computers in Industry, Elsevier B.V., v. 107, p. 59–66,
2019. ISSN 01663615. Disponível em: <https://doi.org/10.1016/j.compind.2019.02.001>.

ZHENG, Pai et al. Smart manufacturing systems for Industry 4.0: Conceptual framework,
scenarios, and future perspectives. Frontiers of Mechanical Engineering, v. 13, n. 2,
p. 137–150, 6 2018. ISSN 20950241. Disponível em: <http://link.springer.com/10.1007/
s11465-018-0499-5>.

ZHONG, Ray Y. et al. Intelligent Manufacturing in the Context of Industry 4.0: A Review.
Engineering, v. 3, n. 5, p. 616–630, 2017. ISSN 20958099. Disponível em: <https://www.
sciencedirect.com/science/article/pii/S2095809917307130>.

https://www.sciencedirect.com/science/article/pii/S0166361520305297
https://www.sciencedirect.com/science/article/pii/S0166361520305297
http://dx.doi.org/10.1016/j.procir.2015.07.074
https://doi.org/10.1016/j.ymssp.2020.107322
https://doi.org/10.1016/j.cell.2020.04.045
https://doi.org/10.1016/j.cell.2020.04.045
https://doi.org/10.1016/j.jmsy.2018.04.005
https://doi.org/10.1016/j.jmsy.2018.04.005
https://doi.org/10.1016/j.compind.2019.02.001
http://link.springer.com/10.1007/s11465-018-0499-5
http://link.springer.com/10.1007/s11465-018-0499-5
https://www.sciencedirect.com/science/article/pii/S2095809917307130
https://www.sciencedirect.com/science/article/pii/S2095809917307130


127

ZHOU, Keliang; LIU, Taigang; ZHOU, Lifeng. Industry 4.0: Towards future industrial
opportunities and challenges. 2015 12th International Conference on Fuzzy Systems and
Knowledge Discovery, FSKD 2015, IEEE, p. 2147–2152, 2016.

ZIEGEL, Eric R. System Reliability Theory: Models, Statistical Methods, and
Applications. [S.l.]: John Wiley {\&} Sons, Inc., 2004. 495–496 p. ISSN 0040-1706.

ZIO, Enrico. Some challenges and opportunities in reliability engineering. IEEE Transactions
on Reliability, v. 65, n. 4, p. 1769–1782, 12 2016. ISSN 00189529.

ZOU, Yisheng et al. A method for predicting the remaining useful life of rolling bearings under
different working conditions based on multi-domain adversarial networks. Measurement:
Journal of the International Measurement Confederation, Elsevier Ltd, v. 188, n.
October 2021, p. 110393, 2022. ISSN 02632241. Disponível em: <https://doi.org/10.1016/j.
measurement.2021.110393>.

https://doi.org/10.1016/j.measurement.2021.110393
https://doi.org/10.1016/j.measurement.2021.110393


128

APPENDIX

A The trend of features over time analyzed
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B Summary statistics of the features

Feature count mean std min 25% 50% 75% max

X1 17521 50.44 4.80 -0.86 50.89 51.05 51.93 53.29

X2 17521 713.79 101.63 131.07 694.34 726.25 760.09 911.69

X3 17521 993.81 175.74 -0.48 1019.39 1020.16 1039.81 1428.00

X4 17521 176.95 32.86 -6.06 178.10 181.99 186.45 206.58

X5 17521 58.15 8.82 -0.60 54.86 59.63 63.44 94.91

X6 17521 35.28 7.69 -2.00 34.79 35.12 37.99 95.28

X7 17521 63.49 13.71 0.00 63.55 67.05 69.29 100.00

X8 17521 258.55 100.17 -30.00 232.24 242.29 251.81 1530.00

X9 17521 6.48 0.60 0.07 6.24 6.49 6.61 10.20

X10 17521 0.77 0.14 -0.02 0.74 0.79 0.84 1.33

X11 17521 3,842 695.45 -100.00 3965.27 3967.17 3968.40 4694.31

X12 17521 107.61 13.94 15.80 109.65 109.97 110.30 132.52

X13 17521 31.23 3.77 5.97 28.89 31.69 33.78 97.61

X14 17521 5.98 1.18 0.00 5.86 6.14 6.41 68.01

X15 17521 9.39 2.06 0.00 8.82 9.34 10.21 81.36

X16 17521 17.42 7.98 0.00 19.27 20.52 21.61 75.54

X17 17521 9.85 1.83 0.00 9.84 10.21 10.44 66.66

X18 17521 8.67 1.77 0.00 8.55 9.20 9.43 50.76

X19 17521 9.79 1.89 0.00 9.66 10.24 10.58 33.19

X20 17521 12.45 2.42 0.00 12.18 12.89 13.51 45.28

X21 17521 55.01 10.16 0.00 54.40 56.27 57.69 62.87

X22 17521 39.23 7.21 0.00 38.64 40.17 42.31 44.96

X23 17521 29.43 5.26 0.00 29.58 30.33 31.02 34.84

X24 17521 27.42 4.94 0.00 27.68 28.34 28.89 31.68

X25 17521 0.19 0.17 -1.00 0.17 0.23 0.25 0.84

X26 17521 0.12 0.16 -1.00 0.13 0.15 0.16 0.19

X27 17521 0.12 0.16 -1.00 0.11 0.16 0.18 0.24

Source: Prepared by the author.
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C Frequency distribution of features
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D Summary of tests performed on the primary hyperparameters of the autoencoder
model
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(FUMAGALLI et al.,

2016)

Elsevier IFAC-Papers OnLine

(SANDENGEN et al.,

2016)

Atlantis

Press

Advanced Manufacturing and Automation

(BOUSDEKIS;

MENTZAS, 2017)

Springer IFIP Advances in Information and Communication

Technology

(LEE; ZHANG; NG,

2017)

Springer Advances in Manufacturing

(WANG et al., 2017) Springer Journal of Intelligent Manufacturing

(CANITO et al., 2017) Springer Advances in Intelligent Systems and Computing

(CHO et al., 2018) Springer IFIP Advances in Information and Communication

Technology

(HE et al., 2018) SAGE Advances in Mechanical Engineering

(KIANGALA;

WANG, 2018)

Springer International Journal of Advanced Manufacturing

Technology

(KLEIN;

BERGMANN, 2018)

CEUR Workshop Proceedings

(KU, 2018) Springer Wireless Personal Communications

(MOURTZIS;

VLACHOU, 2018)

Elsevier Journal of Manufacturing Systems

(NEMETH et al.,

2018)

Elsevier Procedia CIRP

(RIMPAULT;

BALAZINSKI;

CHATELAIN, 2018)

MPDI Journal of Manufacturing and Materials Processing

(SYAFRUDIN et al.,

2018)

MPDI Sensors (Switzerland)

(ZHENG et al., 2018) Springer Frontiers of Mechanical Engineering

(PÉREZ-LARA et al.,

2018)

Springer Best Practices in Manufacturing Processes

(SCHREIBER et al.,

2019)

Elsevier Procedia CIRP

Continued on next page
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Appendix E – continued from previous page
Article Publisher Name
(SÉNÉCHAL;

TRENTESAUX,

2019)

Elsevier Environmental Impact Assessment Review

(TSAO et al., 2020) Taylor

Francis

International Journal of Systems Science: Operations

and Logistics

(ADU-AMANKWA et

al., 2019)

Springer International Journal of Advanced Manufacturing

Technology

(BIANCHINI;

PELLEGRINI;

ROSSI, 2019)

Springer International Journal of System Assurance Engineering

and Management

(CAO et al., 2019) Elsevier Procedia CIRP

(SALAZAR et al.,

2019)

Springer International Journal of Advanced Manufacturing

Technology

(GODREAU et al.,

2019)

Springer Journal of Intelligent Manufacturing

(HÄCKEL et al.,

2019)

Springer Business Research

(LI et al., 2019) Springer Frontiers of Information Technology & Electronic

Engineering

(ROSSIT; TOHMÉ;

FRUTOS, 2019)

Elsevier Journal of Industrial Information Integration

(PALAU; DHADA;

PARLIKAD, 2019)

Springer Journal of Intelligent Manufacturing

(THOPPIL; VASU;

RAO, 2019)

Springer Journal of Failure Analysis and Prevention

(VOGL; WEISS;

HELU, 2019)

Springer Journal of Intelligent Manufacturing

(XIA; XI, 2019) Springer Journal of Intelligent Manufacturing

(KŁOS; PATALAS-

MALISZEWSKA,

2019)

Springer Advances in Intelligent Systems and Computing

Source: Prepared by the author.
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F Summarize the selected articles sorted by the conference

Article Publisher Name
(LEE et al., 2014) INDIN Proceedings of International Conference on Industrial

Informatics

(FERREIRO et al.,

2016)

PHM

Society

European Conference of the Prognostics and Health

Management Society

(MYERS; TICKEM;

EVANS, 2016)

IET 7th IET Conference on Railway Condition Monitoring

(SIAFARA et al.,

2017)

IEEE 43rd Annual Conference of the IEEE Industrial

Electronics Society

(TERRISSA et al.,

2016)

IEEE Colloquium in Information Science and Technology

(CANIZO et al., 2017) IEEE International Conference on Prognostics and Health

Management

(TAN et al., 2017) IEEE 10 Annual International Conference, Proceedings

(MADHIKERMI et

al., 2018)

Aalto 2nd International Conference on System Reliability and

Safety

(RUIZ-SARMIENTO

et al., 2018)

Cranfield

Collec

Frontiers in Artificial Intelligence and Applications

(BALOGH et al.,

2018)

IEEE 22nd International Conference on Intelligent

Engineering Systems

(SEZER et al., 2018) Cranfield

Collec

International Conference on Engineering, Technology

and Innovation

(PREUVENEERS;

JOOSEN; ILIE-

ZUDOR, 2018)

IEEE International Enterprise Distributed Object Computing

Workshop

(FORDAL;

RØDSETH;

SCHJØLBERG,

2019)

Springer Lecture Notes in Electrical Engineering

(LAZAROVA-

MOLNAR;

MOHAMED, 2019)

Elsevier Procedia CIRP

(SHIHUNDLA;

MPOFU;

ADENUGA, 2019)

Elsevier Procedia CIRP

(XU et al., 2019) IEEE IEEE 15th International Conference on Automation

Science and Engineering

Continued on next page
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Appendix F – continued from previous page
Article Publisher Name
(MOHAMED; AL-

JAROODI, 2019)

IEEE 9th Annual Computing and Communication Workshop

and Conference

Source: Prepared by the author.
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G Methodological application of the study

Purpose of the study Articles
Case Study (BIANCHINI; PELLEGRINI; ROSSI, 2019; CANIZO et al., 2017; CHO et

al., 2018; FERREIRO et al., 2016; FUMAGALLI et al., 2016; GODREAU
et al., 2019; HÄCKEL et al., 2019; HE et al., 2018; KIANGALA; WANG,
2018; KLEIN; BERGMANN, 2018; KŁOS; PATALAS-MALISZEWSKA,
2019; KU, 2018; LEE et al., 2015; LI et al., 2019; MADHIKERMI et
al., 2018; MOURTZIS; VLACHOU, 2018; PREUVENEERS; JOOSEN;
ILIE-ZUDOR, 2018; RIMPAULT; BALAZINSKI; CHATELAIN, 2018;
RUIZ-SARMIENTO et al., 2018; SCHREIBER et al., 2019; SÉNÉCHAL;
TRENTESAUX, 2019; SEZER et al., 2018; SHIHUNDLA; MPOFU;
ADENUGA, 2019; SYAFRUDIN et al., 2018; TAN et al., 2017; THOPPIL;
VASU; RAO, 2019; TSAO et al., 2020; WANG et al., 2017; XIA; XI, 2019)

Architecture (ADU-AMANKWA et al., 2019; BALOGH et al., 2018; BOUSDEKIS;
MENTZAS, 2017; CANITO et al., 2017; CAO et al., 2019; SALAZAR
et al., 2019; LEE; ZHANG; NG, 2017; LEE et al., 2015; MOHAMED;
AL-JAROODI, 2019; MYERS; TICKEM; EVANS, 2016; PÉREZ-LARA
et al., 2018; ROSSIT; TOHMÉ; FRUTOS, 2019; PALAU; DHADA;
PARLIKAD, 2019; SANDENGEN et al., 2016; SIAFARA et al., 2017;
TERRISSA et al., 2016; ZHENG et al., 2018)

Trends (FORDAL; RØDSETH; SCHJØLBERG, 2019; LAZAROVA-MOLNAR;
MOHAMED, 2019; LEE et al., 2014, 2014; NEMETH et al., 2018; VOGL;
WEISS; HELU, 2019; XU et al., 2019; ZIO, 2016)

Source: Prepared by the author.
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H Used techniques by the purpose of the study

Purpose of the study Techniques used Articles
Case Study Communication (LEE et al., 2015; MOURTZIS; VLACHOU, 2018;

PREUVENEERS; JOOSEN; ILIE-ZUDOR, 2018;
SÉNÉCHAL; TRENTESAUX, 2019; SHIHUNDLA;
MPOFU; ADENUGA, 2019)

Ingestion (BIANCHINI; PELLEGRINI; ROSSI, 2019;
FERREIRO et al., 2016; FUMAGALLI et al., 2016;
GODREAU et al., 2019; KIANGALA; WANG,
2018; LI et al., 2019; MADHIKERMI et al., 2018;
RUIZ-SARMIENTO et al., 2018; SCHREIBER et
al., 2019; SYAFRUDIN et al., 2018; THOPPIL;
VASU; RAO, 2019; WANG et al., 2017)

Analysis (CANIZO et al., 2017; CHO et al., 2018; HE et
al., 2018; KLEIN; BERGMANN, 2018; KŁOS;
PATALAS-MALISZEWSKA, 2019; RIMPAULT;
BALAZINSKI; CHATELAIN, 2018; SEZER et al.,
2018; TSAO et al., 2020; XIA; XI, 2019)

Storage (HÄCKEL et al., 2019; KUEHN, 2018; TAN et al.,
2017)

Architecture Communication (BOUSDEKIS; MENTZAS, 2017; ADU-
AMANKWA et al., 2019; CANITO et al., 2017;
SALAZAR et al., 2019; LEE et al., 2015; LEE;
ZHANG; NG, 2017; MOHAMED; AL-JAROODI,
2019; PÉREZ-LARA et al., 2018; PALAU; DHADA;
PARLIKAD, 2019; SANDENGEN et al., 2016;
ZHENG et al., 2018)

Ingestion (ROSSIT; TOHMÉ; FRUTOS, 2019)
Analysis (CAO et al., 2019; MYERS; TICKEM; EVANS,

2016; SIAFARA et al., 2017)
Storage (BALOGH et al., 2018; TERRISSA et al., 2016)

Trends Communication (FORDAL; RØDSETH; SCHJØLBERG, 2019; LEE
et al., 2014; VOGL; WEISS; HELU, 2019)

Ingestion (LAZAROVA-MOLNAR; MOHAMED, 2019; XU et
al., 2019; ZIO, 2016)

Analysis (NEMETH et al., 2018)
Storage (LEE et al., 2014)

Source: Prepared by the author.
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I Main applied techniques and focus of the articles

Techniques Used Main Focus Articles
Communication Predictive

Maintenance
(ADU-AMANKWA et al., 2019; LEE et al., 2015; SANDENGEN et al., 2016;
PREUVENEERS; JOOSEN; ILIE-ZUDOR, 2018)

Diagnosis and
Prognostic

(LEE et al., 2014; PALAU; DHADA; PARLIKAD, 2019; VOGL; WEISS; HELU, 2019)

Condition-based
Operation

(LEE et al., 2015; MOURTZIS; VLACHOU, 2018; SHIHUNDLA; MPOFU;
ADENUGA, 2019)

Communication
with Equipment

(SALAZAR et al., 2019; LEE; ZHANG; NG, 2017; ZHENG et al., 2018)

Proactive
Maintenance

(BOUSDEKIS; MENTZAS, 2017; CANITO et al., 2017)

Value Chain (PÉREZ-LARA et al., 2018)
Reliability of
Systems

(MOHAMED; AL-JAROODI, 2019)

Improve
Operational
Availability

(FORDAL; RØDSETH; SCHJØLBERG, 2019)

Maintenance for
Sustainability

(SÉNÉCHAL; TRENTESAUX, 2019)

Ingestion Predictive
Maintenance

(FERREIRO et al., 2016; KIANGALA; WANG, 2018; ROSSIT; TOHMÉ; FRUTOS,
2019; RUIZ-SARMIENTO et al., 2018; SYAFRUDIN et al., 2018; THOPPIL; VASU;
RAO, 2019; WANG et al., 2017; SCHREIBER et al., 2019)

Condition-based
Operation

(FUMAGALLI et al., 2016; GODREAU et al., 2019; LI et al., 2019; MADHIKERMI et
al., 2018)

Reliability of
Systems

(LAZAROVA-MOLNAR; MOHAMED, 2019; ZIO, 2016)

Preventive
Maintenance

(BIANCHINI; PELLEGRINI; ROSSI, 2019)

Diagnosis and
Prognostic

(XU et al., 2019)

Analysis Predictive
Maintenance

(CANIZO et al., 2017; CAO et al., 2019; CHO et al., 2018; HE et al., 2018; KLEIN;
BERGMANN, 2018; KŁOS; PATALAS-MALISZEWSKA, 2019; MYERS; TICKEM;
EVANS, 2016; SEZER et al., 2018; RIMPAULT; BALAZINSKI; CHATELAIN, 2018)

Diagnosis and
Prognostic

(SIAFARA et al., 2017; XIA; XI, 2019)

Prescriptive
maintenance

(NEMETH et al., 2018)

Economic
Production
Quantity

(TSAO et al., 2020)

Storage Predictive
Maintenance

(BALOGH et al., 2018; KU, 2018; TERRISSA et al., 2016)

Diagnosis and
Prognostic

(LEE et al., 2014)

Value Chain (TAN et al., 2017)
Productivity
of the
Manufacturing

(HÄCKEL et al., 2019)

Source: Prepared by the author.
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J The subject of study of selected articles with equipment focus

Study subject Case Study Architecture Trends

Productivity and
optimization

(GODREAU et al.,
2019; LI et al., 2019;
PREUVENEERS;
JOOSEN; ILIE-ZUDOR,
2018; RUIZ-SARMIENTO
et al., 2018; SYAFRUDIN
et al., 2018; THOPPIL;
VASU; RAO, 2019)

(LAZAROVA-
MOLNAR;
MOHAMED, 2019;
XU et al., 2019)

Optimization of
the manufacturing
processes

(KLEIN; BERGMANN,
2018; RIMPAULT;
BALAZINSKI;
CHATELAIN, 2018)

Productivity (SEZER et al., 2018) (BOUSDEKIS;
MENTZAS, 2017)

Reliability modeling
of components and
safe systems

(BIANCHINI;
PELLEGRINI; ROSSI,
2019)

(CAO et al., 2019)

Human resources
optimization

(MYERS; TICKEM;
EVANS, 2016)

Reliability modeling
of components

(ZIO, 2016)

Total 10 3 3

Source: Prepared by the author.
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K The subject of study of selected articles with equipment and productivity focus

Study subject Case Study Architecture Trends

Productivity and
optimization

(KIANGALA;
WANG, 2018;
KŁOS; PATALAS-
MALISZEWSKA,
2019; KU, 2018; LEE et
al., 2015; MOURTZIS;
VLACHOU, 2018;
WANG et al., 2017)

(BALOGH et al., 2018;
PALAU; DHADA;
PARLIKAD, 2019)

(FORDAL; RØDSETH;
SCHJØLBERG, 2019;
NEMETH et al., 2018)

Optimization of the
manufacturing processes

(CHO et al., 2018) (ADU-AMANKWA et
al., 2019)

(VOGL; WEISS; HELU,
2019)

Human resources
optimization

(SCHREIBER et al.,
2019)

(LEE; ZHANG; NG,
2017)

Reliability modeling of
components and safe
systems

(CANIZO et al., 2017;
FUMAGALLI et al.,
2016)

Equipment Life Cycle
Optimization

(HE et al., 2018;
SÉNÉCHAL;
TRENTESAUX, 2019)

Optimization of human
resources and eco-
efficiency

(SIAFARA et al., 2017)

Security and
connectivity

(TERRISSA et al., 2016)

Process and product
quality

(TAN et al., 2017)

Process productivity (LEE et al., 2014)

Equipment prognosis (LEE et al., 2014)

Total 13 6 5

Source: Prepared by the author.
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L The subject of study of selected articles with business focus

Study subject Case Study Architecture Trends

Productivity and optimization (SHIHUNDLA; MPOFU;
ADENUGA, 2019; TSAO
et al., 2020; XIA; XI, 2019)

(LEE et al., 2015; ROSSIT;
TOHMÉ; FRUTOS, 2019;
ZHENG et al., 2018)

Equipment Life Cycle
Optimization

(HÄCKEL et al., 2019)

Security and connectivity (MOHAMED; AL-
JAROODI, 2019)

Reliability modeling of
components and safe
systems

(SALAZAR et al., 2019)

After-sales (MADHIKERMI et al.,
2018)

Supply chain (PÉREZ-LARA et al., 2018)

Optimization of the
manufacturing processes

(SANDENGEN et al., 2016)

Human resources optimization (CANITO et al., 2017)

Total 5 8 0

Source: Prepared by the author.
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