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ABSTRACT

CONTEXT: Cardiovascular diseases represent the number one cause of death globally,
which include the most common disorders in the heart’s health, namely coronary artery disease
(CAD). CAD is mainly caused by fat accumulated in the arteries’ internal walls, creating an
atherosclerotic plaque that impacts the functional behavior of the blood flow. Anatomical plaque
characteristics are essential for a complete functional assessment of CAD. In fact, there is no
unique method to assess all the coronary artery segments with high accuracy. OBJECTIVE:
Such a panorama evidences the need for new techniques applied to image exams to improve
the functional assessment of cardiovascular diseases by replacing manual activities with an au-
tomated segment selection. METHODOLOGY: This study presents a deep object detection
neural network architecture, called DeepCADD to determine the lesion location in right coro-
nary arteries (RCA) angiography exams. Using a Mask Region-Based Convolutional Neural
Network (R-CNN), we expect to reach precision comparable to the gold standard, automating
one step of the current protocol. We replace the Mask R-CNN’s backbone with a ResNet-50
trained with coronary artery segments to improve the small features detection. We also train the
whole DeepCADD architecture with angiographies collected in a local institution. RESULTS:
DeepCADD outperformed similar networks in terms of sensitivity and presented a significant
correlation with specialists during the validation, which suggests that DeepCADD can be used
in the current angiography protocol. CONCLUSION: DeepCADD increases the correlation
between the specialists and provides visual CAD suggestions, specially in multi-vessel lesions,
which differentiates DeepCADD from the current literature. DeepCADD detects a high num-
ber of true positive candidates for lesion quantification, which we expect to extend for further
arteries and dynamic evaluation in future research.

Keywords: Coronary artery. Deep learning. Coronary artery disease. Object detection.





RESUMO

CONTEXTO: Doenças cardiovasculares representam a causa número um de óbitos no
mundo, e inclui a doença mais comum na saúde cardíaca, chamada de doença arterial corona-
riana (DAC). DAC é causada principalmente pelo acúmulo de gordura no interior das paredes
arteriais, criando uma placa aterosclerótica que impacta o comportamento funcional no fluxo
sanguíneo. As características anatômicas das placas são essenciais para a correta avaliação fun-
cional das DACs. De fato, não há método único para avaliar todos os segmentos da artéria
coronária com alta acurácia. OBJETIVO: O panorama apresentado, evidencia a necessidade
de novas técnicas aplicadas em exames de imagem para melhorar a avaliação funcional de do-
enças arteriais coronárianas, substituindo etapas manuais com detecção automática de lesões.
METODOLOGIA: Esse estudo apresenta uma arquitetura de rede neural para detecção de
objetos, chamada DeepCADD para determinar a posição da lesão em exames de angiografias
em artérias coronárias esquerdas. Usando uma rede neural convolucional baseada em regiões
(Mask R-CNN), nós buscamos atingir precisão comparável ao padrão-ouro, automatizndo uma
etapa manual no protocolo atual. Nós substituímos o backbone da Mask R-CNN com uma
rede ResNet-50 trainada com segmentos de artérias coronárias para melhorar a detecção de
pequenos objetos em imagens de angiografia. Nós também trainamos o DeepCADD com angi-
ografias coletadas em uma instituição de saúde local. RESULTADOS: DeepCADD apresentou
melhores resultados de sensibilidade em comparação com os estudos relacionados e correlação
significante com os especialistas durante a validação, o que sugere seu uso no protocol atual da
angiografia. CONCLUSÃO: DeepCADD aumentou a correlação entre os especilistas e proveu
sugestões de DAC, especialmente em lesões com vários segmentos afetados, diferenciando a
arquitetura proposta da atual literatura. DeepCADD detecta um grande número de candidatos
verdadeiros positivos para a posterior quantificação das lesões. Com isso, esperamos expandir
o uso do DeepCADD para as demais artérias e para a avaliação dinâmica de lesões em estudos
posteriores.

Palavras-chave: Artérias coronárias. Aprendizado profundo. Doença arterial coronária. De-
tecção de objetos.
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1 INTRODUCTION

Cardiovascular diseases (CVD) represents the number one cause of death in the world

(OVALLE-MAGALLANES et al., 2020). More people die from CVD annually than from any

other cause (World Health Organization, 2017). CVD is a group of disorders that impacts the

heart’s health and the circulatory system, which includes coronary disorders, also called coro-

nary artery disease (CAD). CAD is mainly caused by the narrowing of coronary arteries, which

is usually caused by fat and cholesterol that builds up in the internal walls of coronary arter-

ies. This process is called atherosclerosis. From the anatomical point of view, atherosclerosis

causes stenosis, which is the artery geometrical narrowing (GUYTON; HALL, 2006). From

the hemodynamic point of view, atherosclerosis causes ischemia, which is the artery blood flow

reduction (GUYTON; HALL, 2006).

The WHO (World Health Organization, 2017) estimates that around 23.6 million people will

die from CVD up to 2030, mainly from CAD and stroke. According to the stenosis severity and

localization, it can cause acute myocardial infarction (AMI) or stroke. AMI can be related

to coronary artery narrowing. It reduces the blood flow limiting the oxygen transport to the

myocardial tissue (HIDEO-KAJITA et al., 2019). The coronary artery system is composed

of two main arteries: the left coronary artery (LCA), and the right coronary artery (RCA).

The LCA and RCA consume around 75% and 25% of the aorta blood flow designated to the

myocardial irrigation, respectively (GUYTON; HALL, 2006).

The coronary angiography (also known as coronary cine-angiography (CCA)) together with

the FFR are described in the European Society of Cardiology (ESC) and American Health As-

sociation (AHA) as the gold standard for the CAD evaluation (HIDEO-KAJITA et al., 2019).

Coronary angiography constitutes the conventional method for assessing the physiology and

the severity of coronary artery disease by visual assessment (RAMASAMY et al., 2020). FFR,

on the other hand, has been widely used to determine stenosis functional impact on blood flow

during the maximal hyperemia (necessary to simulate the maximal blood flow), measuring the

pressure decay caused by the artery narrowing (HIDEO-KAJITA et al., 2019). However, FFR

is a high cost, invasive approach limited by the impacts of the vasodilators in some patients

with asthma and chronic obstructive pulmonary diseases (FUKUOKA et al., 2020). Thus, FFR

is being less employed than it is recommended. The functional assessment of the blood flow

reduction is essential since the geometrical evaluation of the plaque is not sufficient for the

correct lesion diagnosis. In such panorama, image-based techniques also provide valuable in-

formation to correlate with the renal blood flow reduction presenting the advantage of being

less invasive. Nevertheless, their use is currently under discussion and usually limited to small

validation (WESTRA et al., 2018; KO et al., 2015; MIN et al., 2015; PANG et al., 2016).

As seen, there is still no clear consensus on the best approach to perform a reliable functional

assessment of coronary stenosis and several techniques are under development. The divergence

of treatment options together with the number of emerging studies proposing new techniques to
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offer more shreds of evidence of lesion severity create an opportunity to act in the patient triage

phase. Based on this background, the main goal of this Master Thesis is to provide a second

opinion in the atherosclerosis assessment by providing useful information for cardiologists in

an understandable way, so it speeds up the lesion localization. To achieve this goal, we pro-

pose a model based on a Convolutional Neural Network (CNN) connected to a Region-Based

Convolutional Neural Network (R-CNN) that work together to provide a diagnostic suggestion.

The model obtains the classification and the location of the coronary narrowing in angiography

exams with the highest sensitivity value in comparison with the recent literature, performing an

important role of time-saving in the lesion analysis.

1.1 Motivation

CNNs have succeeded as a method to learn and discriminate characteristics (a.k.a. features)

from raw data to classify lesions (OVALLE-MAGALLANES et al., 2020). Machine Learning

(ML) is widely used in the healthcare area due to its ability to learn and provide faster in-

sights to physicians (DEY et al., 2019). ML can learn rules and identify patterns progressively

from large datasets, without being explicitly programmed or having any a priori assumptions

(DEY et al., 2019). These advances have enabled the development and improvement of dig-

ital image processing techniques. Using these techniques, some Computer-aided Design sys-

tems applied to medical or biomedical imaging can achieve results close to human capacity

(OVALLE-MAGALLANES et al., 2020). Especially in recent years, the use of ML for diag-

nosis, prognosis, and lesion classification has become a popular line of research (PYXARAS

et al., 2018).

Recent literature states that the use of non-invasive techniques reaching high performance is

promising to replace the invasive FFR (BENENATI et al., 2018). For this reason, the proposal

of parallel processing in the coronary artery assessment can pave the way to interpretative data

and the diagnosis speed-up in earlier lesion stages. Recent studies discussed alternatives to

reduce the lesion evaluation invasiveness (MOON et al., 2021; CONG et al., 2021; PANG et al.,

2021; RODRIGUES et al., 2021; WUA et al., 2020), as the angiography itself already provides

important lesion physiological details (RODRIGUES et al., 2021).

These studies propose screening tools for patient triage, avoiding the need for additional

exams such as FFR. The screening tools proposed are limited mainly by the multi-vessel iden-

tification, lacking specialist validations (RODRIGUES et al., 2021; WUA et al., 2020) and pure

image classification (MOON et al., 2021; CONG et al., 2021; PANG et al., 2021), which was

largely applied in the CAD context without effective success in real-life scenarios (FREITAS

et al., 2021a). Current techniques and recent studies have focused on single lesion identifica-

tion, which does not fit the most common scenarios. While pieces of evidence question the

long-term benefit of decisions taken by them, recent studies lack specialist validations, evaluate

models purely by numerical results, and work with deep learning architectures as black boxes.
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1.2 Research Question

This work seeks to answer the following research question:

How to devise a model to detect coronary artery disease from angiography images based

on a deep object detection neural network architecture with a performance comparable

to the gold standard?

The present work intends to identify the necessary architecture characteristics for an object

detection system able to provide relevant information for cardiologists in angiography exams.

To address the research question, we conducted a systematic literature review (SLR) to identify

the state of the art, metrics, baselines, and opportunities available for coronary artery assess-

ment.

In this Master Thesis, we are interested in analyzing how CNN learns coronary artery char-

acteristics in angiography exams together with how object detection mechanisms can select

relevant Regions of Interest (ROIs) in medical X-ray exams. Together with CNN-extracted fea-

tures, we explore the use of preprocessing techniques and transfer learning to generate mean-

ingful data for the diagnosis.

Finally, the model intends to present the significant lesion area, with bounding boxes aiming

to apply measurement features to determine the exactly geometrical lesion information. Based

on the CNN feature maps, an object detection network will be used to generate these bounding

boxes.

1.3 Goals

The general goal of this Master Thesis is to investigate a Deep Learning (DL) model to

detect CAD in coronary angiographies. With this model, we expect to improve the current an-

giography protocol, automating the lesion selection in the RCA segments with a frame-specific

analysis to provide a second opinion in the atherosclerosis assessment. We expect these sug-

gestions to create useful information for cardiologists in an understandable way. To do so, we

have defined some specific goals:

• Understand the coronary artery assessment process;

• Identify the state of the art for coronary assessment, identifying challenges, techniques,

useful metrics, and baselines through a Systematic Literature Review (SLR) ;

• Implement a classification model as a base for the hybrid final proposal;

• Propose an intelligent and hybrid architecture to classify and detect coronary lesion;

• Develop the proposed architecture;
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• Validate the architecture based on the validation metrics and baselines identified in the

SLR.

1.4 Scientific Contributions

In this Master Thesis, we investigate a Deep Learning (DL) model to detect CAD in coro-

nary angiographies. With this model, we expect to improve the current angiography protocol,

automating the lesion selection in the RCA segments with a frame-specific analysis. In this

way, the main contributions of this work are detailed below.

• Mapping of the state of the art metrics for CAD analysis. With a literature review

conducted over the recent literature of both computing and healthcare area. We used

a SLR methodology to conduct this study analysis. In this context, we present a new

taxonomy for CAD analysis and a common quantitative and qualitative analysis over the

recent technologies applied to this end, resulting in the most suitable metrics that correlate

with the CAD significance.

• New convolutional architecture to automatically detect CAD in angiographies. Based

on the current gaps identified in the SLR, we proposed new architecture. In this way, the

main scientific contribution of this dissertation is the proposal of a novel Deep Learning

Architecture for Automatic Detection of Coronary Artery Disease, called DeepCADD,

which outperforms the current literature for CAD evaluation focused on instance seg-

mentation.

• Explainability in the CAD detection. The proposed model is based on the current an-

giography protocol, focused in the CAD detection in RCA segments. The pixel-level

classification allows the local and global evaluation of lesions, also allowing the evalua-

tion of border cases. Finally, we provide the heat maps of DeepCADD detection, which

can help in the decision-making.

1.5 Text Organization

This Master Thesis is organized into 7 chapters. Chapter 2 presents the concepts related to

coronary artery assessment, image processing, and machine learning, introducing the relevant

technologies implemented in this work. In Chapter 3, the related works are discussed to present

the state-of-the-art for coronary artery assessment. Chapter 4 presents the proposed model and

design decisions. Chapter 5 presents the validation methodology and metrics for the model

followed by the preliminary results in Chapter 6. Finally, Chapter 7 presents the conclusions

obtained so far and future directions.
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2 BACKGROUND

This chapter presents the main concepts used in this Master Thesis, which guided the de-

velopment of intelligent architecture to assist in the classification and detection of coronary

artery diseases in angiographies. Preliminary concepts regarding coronary arteries and their

assessment are detailed in Section 2.1. In Section 2.2 we explain some important Digital Image

Processing (DIP) features essential to the machine learning process. In Section 2.3 we present

important ML concepts necessary to this work technical implementation. In Section 2.4 we

present details about the architecture concepts in CNN necessary for the classification and for

object detection on this work. Finally, in Section 2.5 we present the neural network architecture

techniques to avoid over- and underfitting in models with limited datasets.

2.1 Coronary arteries

Coronary arteries lie on the surface of the heart and penetrate into the cardiac muscle and

are responsible for almost all nutritive blood supply of the heart (GUYTON; HALL, 2006). The

coronary circulation is more complex than the whole body circulation, as during the systole step

the blood flow is reduced by contraction myocardial muscle, and then, in the diastole, the blood

flow achieves its maximum (GUYTON; HALL, 2006). Figure 1 presents the main coronary

arteries together with the RCA main segments. The RCA was defined as the study object as

it has less morphology variation in comparison with the LCA. The RCA is composed mainly

of three parts: proximal, medial, and distal segments. The bigger lumen diameter is on the

proximal segment and reduces down to the distal segment (GUYTON; HALL, 2006).

Figure 1 provides a simple model to demonstrate the main contour of the RCA. Simplifying

the contour of the coronary artery we expect to reduce the problem complexity by focusing on

the main artery segment. Also, this model represents the seed we have introduced to the CNN,

focusing in the proximal, medial and distal RCA segments. For further contextualization, we

will introduce the blood flow behavior up to its reduction impact in the right coronary system.

The blood flow is governed by Ohm’s law of fluid flow (POLLOCK et al., 2020) in all

bodies. Physiologically, it means that blood flow is equivalent to the pressure divided by the

systemic resistance (POLLOCK et al., 2020). Basic mechanic concepts and clinical aspects

of physiologic assessment present pieces of evidence of the FFR effectiveness in the correct

assessment of coronary stenosis (HWANG; LEE; KOO, 2016).

2.1.1 Coronary Artery Disease

CAD is the most common disorder in heart health and especially responsible for cardio-

vascular diseases be the number one cause of death globally (GUYTON; HALL, 2006). CAD

is mainly caused by fat accumulated in the arteries’ internal walls, creating an atherosclerotic
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Figure 1 – Coronary artery system (a) (GUYTON; HALL, 2006) and RCA representation (b).

Proximal RCA

Medial RCA

Distal RCA

(a) (b)

Aorta

Source: Adapted from (GUYTON; HALL, 2006)

plaque that impacts the blood flow functional behavior. This process is called atherosclerosis.

From the anatomical point of view, atherosclerosis causes stenosis, which is the artery geomet-

rical narrowing (GUYTON; HALL, 2006).

The plaque caused by atherosclerosis presents some characteristics, which allow its classifi-

cation as stable or unstable. The stable plaque expands gradually increasing the lipid (e.g., fat)

according to the normal reproduction of the cells (GUYTON; HALL, 2006). On the other hand,

the unstable plaque expands rapidly due to more frequent lipid deposition (GUYTON; HALL,

2006). From the clinical point of view, the unstable lesion differs from the stable one as it is

prone to rupture, which increases the risk of acute thrombosis represented in Figure 2.

From the clinical point of view, the disease caused by plaque can be classified as stable or

unstable angina. According to the ESC guideline, stable angina is represented by the presence

of atherosclerosis but the symptoms may occur during physical activity and last for about 5

minutes, relieving with rest (GUYTON; HALL, 2006; MONTALESCOT et al., 2013). For un-

stable angina, symptoms occur even at rest, thus becoming more frequent, severe, or prolonged

(GUYTON; HALL, 2006; MONTALESCOT et al., 2013).

Unstable angina significantly increases the risk of acute coronary syndrome (ACS). ACS

represents the sudden, complete blockage of a coronary artery caused by an acute atherothrom-

botic event caused by the plaque rupture or erosion (MONTALESCOT et al., 2013). Unstable

angina can have long stable periods, becoming unstable at any time (LIBBY, 2002). Atheroscle-

rotic lesions can also be named as culprit or non-culprit by the cardiac ischemic event, desig-

nated AMI. The significant narrowing is designated as the reason for AMI and is named as

culprit lesion. Any other narrowing not directly connected to AMI is named as non-culprit

lesion (JOHNSON et al., 2016).
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Figure 2 – Plaque build-up process (extracted from (LIBBY, 2002)). The constant increase of fat in the
artery internal walls can lead to a stabilized or vulnerable plaques. The second can evolve to a artery
blockage and reduce the blood flow drastically.

Source: Adapted from Libby (2002).

2.1.2 Coronary Artery Assessment

The CCA together with the FFR are described in the Brazilian Coronary Artery Guideline

as the gold standard for the CAD evaluation (HIDEO-KAJITA et al., 2019). Coronary angiog-

raphy is a less invasive technique, which focuses on the geometric characteristics of lesions.

On the other hand, the FFR is a more invasive approach, which evaluates the pressure decay

in the narrowed arteries responsible for the current lesion functional repercussion assessment.

Nevertheless, these studies still suggest that the visual assessment or local pressure drop mea-

surement alone do not represent the real coronary disease functional assessment (PYXARAS

et al., 2018).

Coronary angiography constitutes the conventional method for assessing the physiology and

the severity of coronary artery disease by visual assessment (RAMASAMY et al., 2020). Coro-

nary angiography analysis is based on the quantitative coronary angiography (QCA) feature, a

visual metric that measures the physiologic silhouette deformation caused by the fat plaque in

each exam frame (MOERTL et al., 1995). QCA calculation is mainly composed by the artery

minimal lumen diameter (MLD) metric. MLD is based on a reference vessel diameter (RVD),

which represents the healthy segment without fat plaque. QCA main result is the quantitative

percentage of diameter stenosis (DS).

Allied to the geometrical assessment, the FFR is an invasive approach that determines the

likelihood that stenosis will prevent tissues from receiving oxygen (HIDEO-KAJITA et al.,
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Figure 3 – Current protocol for functional assessment based on the angiography.

Source: Elaborated by the author

2019). The FFR measurement occurs at the maximum hyperemia induced by an intravenous

infusion of adenosine (LEE et al., 2020). An FFR of 0.80 indicates that the stenotic coronary

artery supplies 80% of the normal maximal flow and is considered functionally significant when

the FFR is 0.80 or less (LEE et al., 2020). Its use in ACS is less common due to the maximal

hyperemia required and the disease urgency (MARTINS et al., 2018).

Thus, FFR is being less executed than it is recommended. In fact, the functional assessment

of the blood flow reduction is essential, since the geometrical evaluation of the plaque is not suf-

ficient for the correct lesion diagnosis. In such panorama, image-based techniques also provide

valuable information to correlate geometrical lesion data with the real blood flow reduction,

whereas presenting the advantage of being less invasive. Their use is currently under discussion

once the use of angiography alone can reach as good results as FFR, reinforced by benefits of

the less invasive techniques use in patient’s treatment (WESTRA et al., 2018; KO et al., 2015;

MIN et al., 2015; PANG et al., 2016).

Current daily protocol for CAD assessment is represented in Figure 3, where the opera-

tor selects the frame where the contrast fluid has maximum adherence in the coronary artery,

followed by the manual segment selection and then quantification based on QCA. QCA method-

ology receives the lumen border centerline manually traced by the operator in 2D angiographic

projections (ATHANASIOU et al., 2017), constructs the lumen contour using as reference the

distance between the lumen border detected before, and the plaque quantification is provided to

the operator (ATHANASIOU et al., 2017).

Recently, a computational method has emerged, called quantitative flow ratio (QFR) index

(WESTRA et al., 2018), considered the state of the art for functional assessment. QFR aims to

be a less invasive method and has been validated with optimal determination of the narrowing

significance considering the total flow from aorta (WESTRA et al., 2018). The impact of the

narrowing in comparison with the aorta was validated with FFR (WESTRA et al., 2018). Based

on the angiography, QFR evaluation is based on anatomical metrics such as DS, minimal lumen

area (MLA) and MLD (PYXARAS et al., 2018).

Multi-center registries which evaluated the discordance between anatomical and physiologic

assessment of coronary arteries using the fractional myocardial mass (FMM) index suggest that

FMM improves the correlation between anatomical and physiologic assessments (KIM et al.,

2016). FMM and MLD discovered vessels with FFR < 0.80 and with FFR > 0.80 better
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than visual assessment (KIM et al., 2016). Nonetheless, FMM presents some limitations as

it assumes that the artery segment is a cylindrical tube without volume compliance and flows

turbulence, which may vary from the real case since blood is considered a non-Newtonian fluid

(KIM et al., 2016; ADJEDJ et al., 2015). The coronary functional assessment is challenging

and to the best of our knowledge, no single approach is the best option for assessing all possible

lesions characteristics. Coronary assessment image-based emerging technologies can pave the

way for further lesion and hemodynamic details, thus providing additional pieces of evidence

for diagnosis decisions and treatment. Due to the nature of these methods, some important

image processing concepts will be introduced in the next section.

2.2 Digital Image Processing

DIP can be defined as a set of computational techniques to acquire, represent, manipulate,

and extract information from digital images (ANNADURAI, 2007). It means that DIP starts

from image grabbing up to the recognition and interpretation. A DIP system have four major

building blocks: acquisition, storage, processing, and communication interface. These blocks

are important to guarantee the the communication between image processing systems (AN-

NADURAI, 2007). The use of DIP concepts is necessary on this work for image preparation

module and correct filter selection to achieve the expected study objective.

2.2.1 Digital Image

Any monochrome image can be represented by means of a two-dimensional (2D) light in-

tensity function f(x; y), where x and y denote spatial coordinates, and f corresponds to the in-

tensity or level of gray in the image (ANNADURAI, 2007; GONZALEZ; WOODS, 2018). For

a color digital image, in general, a three-dimensional (3D) representation is required (BURGER;

BURGE, 2009). The most relevant 3D model for this work is the Red, Green and Blue (RGB)

format, where each channel represents the intensity of each primary color. The intensities sum

determine the final color (GONZALEZ; WOODS, 2018). In this work, RGB images are always

converted to grayscale, converting a three-dimensional into a two-dimensional array due to the

relevant data contained in the CCA.

2.2.2 Image Segmentation

Image segmentation intends to divide an image into regions of similar attributes (PRATT,

2013), using mainly two attributes: in monochrome images, the luminance; and in color images,

the color components (PRATT, 2013). The division is carried out at the pixel level, so those

pixels with the same label are connected concerning some visual or semantic property (GHOSH

et al., 2019). In this section, we discuss appropriate methods for targeting CCA.
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Figure 4 – Original angiography (a) and Frangi filter applied (b).

Source: Elaborated by the author

2.2.2.1 Frangi filter

Frangi filter works for vessel enhancement and is widely accepted in recent past research

studies (KULATHILAKE et al., 2010). The Frangi filter is typically used to detect vessel-like or

tube-like structures and fibers in volumetric image data (FRANGI et al., 1998). Nowadays, the

Frangi filter is an excellent alternative for vessels identification and takes an important role in

this work preprocessing module presented in the 3.1 section. The Frangi behavior is represented

in Figure 4.

As Figure 4 presents, the Frangi filter provides a very useful technique that reduces the

effort to select both vessels and arteries. Nevertheless, depending on the image contrast quality

and the amount of overlaid vessels in some coronary angiography projections this filter will

also enhance not relevant image features. In general, this filter is very useful and with the

Frangi filter the CCA preprocessing tends to become easier, once it enhances the artery edges,

providing useful information for image binarization.

Other binarization techniques are necessary for the best use of the Frangi filter. Among

them, we highlight thresholding, Otsu’s method, and adaptative thresholding. The thresholding

technique works to classify at pixel level what is a background and what is an object in an

image based on a predefined pixel intensity value (BURGER; BURGE, 2009). This technique is

particularly useful to perform image binarization and to remove noise (GONZALEZ; WOODS,

2018), once pixels brighter than the threshold are mapped to unity display and all the remaining

pixels below the threshold are mapped to zero level of display luminance (PRATT, 2013).

Otsu’s method, proposed in 1979, provided a different approach to image binarization. In-

stead of choosing an arbitrary value for thresholding, Otsu’s method determines it automatically

(GONZALEZ; WOODS, 2018). The proposed algorithm iterates through all the image pixels

looking for all peaks in the image histogram separating the image in background and object

(GONZALEZ; WOODS, 2018).

Traditional segmentation using an arbitrary thresholding value works well only in images
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Figure 5 – Difference between instance and semantic segmentation

Source: Adapted from (VARATHARASAN et al., 2019)

where there is a distinction between the colors of the background and the objects (GONZALEZ;

WOODS, 2018). In this Master thesis’ case, the CCA pixel intensity can vary for many reasons,

so an arbitrary value is not enough. For this reason, the adaptative thresholding helps, once it

determines the pixel-based threshold in small regions around it (GONZALEZ; WOODS, 2018).

In other words, adaptive thresholding uses variable limits to perform segmentation, considering

local characteristics of the image (BURGER; BURGE, 2009).

Nevertheless, even with a powerful segmentation technique, the identification of narrowed

arteries is not guaranteed by them and the use of ML techniques become necessary and will be

explored in the next section.

2.2.2.2 Instance segmentation

Different from the classification from CNN, object detection or localization provides both

the detected classes in the image and the location of the image where the objects have been

classified. The use of Mask R-CNN architecture includes, not only the bounding boxes and

the classification but also the instance segmentation for the object detected (HE et al., 2018).

Figure 5 presents the difference between semantic segmentation and instance segmentation.

While the semantic segmentation provides the predicting labels’ inference for every pixel in-

cluded in the predicted class, the instance segmentation is the task of finding both the semantic

segmentation and the object detection (HAFIZ; BHAT, 2020).

Instance segmentation provides different labels for each instance of the object detected be-

longing to the specific class (HAFIZ; BHAT, 2020). Instance segmentation is especially chal-

lenging for small objects. Small CNN presents the benefit of the narrow receptive field with

richer detail, but the resolution is higher and the semantic sensitivity is lower (HAFIZ; BHAT,

2020). It remains an issue due to the CNN limitations, as the number of layers in the network

increase. Small objects details can disappear in the higher layers, making the object detection

quite challenging (HAFIZ; BHAT, 2020).
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Figure 6 – Biological neuron main elements

Source: Adapted from Russell et al. (2010)

2.3 Machine Learning

Machine learning (ML) is widely used in healthcare due to its ability to learn and provide

faster insights to doctors (DEY et al., 2019). ML can learn rules and identify patterns progres-

sively from large datasets, without being explicitly programmed or having any a priori assump-

tions (DEY et al., 2019). Unfortunately, the image techniques to which ML has been applied

to suffer from several limitations, such as data quality and pending image acquisition protocols

(DEY et al., 2019; SHU et al., 2020). Therefore, back-propagation networks are known due to

their ability to learn complex problems with both large and small collections of images. This

capability allows the learning of high-dimensional and non-linear patterns in these collections

(LECUN et al., 2010).

The main ML component discussed in this study is the Artificial Neural Network (ANN).

The ANN is the artificial intelligence component created to simulate the human brain func-

tioning using the biological neurons and their interconnections as inspiration (RUSSELL et al.,

2010). In the next sections, we discuss some important concepts of ANN that are essential to

the correct CCA evaluation.

2.3.1 Artificial Neuron

The artificial neuron is a representation of a natural neuron, that has four main elements:

dendrites, axons, cell body, and synaptic terminals (RUSSELL et al., 2010), presented in Fig-

ure 6. The first artificial neuron model proposed in 1943 was composed of several binary inputs

and binary output. Even very primitive, it allows the improvements which created, in 1958, the

Perceptron concept. The Perceptron model has several numerical input and the output calcu-

lated by a threshold function (RUSSELL et al., 2010).

Currently, the artificial neuron model, which is presented in Figure 7 is composed by several

inputs ai-j, each one multiplied by a specific wi-j weight, which corresponds to the connection

strength. Each neuron also have a constant value called bias (RUSSELL et al., 2010). The
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Figure 7 – Artificial neuron representation

Source: Adapted from Russell et al. (2010)

inputs are added together and then applied to a function g (a.k.a activation function), to produce

the neuron output, which is then propagated to the next interconnections (RUSSELL et al.,

2010).

2.3.2 Multilayer Perceptron

When the neurons are organized in layers, it is called Multilayer Perceptron (MLP) (RUS-

SELL et al., 2010). A typical MLP architecture is composed of one input layer, one or more

hidden layers, and an output layer (RUSSELL et al., 2010) represented in Figure 8. The biggest

computational process occurs in the hidden layers, given the neuron’s interconnections and its

activation functions. For binary problems, the output layer has only one neuron, while in multi-

class problems the output layer has as many neurons as the number of classes. The weight

update is an iterative process, while the x input signals are propagated from the input layer to

the hidden layers producing an output y0, the back-propagation works in the opposite direction

(RUSSELL et al., 2010; HEATON et al., 2018). The back-propagation process in the network

produces what is called learning, which occurs by computing an error in the output layer. This

error is measured by a loss function. This error is then back-propagated to the previous layers

and the weights of the connections are updated with new values (HEATON et al., 2018). From

the output y0 and its label y, the difference in the forecast is calculated with a loss function.

The loss gradient is then computed (HEATON et al., 2018).

The gradient obtained from the loss function is propagated from the output layer to the

hidden cameras to calculate the error in each neuron. The hidden layer error is obtained by

calculating the partial derivative of the error concerning each weight employing the chain rule

(HEATON et al., 2018). Finally, the neuron weights are then updated by subtracting a propor-

tion of the gradient from the current value of the weights. The calculation of this proportion is

defined by multiplying the gradient by the hyperparameter called learning rate (COPPIN, 2010).

However, MLP are not the best idea to use for image processing. One of the main problems is

that spatial information is lost when the image is flattened (matrix to vector) into an MLP. MLP

using one perceptron for each input (e.g. pixel in an image), the amount of weights rapidly

becomes unmanageable for large images.
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Figure 8 – Multilayer perceptron representation

Source: Adapted from Russell et al. (2010)

2.3.3 Activation function

The objective of an activation function is to introduce non-linearity to the neuron (HEATON

et al., 2018). This function defines the neuron output and must be capable of mapping entries

between {−∞,+∞} to an specific interval, normally between {0, 1} or {−1,+1} (HEATON

et al., 2018).

There are a lot of activation functions available, such as sigmoid, tanh, maxout, SWISH,

ReLU, and variants of ReLU, such as leaky ReLU, ELU, and PReLU. The most common acti-

vation function for image processing is the ReLU and its variations as they help in overcoming

the vanishing gradient problem (KHAN et al., 2020). The most common activation functions

implemented in the community are:

• Step or threshold: Map the input to {0, 1}, following Equation 2.1.

α(v) =







1 if v ≥ 0

0 if v < 0
(2.1)

• Sigmoid: Map the input to the interval {0, 1}, following Equation 2.2.

α(v) =
1

1 + e−v

(2.2)

• Tanh: Map the input between {−1, 1}, following Equation 2.3.

α(v) = tanh(v) (2.3)
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• ReLU: Map the input between {0, 1}, following Equation 2.4.

α(v) = max(0, v) (2.4)

• Softmax: Map the input between {0, 1}, following Equation 2.5.

α(v) =
exp(v)

∑

exp(v)
(2.5)

There is a consensus in the community about the best activation function in the last layer

of ANN. For multi-class classification problems, the softmax function has presented better

results. For binary classification problems, sigmoid function has presented a better result.

2.3.4 Loss functions

The gradient loss obtained during the back-propagation process is essential to the weights

adjustment (RUSSELL et al., 2010). It intends to measure the difference between the estimated

and the current values for a given training and it needs to be defined carefully (RUSSELL et al.,

2010). The most common loss functions for classification are the Binary Crossentropy and the

Categorical Crossentropy, and the most common for regression is the Mean Absolute Error and

the Mean Squared Error.

Binary Cross-Entropy measures the classification model performance with a probability be-

tween 0 and 1. The closer the output is to 0, the better is the classification. A common sense

from the community explains that Binary Crossentropy can only be used for binary classifi-

cation problems. For multi-class classification problems, it is necessary the use Categorical

Crossentropy, which calculates a separate loss for each observed class and makes a sum of the

result to infer the error of the model (HEATON et al., 2018). For regression problems, the

Mean Absolute Error represents the difference between the target and predicted values and the

Mean Squared Error is the mean of the difference squared between the forecasts and the actual

observations (HEATON et al., 2018).

2.4 Convolutional Neural Networks

The CNN (a.k.a ConvNet) learns from back-propagation strategy (KHAN et al., 2020) and

for this reason CNN becomes popular as they combine three important architectural ideas: local

receptive fields, shared weights and temporal sampling, which makes these networks excellent

for pattern recognition (LECUN et al., 2010). CNN works well with data that has a spatial

relationship (KHAN et al., 2020). For this reason, CNN has been widely applied in application

areas including Image Classification and Segmentation, Object Detection, Video Processing,

Natural Language Processing, and Speech Recognition (KHAN et al., 2020). CNN convolu-
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Figure 9 – Convolutional layer representation

Source: Dumoulin e Visin
(2016)

tional kernel also acts as a learning framework, reducing memory usage and computing faster

(KHAN et al., 2020).

CNN is architectured by multiple stages and the input and output of each stage, called

feature maps, are sets of arrays (LECUN et al., 2010). CNN are typically composed of multi

3-stage layers, which include a convolutional layer in the first stage. In the second stage, an

activation function is applied to the convolutional result. Finally, in the last stage, a max-pooling

layer is responsible for dimension reduction (LECUN et al., 2010).

The number of CNN necessary layers depends on the image complexity to capture low-level

details. However, the computational cost also increases (KHAN et al., 2020). At the end of these

connected 3-stage layers, a flatten layer is usually adopted. Considering these connected layers,

over a series of epochs, the model becomes able to detect dominating low-level image features

and classify the elements using the Softmax Classification technique (KHAN et al., 2020).

Nevertheless, multiple connections that learn non-linear relations can also cause overfitting,

which is important to avoid as they generate lots of false-positive classifications. These elements

represent a common architecture of an image classification convolutional neural network and

based on these elements, lots of architectures raised in the last decades, such as the AlexNet,

ImageNet, Inception-ResNet, Wide ResNet, ResNeXt, VGG, etc (KHAN et al., 2020).

2.4.1 Convolutional Layers

The first stage of a typical CNN layer is the convolutional layer. This layer is responsible

for the hover in the image with the kernel dimensions to extract sets of information from these

image regions with a defined kernel, which represents a portion of the image limited by kernel

dimension according to Figure 9. When the kernel stride by the image, changing the original

image (Dumoulin; Visin, 2016).

Due to its weight sharing ability of the first stage, different sets of features within an image

are extracted by sliding this kernel with the same dimension on the image and thus makes CNN

parameter efficient as compared to the fully connected networks (KHAN et al., 2020). The

generated kernels go through an activation function in the second stage which works as a gate
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for given input data calculating neurons weight sum. It sums up similar information in the

neighborhood pixels of the kernel and outputs the dominant response within this local region

(LEE; GALLAGHER; TU, 2016).

A convolutional layer has some hyperparameters that need to be controlled, such as the

filter size, which defines the size of the convolution filter; Number of filters, which defines the

number of current layer filters; Padding, which defines edge value added to the original image;

and Stride, which defines the step size the filters perform on convolution.

The last stage of a typical CNN layer is responsible for the dimensional reduction and can

be composed by either Max Pooling or Average Pooling. This allows to reduce “unnecessary”

information, and summarize the knowledge about a region (KHAN et al., 2020). While Max

Pooling returns the maximum value from the portion of the image hovered by the Kernel and

working as a noise suppressant, The Average Pooling returns the average of the values from the

same covered image portion defined by the Kernel (KHAN et al., 2020). In the CNN the last

layer, usually for classification problems, we want each final neuron represents the final class.

The neurons behavior is connected to all previous layer activation, as a MLP (HEATON et al.,

2018; KHAN et al., 2020).

2.4.2 Convolutional Neural Networks for Medical Image Classification

As an essential part of this Master Thesis, we propose the use of a pre-trained model

to classify coronary artery segments from a synthetic dataset (ANTCZAK; LIBERADZKI,

2018). Recent studies suggest the better performance of some architectures in the classifica-

tion of medical image data, such as the ResNet-50 (RAHIMZADEH; ATTAR, 2020), Xception

(RAHIMZADEH; ATTAR, 2020; KHAN; SHAH; BHAT, 2020) and the recent CheXNet (RA-

JPURKAR et al., 2017), which is a DenseNet optimized to chest X-ray exams and have an

image nature visually similar to angiographies. In the following subsections we will discuss

three different architectures, the ChexNet, the Xception, and the ResNet:

2.4.2.1 CheXNet

The CheXNet architecture was proposed in 2016 focused on medical data classification

problems (RAJPURKAR et al., 2017). CheXNet is a Dense Convolutional Network (DenseNet)

with 121 layers trained with the ChestX-ray 14 dataset (RAJPURKAR et al., 2017). The use of

DenseNet is particularly good to optimize the flow of information and gradients through the net-

work, followed by a fully-connected layer with sigmoid nonlinearity activation (RAJPURKAR

et al., 2017). Figure 10 presents the CheXnet architecture together with the proposed classifica-

tion layer.

The CheXNet network weights are initialized with weights from ImageNet and trained end-

to-end using Adam with standard parameters (β1 = 0.9 and β2 = 0.999) (RAJPURKAR et al.,
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Figure 10 – CheXnet simplified architecture

Source: Adapted from (RAJPURKAR et al., 2017).

2017). CheXNet used a learning rate of 0.001 that is decayed by a factor of 10 each time the

validation loss plateaus after an epoch (RAJPURKAR et al., 2017).

2.4.2.2 Xception

The Xception architecture was proposed in 2017 for classification problems and is a linear

stack of depthwise separable convolution layers with residual connections (CHOLLET, 2017).

The Xception has 36 convolutional layers which compose the network feature extraction base

(CHOLLET, 2017).

In this network the data has an entry flow, which is followed by a middle flow repeated eight

times and an exit flow, where all the Convolution layers are followed by Batch normalization

(CHOLLET, 2017). Xception architecture has overperformed other architecture, such as VGG-

16, ResNet and Inception V3 in classical classification challenges (CHOLLET, 2017).

2.4.2.3 Residual Network

Deep CNN has been widely used for image classification and is great at identifying low,

mid, and high-level image features. Usually, stacking more layers in the network reaches better

accuracy (HE et al., 2016). Nevertheless, the notorious problem of vanishing/exploding gradi-

ents impacts the performance of these networks. The result of vanishing gradient is the general

inability to learn on a given dataset, which prematurely converges to poor solutions (HE et al.,

2016).

In detail, when deeper networks start converging, and the network depth increases, accuracy

gets saturated and degrades rapidly (HE et al., 2016) not caused by overfitting. The addition

of more layers, in this case, leads to higher training error (HE et al., 2016). In this context,

the ResNet came up as modularized architectures that stack building blocks of the same con-

necting shape with the main advantage of skip connections. Figure 11 presents the ResNet

architecture for different number of layers adapted from the original paper. ResNet that are

over 100-layer deep have shown state-of-the-art accuracy for several challenging recognition

tasks on ImageNet and MS COCO competitions (HE et al., 2016).
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Figure 11 – ResNet architecture with variable number of layers.

Source: Adapted from He et al. (2016).

Figure 12 – Example of skip connection.

Source: Adapted from He et al. (2016).

Skip connections allow the propagation of small features learned by the initial convolutional

layers to higher stacked layers. Figure 12 presents an example of skip connection also called

as shortcut connection. The shortcut connections simply perform identity mapping, and their

outputs are added to the outputs of the stacked layers (HE et al., 2016).

Skip connections are applied before the ReLU activation as shown in Figure 12. Researchers

have found that this structure presents the best results (HE et al., 2016). Skip connections also

allow the model to learn an identity function which ensures that the higher layer will perform at

least as good as the lower layer, and not worse (HE et al., 2016).

Beyond the ResNet has won the 1st place in tracks in ILSVRC and COCO 2015 competi-

tions, ResNet-50 is the default R-CNN backbone and have been widely used for medical data

classification. ResNet has proven to be the best accuracy-to-speed ratio in coronary artery stud-

ies (DANILOV et al., 2021).



40

Figure 13 – Original Faster R-CNN architecture

Source: Elaborated by the author.

2.4.3 Convolutional Neural Networks for Object Detection

In this work, we propose an architecture to detect coronary artery diseases in angiographies

and for this reason, the object detection task has an important role in the model. Object detec-

tion is the identification of an object in an image together with its localization and classification

(CHAHAL; DEY, 2018). Software systems that can perform these tasks are called object de-

tectors (CHAHAL; DEY, 2018).

Typically, there are three main steps in an object detection framework: the regions of interest

or region proposals; the visual features are extracted for each of the bounding boxes; and in the

final post-processing step, overlapping boxes are combined into a single bounding box. Object

detection models are usually evaluated by Mean Average Precision (mAP) and are especially a

good approach when the classification features are too small (CHAHAL; DEY, 2018). To do

so, we decided to experiment with the R-CNN architectures.

R-CNN architectures are for object detection and contain a backbone, which is a CNN. The

first R-CNN architecture proposed in the literature used selective search algorithm to determine

ROIs using Support Vector Machine (SVM) to classify the different regions (CHAHAL; DEY,

2018). Recently, Region Proposal Network (RPN) came up to improve the capability of pre-

dicting regions of multiple scales. It replaced the high cost selective search algorithm that was

considered as a bottleneck (CHAHAL; DEY, 2018). The use of parallel processing presented in

Figure 13 and the inclusion of a RPN improved the network performance in the Faster R-CNN

architecture (CHAHAL; DEY, 2018).

Recently, another enhancement from the Faster R-CNN showed up. The Mask R-CNN

architecture extends Faster R-CNN by adding a branch for predicting an object mask in parallel

with the existing branch for bounding box recognition (HE et al., 2018) presented in Figure 14.
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Figure 14 – Mask R-CNN classifier module with the Mask parallel process

Source: Elaborated by the author.

Mask R-CNN is based on an instance-first strategy and the instance segmentation defines the

object mask (HE et al., 2018) improved as a parallel prediction with the bounding-box proposal,

being more flexible and simpler (HE et al., 2017).

2.5 Overfitting and Underfitting

The training process requires the dataset division, at least into training and testing data. This

separation is necessary, once an efficient model needs to perform well in both any data even,

mainly after the training step. This capability is called generalization (HEATON et al., 2018).

Usually, the dataset is divided into three parts (GÉRON, 2017): the training phase, which is

responsible for the weight optimization process; the validation phase, which is responsible to

monitor the model’s behavior; and the test phase, which is responsible to measure the model

performance while solving the problem.

There are two main challenges during training a model: underfitting and overfitting, repre-

sented in Figure 15. Underfitting occurs when the model does not obtain a low error for a given

problem. The overfitting occurs when the gap between training error and validation is very large

(HEATON et al., 2018). In the following two sections, we discuss some techniques to support

these challenges and enhance the model generalization. We introduce the available techniques

to enhance the current model without additional tools and the use of transfer learning.

2.5.1 Model and data preparation

In CNN architecture, it is popular the use of Dropout layers, which are responsible for a

random dropping of some connections or units which produce abnormalities in the network

architecture, also contributing to the network learning quality (KHAN et al., 2020). This layer

“drops out” a random set of activations in that layer by setting them to zero. This makes the

network more robust (kind of like you eating dirt builds up your immunity system, the network

is more immune to small changes) and reduces overfitting. This is only used when training

the network and is the Early Stopping, the Batch Normalization, and the Data Augmentation
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Figure 15 – (Left) The model cannot capture the curvature that is present in the data, presenting under-
fitting. (Center) A quadratic function fit to the data generalizes well to unseen points. (Right) The model
achieves a 9-degree polynomial function that fit exactly the training data suffering from overfitting.

Source: Heaton et al. (2018)

(HEATON et al., 2018).

The Early Stopping technique interrupts the model training based on loss function stop

criteria in the training and validation sets. It guarantees the loss function does not be stuck in a

local minimum. It avoids the waste of time and computational resources with excessive model

adjustments.

The Batch Normalization raises as a strategy to make the network converge more quickly,

once it is recommended to be added between after Dense layers. Given a set of features H of

the layer to be normalized, Batch normalization is described as Equation 2.6:

H ′ =
H − µ

σ
(2.6)

Where µ is the average and σ is the layer feature maps standard deviation normalized. H ′ are

normalized feature maps that are processed in the same way as if the network were processing

H without normalization.

Finally, the Data Augmentation process consists of increasing the dataset via synthetic data

based on the original dataset. The most common operations are rotation, translation, horizontal

and vertical flip, subsampling, and distortions. These operations intend to generalize the clas-

sification avoiding memorizing image regions containing the class. However, some attention is

needed to avoid generating noise in the training dataset.

2.5.2 Transfer Learning

The ability to learn from a large number of experiences, and export ’knowledge’ into new

environments is exactly what transfer learning is about (HEATON et al., 2018). The transfer

learning process is another technique to avoid overfitting and underfitting, which consists of

using trained weights for a given problem A in the initialization of another network to solve a
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problem B. This technique is especially important in the healthcare area due to the difficulty

to access labeled and public datasets (WONG; FORTINO; ABBOTT, 2020; SHU et al., 2020;

ZREIK et al., 2018, 2019). In the training phase, we can adjust the weights of all layers or even

freeze some of them leaving the original weights (HEATON et al., 2018).

In this context, the featuriser concept comes up. Essentially, in a featuriser we use the

first layers of the network to determine the useful feature, but we do not use the output of the

network, as it is too task-specific. There are two main ways to transfer learning: initialize a

model with weights and retrain an existing model.

• Initialize a model with weights: Usually recommended when the number of images is

lower than 1000 per class. During the training, we keep some layers fixed optimizing

parameters in higher-level layers, once the initial layers have similar features regardless

of the problem domain.

• Retrain an existing model: Usually recommended when the number of images is bigger

than 1000 per class. An approach that most likely leads to overfitting, may need more

parameter optimization than the number of images available. Given the similarity with

the dataset originally used for training, then a large pre-trained network, this model can

be used as a featuriser.

In the healthcare area, several techniques exist to improve performance, given the small

number of public and labeled datasets. Typically require more work and fine-tuning (OVALLE-

MAGALLANES et al., 2020). Typically, it suggests pre-train the weights of the classification

network, by iteratively training each layer to reconstruct the images using convolutional or

deconvolutional layers (OVALLE-MAGALLANES et al., 2020).

2.6 Final Remarks

Image-based techniques are helpful for burden plaque characterization, measure, and lumen

attenuation gradient (DEY et al., 2019). Thus, the angiography nature studied highlighted the

potential of image processing techniques to extract as much information as possible from exams.

The understanding of exam characteristics allowed the best choice for filtering and segmentation

tools. It is also important to highlight the potential of Artificial Intelligence (AI) to improve

speed and quality of image acquisition (DEY et al., 2019) and classification, once the currently

available protocol on the coronary artery assessment has lots of manual interactions that can be

improved by the use of simple computational techniques. The helpful insights from the neural

network suggest its wide use in the coronary lesion scenario, mainly by the use of classification

and object detection models, that match this study proposal.

This chapter presented the main concepts involved in the proposal for an automatic coro-

nary artery disease system. For this dissertation, we needed a deep understanding of our study



44

context, with the current angiography protocol and the process of atherosclerosis. This con-

textualization is necessary to determine how the angiography characteristics impact the model

evaluation, as well as the communication with physicians. Then, we explored a few concepts

about image processing, which lead to image segmentation techniques, especially instance seg-

mentation. The instance segmentation concept created an opportunity to detect CAD, which

also required the understanding of current techniques to apply it.

We discussed the use ML in the healthcare context, which has proven high effectiveness and

we could differentiate from the current literature through the correct use of CNN features. In

this context, we explored the neural network building concepts, from the image classification

up to the image detection architectures. Due to the fact of having small datasets to support

this study’s goals, we also discussed the use of augmentation techniques to improve the model

performance and avoid the most common problems caused by these limitations.

Therefore, we also needed to discuss a common language between the healthcare and the

computing area. This becomes more evident in the difference between techniques evaluation in

each study area. To this end, in the next chapter, we present a literature review to understand

the state of the art to CAD assessment, together with their challenges and research opportunities

that guide this Master Thesis.
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3 RELATED WORK

This chapter presents the studies related to the coronary artery assessment and base for our

proposed model. The literature review is divided into three main parts, methodology, results and

discussion, and future directions. The main goal of this literature review is to generate a cross-

area unique knowledge base from past few years of research to guide future CAD functional

assessment (STAPIĆ et al., 2012). The methodology describes the procedures adopted for the

selection of studies. In the discussion, we present an analysis of the selected studies, proposing

a taxonomy for CAD in three main aspects. In the last part, we identified gaps and opportunities

in the literature, indicating future research directions.

3.1 Methodology

In this section, we describe the protocol adopted for performing the SLR, presenting the

research questions, the search and selection strategy, and how we obtain the information to

answer our questions.

3.1.1 Study design

The focus of this work is to perform a systematic literature review of recent studies about

CAD functional assessment techniques. Previous review studies were analyzed in the context of

coronary stenosis functional assessment in terms of applicability of the current recommended

techniques in today’s context (LOEWE, 2019; JOHNSON et al., 2016; HWANG; LEE; KOO,

2016; KIM et al., 2016; BENTON et al., 2018). This work determines how the gold standards,

newest promising technologies and approaches perform in the CAD functional assessment. The

scope of the SLR is defined by the steps below:

• Research questions: introduce the research questions;

• Search strategy: present the strategy and the literature explored;

• Data extraction: present the strategy to extract data from studies;

• Article selection: explore the studies selection criteria;

• Techniques discussion: match the research questions with the literature;

• Evaluation of the discussion: explore if techniques fit the research objective;

3.1.2 Research questions

We defined general and specific questions to guide the research (STAPIĆ et al., 2012). The

general questions intend to build a holistic view of the research field. We also explored details
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Table 1 – Research questions.
Identifier Issue

General Questions (GQ)
GQ1 Which are the most common techniques in the coronary functional assessment?
GQ2 What are the most promising techniques in the coronary functional assessment?
GQ3 What are the challenges related to coronary functional assessment?
GQ4 What is the taxonomy for the functional assessment in coronary arteries?

Specific Questions (SQ)
SQ1 Which are the benefits of each technique applied for coronary functional assess-

ment?
SQ2 What are the comparison baselines applied for these methods?
SQ3 What are the current coronary functional assessment benchmarks?
SQ4 Which are the common ML techniques in a coronary assessment?

Source: Elaborated by the author.

of each exam and technique together with their limitations, defining the specific questions. Both

general questions (GQ) and specific questions (SQ) are presented in Table 1.

With these questions, we provide a better understanding of current available techniques for

coronary lesion significance assessment. GQ1 concerns the current guidelines and available

exams in the healthcare system. GQ2 concerns the techniques not included in the patient treat-

ment mainly due to pending bigger validations. GQ3 concerns the gap of the area comprising

all the known challenges each exam face. GQ4 presents a proposed taxonomy to organize the

functional assessment characteristics. SQ1 concerns the data evaluation to address gaps. SQ2

analyzes the most common baselines from the medical point of view. SQ3 presents the current

evidences for benchmarks in the functional assessment. At last, SQ4 presents the most common

ML techniques applied to the coronary artery assessment.

3.1.3 Search strategy

In order to find all relevant functional assessment techniques currently under study, we

defined the search string presented in Figure 16. Our search string covers the relevant terms that

associate hemodynamic and functional aspects from recent studies, which evaluated stenosis

severity while also covering both outcome and correlation with gold standard exams.

Based on recently published SLR studies available in the literature, the search string was

applied in known academic and scientific databases. The search query was created with the most

relevant terms regarding coronary significance from medical trials, reviews and case reports, but

also reaching promising basic science technical approaches based on mathematical models.

The article population was limited in the past 5 years including previous reviews, which

inherit a larger period of time. To reach both medical-specific trials and promising basic sci-

ence technical approaches, this research was performed in 8 different databases: ACM, IEEE,

Elsevier, Springer, PubMed, Cochrane, Science Direct, and Google Scholar.
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Figure 16 – Search string used in this work. The string covers all the relevant terms and combinations to
reach the functional assessment relevant data for this meta-analysis.

String : ( functional* OR hemodynamic* OR physiologic* ) AND 

assessment AND stenosis AND “coronary artery”

Source: Elaborated by the author.

Quotation marks for coronary artery indicate that an exact match is sought to avoid search

engines to include variations and non-coronary studies. Another important aspect of the search

string is the use of asterisks to reach any word with the same stem.

The works selected from all databases were then handled using Mendeley1 reference man-

ager.

3.1.4 Article selection

This work includes the most recent studies which present analysis from the current gold

standard and clinical available methods as well the most recent emerging techniques applied to

the coronary assessment to increase the value of the cross-area knowledge. Inclusion criteria

were: (i) articles written in English, (ii) articles addressing coronary artery functional assess-

ment, (iii) articles evaluating methods performance, based on the full-text examination, and (iv)

tests on big population for medical studies up to synthetically small databases for basic science

studies.

This initial selection was composed of three main exclusion criteria to determine research

relevance (STAPIĆ et al., 2012):

• Exclusion criteria 1: studies that do not address “coronary artery” and related acronyms

(population criterion I).

• Exclusion criteria 2: studies that do not address “significance”, “functional”, and related

acronyms regarding coronary narrowing severity (population criterion II).

• Exclusion criteria 3: studies which address secondary factors that impact the diagnosis of

coronary artery narrowing disease such as “renal”, “pulmonary”, “stent”, “cancer”, and

“bifurcation” (population criterion III).

The articles were filtered by title, which addresses retrospective methods comparison, method

proposal, and validation/trials. Afterward, we performed body reading focusing on extracting

1https://www.mendeley.com
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the relevant classification categories previously mentioned, thus determining the final list of

studies.

3.1.5 Data extraction

After screening, the relevant articles were selected and read in full to confirm eligibility as

recommended in the literature (PETTICREW; ROBERTS, 2008). This reading step separated

the studies according to their relevance, focusing on four main categories: (i) comparison of

methodologies performance according to outcomes; (ii) proposal of new techniques and the

motivation for them; (iii) validation of existing methods via clinical trial; and (iv) literature

reviews. Then, the selected studies were read and classified according to several characteristics

to answer the study questions (PETTICREW; ROBERTS, 2008).

3.2 Results and discussion

In this section, we discuss the results based on the search strategy from the previous section.

3.2.1 Article selection

The search for articles using our string was finished on 31st October 2020. Papers published

later than that were left aside from this survey. Our search process is detailed in Figure 17, which

presents the whole initial study population as well as the exclusions and filtering steps. In total,

our search string was able to find 1993 articles from the 8 selected databases. The selected

articles were then filtered based on the three exclusion criteria, resulting in 303 works.

The exclusion step intended to remove secondary factors that imply in the exam diagnosis,

such as the vessel bifurcation analysis and other associated diseases such as cancer and pul-

monary limitations. Then, we filtered articles by title and by abstract reading. Afterward, we

performed a body skim reading to reach the classification items previously described, and, at

last, we performed full-text reading for those where skim-reading was not enough. In the end,

this process resulted in 69 articles as the final population.

3.2.2 Data extraction

In this section, we answer the general and specific questions presented in Section 3.1.2, as

well as discuss the state-of-the-art approaches for coronary artery functional assessment.

To enhance presentation, we cluster the works based on the classification criteria. Precisely

27 (twenty-seven) classification items were defined. From the most important clinical relevance,

this work highlights the invasiveness, in which the studies were assessed according to the evalu-

ated technique invasiveness degree. The baseline for comparison was identified together with its
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Figure 17 – Research population selection process. From a diverse group of databases, this work connects
science basic studies with well-known trials ans exam validation.

Population
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ACM IEEE

9 12
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439

102
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303

Initial 

Selection

1993

Source: Elaborated by the author.

correlation value. Regardless of the main use of FFR, some of the recent studies were compared

to the patient outcome, which is the metric to evaluate the efficiency of an assessment method

due to its long-time benefit (RAMASAMY et al., 2020). Trial studies usually evaluate stable

CADs due to their complexity and occasionally artery at ACS are also functionally investigated.

The measurement classification is in most cases at rest, due to the efforts of non-invasive tech-

niques with lower artery stress. Nevertheless, lots of them still examine the artery at hyperemia,

depending on patient conditions (RAMASAMY et al., 2020).

Metrics evaluated are important to match the difference between clinical and scientific

points of view together with their performance. Population size was also classified together

with the use of AI, Computational fluid dynamics (CFD) and image-based techniques, etc.

GQ1 – Which are the most common techniques in the coronary functional assessment?

The minority of patients who undergo a coronary angiography undergo a clinically invasive

stress test, such as FFR or instantaneous wave-free ratio (iFR) (ADJEDJ et al., 2015), evidenc-

ing CCA as the main source for CAD diagnosis and most common exam applied. The use of

imaging techniques to assess coronary diseases has been widely used in recent years (46% of

studies). Nevertheless, several improvements are expected to arise in the next years, with more

randomized and broad studies (TANIGAKI et al., 2019; PYXARAS et al., 2018). More than

achievable indexes of coronary impact, the functional assessment via anatomical characteristics

has been largely discussed (ADJEDJ et al., 2015), mainly due to the reference of angiography,

which provides poor correlation with functional assessment (ADJEDJ et al., 2015; BENTON

et al., 2018; PYXARAS et al., 2018; RAMASAMY et al., 2020). Especially in moderate steno-

sis, the luminal narrowing correlates poorly with resultant ischemia (BENTON et al., 2018;
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PYXARAS et al., 2018; RAMASAMY et al., 2020). In general, this discordance between vi-

sual and functional assessment remains uncertain (KIM et al., 2016; PYXARAS et al., 2018;

BAIBHAV et al., 2018) as currently there is no simple relationship between the visual param-

eters, the stenosis hemodynamic significance, and the plaque vulnerability (AGUJETAS et al.,

2018). For this reason, there are doubts if angiography will remain indispensable in patients

with known or suspected CAD (ADJEDJ et al., 2015).

The gold standard is considered essential to classify a narrowing impact and to determine

a CAD diagnosis, reinforced by the AHA (PARK; LERMAN; HERRMANN, 2017) and ESC

guidelines (TEBALDI et al., 2018). The AHA recommends the use of FFR to assess the narrow-

ing significance, which was first angiographically determined as intermediate (50–70%). This

process guides to revascularization in patients with stable ischemic heart disease when FFR

≤ 0.80 (PARK; LERMAN; HERRMANN, 2017). ESC recommends FFR for the coronary dis-

ease assessment showing at least one coronary lesion with 50% to 90% DS angiographically

assessed (TEBALDI et al., 2018).

Recently, the British Cardiovascular Intervention Society audited the use of FFR and de-

tected that it was used in only 8% of the PCI performed in the UK (RAMASAMY et al., 2020).

Another analysis estimates that FFR is used in fewer than 10% of the cases in many parts of the

world (De Waard et al., 2018) due to several restrictions. In terms of patient conditions, we can

highlight the chest discomfort caused by the procedure and that FFR is not recommended in pa-

tients with severe asthma, hypotension, or atrioventricular conduction disturbances (YAZAKI

et al., 2017; De Waard et al., 2018). From the applicability point of view, FFR has a high cost

for both training and execution (BHATT, 2018; RAMASAMY et al., 2020).

In fact, every technique must prove to be good to guide towards the right diagnosis. Even

some studies have shown poor correlation of r2 = 0.58 between FFR and the outcome (MIN

et al., 2015). Other works identified limitations in the initial test with small population (BEN-

TON et al., 2018; COENEN et al., 2017; KIM et al., 2016; LEE et al., 2020; Di Serafino et al.,

2016), mainly for left main stem (LMS) lesion (RAMASAMY et al., 2020; LEE et al., 2020).

In general, all the methods based uniquely on visual assessment suffer from low-quality im-

ages, missing protocols for data acquisition, and the lack of labeled datasets. Also important,

these methods usually create simplifications to reduce the simulation complexity, such as CFD

(AGUJETAS et al., 2018), which tends to deteriorate the simulation of natural blood flow be-

havior. CT MPI compared to FFR, for example, correlates r = 0.61 (COENEN et al., 2017) and

the coronary computed tomography angiography (CCTA) compared with FFR with r = 0.61

(KIM et al., 2016).

Intravascular ultrasound (IVUS)-based algorithms did not present good results in side dif-

fuse and tandem branches lesions (LEE et al., 2020). The ADDED method also correlates

poorly with FFR and with iFR, with r = 0.59 and r = 0.61, respectively (Di Serafino et al.,

2016). IVUS quantifies LMS lesion severity, rather than qualitative information from angiogra-

phy. A MLA for LMS > 6mm2 has been shown to be a cut-off value for deferring revascular-
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Figure 18 – Common approaches either proposed in recent studies. As seen, image-based and CFD-based
approaches are been increasingly proposed.
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ization (BAYDOUN et al., 2019).

Optical Coherence Tomography (OCT) performs better to identify non-left main coronary

artery functional significance (RAMASAMY et al., 2020). These evidences suggest that OCT

is superior to IVUS for non-left main stem diseases to assess lesion morphology (AGUJETAS

et al., 2018), but still poor for functional assessment (RAMASAMY et al., 2020). Both IVUS

and OCT provide useful information about coronary artery morphology, burden plaque, and

lumen dimension (RAMASAMY et al., 2020). Unfortunately, some of the emerging techniques

are not compared against FFR (LI et al., 2020; KWAN et al., 2020; AL’AREF et al., 2020;

BAUMANN et al., 2020).

FFRCT works better in low-to-intermediate lesions using CFD simulation. FFRCT reached

good correlation with FFR, but it produces lots of false positives (BENTON et al., 2018).

DILEMMA results have a moderate correlation with FFR, which could defer pressure wire

assessment in about 50% of the cases. For DILEMMA scores ≤ 2 and ≥ 9, a good per-

formance is attainable (MICHAIL et al., 2019). Considering a cut-off value of 0.80 for the

FFR, the ADDED index showed a higher area under the curve (AUC; of 0.94 [0.90–0.99], with

p < 0.001) as compared to MLD alone (of 0.76 [95% CI: 0.70 to 0.86], with p < 0.001) (Di

Serafino et al., 2016).

GQ2 – What are the most promising techniques in the coronary functional assessment?

To determine the most promising techniques, we evaluated each promising technique group-

ing them according to the basic concepts, such as the use of image, blood flow simulations and

the need of an angiographic previous analysis. Aside the commonly adopted techniques for

CAD assessment, several other approaches have been proposed in the literature. These tech-

niques can be basically grouped in image-based, CFD-based and angiography-based. Figure 18

presents the frequency with which each of technique principles were investigated in the past

few years.

Recently, the use of image-based data extraction, CFD techniques for blood flow simulation,
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Figure 19 – Use of anatomical metrics. This figure presents the most common anatomical data extracted
from image-based exam in past few years studies.
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and angiographic geometrical information are commonly studied. These studies suggest that

MLD (MICHAIL et al., 2019; Di Serafino et al., 2016; PYXARAS et al., 2018), lesion length

(LL) (MICHAIL et al., 2019; Di Serafino et al., 2016; PYXARAS et al., 2018), and percentage

of diameter stenosis (%DS) (PYXARAS et al., 2018; HU et al., 2020) are essential to determine

CAD significance. In these studies, the anatomical data presented good performance to predict

a severe stenosis, reducing the need for pressure wire usage. The frequency of these studies

over the last five years is presented in Figure 19.

From 2018 onwards, some other techniques exploring the use of AI emerged, and we also

evaluate their promising results. Other image-based exams such as IVUS and OCT have also

been used for daily clinical analysis, although they present worse performance on classifying

significant stenosis. IVUS provides important lesion characteristics, such as vessel size, le-

sion length (LL), and the extent of calcification (LEE et al., 2020), which can be helpful for

the holistic evaluation of CAD. Due to these important characteristics, Lee et al. (LEE et al.,

2020) proposed six IVUS-based supervised machine learning algorithm to identify lesions with

an FFR ≤ 0.80. These algorithms are trained with six clinical variables, namely age, gender,

body surface area, vessel type, involved segment, and involvement of the proximal left anterior

descending artery. Since 2018, several other ML techniques also emerged to improve the di-

agnosis performance (LEE et al., 2020; LOEWE, 2019; TRAN; NGUYEN; LEE, 2018; DEY

et al., 2018). These techniques usually focus on the multivessel CAD evaluation (LEE et al.,

2020; LOEWE, 2019; TRAN; NGUYEN; LEE, 2018) via metrics such as LL (LEE et al., 2020;

TRAN; NGUYEN; LEE, 2018; DEY et al., 2018) and %DS (TRAN; NGUYEN; LEE, 2018;

DEY et al., 2018), which showed good correlation with FFR (TRAN; NGUYEN; LEE, 2018).

The major part of the ML-based techniques proposed in recent studies follows the image-

based approach (PANG et al., 2021; JAFARIAN et al., 2020; CRUZ-ACEVES; HERNANDEZ-

AGUIRRE; VALDEZ, 2016; HU et al., 2020; LONCARIC et al., 2020; EBERHARD et al.,

2020; Kaplan Berkaya; Ak Sivrikoz; GUNAL, 2020; LI et al., 2020) using (deep) neural net-

works, which typically require large databases to be properly trained. This need for a huge
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amount of data associated with the lack of openly available datasets has also led to synthetically

generated databases (EBERHARD et al., 2020). The plaque characteristics are mainly used in

ML-based techniques and are challenging to reproduce (HU et al., 2020; TRAN; NGUYEN;

LEE, 2018; AL’AREF et al., 2020). For this reason, we noticed the increasing use of transfer

learning approaches to leverage the performance of the network (LONCARIC et al., 2020; Ka-

plan Berkaya; Ak Sivrikoz; GUNAL, 2020) or creating a complete sequence of steps to stenosis

detection (PANG et al., 2021). Transfer learning is the process of improving the target predic-

tive function by using the related information from an already trained function, improving a

small part of the network parameters, and reusing the initial layers, which represent the most

generic features (WEISS; KHOSHGOFTAAR; WANG, 2006).

In the image-based context, region of interest (ROI) (LI et al., 2020), features segmenta-

tion (LI et al., 2016; CRUZ-ACEVES; HERNANDEZ-AGUIRRE; VALDEZ, 2016; Kaplan

Berkaya; Ak Sivrikoz; GUNAL, 2020) and data reduction (BENHAR; IDRI; L Fernández-

Alemán, 2020) are the most regarded elements. These studies suggest that an image is not

enough to determine the lesion significance yet (LI et al., 2016; Kaplan Berkaya; Ak Sivrikoz;

GUNAL, 2020; CRUZ-ACEVES; HERNANDEZ-AGUIRRE; VALDEZ, 2016; BENHAR; IDRI;

L Fernández-Alemán, 2020; LI et al., 2020). The importance of non-image-based characteris-

tics to determine the lesion severity, such as patient conditions, can provide a better view of

the patient, not limited to the visual plaque characteristics. Current evidences suggest the need

for improvements in these methods to reach better correlation with FFR in terms of outcome

(LONCARIC et al., 2020; Kaplan Berkaya; Ak Sivrikoz; GUNAL, 2020; BENHAR; IDRI; L

Fernández-Alemán, 2020; LI et al., 2020), but showing good performance even in low contrast

regions (LI et al., 2016).

In a different direction, but also aiming to provide better insights in the functional assess-

ment, blood flow model approaches based on the analogy to hydraulic and electrical systems,

also known as 0D models, emerged to simulate blood behavior reconstructed from CCTA (UUS

et al., 2015). 0D models consider the resistance as viscous dissipation, the capacitors as volume

compliance, and the inductors as the blood inertia (UUS et al., 2015). Recent studies present

a valuable analysis of 0D and 3D models for coronary significance assessment (GREEN et al.,

2018), showing the hydraulic impact of a stenosis in the coronary segment (TRAN; NGUYEN;

LEE, 2018; UUS et al., 2015). These studies employ 0D models for simulation and achieved

similar results to FFR. For 0D models, hyperemia is simulated by fluid parameters. In such

panorama, ML-based algorithm obtained results close to an expert assessment (Kaplan Berkaya;

Ak Sivrikoz; GUNAL, 2020; TRAN; NGUYEN; LEE, 2018; HU et al., 2020; GREEN et al.,

2018) and some better results than CCTA alone (HU et al., 2020).

GQ3 – What are the challenges related to coronary functional assessment?

In order to answer our third general question, we start by summarizing the advantages,

disadvantages, and gaps of the state of the art approaches discussed in the previous answer.

These results are present in Table 2. As already discussed, the visual assessment alone has
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proven insufficient to determine the hemodynamic significant epicardial stenosis (CONTE et al.,

2020; KO et al., 2015). The %DS metric is commonly associated with a good correlation

with FFR diagnosis (32% of studies). Nevertheless, there are evidences that some anatomical

indices such as %AS, %DS and MLD have weaker correlations (ρ = −0.26, P = 0.001; ρ =

−0.37, P < 0.0001; ρ = 0.52, P < 0.0001) with FFR (YAZAKI et al., 2017). These evidences

do not mean directly that anatomical information are not correlated with outcome, but that

metrics are essential to plaque characterization. There are also evidences that FFR is not able to

determine lesion anatomy and plaque, which represents a reason of discordance (RAMASAMY

et al., 2020). In fact, they are complementary, requiring a holistic lesion analysis combining

approaches to assess both anatomical and functional impacts (ADJEDJ et al., 2015).

The QFR is currently considered the state of the art for coronary functional assessment

due to its less invasive approach, improvements in the treatment of blood flow reduction, and

high agreement with FFR (PYXARAS et al., 2018). QFR inherits the FFR assumptions of

proportional linear relationship between coronary perfusion pressure, flow, and coronary mi-

crovascular resistance (PARK; LERMAN; HERRMANN, 2017).

FFR and QFR require the angiography as the reference exam for evaluation, since CAD

evaluation always starts with an angiographic assessment. Although FFR has been widely used,

some studies that evaluate the long-term results of FFR-assessed severe stenosis have indicated

the importance of including complete coronary tree hemodynamic assessment. This inclusion

is due to the fact that FFR-only do not reach the correct diagnosis in patients with stable angina

(XAPLANTERIS et al., 2018). In-procedure QFR is clinically feasible and is superior to an-

giographic assessment alone (WESTRA et al., 2018). QFR bears the potential to expand the

adoption of physiological lesion assessment (WESTRA et al., 2018). QFR also has good cor-

relation between with FFR and FFRCT. Considering the ≤ 0.8 FFR cut-off for severe lesions,

QFR provides higher diagnosis accuracy (TAKAHASHI et al., 2019; TANIGAKI et al., 2019).

FFR use in LMS disease is less universally accepted due to a known method limitation.

Recently, the application of IVUS together with FFR seems to have worked well for LMS lesion

classification (SHAO; HOU; CHIU, 2014; PARK; LERMAN; HERRMANN, 2017), suggesting

a promising future applicability of FFR on this segment. FFRCT, is then limited by image quality

(i.e., artifacts from calcification), patient-specific factors (such as anemia, which causes reduced

viscosity that may impact the calculation of FFR), and processing time for computation (PARK;

LERMAN; HERRMANN, 2017).

FFRCT is the FFR measurement from computer tomography (CT) exams reconstructed with

CFD techniques. FFRCT is also based on volumetric finite element mesh, which simulates

the blood flow incorporating the fluid properties of blood (CONTE et al., 2020). FFRCT has

improved upon stenosis evaluation in terms of prediction of functional significance compared

to anatomical evaluation alone (CONTE et al., 2020).

From the image processing perspective, QFR spent time on the calculation procedure did not

include the time for angiographic acquisition despite producing good results (WESTRA et al.,
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Table 2 – Exams and techniques comparison evaluated in terms of advantages, disadvantages and gaps
evaluation I.

Exam Advantages Disadvantages Gaps
FFR good outcome correla-

tion, pressure drop
contraindications,
induced hyperemia,
high cost, invasive

poor results on LMS le-
sions

iFR good FFR correlation,
no induced hyperemia,
pressure drop

cutoff values vary,
several limitations,
invasive

no impact on outcome,
poor on LMS lesions

IVUS image-based, good
on LMS lesions,
non-invasive

limited to plaque
characterization

FFR improve results,
require bigger valida-
tion

FFRCT low-to-intermediate
lesions, non-invasive,
image-based

low-quality images,
lots of false positives

patient-specific factors,
require bigger valida-
tion

QFR non-invasive, image-
based, excellent FFR
correlation

time for processing linear pressure, local
segment assessment,
under validation

CMR exclude severe le-
sion, non-invasive,
image-based

limited availability,
contraindications

require bigger valida-
tion

0D non-invasive, possible
benchmark, close sys-
tem, cover coronary
tree

simplified blood
flow

require bigger valida-
tion

DILEMMA good predictive FFR,
non-invasive, image-
based, score 0-10

few variables gray zone (3-8)

ADDED good FFR correla-
tion, non-invasive,
image-based, score
0-10

good for FFR > 0.8 require bigger valida-
tion

OCT cover coronary tree,
good for non-LMS,
non-invasive, image-
based

poor FFR correla-
tion

require bigger vali-
dation, angiography-
based

Source: Elaborated by the author.
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2018). QFR results are not tested with FFR for all the vessel segments, which limits the holistic

artery quantitative evaluation (WESTRA et al., 2018). Considering the whole QFR solution,

the proposed method does not consider the data transfer time from angiographic equipment to

the QFR workstation (WESTRA et al., 2018), being open for enhancements and optimization.

iFR presents good results in comparison with FFR but has several limitations since the cutoff

values vary too much among the studies (PARK; LERMAN; HERRMANN, 2017). Further

studies are required before iFR can be adopted to determine revascularization in patients with

intermediate LMS lesions (BAYDOUN et al., 2019). iFR has not demonstrated yet its impact

on clinical outcomes (ADJEDJ et al., 2015).

Cardiovascular magnetic resonance (CMR) imaging perfusion imaging has also several lim-

itations that restrict its utility in the assessment of myocardial ischemia. CMR limitations in-

clude the low availability of MRI scanners, the patient claustrophobia, poor gating, motion

artifacts, and contraindications, such as pacemakers or defibrillators (KO et al., 2015).

From the holistic CAD evaluation, the DILEMMA score varies from 0 to 10, where 0 rep-

resents the lowest significance of the stenosis and 10 represents the highest level of significance

(MICHAIL et al., 2019). According to the results, values of ≤ 2 demonstrated a negative pre-

dictive value to identify lesions with FFR > 0.8 and values of ≥ 9 demonstrated excellent

positive predictive value for lesions with FFR ≤ 0.8 (MICHAIL et al., 2019), suggesting this

approach as a good example of score based on visual lesion characteristics together with patient

clinical data (MICHAIL et al., 2019).

In general, IVUS and OCT also present good results on predicting FFR. Some studies com-

pared OCT prediction with FFR obtaining a values of 73% with 61 stenosis, 85% with 62

stenosis and 80% with 55 stenosis (PYXARAS et al., 2018). These findings suggest a weak

correlation between OCT and FFR (PYXARAS et al., 2018). In the same review, they have pre-

sented a study with 42 patients using IVUS to predict severe stenosis assessed by FFR achieving

a accuracy of 88% (PYXARAS et al., 2018). Even though IVUS seems promising to predict

FFR, it still requires larger trials to validate its applicability.

GQ4 – What is the taxonomy for the functional assessment in coronary arteries?

To obtain a better comprehension of the functional assessment of coronary arteries and the

lack of an existing taxonomy that connects computing with healthcare, this work proposes a

new taxonomy. The proposed taxonomy organizes the concepts and the connections between

the exams and techniques to assess the CAD severity. As a result, we present three distinct tax-

onomies, which consider the following perspectives: CAD (Figure 20), technique (Figure 21),

and interaction characteristics (Figure 22).

The first taxonomy presented in Figure 20, CAD, have three nodes, characteristics, clinical

analysis, and lesion type. The first node, CAD characteristics present the measurable lesion

aspects relevant in the currently available exams. The second node, clinical analysis, presents

the clinical lesion important evidence that determines the diagnosis. The last one, type, presents

the CAD condition, which can be acute or stable.
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Figure 20 – Blood flow functional assessment taxonomy from the disease perspective. It summarizes
disease main characteristics.
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Figure 21 – Blood flow functional assessment taxonomy from the performance evaluation perspective. It
presents the metrics for performance evaluation.
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The second taxonomy presented in Figure 21, Technique, describes the types of assessments

as well as their characteristics. This taxonomy intends to show the technical details of promis-

ing techniques and current exams in terms of numerical evaluation. This taxonomy is composed

of three nodes, metrics, benchmark, and approach. The first node, Metrics, presents the most

relevant metrics studied in the current literature. The second node presents the available bench-

marks for technique and exams determination, evidencing a promising future common bench-

mark on 0D models. The third node, Approach presents the technique principle more frequently

in the literature.

The third and last taxonomy presented in Figure 22, Interaction, categorizes the exams and

techniques characteristics in terms of coverage, baseline, and invasiveness degree. The first
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Figure 22 – Blood flow functional assessment taxonomy from the operational perspective. It summarizes
how the techniques interact with the patient.

Interaction

InvasivenessCoverage Baseline

Outcome

FFR

Angiography

Invasive

Non-Invasive

Simulation

Single Vessel

Multi Vessel

Source: Elaborated by the author.

node, the coverage presents the two possible coronary tree analyses. Some methods evaluate

the culprit lesion alone to determine the significance. On the other hand, other methods focus on

multi-vessel assessment due to the importance of complete coronary assessment. The second

node presents the available baselines for CAD assessment, which can be the outcome, FFR

or the angiography. The third node, invasiveness presents that exams and techniques can be

invasive, non-invasive, or even based on blood flow simulation by real objects simplification.

The three taxonomies intend to evaluate the CAD assessment from a different perspec-

tive. The group elements from both exams and emerging techniques provide a unique base for

comparison. The taxonomies cover all the relevant aspects of CAD in terms of application,

evaluation, and guide to diagnosis.

SQ1 – Which are the benefits of each technique applied for the coronary functional assess-

ment?

CAD assessment benefits can be measured by two main aspects, the correlation with the

gold standard and the improvement in kinds of lesions for which the gold standard is not rec-

ommended. The correlation with the gold standard is based on a numerical evaluation, while

the improvements are measured in terms of outcome evaluation.

The FAME trial demonstrated that routine use of FFR during PCI in patients with multi-

vessel CAD has proven long-lived and cost-saving (AGUJETAS et al., 2018; PARK; LERMAN;

HERRMANN, 2017; PYXARAS et al., 2018). FAME II also suggests that the CAD diseases

cannot be fully explained by the stenosis alone (HWANG; LEE; KOO, 2016). Despite the use

of FFR and the already mentioned limitations of FFR use, we evaluated the correlation factor

of further techniques, which are usually compared with FFR.

Table 3 presents both quantitative and qualitative evaluations of all techniques and exams

discussed before in terms of correlation with FFR. Items are disposed of according to the higher

general correlation down to high correlations with very specific cases and the moderate correla-
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Table 3 – Exams with higher correlation factors with FFR.

Method Quantitative FFR correlation Qualitative FFR correlation
iFR 0.80− 0.94 Strong
IVUS-based 0.70− 0.92 Strong
FFRML 0.73− 0.8 Strong
QFR 0.69− 0.83 Moderate/Strong
FFRCT 0.61− 0.82 Moderate/Strong
ADDED 0.96 Strong (FFR > 0.8)
OCT 0.73− 0.80 Strong (FFR > 0.8)
CMR - Strong (FFR > 0.75)
DILEMMA - Strong (FFR < 0.8)
0D - Moderate

Source: Elaborated by the author.

tions. An important remark is that all the reported data came from the literature and the studies

were evaluated with different samples.

iFR predicts the FFR value with the same accuracy as the mere resting Pd/Pa ratio (ADJEDJ

et al., 2015; PYXARAS et al., 2018). iFR is a good option in countries where Adenosine is

expensive and/or other vasodilators are not available (ADJEDJ et al., 2015; De Waard et al.,

2018). iFR presents a good correlation between 0.8 and 0.94 for severe or low-grade stenosis

(PYXARAS et al., 2018; BENTON et al., 2018; FUKUOKA et al., 2020; HWANG; LEE; KOO,

2016; LEONE et al., 2018), but a poor correlation in moderate cases (FUKUOKA et al., 2020;

PYXARAS et al., 2018; BENTON et al., 2018).

From the image-based techniques point of view, CCTA, FFRCT, and QFR presented the best

results. FFRCT using CFD from CCTA, also known as Virtual Functional Assessment Index

(vFAI), has a correlation with FFR between 0.61 and 0.82 (SIOGKAS et al., 2017; TAKA-

HASHI et al., 2019; COENEN et al., 2017; TANIGAKI et al., 2019). FFRML method presented

a correlation value of 0.73 with FFR (TRAN; NGUYEN; LEE, 2018).

QFR results suggest that it exceeds the limits of FFR (CESARO et al., 2018). QFR has

better results than iFR, presenting excellent correlation with FFR (CESARO et al., 2018; TANI-

GAKI et al., 2019) with good correlation with FFRCT (TANIGAKI et al., 2019). From several

studies, the correlation between QFR and FFR varies between 0.69 and 0.83 (CESARO et al.,

2018; WESTRA et al., 2018; YAZAKI et al., 2017; TIES et al., 2018; TANIGAKI et al., 2019).

Considering the level of analysis, QFR had a correlation with FFR of 0.83 per-vessel and 0.8

per-patient (WESTRA et al., 2018).

IVUS-based techniques, such as 3D-based IVUS (fFFR), present a correlation value of 0.92

with FFR (WANG et al., 2018). IVUS-based approach showed a correlation factor between 0.8

and 0.92 with FFR. Another approach using supervised machine learning to predict FFR ≤ 0.80

based on the IVUS images presented a correlation between 0.75 and 0.8 (LEE et al., 2020). This

technique presented results between 82% and 86% (using L2-penalized logistic regression),

80% and 85% (using artificial neural network), 83% and 87% (using random forest), 83% and
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Figure 23 – Baselines commonly used in recent studies. As seen, FFR has been steadily used as the
baseline approach.
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87% (using AdaBoost), 81% and 85% (using CatBoost), and 81% and 85% (using support

vector machines) (LEE et al., 2020). The ML-based techniques achieved good correlation with

FFR (LONCARIC et al., 2020; KWAN et al., 2020; AL’AREF et al., 2020; Kaplan Berkaya; Ak

Sivrikoz; GUNAL, 2020) and are considered helpful for severe lesion exclusion (KAWASAKI

et al., 2020; BAUMANN et al., 2020). CCTA is commonly associated with the use of logistic

regression (HU et al., 2020; AL’AREF et al., 2020). Nevertheless, CCTA was also associated

to predictive method (AL’AREF et al., 2020) and random forest (KAWASAKI et al., 2020) in

terms of severe lesions identification.

CMR is good for detecting CAD by FFR ≤ 0.8 (KOTECHA et al., 2019). Myocardial

perfusion are highly correlated with FFR using a cutoff value of 0.75 to exclude severe lesion

(KO et al., 2015) as well as the combination of CCTA and CTP (G. et al., 2018). On the other

hand, the FMM/MLD discovered vessels with FFR < 0.80 and vessels with FFR > 0.80 better

than anatomical stenosis alone (KIM et al., 2016). FMM and MLD together improved the

%DS accuracy and promise to be the missing link between the anatomical and physiological

discordance (KIM et al., 2016).

SQ2 – What are the comparison baselines applied for these methods?

The major part of the considered studies used FFR as the baseline. This reason is due to

its good results improving people outcome (57% of studies). Besides the use of FFR, several

other studies compared the methods results with the patients outcome (19% of studies), which

shows the tendency to evaluate the clinical outcome over the easier technique proof of concept

(PYXARAS et al., 2018). Finally, the comparison against visual assessment, mainly via angiog-

raphy (6% of studies), is often present in the daily clinical job (PYXARAS et al., 2018). Even

though not typically recommended, the visual assessment is still a routine for CAD functional

assessment due its presence in the worldwide adopted guidelines and ease of use (PYXARAS

et al., 2018).

Figure 23 presents the frequency with which each of the above techniques have been inves-
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tigated in the selected articles, limited for the range of 2015 and 2019 due to availability of data.

As seen, the FFR is the most common baseline for techniques comparison due its relevance in

the patients outcome improvement. Nevertheless, it is important to evidence the presence of

outcome as the second major baseline comparison in the past few years. It suggests the need

of medical follow-up besides the numerical comparison with FFR cut-offs. In the chart is also

possible to see the recent use of angiography for comparison, which can be associated with the

restrictions to medical records access.

SQ3 – What are the current coronary functional assessment benchmarks?

Since there are some discordance about the stable angina treatment already explored, the

current benchmark for functional assessment are the long-term outcome. The long-term out-

come evaluation range from mortality to morbidity, quality of life, and resource use (CARSON

et al., 2019; NUDI et al., 2020).

The recent techniques which measure and simulate the blood flow behavior aim to provide

a quantitative evaluation to replace the unique outcome evaluation. To provide an initial per-

spective of benchmark, 4 models were evaluated including 0D and 3D modeling and provided

valuable insights about the use of 0D models correlating it with the FFR results (CARSON et al.,

2019). Results suggest that prediction of FFR via numerical models still need further investi-

gation (CARSON et al., 2019), but will probably be the future benchmark for CAD functional

assessment.

SQ4 – Which are the common ML techniques in a coronary assessment?

In the past few years, several studies emerged implementing ML techniques for coronary

artery assessment, such as deep learning (WONG; FORTINO; ABBOTT, 2020; HAN et al.,

2020; SEIFERT et al., 2020; GUPTA et al., 2019) and supervised learning (BRAUN et al.,

2020; HAE et al., 2018; KWAN et al., 2020; SHU et al., 2020) including regression algorithms

(AAKKARA; AAISUEB; AEELANUPAB, 2020; KWAN et al., 2020) and specifically neural

networks (HE et al., 2020; WANG, 2020; TESCHE; GRAY, 2020; OVALLE-MAGALLANES

et al., 2020; PODGORSAK et al., 2020; ZREIK et al., 2018, 2019).

The major part of the studies were guided with small dataset, with less than 500 ves-

sels (HAN et al., 2020; KWAN et al., 2020; AAKKARA; AAISUEB; AEELANUPAB, 2020;

OVALLE-MAGALLANES et al., 2020; PODGORSAK et al., 2020; SHU et al., 2020; ZREIK

et al., 2018, 2019). Nevertheless, some other studies achieved their results with more than 500

vessels (BRAUN et al., 2020; HE et al., 2020; GUPTA et al., 2019; HAE et al., 2018). The use

of ML techniques is highly associated to images (WONG; FORTINO; ABBOTT, 2020; HAN

et al., 2020; HE et al., 2020; TESCHE; GRAY, 2020; PODGORSAK et al., 2020; ZREIK et al.,

2018, 2019; GUPTA et al., 2019; HAE et al., 2018), while some of them focused only in pa-

tient numerical lesion data (SEIFERT et al., 2020; KWAN et al., 2020; BRAUN et al., 2020;

AAKKARA; AAISUEB; AEELANUPAB, 2020; SHU et al., 2020).

The most common ML technique is supervised learning, used in many approaches for both
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images and numerical data. The neural network approach has focused on CCTA (HAN et al.,

2020; ZREIK et al., 2018, 2019; HAE et al., 2018), patient characteristics (BRAUN et al., 2020;

PODGORSAK et al., 2020), OCT exams (HE et al., 2020), plaque characteristics (WANG,

2020) and lesion numerical characteristics from FFR CT (TESCHE; GRAY, 2020; MANNIL

et al., 2020; SHU et al., 2020) and CCA classification (OVALLE-MAGALLANES et al., 2020;

GUPTA et al., 2019).

Several regression algorithms in patient data (AAKKARA; AAISUEB; AEELANUPAB,

2020) and multivariate logistic regression (SHU et al., 2020) were presented, but apparently they

do not provide excellent results mainly by the small validation dataset and reduced population.

Over 70% of treatment decisions still rely on visual estimation of angiographic stenosis, which

has limited accuracy (about 60%–65%) for the prediction of FFR ≤ 0.80 (HAE et al., 2018),

mainly due to the time and expense associated with FFR-guided decision-making (HAE et al.,

2018). Invasive FFR has been a standard tool to detect ischemia-producing lesions with FFR

≤ 0.80 (HAE et al., 2018).

3.3 Challenges and future directions

FFR is based on a proportional linear relationship between coronary blood flow and perfu-

sion pressure during maximal vasodilation (PARK; LERMAN; HERRMANN, 2017) and has

been widely validated (IHDAYHID et al., 2018). However, its cost, availability, vasodilator

need (BHATT, 2018; RAMASAMY et al., 2020), and poor hemodynamic correlation (STEGE-

HUIS et al., 2018; NOUS et al., 2020) makes its use for physiological assessment meet the

current guideline indicators in only 50% of the cases (DEY et al., 2018). FFR importance

is questioned (STEGEHUIS et al., 2018) as well as hyperemia is suggested not to be essen-

tial to the correct diagnosis (BENENATI et al., 2018). Recent evidence affirms that the use

of non-invasive techniques reaching similar results is promising to replace the invasive FFR

(BENENATI et al., 2018).

Both hemodynamic and anatomical assessment are necessary for correct functional assess-

ment (BAIBHAV et al., 2018; DEY et al., 2018; KIM et al., 2016). Emerging techniques based

on CCTA have been widely used for its availability for basic science research (CONTE et al.,

2020; BENTON et al., 2018; G. et al., 2018; DANAD et al., 2017; KO et al., 2015). Once deaths

caused by coronary heart disease or nonfatal myocardial infarction was 3 times more frequent

in patients with adverse plaque (WILLIAMS et al., 2019), obtain plaque characteristics is es-

sential to the correct CAD evaluation (BHATT, 2018; WANG et al., 2018). For this mean,

the OCT, CCTA (AGUJETAS et al., 2018), IVUS (QURESHI; AGRAWAL, 2017; SIOGKAS

et al., 2016), and angiography (DEY et al., 2018) are suggested as good sources of information.

Unfortunately, current guidelines lack protocols to obtain high quality exams and make them

available for larger studies and validation (WILLIAMS et al., 2019).

QFR and FFRCT (MIN et al., 2015) have good correlation with FFR (TAKAHASHI et al.,
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2019; TANIGAKI et al., 2019; YAZAKI et al., 2017; PANG et al., 2016; CESARO et al., 2018)

and superior to angiographic assessment alone (WESTRA et al., 2018). While some methods

achieved good results excluding severe lesion (BENTON et al., 2018; G. et al., 2018; TIES et al.,

2018; Di Serafino et al., 2016), some emerging techniques and iFR (BENENATI et al., 2018) are

promising to identify FFR < 0.8 (TANIGAKI et al., 2019; MICHAIL et al., 2019; COENEN

et al., 2017) or FFR > 0.8 only (KO et al., 2015; SIOGKAS et al., 2017; RAMASAMY et al.,

2020; PYXARAS et al., 2018). In general, these studies require further validations with bigger

population (TSOMPOU et al., 2018; LEONE et al., 2018; CARUSO et al., 2016; PANG et al.,

2016) to be applicable in larger population.

These findings evidence the applicability of the no free lunch theorem to coronary artery

assessment (WOLPERT; MACREADY, 1997), meaning that no existing approach can achieve

the best results in every type of lesion. Image-based exams, such as CCTA and QFR has shown

good results and promise to be the future standard non-invasive characterization of plaque mor-

phology. Most important than plaque characteristics, image-based exams’ ability to differentiate

low- and high-risk lesions has good preliminary results for FFR correlation, but still have space

for improvements to reach good results in different lesion types.

Not only limited by image-based techniques, FMM and MLD together have shown im-

provement in the accuracy of CAD evaluation and provide a good relationship between anatom-

ical and physiological assessment (KIM et al., 2016). FMM is suggested as the link between

anatomical-physiological discordance (KIM et al., 2016) also requiring further validation. Nev-

ertheless, FMM is turning real the fact of clinical data together with plaque characteristics pro-

vide better patient condition evaluation. This evidence suggests the increasing of image-based

technique use for quick and reliable risk stratification of each patient mainly for severe lesions

exclusion.

While angiography is the gold standard, studies suggest that is necessary for the whole

patient view to provide the correct diagnosis, observing more than plaque, but also patient

conditions and patient scores. To automate part of the current protocol and allow the dedication

on the selection of patient data for a better lesion evaluation, this work proposes the removal of

manual interaction. This approach may lead to better evidence and address the existing gaps in

the gold standard.

Once automated and generating valuable data, the use of the 0D model can improve to

become the benchmark for hemodynamic analysis. Even with improvements in the protocol,

bigger labeled datasets are required. The current use of augmentation techniques and small

open datasets lead to unclear technique evaluation, once evaluate models with synthetic data

eventually do not reflect real patient circumstances.
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3.4 Discussion

The literature review demonstrated that currently available exams represent several limita-

tions, mainly caused by the invasiveness and the single-lesion evaluation. The current evidence

suggests the need for combined techniques to reach the real CAD significance, so the use of

the gold standard FFR is even more questionable. The use of simulation techniques together

with the anatomical metrics raises an opportunity for improvement, once they generate valid in-

sights for the patient lesion classification. The currently accepted techniques are mainly based

on angiography, which is an invasive method and all further procedure depends on angiography

employment.

In this context, with angiography being the gold standard together with FFR for lesion

severity and the lack of automated tools for multi-vessel identification, this study looks to the

use of anatomical evaluation as the approach to detect CAD in RCA. The current architecture

proposal is our contribution to the literature. We combined metrics that are relevant for deep

learning model, together with the evaluation by physicians to provide an intelligent model in the

current angiography acquisition protocol. This study make the best use of current invasiveness

level, aiming to reduce additional invasive techniques and reaching comparable performance

with the gold standard.
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4 DEEPCADD MODEL

Coronary assessment to detect CAD depends on the correct lesion identification and quan-

tification. The process is usually done manually via frame selection and stenosed segment

region mark, followed by the quantification of the stenosis percentage as performed by the

acquisition software. During this protocol, there are lots of manual interactions that can be

enhanced with the use of intelligent software. To automate part of the protocol, this Master

Thesis proposes a parallel step after the image acquisition and manual determination to help in

the identification of the lesion area. Figure 24 presents the standard protocol (purple squared

boxes) and the proposed protocol, with the DeepCADD architecture between the exam and the

final lesion quantification.

In the standard protocol, the angiography exam generates films, usually in 15 frames per

second, which highlight the coronary artery segment. Then, the frame that better highlights the

artery with the fluorescent dye is manually selected (Frame selection on Figure 24). With the

best frame selected, the visual analysis determine the image location with narrowed segments

(Segment selection on Figure 24). Once the segment is selected, the coordinates of the lesions

in the image are transferred to the QCA, which determines the percentage of the lesion.

Figure 24 – Proposed protocol for functional artery assessment based on angiography with DeepCADD

Source: Elaborated by the author.

Coronary angiography datasets availability is rare and the presence of personal data in the

original exam requires anonymization. For this work, we use two datasets, presented in the next

section which are in part synthetically created and in the other part, obtained manually in a local

institution’s medical records.

Due to the dataset limitation and the challenging task of classifying angiography images,

we have evaluated previous pipelines to automatically identify lesions using selective search

(FREITAS et al., 2021b). We identified the potential of selective search, but we also noticed

that the RPN module already outperformed selective search. In the same study we evaluated the

use of CNN for CAD classification (FREITAS et al., 2021b). Accordingly, the fact that Deep-

CADD is composed of an R-CNN-based architecture is a matter of technology improvement

as we decided to use the newest technologies which performed better in the recent literature.

DeepCADD presents several steps to improve the original Mask R-CNN performance and this
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Figure 25 – Proposed architecture with datasets and preprocessing steps

Source: Elaborated by the author.

chapter details all the parts of the model, starting with an architecture overview in Section 4.1

and then presenting each module.

4.1 Architecture

In this section, we present the architecture proposed to detect CAD in angiography images

of RCA based on a deep object detection neural network. We expect to achieve a model that

can detect CAD with performance comparable with the gold standard. Based on incremental

development of classification model up to an object detection model, we decide to implement a

R-CNN-based architecture, with improvements to specialize it for CAD context.

To this end, the proposed architecture is composed of the Mask R-CNN base. The original

backbone module is composed of a CNN. Here we replaced it with a new ResNet-50 feature

extractor. The architecture presented in Figure 25 shows the use of ResNet-50 feature extractor

as the architecture backbone, together with the RPN and classifier layer. As the output, we

expect to have a class label, bounding-box offset, and a third branch that outputs the object

mask. The choice for a Mask R-CNN as a base for DeepCADD is a design decision, in which

we expect to provide more interpretability for DeepCADD output.

From the architecture point of view, Figure 25 presents the model receiving the angiogra-

phies. As a design decision, we resized the angiographies to 224x224 pixels, followed by the

ResNet-50 convolutional layers trained with the segments dataset. Once the architecture for im-

age classification is trained with the segments datasets, we expect to connect the object detection

layer from Mask R-CNN.

Figure 25 also details the datasets for each one of the modules. The backbone module is
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Figure 26 – Backbone details on DeepCADD architecture

Source: Elaborated by the author.

trained with angiography segments dataset to learn the angiography complex image features.

Then, the classifier will be trained with the angiography dataset. Further details about Deep-

CADD architecture are detailed in the next sections.

4.1.1 Backbone

The backbone module is responsible for the feature maps extraction used in the object de-

tection architecture. Figure 26 presents the backbone, which learns all the image features, from

the most simple up to the most complexes. For the DeepCADD model, we are training the back-

bone with a ResNet-50 architecture, initialized with ImageNet weights. We compared different

architectures, such as VGG16, MobilenetV2, ChexNet, Xception, and ResNet-50 which were

the most promising CNN architectures in the literature applied to coronary artery assessment.

For a better understanding of the experiments using the CNN architectures, we detail them in

Chapter 5.2.1.

DeepCADD’s backbone is planned to perform binary classification. The resulting feature

maps from this binary classification model will map the stenosed and non-stenosed into posi-

tive and negative values. Thus, the important outcome from this step is the complex features

extraction powered by the existing skipping connections from ResNet-50, which improve the

propagation of small image features for deeper layers (HE et al., 2017).

The backbone replacement is an important step in the DeepCADD architecture, which leads

to the feature extraction and provides the feature maps necessary to the classification layer

interpret the angiography and the small objects in the whole frame. In the next section, we

explain the classifier layer details.
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4.1.2 Classifier

Figure 27 – Classifier details on DeepCADD architecture

Source: Elaborated by the author.

We re-use the original classification top layer from Mask R-CNN. The classifier module

contains the coordinates together with the class determination and the additional instance seg-

mentation that generates masks. These features will help in the automatic determination and

classification of the lesion. This module will require a training step with a reduced number of

images. We planned to use 100 angiography images labeled with bounding boxes identifying

the CAD.

Image annotation was planned to be in the COCO’s polygon format, which is the expected

format to the Mask R-CNN architecture input. This format provides the bounding box class and

the four points which represent the 2D position in the image (xmin, xmax, ymin and ymax) together

with the class.

We also planned this module to perform binary object detection. This implementation is

simpler than the multi-class, but in fact, it is enough to reach the CAD identification defining

CAD candidates for QCA execution. In the current architecture definition, there is no need for

preprocessing in the angiographies. Mask R-CNN just requires the annotation and the data to be

resized to the correct input data, which must be 224x224 pixels. In this context, the next section

explains the image segmentation pre-processing created by this study. This image segmentation

is not necessary at this moment but can be used in future studies, such as in the automation of

more steps of the standard protocol.
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5 EXPERIMENTS AND RESULTS

In this chapter we will detail the materials and methods employed in this research. We

proposed a structure that includes the methodology and the results. In the following section we

will detail every step of DeepCADD implementation and preprocessing.

5.1 Methodology

The methodology starts with the datasets explanation and their applicability in the Deep-

CADD structure in Section 5.1.1. Section 5.1.2 explains the annotation process executed to-

gether with two physicians. Then, we present the implementation details in Section 5.1.3. We

discuss the evaluation metrics for classification and for object detection in Section 5.1.4. Sec-

tion 5.1.5 details every step designed to the validation with physicians.

5.1.1 Datasets

Coronary artery angiographies are rare to find in open databases. The most common angiog-

raphy images are samples from published studies which do not provide access to the original

dataset. For this reason, we have defined two strategies to achieve data for the proposed model.

The first one is the use of coronary artery segments dataset (ANTCZAK; LIBERADZKI, 2018).

The second one is the acquisition of frames from coronary angiographies executed before and

after angioplasty procedures in partnership with the Cardiosinos Cardiologia Intervencionista

private company in Novo Hamburgo, RS, Brazil with the consent of the National Research

Ethics Committee. Angioplasty is the invasive procedure to include a stent in the interior of the

coronary arteries to reestablish the blood flow for a healthy level.

5.1.1.1 Synthetic dataset

The coronary artery segments dataset, is composed by normalized synthetic images with

size of 32x32 and 64x64 pixels (ANTCZAK; LIBERADZKI, 2018). The synthetic dataset

contains two different classes, the narrowed arteries and the normal arteries. This dataset was

synthetically created, so they represent arteries as perfect tubes (ANTCZAK; LIBERADZKI,

2018). The artery segments were generated using the Bézier curves technique, commonly used

in cerebral and coronary artery simulations (ANTCZAK; LIBERADZKI, 2018). It means that it

does not have the natural deformations of coronary arteries. This approach is valid and enables

the feature extraction even with limited real angiography datasets available. Figure 28 presents

a few samples of this dataset.

This dataset has a group of segment images with 32x32 pixels with 2,500 images of each of

the classes: negative and positive cases, which represent, respectively, presence and absence of



70

Figure 28 – Synthetic artery segments dataset, made available by (ANTCZAK; LIBERADZKI, 2018)

Source: Elaborated by the author.

narrowed arteries. Also, it has another group of segment images with 64x64 pixels with 1,000

images of each class. All the data is available in Pickle files already normalized, so they are not

visible directly and only after the image be multiplied by a value of 255. We decided to use the

group of data already in 64x64 pixel due to the quality of the dataset.

5.1.1.2 Angiography dataset

Artery segments only are not enough to reach the study objective. So we obtained access

to an angioplasty database with the consent of the National Research Ethics Committee. Each

angiography contains films from different incidences before and after the angioplasty. It means

that we received raw films with RCA with reduced blood flow and the same arteries with blood

flow reestablished for a healthy volume. We extracted the frames from angiographic films

and after data anonymization, we collected approximately 500 frames. Some examples of the

angiography dataset are presented in Figure 29.

Figure 29 – Angiography exams collected during coronary angioplasties

Source: Elaborated by the author.

With 50 exams from different patients, and considering the artery position variation during

the film frames, we obtained 500 images, divided into two classes:

• Severe stenosis: this class represents the right coronary artery angiogram with a visible
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narrowing in any of the main segments: the proximal RCA, the medial RCA and the distal

RCA before an angioplasty.

• Reestablished blood flow: this class represents the images with a right coronary artery

with a stent after an angioplasty. It means that coronary blood flow has been reestablished

for a healthy volume and no significant narrowing is present.

Each one of the frames was saved using screen capture tools removing the personal data of

the patients. In this way, all the image contains only the coronary artery image. The reduced

number of images was identified as a challenge. Fortunately, R-CNN architecture generalizes

well and does not require too much data to reach good results on object detection. From the

500 frames, we selected 132 frames with distinct arteries, visible narrowing, and containing the

full RCA highlighted with fluorescent contrast. From the final angiography dataset, 118 frames

were used for training and validation and 14 frames for testing.

5.1.2 Annotations

Object detection architectures, such as Mask R-CNN require labeled images for the training

phase. These architectures support VGG JSON and COCO’s polygon format. As a design

decision, we decided to use the Make Sense alpha1 tool, which provides an easy user interface

to label images in the COCO’s polygon format. The Make Sense tool also provides an easy

way to add new images to the current labeled dataset, which is very helpful considering the

incremental acquisition of new angiographic frames. Figure 30 presents an example of the

annotation created for this study.

Figure 30 – Angiography exam annotated with Make Sense AI tool.

Source: Elaborated by the author.

In this study, we needed to label the angiography dataset. Each angiographic exam was

labeled by a physician with the COCO’s polygon format using the Make Sense tool. The an-

1https://www.makesense.ai/
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notation process was executed in the presence of this Master’s thesis author and the physician.

The selection criteria for the lesions in the angiographic frame was defined as all the visible

narrowing lesions in the RCA, apart from if the lesion can lead or not to angioplasty.

5.1.3 Implementation details

DeepCADD construction started with the CNN implementation, testing the plannedVGG16,

MobilenetV2, ChexNet, Xception and ResNet-50 VGG16, MobilenetV2, ChexNet, Xception

and ResNet-50. We identified that R-CNN’s backbone only accepts sequential architectures.

We noticed that VGG16 architecture is not able to be implemented directly. We studied the

Mask R-CNN input and we reached the common 224x224 size.

We implemented the CNN architecture using ImageDataGenerator from Keras, which al-

lows the automatic data augmentation, which avoids the need for manual augmentation. We

divided both synthetic and angiography datasets into the training and validation in the propor-

tions 0.7 and 0.3. We instantiate the CNN with the top layer, which is usually a Dense layer with

1000 neurons. This last layer is then, replaced by a Dense layer with 2 neurons and softmax

activation, which performed better than a Dense with 1 neuron and sigmoid activation.

CNN was then trained between 5 and 100 epochs, which presented to be the highest bound-

aries we could reach with the dataset without overfitting. After that, we evaluated the confusion

matrix to reach the model performance looking for an accuracy higher than 90%. This parame-

ter of 90% was initially established as a target due to the top 75% performance achieved before

the use of ResNet-50. We decided the challenge ourselves to reach at least this percentage that

would mean a significant performance with small loss values. With the model defined, we save

the model weights with and without the top layer. The top layer removal in the model weights

is necessary as the Mask R-CNN implementation allows both initialization.

Once the CNN with the best performance is reached, we started the R-CNN implementation.

We implemented the original Mask R-CNN architecture first to understand the benefits and

drawbacks, together with the technical difficulties, such as Python, Keras, and environmental

versions. Aside from these are merely technical details, usually version conflicts require too

much time to enable simple network testing. At this point, Google Colaboratory was, once

again, the best alternative.

After the initial implementation and testing of Mask R-CNN, we went through the backbone

replacement. We replaced the chunk of code initializing the original ResNet-50 by the new CNN

pre-trained with the synthetic CAD dataset. In fact, we just finish the DeepCADD setup. Once

this replacement is correctly concluded, we will be able to re-train the DeepCADD with the

angiography dataset.

We decide to follow the head training approach, which trains only the R-CNN top layer,

with all the other layers frozen. For the DeepCADD head training, we require the COCO’s

polygon dataset annotation. To do so, we annotate all the 132 frames together with a physician,
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generating a JSON file with the COCO’s polygon annotation. Then, we trained the DeepCADD

with a few epochs from 5 up to 20 also identified as the boundaries without critical overfitting.

Finally, we evaluate the DeepCADD with the object detection metrics already described and

prepare the elements for the specialist validation, which is composed of two steps and is detailed

in the following section.

5.1.4 Metrics

Considering the architecture described, the two main stages of the model proposed in this

Master Thesis require specific evaluation metrics. From the classification point of view, the

use of confusion matrix will derive several metrics which allow the model evaluation to reach

accuracy higher than 90%. On the object detection module, the use of Intersection Over Union

(IoU) and mAP will produce the necessary model adjustments necessary to the correct bounding

boxes determination. The next subsections describe these metrics.

5.1.4.1 Metrics Based on the Confusion Matrix

In the binary classification problem from backbone module, instances are mapped into two

classes. Then, for any binary classification, there are four possible results (FAWCETT, 2006)

shown in Table 4.

Table 4 – Confusion matrix comparing the real classes with predictions

Predicted
Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Source: Adapted from (FAWCETT, 2006).

From the confusion matrix, it is possible to calculate the classifier performance metrics

(RUUSKA et al., 2018). The current and planned evaluations are:

• Sensitivity: Represents the model’s ability to detect the presence of the disease, defined

by Equation 5.1:

sen =
TP

TP + FN
(5.1)

• Specificity: Represents the models’ ability to detect the absence of the disease, defined

by Equation 5.2:

spec =
TN

TN + FP
(5.2)
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• Precision: Represents the fraction of positive instances classified correctly, defined by

Equation 5.3:

prec =
TP

TP + FP
(5.3)

• Accuracy: Represents the model’s abaility to correctly classify each case, defined by

Equation 5.4:

acc =
TP + TN

TP + TN + FP + FN
(5.4)

• F1-Score: Represents the harmonic measure between precision and sensitivity, defined

by Equation 5.5:

F1score =
2 ∗ TP

2 ∗ TP + FN + FP
(5.5)

These metrics presented intend to be enough for the classification model evaluation. Never-

theless, based on the enhancement required in the results, some other metrics can be added to

this work.

5.1.4.2 Metrics for Object Detection

As a challenging task, Object detection has some common metrics as well as other specifics.

The most important metrics are Precision and Recall, which are the same as described in the

5.1.4.1 section, the IoU optimization, and the Average Precision (AP) metrics. In the object

detection task, the model targets the list of class probabilities and the offset coordinates for

each reason proposed by the Selective Search algorithm. The IoU is the area of intersection

between the two boxes, divided by the union of the area occupied by the original box and the

predicted box (CHAHAL; DEY, 2018). It helps to adjust the original bounding box shape to

match the exact object (CHAHAL; DEY, 2018). The mAP is one of the most popular metric

to evaluate object detection tasks and has been widely used in recent papers (CHAHAL; DEY,

2018). This is basically the mean of Average Precision (AP) represented in Equation 5.6 2:

AP =
∑

n

(Rn −Rn−1)Pn (5.6)

The YOLO paper as well as the PASCAL Visual Object Challenge (VOC) (LIN et al., 2015)

dataset details mAP to be the same quantity as AP. The COCO’s polygon dataset (EVERING-

HAM et al., 2010) however, uses a modification to this metric called the Mixed Average Metric

(CHAHAL; DEY, 2018).

2https://github.com/blmoistawinde/ml_equations_latex
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5.1.4.3 Additional metrics

Aside the current object detection and image classification metrics, we noticed the need

of additional metrics not based on confusion matrix or IoU. For this reason, we decided to

explore two other metrics, the Matthews Correlation Coefficient (MCC) and the Cohen’s Kappa

coefficient.

MCC was introduced by Brian W. Matthews to evaluate the predicted structure of an en-

zyme, in a biochemical study in 1975 (CHICCO; WARRENS; JURMAN, 2021). Since 2000,

MCC has been used as a standard metric in several scientific competitions, such as the Kaggle

competition to detect power line fault detection (CHICCO; WARRENS; JURMAN, 2021). The

Equation 5.7 presents how to achieve MCC.

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.7)

Cohen’s Kappa coefficient is a statistical measure used for qualitative items. This metrics

is considered more robust than a simple percent agreement calculation (VIEIRA; KAYMAK;

SOUSA, 2010). Aside some criticism about the Kappa measure, it is statistically robust (BEN-

DAVID, 2008).

The Cohen’s Kappa coefficient has been widely implied in social sciences, biology and

in medical sciences for a couple of decades (BEN-DAVID, 2008). However, within machine

learning and data mining communities, Cohen’s Kappa has not received much attention as a

metric for accuracy (VIEIRA; KAYMAK; SOUSA, 2010). Kappa has two different equations,

considering binary and multi-class problems. The Equation 5.8 presents how to achieve non-

weighted Cohen’s Kappa.

κ =
2× (TP × TN − FN × FP )

(TP + FP )× (FP + TN) + (TP + FN)× (FN + TN)
(5.8)

In this study we will only apply the equation for binary classification problem as we are

only working with two classes.

5.1.5 Validation with specialist

Besides the defined object detection metrics, initial DeepCADD training with angiography

dataset evaluated by metrics based on IoU suggested the need for additional validation and

alternative metrics reach the correct model performance. For this reason, we perform validation

with two physicians, one specialist in the cardiac area, and a clinician. In Figure 31 we present

the validation slides prepared.

The validation was composed of 20 angiographic frames, due to the specialist and dataset

availability. We prepared a slide presentation with 10 angiographies without any annotation and

we asked the physicians to identify CAD in the angiographic frames, considering all the artery
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Figure 31 – Slides of the validation with the doctors.

Source: Elaborated by the author.

narrowing as presented in Figure 31 item (a). In item (a) we present the original angiography

with the lesions marked with squares.

The last 10 angiographies were presented to physicians together with DeepCADD lesion

suggestions. We asked the physicians for validation to identify if DeepCADD prediction reaches

the same specialist understanding, presented in Figure 31 item (b). In item (b) we present the

DeepCADD lesion suggestions on the left side and the specialist validation on the right side.

After this validation, we counted the number of lesions detected in the 20 images in terms of

true positives, false negatives, and false positives. These data allowed us to calculate the model

sensitivity and precision. Due to the validation modeling and the object detection binary classi-

fication, we were not able to count the true negatives, once everything that is not detected as a

lesion in the image could be considered as true negative. Therefore, we noticed the importance

of sensitivity and precision as metrics for patient triage in screening tools (RODRIGUES et al.,

2021).
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5.2 Results

With an object detection architecture, we wanted to validate the use of DeepCADD to detect

CAD in angiographies. The presence and absence of lesion in angiography exams is a complex

task for the human eye, once the difference between presence and absence of lesion is very

subtle and it may be only a small narrow in the main artery segment, as well as a unique

important narrowing a completely unhealthy artery. As pointed out in the materials and methods

chapter, we started the experiments with the CNN optimization. The Xception, InceptionV3 and

ResNet CNN architectures are complex and may lead to overfitting, so we needed to run several

experiments to optimize the hyperparameters. For more details refer to Appendix B.

We implemented transfer learning reusing a CNN architecture pre-trained on ImageNet and

then, we trained with the specific datasets. We present the classification model results in Sec-

tion 5.2.1. Section 5.2.2 presents the object detection results. Finaly, Section 5.2.3 details the

validation with specialists.

The experiments in this Master Thesis have been implemented using the Google Colabo-

ratory PRO 3 with GPU P100 and 7.3 gigabytes of available RAM to reduce the time spent in

the training phase, as well as avoid the version compatibility issues when configuring a specific

machine or using Conda environments. The use of pre-installed lib in a common environment

saved a lot of time.

5.2.1 Classification model

In the classification model, we expected to achieve an excellent performance classifying

CAD presence and absence in coronary artery segments. We executed several experiments using

different CNN architectures. We tested different classification layers from only one Dense layer

with 1 neuron up to a sequence of 4 Dense layers of 100x100x100x1 neurons. Table 5 presents

the best performance of each architecture in the angiography classification test using the same

dataset. In the same table, we detail the final dense layer and the hyperparameters of each one.

Table 5 – Classification model architecture configurations
Base Learning rate Final dense layer (neurons) Accuracy Loss Trainable par.
Xception 1e− 7 100x100x1 0.75 0.54 8M
CheXNet 1e− 4 100x100x100x1 0.76 0.63 all
InceptionV3 1e− 4 256x2 0.96 0.65 all
ResNet-50 1e− 5 2 0.90 0.39 23M

Source: Elaborated by the author.

In the experiments, we used the synthetic dataset (ANTCZAK; LIBERADZKI, 2018) with

2,000 CCA exams of presence and absence of CAD. We decided to use binary classification for

3https://colab.research.google.com/
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feature maps extraction with a final dense layer with 2 neurons and softmax activation, as well

as 1 neuron with sigmoid activation. For all the tested CNN architectures we resized the input

up to 150x150 pixels to match their input parameter.

We noticed that a binary classification with the ResNet-50 CNN using 2 neurons with soft-

max outperformed the other architectures with high accuracy and the lowest loss values from

all the others. For this reason, we decided to continue the DeepCADD implementation with

ResNet-50 architecture as the backbone. Using a batch size of 32 images and the Adam opti-

mizer, we could reach a good performance in only 70 training epochs, as presented in Figure 32.

Figure 32 – ResNet-50 validation and training graphs.

Source: Elaborated by the author.

The training parameter is not too stable as an ideal model, but we can see in Figure 32 the

learning curve increasing properly. ResNet-50 learned most of the features between the 20th

and 30th epoch but also learned up to the 70th epoch as well as the loss decreasing, which

reached a value of 0.39. Figure 33 presents very interesting results of the ResNet-50 confusion

matrix.

From the confusion matrix, we identified a sensitivity of 0.87, with a specificity of 0.94.

We also reached a precision of 0.90, with a high recall and f1-score of 0.9. Fortunately, we

could reach a very powerful CAD classification model with ResNet-50 architecture, which is

helpful for the R-CNN object detection model implementation. Then, we expect that, with

this high performance, we could improve the Mask R-CNN original performance in the CAD

detection problem. We understood this improvement in the performance using ResNet-50 due

to the fact of skip connections in the architecture, once it enhances the performance of higher

layers understand small details in the image classification task. CAD can be interpreted as small

image features in the whole angiography and as the grayscale frame, it can suffer from noise in

the image acquisition, presence of other components in the image (e.g. stent), or calcification.

With these results, we decided to implement the R-CNN and we detail it in the next section.
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Figure 33 – ResNet-50 backbone confusion matrix.

Source: Elaborated by the author.

5.2.2 Object detection model

In the object detection model, we wanted to be able to detect CAD in angiographic frames

with precision comparable to the gold standard. The gold standard, in this case, is the specialist

visual assessment, as we focused on the segment selection. It is important to point out that, at

this moment, the standard protocol for the angiography exam already happened, so the frame

was selected and we are evaluating static frames. To do so, we first annotated the images with

a specialist, reaching 132 frames labeled with the polygon COCO’s polygon format. Due to

the complexity of the existing object detection architecture and the promising results in the

literature, we decided to experiments an R-CNN-based architecture. To do so, we implemented

a Mask R-CNN going through the backbone replacement.

We developed the importing of model weights from the classification model, preferably
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without the top layer. We initialized DeepCADD weights from our classification ResNet-50

model directly in the backbone. In the training phase, we imported the whole 132-image an-

giography dataset and the COCO’s polygon annotation file. We tested different epochs but the

best result happened with 5 epochs training only the network head with a learning rate of 1e−3.

We used the expected training and validation separation of 70% and 30%, respectively.

Evaluating the standard metrics, we reached mAP of 0.248, Mean Average Recall (mAR) of

0.5 and f1-score of 0.33. These numerical results are not so promising as they evaluate the IoU,

which we identified during the tests and validation as not correctly correlating with the study

objective. IoU measures the matching between the area predicted and the area annotated, but

we are not interested in the lesion extension, but the lesion presence.

We needed additional metrics to evaluate the model performance. One of them is the visual

assessment, between the annotations and the prediction. Figure 34 presents some examples

comparing the annotation created by one specialist in the area and the model predictions.

Figure 34 – Comparison between the annotations and the DeepCADD predictions.

Source: Elaborated by the author.

Figure 34 shows the annotations created to the angiography (left image), and the Deep-

CADD detection (right image). DeepCADD identified three of five lesions identified by a spe-

cialist. This example is especially important because the two lesions not identified by the model

at this time are considered as noncalcified lesions, which present a fogging aspect, making it

harder to identify and were consequently, less frequent in the dataset.

We selected 20 images for the visual assessment validation, resulting in 104 lesions. Deep-

CADD was able to recognize CAD lesions in 70% of the cases. There are some aspects of the

exam impacting the model detection. These aspects are presented in Section 5.2.2.1, where we

describe the different types of lesions.

5.2.2.1 Lesion characteristics

During the model validation with the specialists, we noticed three different types of the le-

sion for visual assessment. This bias is completely handled by the specialist, which highlights

the importance of physician evaluation. In Figure 35 shows three different types of lesions.
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Figure 35(a) we represent the most common lesion identified by the angiography visual assess-

ment with high contrast between the artery and the background. Figure 35(b) shows the lesion

close to a bifurcation, which creates noise in the visual identity as the lesion diameter is con-

fused by the other branch. In Figure 35(c) depicts the plaques with lower density compared to

contrast-enhanced lumen, which represent the noncalcified lesions (NILSSON et al., 2014).

Figure 35 – The three different types of lesion identified in the visual assessment.

Source: Elaborated by the author.

The kind of lesion represented in Figure 35(a) is characterized by the presence of a severe

narrowing and the high contrast with the background, which makes the CAD visible. We exe-

cuted an additional test separating the dataset into these three types of the lesion and we noticed

that DeepCADD easily identify it, also representing the highest mAP performance achieved.

For this type of lesion, DeepCADD is very similar to the Mask R-CNN alone initialized with

ImageNet.

Figure 35 item (b) is characterized by the presence of bifurcation close to the lesion. This

lesion is very challenging due to the visual noise generated in the real lesion diameter. Addition-

ally, during the validation with the specialist, we detected that QCA tool, under development

for the past 40 years also faces issues with bifurcation, so it was identified as a possible limita-

tion, but not critical as the similarity with the current protocol equipment. DeepCADD presents

some false negatives caused by this type of lesion.

Figure 35 item (c) presents the most challenging lesion identification. Noncalcified lesions

present this aspect of fogging, caused by unstable plaques in the arteries. Noncalcified lesions

are critical and during the specialist validation, we noticed that these lesions are also challenging
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for QCA. DeepCADD presents also a good performance on these lesions mainly due to the

comparison with the Mask R-CNN alone initialized with ImageNet. For this type of lesion, we

noticed a very good improvement in the model caused by the backbone replacement.

Beyond the mentioned lesions, we also noticed interesting results in the lesions < 30%,

called wall-irregularities (ROOS et al., 2013). This kind of lesion is also considered a CAD,

but with a lower severity due to its small artery narrowing (ROOS et al., 2013). We noticed

the existence of this CAD mainly in the RCA stem. Therefore, as these lesions are not too

significant, they are usually not selected by the specialists, as it does not represent risks. It can be

considered as a gap in the understanding before the specialist’s validation. We can also consider

the wall irregularities as identified lesions, due to their anatomy, but in this current study, the

impact on the final results and model performance is not significant. Wall irregularities can lead

a future studies. In the next section, we present the results from the evaluation with specialists.

5.2.3 Model validations

The objective of this validation was to understand the real DeepCADD performance. We

prepared a validation with 20 images, composed of 10 frames in which the specialist informed

the presence of lesions including colored squares on them. In this phase, the specialist informed

the lesion presence using the regions of RCA anatomy, such as proximal, medial, and distal

segments. An example of lesions in each one of the segments is presented in Figure 36, wherein

on the left image we have the suggestions from DeepCADD, and in the right image, we present

the angiography marked by the specialist with one lesion in the proximal segment, two lesions

in the medial segment and one lesion in the distal segment.

Figure 36 – Example of angiographic frame validated by a specialist

Source: Elaborated by the author.

In the second phase, we provided the DeepCADD output as angiography with the lesion

marked with a mask and bounding boxes, followed by the original angiography in a bigger size

to make the evaluation easier by the specialist. This step result is the same as Figure 36 right

image, but this phase was used to confirm if the suggested lesions from DeepCADD are CAD

as well adding the CAD identified by specialists and missed by DeepCADD.
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The example of Figure 36 is very interesting to discuss both the performance and limitations

of DeepCADD. During the validation, we received very interesting feedback from the special-

ists. One example is the visual presentation of DeepCADD, in which we currently present the

mask, the bounding boxes, and the class with the percentage of confidence in the output. The

feedback from specialists was to reduce the number of information in the DeepCADD output,

leaving only the mask, without the bounding boxes and the class name, without visual impact

in the RCA segment.

As the common object detection metrics are not enough, we also analyzed the model sensi-

tivity and precision. We compared DeepCADD with both specialists and the performance over

the 104 lesions. A significant attention point in the evaluation of the metric is the limitation

caused by the objective of this proposed model. DeepCADD is trained to identify the presence

and absence of CAD, but it detects only the presence of a lesion, so we reached a problem to

determine true negative values. It impacts mainly the metrics which depend on correct true

negative values. Therefore, we evaluated the correct detection of 104 lesions compared with

each one of the specialists with DeepCADD detection. In Table 6 we present that DeepCADD

achieved high sensitivity and relatively good precision values compared with each specialist in

the CAD detection.

Table 6 – DeepCADD performance evaluation with the specialists
Metric DeepCADD vs Specialist I DeepCADD vs Specialist II
sensitivity 0.8 0.89
precision 0.83 0.57

Source: Elaborated by the author.

Table 7 presents important DeepCADD results, in which it outperforms other architectures.

A direct quantitative comparison with related works is difficult, mainly due to datasets availabil-

ity, different methodologies, data selection, and different classification or detection objectives.

In this way, we organized in Table 7 a quantitative comparison with similar works, presenting

the best results achieved by recent studies in terms of sensitivity and precision achieved. This

comparison considers similar methodology and architectures, but with different datasets. While

DeepCADD performance was achieved using the angiography dataset with 104 images, further

studies used their datasets. Even with different datasets, but taking into account the similarities,

DeepCADD outperforms similar investigations of sensitivity, which is particularly important

due to good evaluation in multi-vessel CAD.

Besides the good sensitivity numbers, Table 7 also presents the limitation in the precision,

mainly caused by the limitation of CAD absence detection as already stated. These results

suggest a good performance of DeepCADD and consider it as a candidate to be used as a

screening tool. The angiography protocol automation through stenosis detection is possible due

to the high sensitivity model value, allowing the suggestion of artery segments to go through

the QCA lesion quantification.
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Table 7 – Comparison of DeepCADD model with the related works
Method Prec. (%) Sens. (%) Reference
Libra R-CNN 58.44 79.51 (PANG et al., 2019)
Cascade R-CNN 68.41 67.9 (CAI; VASCONCELOS, 2018)
Faster R-CNN 66.3 74.81 (REN et al., 2015)
Mask R-CNN 70.91 76.47 (HE et al., 2018)
Stenosis-DetNet 94.87 82.2 (RODRIGUES et al., 2021)
Automatic detection 79.5 87.2 (WUA et al., 2020)
DeepCADD 83.0 89.13 Proposed method

Table 8 – DeepCADD MCC evaluation with the specialists
Comparison MCC
DeepCADD vs Specialist I -0.19
DeepCADD vs Specialist II -0.22

Source: Elaborated by the author.

Even suggested as better than Cohen’s Kappa, we noticed that MCC requires the number

of true negatives and as already stated, which lead to poor values. Then, we analyzed the per-

formance through the Cohen’s Kappa value, as presented in Table 9, where we noticed that

the absence of true negatives also impact negatively. We can also notice that the performance

between the specialist individually are very similar, unfortunately presenting a minimal corre-

lation.

Table 9 – DeepCADD Cohen’s Kappa evaluation compared with specialists
Comparison Cohen’s Kappa
DeepCADD x Specialist I 0.22
DeepCADD x Specialist II 0.14
DeepCADD x Both specialists 0.61

Source: Elaborated by the author.

We also explored the analysis between DeepCADD and both specialists, combining the

specialists lesion identification. It means that we have extracted part of the original confusion

matrix where both specialist agree with the presence and the absence of stenosis. It means

that, frames are considered with lesion, if at least one specialist indicate the same. So, Table 9

presents a substantial correlation between DeepCADD. The joint specialist analysis, which is

very interesting, can suggest the use of DeepCADD for CAD analysis standardization.

As the validation was composed by two steps, we also decided to investigate the impact

of each one of the validation steps in this Cohen’s Kappa correlation value. We identified that

correlation value differ significantly between the validation steps. The first validation step,

composed by the CAD selection by specialists without any DeepCADD suggestion; and the

second one with the specialist validating the suggestions from DeepCADD. Results from this

partial evaluation are presented in Figure 10.
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Table 10 – DeepCADD Cohen’s Kappa evaluation compared with specialists and the validation steps
Comparison Validation Step Cohen’s Kappa
DeepCADD x Both specialists specialist CAD selection 0.47
DeepCADD x Both specialists validate DeepCADD CAD 0.74

Source: Elaborated by the author.

Using the same angiography dataset, we identified that the agreement between the special-

ists and DeepCADD was higher in the second part of the validation when the specialists vali-

dated the lesions in the angiography with DeepCADD CAD suggestions. In fact, we came to

an important discussion point, which we were not able to understand yet if DeepCADD is able

to standardize the CAD detection system or created a new bias in the CAD identification. This

is a very important topic to be addressed in a future study. Currently, the use of DeepCADD

helps in the lesion identification, resulted in a significant correlation, and is a good suggestion

for patient triage. To help in the DeepCADD explainability, we went one step further to analyze

the DeepCADD heat map.

Figure 37 – DeepCADD heat map for a CAD presence in angiography

Source: Elaborated by the author.

The behavior shown in Figure 37 shows another important study contribution, where we see

that DeepCADD was able to generate an activation for the suspected region, being able to also

support in border cases, where the CAD is not completely identified. The heat map presented in

Figure 37 brings pixel-level details in the DeepCADD prediction, informing the exactly RCA

area where the lesion was identified.

Besides the agreement in the lesion identification, we also noticed that DeepCADD was

able to identify the CAD < 30%, already stated as the wall-irregularities. Even not representing

a huge impact on the coronary blood flow, these irregularities are caused by CAD. We noticed

during the validation that physicians do not select them due to this small impact. One example

of this detection is presented in Figure 38.

In the left image of Figure 38 we present the DeepCADD CAD suggestions. In the right

side image, we present the physician annotations. The wall-irregularity is present in the blue

square in the right image and we noticed that DeepCADD was able to detect two CAD instances
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Figure 38 – DeepCADD detecting CAD wall-irregularities.

Source: Elaborated by the author.

in the wall-irregularity region.

Finally, beyond the numerical analysis, we also received some visual improvement sugges-

tions from specialists, such as the change of the mask colors. As DeepCADD detection of

presence and absence is a binary problem, we left only one color for all the lesions. We provide

an example of the suggested model improvement, reducing the information in the output in

Figure 39. We also received a suggestion for, in a future study, providing three different colors

depending on the lesion significance, which could make it even better for the specialist analysis,

but will require changes in the architecture to support multi-class detection.

Figure 39 presents four different angiographic frames from different lesion with Deep-

CADD CAD detection. These suggestions implemented in Figure 39 are especially important,

as the use of only one color also makes the detection easier, as we are not interested in the lesion

extension, but the presence of it. If DeepCADD detects more lesions in the segment between

two lesions, such as the 4 first top detection in Figure 36 would not be a problem as the lesion

is compromised by CAD lesions and acceptable from the specialist’s point of view.

In summary, DeepCADD presented good numerical results in the validation and was able to

identify most of the lesions in RCA angiographies. DeepCADD suffered improvements since

its first version and we were able to propose a useful tool with high sensitivity and correlation

with the daily visual assessment. DeepCADD can be enhanced and become even better for

more types of lesions, which is natural for recent development, and the characteristics of the

complex lesions, which are challenging the current QCA technique for a couple of decades.

5.3 Discussion and limitations

DeepCADD is an object detection architecture enhanced for CAD detection in RCA seg-

ments. This architecture was able to identify lesions with high performance but lacked the true

negative evaluation, which lead to difficulty to measure additional metrics.

Even the absence of lesion visually evaluated by the absence of masks in the DeepCADD

output is not enough to calculate the model numerical performance with excellence. In fact, in
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Figure 39 – Four different angiographic frames provided by DeepCADD after specialist suggestions

Source: Elaborated by the author.

future research, we can also propose a new numerical way to measure the model performance

in this specific context.

MCC was suggested in the literature as superior for binary problems. Nevertheless, the

insignificant MCC values were outperformed by the Cohen’s Kappa numerical results, which

were able to identify that DeepCADD suggestions increased the correlation between the spe-

cialists.

Also, the identification of different perspectives between the specialist’s evaluation and the

common must ask for dynamic CAD analysis. This aspect is especially important and must

be further explored, once the frame-specific analysis is helpful but must be associated with the

dynamic analysis. Given the current DeepCADD structure, we expect that dynamic evaluation

can be easily implemented in the future. Refer to Appendix A.

DeepCADD presented promising results, especially in the classical artery narrowing, on

images with high contrast and a high presence of fluorescent dye. DeepCADD improvements

can also be reached with a bigger labeled dataset, in which we can explore the local hospital

partnership. The current partnership will improve the performance mainly in lesions close to

bifurcations and the noncalcified which caused the most of false negatives.
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6 CONCLUSION

In this work, we considered the angiography protocol and one of the manual steps necessary

to obtain the CAD assessment. We detailed the CAD context and the current literature advances

and gaps. The SLR has shown that image-based approaches are essential to the correct lesion

assessment, once it produces important anatomical metrics for the functional lesion assessment.

During the experiments, the use of neural network architecture has shown to be powerful to learn

complex angiography image features. Current results also show that a CNN for classification

model is helpful and require further improvements to produce a better model performance. Once

the model reaches better results, object detection will be evaluated.

We then introduced the DeepCADD architecture to automatically determine multi-vessel

CAD using frame-based object detection. We provided theoretical results, showing that Deep-

CADD outperforms the current literature in the sensitivity index, which makes DeepCADD a

good candidate for the daily patient triage as a screening tool. Our theoretical findings are sup-

ported by a series of experimental results based on specialists validation and statistical analysis.

The DeepCADD model seeks to address the gaps identified in the related works identified in

the SLR. In this sense, the development of the DeepCADD will result in scientific contributions

that represent additions to state-of-the-art and use in the daily diagnosis. The main expected

contributions of this work are highlighted below:

The first contribution is the DeepCADD architecture for CAD classification and automatic

identification in angiographies. DeepCADD is based on small datasets and transfers learn-

ing, reaching performance comparable with the gold standard specialist evaluation. Therefore,

DeepCADD still requires improvements in the detection of complex lesion types, such as the

presence of bifurcation and noncalcified lesions, so the use of bigger labeled datasets can im-

prove the architecture performance and provide even more insights to the daily angiography

protocol. We were also able to raise the question about standardization, which can be better

explored and confirmed as helpful or not in the daily tool use.

The second contribution, as an output from SLR, we provided the most suitable performance

metrics compared to the state of the art for CAD detection in angiographies as well as the use of

transfer learning and artery segments dataset for DeepCADD feature extractors, which added

more significant variability of information for whole coronary angiography analysis.

The third contribution, DeepCADD was able to outperform current literature in the multi-

vessel CAD identification. We remark that DeepCADD, using mask-based object detection,

increases the convergence between specialists’ assessments, which can be important to improve

the current angiography visual assessment protocol. The use of a mask-based system differs

from current CAD detection literature and produces more visual insights to the operator. We

explored pixel-level object detection and we identified a powerful tool to detect difficult regions

or to support border cases.

Besides the contributions, DeepCADD is a frame-based detection tool limited for RCA seg-
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ments and with calcified plaque lesions. The use of bigger datasets and labeled angiographies

will enhance the architecture’s performance. Hence, DeepCADD is also limited for lesions that

require more frames for dynamic analysis. Therefore, DeepCADD can be used in future studies

for multi-frame analysis.

6.1 Publications

As partial contributions throughout the research, some articles were produced for publica-

tion in journals and events. The published and submitted articles are:

• Published articles:

1. FREITAS, Samuel; RAMOS, Gabriel; SCHMITH, Jean; COSTA , Cristiano.

Nodal Analysis for Coronary Artery Ischemia Diagnosis. XX Simpósio Brasileiro de

Computação Aplicada à Saúde (SBCAS), 2020. Porto Alegre: Sociedade Brasileira de

Computação, p. 262-272. Available at: https://doi.org/10.5753/sbcas.2020.11519.

2. FREITAS, Samuel A.; COSTA, Cristiano A. da; RAMOS, Gabriel de O.. Coronary

Artery Disease Automatic Classification. ESCOLA REGIONAL DE COMPUTAÇÃO

APLICADA À SAÚDE (ERCAS), 8. , 2021, São Paulo. Anais. Porto Alegre: Sociedade

Brasileira de Computação, 2021 . p. 26-29. DOI: https://doi.org/10.5753/ercas.2021.17431

3. FREITAS, Samuel; NIENOW, Débora; DA COSTA, Cristiano A.; RAMOS,

Gabriel de O. Functional Coronary Artery Assessment: a Systematic Literature Review.

Wiener klinische Wochenschrift. 2021. DOI: https://doi.org/10.1007/s00508-021-01970-

4.

• Published abstracts:

1. NIENOW, Débora; FREITAS, Samuel; SCHMITH, Jean. Software para auxílio no

diagnóstico de estenoses em artérias coronárias. Arq. Bras. Cardiol: 113 (2 sup l. 1) p.

254. 2019. Available at: http://publicacoes.cardiol.br/portal/abc/portugues/2019/v11303/

pdf/sbc-2019-programa-trabalhos.pdf.

• Submitted articles:

1. FREITAS, Samuel; ZEISER, Felipe; COSTA, Cristiano A. da; RAMOS, Gabriel

de O. DeepCADD: a Novel Deep Learning Architecture for Coronary Artery Disease

Automatic Detection. IJCNN 2022.

6.2 Future Work

The DeepCADD architecture presents many opportunities for improvement. As future

work, we would like to further investigate the use of different CNN architectures as DeepCADD

backbone, mainly the branch models which are not currently supported.
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The lesion types limitation caused by the small number of labeled is also a important Deep-

CADD challenge we expect to mitigate with a bigger dataset, the same architecture and more

specialists validations. The current heat map analysis would be deeper explored in order to

reach an explainability DeepCADD module as result in better CAD suggestions.

An important aspect to consider in further studies refers to the dynamic CAD detection,

which can be achieved using the frame-based DeepCADD tool in the angiography films without

the need of additional modules. The current angiography protocol still have further manual

interactions, which can be replaced by automatic further DeepCADD steps.

Finally, we look forward to extend our DeepCADD architecture to support LCA as well as

the RCA, making it a more widespread tool for whole coronary artery system assessment.
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APPENDIX A – ANGIOGRAPHY SEGMENTATION FOR DYNAMIC EVALUATION

Angiography exams have variable threshold as the X-ray grayscale may vary from acquisi-

tion equipment and the acquisition procedure. For this reason, we have created a segmentation

pipeline to extract the main coronary artery segment. This strategy works better for RCA due

to the less complex artery structure, which does not have additional relevant bifurcations. For

this reason, the proposed pipeline has three main steps presented in Figure 40, where the main

steps are the Frangi filter and the background extraction.

Figure 40 – Preprocessing steps from original coronary angiography up to main segment extraction

Source: Elaborated by the author.

In this pipeline, the Frangi filter is the main responsible for identifying the coronary seg-

ments in the whole exam. Frangi filter has been widely recommended in the literature due to its

potential to enhance vessels and arteries (FRANGI et al., 1998). Frangi filter produces a mask

with the contour of every possible artery of vessel in the image, and we employed it as a design

decision. This step requires also a threshold evaluation for the amount of area present in the

mask. For this reason it is also possible to check in Figure 40 that some non-relevant areas can

also be detected by the preprocessing module, such as in the right bottom side of output image,

which does not present an artery, but a wrong segmentation. Nevertheless, the preprocessing

module is able to detect and extract the RCA main segment and reduce the image complexity

to be used in the R-CNN classification module.

The preprocessing pipeline is not useful for the proposed model at this time, once we fo-

cused in the Segment selection and we defined an architecture which does not require the image

segmentation. We plan to use this tool to automate the frame selection in Figure 24 and in-

crease the automation in the angiography protocol, once it will allow the dynamic angiography

evaluation.

DeepCADD model is an object detection architecture based on Mask R-CNN which pro-

vides classification, bounding boxes and mask to determine CAD location, which matches this

Master’s Thesis goal to automatically detect CAD. DeepCADD can be used for multi-vessel

detection, as it provides instance segmentation. DeepCADD detection is based in anatomical

RCA data, such as the MLD and %DS, and we aim to reduce the need of additional invasive

tools for CAD significance determination. For the preprocessing step we wanted to test the use

of image processing features to extract the main coronary artery segment in RCA angiographies.

Figure 41 presents some results on segmenting the RCA in angiographies.
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Figure 41 – Angiography segmentation results, with two different RCA from different incidences with
the main artery segment enhanced using mask and either black and white background

Source: Elaborated by the author.

We reached these results using mainly the Frangi filter, adaptative thresholding, and contour

finding. From Figure 41, it is possible to identify the segmentation sequence, which includes

the original image in the first image of each line (left side), followed by the segmentation mask

extracted from the original image, followed by a bitwise operation between the original angiog-

raphy and mask with a black background, and finally the original angiography with a white

background (right side). We intended to use this segmentation to train the DeepCADD object

detection module, but we noticed that it was not necessary.

The coronary artery segmentation is helpful to identify the main coronary artery segment

of RCA. We choose the RCA due to its smaller anatomical variability, which was a design

decision and limitation. This segmentation depends on the clear artery highlight caused by

the injection of contrast in the interior of coronary artery walls. This technique identifies the

coronary segment and can be used in further studies.

In a prospective analysis, we decided to leave these results to support future studies in the

automation of the frame selection. As the frame selection in the standard protocol looks for the

frame with the highest presence of contrast, this image segmentation technique can be helpful

in the CAD detection, so we can use it to choose the best frame in the angiographic film.
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APPENDIX B – ARCHITECTURES COMPARISON FOR IMAGE CLASSIFICATION

During this study we have experimented several architectures for image classification using

the synthetic dataset. Among them, we highlighted the use of Xception, CheXNet, InceptionV3,

and ResNet-50 architectures. To pave the way for future studies in the architecture decision for

image classification of coronary artery assessment we will present the results obtained during

this research considering the learning rate, number of training epochs (epochs), trainable pa-

rameters (trainable param.), final dense layers composition (dense layers) and the results as

validation loss (loss), and validation accuracy (accuracy).

Table 11 – Hyperparameters optimization for Xception architecture
Base learning rate epochs trainable param. dense layers loss accuracy
Xception 1e− 6 50 8M 50x1 0.56 0.70
Xception 1e− 6 50 8M 100x1 0.55 0.73
Xception 1e− 6 45 all 50x1 0.55 0.75
Xception 1e− 6 45 8M 50x1 0.63 0.68
Xception 1e− 7 800 12M 100x100x100x1 0.54 0.73
Xception 1e− 6 100 8M 25x1 0.63 0.74
Xception 1e− 6 300 6M 25x1 0.63 0.74
Xception 1e− 6 300 7M 256x25x1 0.66 0.72
Xception 1e− 6 1000 530k 256x25x2 0.66 0.69
Xception 1e− 5 200 530k 256x25x1 0.67 0.69
Xception 1e− 5 200 530k 256x25x2 0.66 0.69
Xception 1e− 5 200 530k 256x25x1 0.66 0.69
Xception 1e− 5 200 530k 256x25x2 0.60 0.72
Xception 1e− 6 200 530k 256x25x1 0.59 0.71
Xception 1e− 5 200 4M 256x25x2 0.60 0.70
Xception 1e− 6 600 4M 256x25x1 1.20 0.70
Xception 1e− 8 20000 4M 256x25x1 0.62 0.63
Xception 1e− 7 150 8M 100x100x1 0.54 0.75

Source: Elaborated by the author.

Figure 42 – Best Xception performance on CAD with accuracy and loss graphs

Source: Elaborated by the author.
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Results from Table 11 are not too promising to indicate a good performance in the coronary

artery disease classification with a maximum accuracy of 0.75 presented in the table line. This

best result for Xception architecture is also represented in the Figure 42. In this figure can see

that training and validation performance are very close, so it represents a consistent learning

curve, but it stop in the maximum of 0.75 accuracy and does not improve the 0.54 loss.

So, Table 12 presents the experiments’ results for CheXNet architecture, which also does

not present a good performance on our classification task. Even CheXNet presenting good per-

formance in the literature for chest x-ray exams, this architecture does not achieved the expected

results. At the time we decided to use this architecture, we expected that it would outperform

the other architectures due to the nature of the coronary artery disease exam, which is also a

x-ray exam in grayscale. Nevertheless, CheXNet proved not enough to classify coronary artery

lesions.

Table 12 – Hyperparameters optimization for CheXNet architecture
Base learning rate epochs trainable param. dense layer loss accuracy
CheXNet 1e− 4 30 all 100x100x50x1 0.70 0.68
CheXNet 1e− 4 30 all 100x100x100x1 0.70 0.76
CheXNet 1e− 4 50 all 50x1 1.00 0.78
CheXNet 1e− 4 50 all 256x1 1.30 0.65
CheXNet 1e− 4 100 all 100x100x50x1 2.00 0.73
CheXNet 1e− 5 50 all 256x2 0.70 0.54
CheXNet 1e− 5 150 all 100x100x50x1 0.70 0.60
CheXNet 1e− 8 20000 3M 100x100x50x2 0.69 0.54
CheXNet 1e− 4 100 all 100x100x100x1 0.63 0.76
CheXNet 1e− 4 50 all 100x1 1.00 0.80

Source: Elaborated by the author.

Figure 43 – Best CheXNet performance on CAD with accuracy and loss graphs

Source: Elaborated by the author.

Figure 43 presents the best result of CheXNet, where we can notice that ChexNet start

with a interesting learning curve stopping close to an accuracy of 0.8 and with the loss diverge
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after 30 epochs. According to the literature, we also decided to experiments the InceptionV3

architecture. Table 13 presents the hyperparameter optimization executed using InceptionV3

architecture. Besides it perform a little bit better than Xception and ChexNet, these results still

present high loss values, impacting in the overall model performance.

Table 13 – Hyperparameters optimization for InceptionV3 architecture
Base learning rate epochs trainable param. dense layer loss accuracy
InceptionV3 1e− 4 30 all 100x100x50x1 0.72 0.68
InceptionV3 1e− 4 30 all 100x100x100x1 0.66 0.76
InceptionV3 1e− 4 50 all 100x1 0.70 0.80
InceptionV3 1e− 4 50 all 256x1 0.67 0.65
InceptionV3 1e− 4 100 all 100x100x50x1 1.00 0.73
InceptionV3 1e− 5 50 all 256x2 0.56 0.54
InceptionV3 1e− 5 150 all 100x100x50x1 0.75 0.60
InceptionV3 1e− 4 50 all 50x1 0.65 0.78

Source: Elaborated by the author.

Finally, we experimented the use of ResNet-50 architecture in the coronary artery lesions

classification. Table 14 presents the results using ResNet-50. In this context, as well as the other

architectures, we tested many different final dense layers in the model. We noticed that the use

of 2 neurons in the final dense layer presented the best results from all the other compositions.

Table 14 – Hyperparameters optimization for ResNet-50 architecture
Base learning rate epochs trainable param. dense layer loss accuracy
ResNet-50 1e− 4 30 all 100x100x50x1 0.64 0.68
ResNet-50 1e− 4 30 all 100x100x100x1 0.54 0.76
ResNet-50 1e− 4 50 all 50x2 0.45 0.78
ResNet-50 1e− 4 50 all 100x1 0.65 0.80
ResNet-50 1e− 4 50 all 256x1 0.47 0.65
ResNet-50 1e− 4 100 all 100x100x50x1 1.00 0.73
ResNet-50 1e− 5 50 all 256x1 0.56 0.54
ResNet-50 1e− 5 150 all 100x100x50x1 0.43 0.60
ResNet-50 1e− 5 70 all 2 0.39 0.90

Source: Elaborated by the author.

From the very first ResNet-50 architecture built, we noticed that the achieved accuracy was

superior from the others. We experimented several other final dense layers compositions, but

the use of 2 neurons showed far better accuracy. Figure 44 presented the learning behavior

during the first 70th epochs. Using the ResNet-50 we reported all the experiments using the

all 23M trainable parameters, as the use of less trainable parameters did not present significant

difference. As we initialized the network with ImageNet weights and the network is trainable

in a suitable time, we did not need to reduce the trainable parameters.

The accuracy presented a peak of learning between the 20th and the 30th epochs but con-

tinued learning after it, reaching a percentage of 0.90. This accuracy result, together with the



108

Figure 44 – ResNet-50 validation and training graphs.

Source: Elaborated by the author.

continuous decreasing of loss in both training and validation phases agree and indicates that

ResNet-50 learnt the coronary artery lesions context.


