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ABSTRACT

Wearable sensors may obtain reliable physiological signals to diagnose diseases and detect
changes. Wearables can measure signs such as electrocardiogram, heart rate, electroencephalo-
gram, electromyogram, or galvanic skin response. All these signals have intrinsic characteris-
tics in a normal state and change if associated with illness. The literature presents the Machine
Learning Approaches and Deep Learning Models as alternatives to pattern detection in physio-
logical signals. The state-of-the-art in this area indicates a trend to use wearables for continuous
monitoring of patients, whether in a hospital or home environment, as it is a portable and non-
invasive option. In addition, many studies point out the low cost of wearable sensors as another
advantage compared to traditional hospital medical equipment. Other studies highlight the pos-
sibility of supporting automatic diseases detection, especially chronic diseases, using artificial
intelligence in physiological signals. Based on the review carried out, it is possible to conclude
that there are still new development opportunities. The studied papers do not address at the
same time aspects of lower cost, greater flexibility, wide use of Machine Learning resources,
and communication of results. This work’s main objective is to develop an architecture for mul-
tisignal acquisition with wearable sensors for continuous monitoring and stress detection. The
architecture comprises wearable sensors and single-board computers—the wearable sensor for
data processing and single-board computer to communicate the results to other platforms. The
differentials of this architecture consist of the integration of resources for multi-signal acquisi-
tion for continuous monitoring of patients with a low implementation cost, flexibility, and ease
of use. We developed a prototype in a modular way, and we tested each module of the architec-
ture. These tests aimed to guarantee the independence of the components, carefully evaluating
the stability and plausibility of the data. We also carried out two practical stress-inducing exper-
iments. The first composed a proprietary dataset to generate a Machine Learning model, and the
second allowed full architecture assessment, focusing on real-time detection. The training and
classification results of the Machine Learning model showed promising results, with accuracy
above 98.72% for binary classification and 92.72% for classification with three classes. When
analyzing the real-time classification, we obtained an accuracy of 69.00% for participants in
the first round of experiments. The architecture presented excellent communication and oper-
ation stability. During the experiments, the architecture performed short and long acquisitions
efficiently. The acquired data showed promising results, with plausible and justifiable values
within the context of the experiment performed. The classification results obtained when testing
the model with participants who were in training, the results were relatively high.

Keywords: Artificial Intelligence. Multi-signal Acquisition. Physiological Signals. Stress
Detection. Wearables Sensors.



RESUMO

Sensores vestíveis (wearable sensors) vêm sendo utilizados para obtenção confiável de si-
nais fisiológicos, com o intuito de apoiar o diagnóstico de doenças. Os wearable sensors podem
medir sinais diversos, tais como eletrocardiograma, variação da frequência cardíaca, eletroen-
cefalograma, eletromiograma ou resposta galvânica da pele. Todos esses sinais possuem suas
próprias características em estado normal e mudam quando associadas a alguma doença, ou sob
efeito de estresse. Abordagens de Aprendizado de Máquina (Machine Learning) ou Modelos de
Aprendizagem Profunda são opções para o uso destes sinais na detecção e predição de padrões,
atuando como apoio no diagnóstico. O estado da arte nesta área indica uma tendência no uso
de wearable sensors para monitoramento contínuo de pacientes, seja em ambiente hospitalar ou
doméstico, por ser uma opção portátil e não invasiva. Estudos apontam o baixo custo dos senso-
res vestíveis como uma vantagem, quando comparados com equipamentos médicos hospitalares
tradicionais. Outros estudos destacam a possibilidade de apoio na detecção automática de doen-
ças, em especial doenças crônicas, utilizando inteligência artificial em sinais fisiológicos. Com
base na revisão realizada, é possível concluir que há oportunidades de desenvolvimento ainda
não exploradas, pois não foram encontrados trabalhos que contemplem ao mesmo tempo os as-
pectos de menor custo, maior flexibilidade e uso amplo de recursos de Aprendizado de Máquina
para detecção automática. Neste contexto, o principal objetivo desse trabalho é o desenvolvi-
mento de uma arquitetura para aquisição de multisinais com wearable sensors, monitoramento
contínuo e detecção de estresse. A arquitetura é composta por sensores vestíveis, para aquisi-
ção do sinal, e computadores de placa única, para processamento dos dados e comunicação de
resultados para outras plataformas. Os diferenciais desta arquitetura consistem na integração de
recursos para aquisição multisinais para monitoramento contínuo de pacientes com um baixo
custo de implementação, flexibilidade e facilidade de uso. Um protótipo foi desenvolvido de
forma modular e cada módulo da arquitetura foi testado individualmente, para garantir a in-
dependência dos componentes, avaliando criteriosamente a estabilidade e a plausibilidade dos
dados. Além dos experimentos de testes, também foram realizados dois experimentos práticos
de indução de estresse. O primeiro para composição de um dataset proprietário da pesquisa
para geração de um modelo de Aprendizado de Máquina. O segundo para avaliação completa
da arquitetura, com foco na detecção em tempo real. Os resultados de treinamento e classifi-
cação do modelo de Machine Learning apresentaram bons resultados, com acurácia acima de
98,72% para classificação binária e 92,72% para classificação com três classes. Ao analisarmos
a classificação em tempo real, ocorreu uma queda para 52,33% de acurácia com todos novos
participantes e participantes que estiveram no primeiro experimento e 69,00% para apenas os
participantes que estiveram na primeira rodada de experimentos. A arquitetura apresentou ótima
estabilidade de comunicação e funcionamento, realizando aquisições curtas e longas de forma
eficiente, sem perdas de dados nem travamentos. Os dados do dataset também apresentaram
bons resultados, com valores plausíveis e justificáveis dentro do contexto do experimento reali-
zado. Os resultados de predição obtidos ao testar o modelo com os participantes que estiveram
no treinamento, os resultados foram bastante elevados. Porém apresentaram queda significativa
ao tentar classificar participantes novos, como nos experimentos em tempo real.

Palavras-chave: Aquisição Multisinais. Detecção de Estresse. Inteligência Artificial. Senso-
res Vestíveis. Sinais Fisiológicos.
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1 INTRODUCTION

Stress has had a direct impact on people’s lives in recent years, as reported by Farias et al.

(2011) to Can, Arnrich and Ersoya (2019). Studies about the stress occurrence in health profes-

sionals demonstrated that many people suffer its effects. The most common physical symptoms

of stress are headache, feeling tired, leg pain, and tachycardia. In addition, many professionals

reported difficulty differentiating emotional and physical stress. Not dealing with stress may

turn it into a problem if the person is periodically under stress for long periods. The authors

explain that stress may cause issues development in many parts of our body, such as in the stom-

ach, heart, lymphatic system, immune system, decreasing the levels of endorphin and serotonin,

consequently causing discouragement.

The aspects listed are just a tiny part of the problems arising from the lack of health care.

Gibbs et al. (2015) argue that sedentary behavior increases the risk of the occurrence of health

diseases, and the level of physical inactivity may be related to the early development of other

conditions, such as diabetes or high blood pressure. The continuous monitoring of physiological

signs can help prevent health issues by using pattern detection resources to identify possible

stress contexts. Wearable sensors are a great low-cost alternative for patient monitoring in the

hospital context, in contrast to commercial medical equipment that has a high cost, which is

often a problem for the public sector (NISWAR et al., 2019). Elmalaki et al. (2021) explains

that the wearable sensors, due to their cost, are good alternatives for wide use in the context of

public health, thus allowing a large-scale use, serving more people with less financial resources.

Furthermore, wearable sensors are an excellent option for performing medical monitoring

simplified outside the hospital environment. Wearable devices are good non-intrusive options

for monitoring patients. For this reason, their use has increased in the health care field in recent

years (KIM; KO, 2021). Besides, Dunn, Runge and Snyder (2018) argues that the wearable

sensors provide opportunities to improve the quality of the treatments due to the easy patient

follow-up, regardless of the patients’ location, such as in the hospital, clinic, ambulatory, or

home. On the other hand, obtaining valuable data is a complicated issue due to the large volume

of information. Despite these advantages, it is important to highlight what Kim and Ko (2021)

explains, that there are still many legal issues related to the use of wearable sensors, mainly

regarding telemedicine.

Kim and Ko (2021) highlight that several works presented good results with these devices

applied in ambulatory monitoring. The authors explain that there are already medical devices

with non-intrusive characteristics. For example, the Holter monitors continuous ECG record-

ings with excellent signals. However, these devices cannot get a wide variety of signs, such as

EMG, EDA, or EEG. Gao, Brooks and Klonoff (2018) argue that the wearable sensors allow

continuous monitoring of various signals, be in the hospital, work, or house. Besides, it is an al-

ternative non-intrusive, no restricting the movement, and non-intrusive, without insertion. The

precision is currently improved, and the communication is more stable to transfer the data to
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the device that stores the signs. After the acquisition, the signal quality can be even improved

by filtering the data and reducing some eventual noise or correcting distortions (PONCIANO

et al., 2020).

An architecture that performs physiological signals acquisition can be part of a larger ecosys-

tem by including many other issues about architectures and applications. For example, the

architecture can mix computing, edge computing, or even if the application would run in the

cloud or locally (HEIDEL; HAGIST, 2020). Concerning the application, there are many alter-

natives from signaling and visualization. Another option is to configure the architecture to send

a message if anything is detected. Collaborating with the aspects previously indicated, Dunn,

Runge and Snyder (2018) evaluated twenty-seven different wearable sensors. The authors also

describe the importance of the wearable sensors applied to health, highlighting how a medi-

cal evolution enabled monitoring patients outside the hospital environment. Dunn, Runge and

Snyder (2018) point out the lack of standardization since each device is limited to its platform,

hindering the possibility of application and development.

Heidel and Hagist (2020) points out the benefits and risks of using wearable sensors in a

healthcare system. According to the authors, Germany is the first world country to use wearable

sensors on a large scale. The main benefits are easy patient follow-up; the patient can carry out

his acquisition with minimal guidance; simplified sharing of the data obtained; no location

limits. On the other hand, there is a concern regarding the privacy of the acquired data. Another

issue is the possibility of losing relevant data for the data transmission. As highlighted, we see

a research gap to be fulfilled in this context since medical equipment has a very high cost for

the health system. We may combine this information with the fact that many devices do not

allow continuous patient monitoring out of hospital beds. Finally, we believe it is essential that

the system performs real-time anomaly detection based on defined data.

1.1 Research question and objectives

Based on the context previously mentioned, this research aims to develop an integrated

architecture for multi-signals acquisition to detect patterns based on artificial intelligence. The

research question for this work is:

• How to detect stress through a low-cost architecture for the physiological multi-signals

acquisition based on wearable sensors?

To answer the research question, the main objective of this work was the development of an

architecture to integrate wearable sensors and single-board computers to identify in real-time

the patterns of interest.

Thus, to respond to the general objective, we formulate the following specific objectives:

a) Define requirements for an architecture composed of single-board computer and wearable

sensors, acquiring, processing, and filtering physiological signals;



17

b) Explore artificial intelligence options to detect patterns based on physiological signals;

c) Analyze the architecture through practical application of data acquisition;

d) Train artificial intelligence models and tests for real-time stress detection.

1.2 Methodology

This work starts with a systematic literature review to identify the state-of-the-art connected

wearable sensors and artificial intelligence applied to health. Some issues were listed, such as:

What can be the differentials developed? What are the possible challenges encountered through-

out the project? What concepts are necessary for the development of the proposed architecture?

This revision determined the scope and established the goals to develop the architecture.

We adopted an exploratory methodology in this work that aims to describe details of an

applied scenario for the architecture use and demonstrate possibilities for the development of

a solution through experimentation, as described Koche (2011). Regarding the methodological

process, this work has as characteristic an experimental approach (GERHARDT; SILVEIRA,

2009), aiming to create prototype hardware and software to perform the detection of physiolog-

ical signals through artificial intelligence.

Due to the focus on data, this work follows a data-driven approach, intending to use artificial

intelligence (BLIKSTEIN, 2011). The prototype has four blocks, focusing on allowing flexi-

bility for the architecture. The developed architecture was named ATHENA I, an acronym for

Architecture for Healthcare Reinforced by Artificial Intelligence. Aiming to collaborate with

the area, the division also seeks to permit other researchers to explore the advances of this work.

This research counted on the support of the post-graduate program in psychology at the

University of Vale do Rio do Sinos (UNISINOS) to validate the results and decisions related to

the health field. A psychology research group with volunteers conducted all experiments that

we have performed to validate the ATHENA I. This process has received the approval of the

scientific ethics committee to carry out. Due to the context of the COVID-19 pandemic, the

experiments followed all health protocols for the safety of the participants.

The research methodology for the development of this architecture follows the following

steps (WAZLAWICK, 2014): I) bibliographic review of physiological signals, the internet

of things context, as well as concepts of artificial intelligence; II) systematic review of the

state-of-the-art; III) development of the architecture prototype; IV) acquisition of the dataset,

through experiments; V) development of the artificial intelligence patterns detection model;

VI) experiments to evaluate the results; VII) description and documentation.

1.3 Scientific Contributions

This Master Thesis investigates an architecture to detect stress patterns using physiological

signs. We expect to improve the current stress detection possibilities with this architecture,
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providing a low cost and flexible support. In this way, we detailed the main contributions of this

work below.

• Mapping of the state of the art approaches for physiological pattern detection, with a

literature review, conducted considering both computing and healthcare areas;

• New architecture to detect stress patterns using wearable sensors and single-board com-

puters. Based on the research opportunities identified in the literature, we proposed new

architecture. The new architecture divided into blocks operates from signal acquisition,

processing, data storage, model training, and real-time classification;

• Acquisition of a dataset based on the induction of stress in clinical participants (they have

psychological monitoring) and non-clinical participants (they do not have monitoring);

• Validation system process developed to test each of the blocks individually and tests with

the entire architecture;

• Machine learning model training focused on stress detection;

• Experiments using real-time detection in stress-inducing experiments;

• Comparative analysis between the results of clinical and non-clinical patients highlighting

the impact of the allostatic load.

1.4 Text structure

This research is structured in seven other chapters besides this one (Chapter 1). Starting with

the explanation of the main concepts used in the present work, in the chapter 2, which is divided

into three sections. These three sections cover the topics Physiological Aspects (2.1), Internet of

Things (2.2) and Artificial Intelligence (2.3). In the chapter 3, we present a systematic review of

the literature, which identifies the most important articles in the research area (3.1), in addition

to highlighting the most significant contributions of each work (3.2).

Next (in chapter 4), based on the theoretical aspects evaluated and with the bibliographic

review carried out, we describe the proposed architecture, which seeks to solve the problems

identified in this work, in addition to answering the question of research. This chapter has two

sections, one to present an overview of the model (4.1), to describe it at a conceptual and design

level, and then present the components used (4.2). Next, in Chapter 5, the stages of develop-

ment of the prototype are presented, having as reference the proposed architecture. We carried

out the development in stages, according to the architecture division. Each section presents a

development stage, starting with the Acquisition block (5.2), where the architecture’s operating

cycle begins, passing through Processing (5.3), Database ( 5.4) and Pattern Classification (5.5).

After the implementation of the prototype, we present the experiments carried out in Chap-

ter 6. Which we divided into six stages, as the communication stability (6.1), the processing of
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signals in real-time (6.2), and the third (6.3) covering storage data. The following section (6.4)

describes the practical experiment carried out to compose the dataset. We carried out this exper-

iment with participants in partnership with the Graduate Program in Psychology. The last two

sections are for classification; the section (6.5) presents the process of the Offline classification

experiment. In the section (6.6), we present how we performed the stress induction experiment

to perform the detection in real-time.

The chapter 7 aims to gather all the data obtained and perform an in-depth analysis of

the data obtained (7.1), architecture stability, the volume of data generated (7.2), as well as

evaluating the signals obtained (7.3). The second part of the results chapter (7) presents the

results related to the training of the ML model (7.4), in the 7.5 section, we present the results of

stress induction experiments to perform detection in real-time. The last section (7.6) presents

the results obtained in training to update the Machine Learning model, using data from both ML

experiments. Finally, the chapter 8 summarizes all the conclusions obtained with the present

work so far. The topics approached are an overview of the architecture, the contributions of the

work (8.1), and suggestions for next works and next steps in the development of the architecture

(8.2).
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2 THEORETICAL BACKGROUND

This section presents and details the basic concepts used in this work. We detail the principal

physiological signs, describing each signal and explaining their particularities. In the sequence,

we present some concepts of the internet of things and some devices valuable for this context.

Lastly, we talk about artificial intelligence. The topics are machine learning techniques, deep

learning models, and concepts.

2.1 Physiological Aspects

Physiological signs are relevant ways to check a person’s health status, indicating the pres-

ence or absence of disease. Many papers address the topic of physiological signals as a means

of automatic disease detection by intelligent systems, as can be seen in the works carried out by

the authors Ali et al. (2020), Li and Liu (2020) and Murat et al. (2020). We may obtain the an-

alyzed signals through sophisticated and expensive medical equipment. An alternative is to use

simpler devices with a low cost, such as wearable sensors. Among the most used signs are the

Electrocardiogram, Heart Rate, Blood Volume Pulse, Electroencephalogram, Electromyogram,

Electrodermal Activity or Galvanic Skin Response, Respiration, Temperature, Blood Pressure,

among others. In this section, we describe the main signs used for this purpose.

2.1.1 Electrocardiogram

Electrocardiogram (ECG) is a graphical representation used to identify the heart’s electrical

activities. The ECG uses electrodes to obtain these signals. The information obtained based

on the ECG signal is heart rate (HR) and heart rate variability (HRV), also known as the R-R

interval. The electrocardiogram trace formed by the electrical signals that occur in the heart,

composed of the points P, Q, R, S, T, and U, as shown in Figure 1. The P wave results from atrial

depolarization. The waves that form the QRS complex correspond to ventricular depolarization.

The T wave represents the repolarization of the ventricle (REIS et al., 2013).

Figure 1 – Electrical Activity of the Heart

Source: Barrett et al. (2010)
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According to Feldman and Goldwasser (2004), HR is the number of heartbeats in a minute.

The usual heart rate has values between 60 bpm and 100 bpm. The decrease in HR, called

bradycardia, may be observed in conditioned athletes, after periods of meditation or under the

effect of medication. The increase in heart rate, called tachycardia, is more frequently observed

after exercise, anxiety, and after ingestion of alcohol, caffeine, or nicotine. Heart rate variability

(R-R interval) is the time interval between the occurrence of each QRS complex. This interval

is typical when its intervals are regular and constant. If there is any irregularity in the signs, it

is necessary to investigate (FELDMAN; GOLDWASSER, 2004).

The ECG is one of the tests most commonly used in the studies analyzed, proving accu-

rate in identifying diseases, moods or stress. A standard electrocardiogram consists of twelve

recording leads. The points are six frontal, three bipolar (D1, D2, D3), and other unipolar

(aVR, aVL, and aVF). Six from the horizontal electrical plane, all of which are unipolar (V1,

V2, V3, V4, V5, and V6) (FELDMAN; GOLDWASSER, 2004). For easy exams, as well as in

the wearable sensors, we used only the three frontal bipolar electrodes, as shown in Figure 2.

Figure 2 – ECG Electrode Placement

Source: PLUX – Wireless Biosignals, S.A.
(2020a)

2.1.2 Blood Volume Pulse

Blood Volume Pulse (BVP) signals are widely used for heart rhythm monitoring and pro-

vide simple detection of arrhythmia usually. The method used for this measure is the photo-

plethysmogram (PPG), which positions a sensor at the fingertip, and it has extensive use in

smartwatches. The PPG comprises two components, an infrared light-emitting source and a

photodetector. It measures the pulse changes in blood volume in the arteries and capillaries that

correspond to changes in the heart rate and blood flow (KIM; KO, 2021). According to Kim and

Ko (2021), BVP has applicability in situations where we desire to obtain heart rate variability,

but instead of using ECG, use the PPG due to the practicality of measuring. The main reason
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for this is that it allows greater freedom of movement, but it does not have such high accuracy.

2.1.3 Electroencephalogram

Electroencephalogram (EEG) analyzes brain electrical activity and wave characteristics

such as frequency, amplitude, and shape. Usually, this method is non-intrusive and performed

through electrodes. Due to the sensitivity of the signals, it is essential to apply the electrodes

in the exact location, under penalty of invalidity of the acquired data (KWON; SHIN; KIM,

2018). As stated by Schomer and Silva (2017), EEG measures voltage fluctuations resulting

from ionic current within neurons in the brain. Diagnostic applications usually focus on the

spectral content of the EEG, that is, on the type of neural oscillations. The typical values of the

brain signals observed are between 1 and 20 Hz.

Barrett et al. (2010) highlights that the standard signal obtained through the EEG (4) has a

very regular wave with a frequency of 8 to 13 Hz and amplitude of 50-100 µV. However, we can

distinguish four types of mental waves according to the individual’s state. The first is the beta

wave, classified by 14 Hz to 30 Hz, verified in a normal state. The second is the Alpha waves,

characterized by 8 Hz to 13 Hz, occurring in relaxed mental states and sleep. Theta waves have

wavings of 4-7 per second observed in meditation and deep relaxation periods. Finally, the

Delta wave varies from 0.5 Hz to 3 Hz, occurring only in a deep sleep (SCHOMER; SILVA,

2017).

Figure 3 – EEG Typical Signal

Source: Adapted from Barrett et al. (2010)

2.1.4 Electromyogram

Electromyogram (EMG) signals to measure the electrical activity of muscles. The muscle

movement occurs due to bio-electric signals sent by our brain to the muscle fibers. The elec-

tromyogram uses electrodes to measure the amplitude of these signals (PLUX – WIRELESS

BIOSIGNALS, S.A., 2020b). We may perform the EMG in an intrusive or non-intrusive way.

If performed non-intrusive, it is usually called surface electromyographic (sEMG). According

to Merletti et al. (2009), the signals obtained through EMG are essential for several areas. The

EMG is helpful in rehabilitation medicine, ergonomics, sports medicine, physiotherapy, and
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neurophysiology.

2.1.5 Electrodermal Activity

Electrodermal Activity (EDA) is related to the peripheral response arising from the activa-

tion of the sympathetic nervous system. This signal is an involuntary response controlled by the

central nervous system, acting directly on the activation of the skin’s sweat glands, which are

responsible for the production of the sweat due to emotional stimulation (DAWSON; SCHELL;

FILION, 2007). The EDA is also called skin conductance (SC), galvanic skin response (GSR),

electrodermal response (EDR), or skin conductance response (SCR). In the case of signs ob-

tained through wearable sensors PLUX – WIRELESS BIOSIGNALS, S.A., 2020c, the data

obtained have Siemens as the unit of measurement, in order of magnitude of microsiemens

(µS), as may be seen in the 4.

Figure 4 – EDA Typical Signal - Unfiltered

Source: PLUX – Wireless Biosignals, S.A. (2020c)

Sharma, Kacker and Sharma (2016) explains that the galvanic resistance of the skin is an

accessible and quite sensitive parameter of the nervous system. It reflects the emotional state

of the individual. The response appears to increase the electrical conduction of the skin. This

increase results from the decrease of the intrinsic resistance of the skin. The most appropriate

place to check these signals would be the palms of the hands or the soles of the feet, which may

identify approximately two seconds after the stimulation.

2.1.6 Respiratory Rate

Respiratory rate, or simply respiration (RSP), consists of the gas exchange of oxygen (O2)

and carbon dioxide (CO2) of the organism with the environment. Breathing patterns vary ac-

cording to age. We expect 18 to 25 breaths per minute for people around six years old. By

10, we usually get values between 17 and 23 breaths per minute. Finally, in adulthood, rage is

generally found between 15 and 18 breaths per minute (BARRETT et al., 2010).

As stated by Barrett et al. (2010), the ventilation usually increases immediately after starting
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a physical activity in the first moments (Figure 5). A few minutes after, the increase becomes

slower. However, the process of recovering has similar behavior, with the difference that venti-

lation has decreased. The wearable sensors generally use piezoelectric sensors to capture breath

signals by checking the displacement variation when inhaling and exhaling (PLUX – WIRE-

LESS BIOSIGNALS, S.A., 2020d).

Figure 5 – Representation of respiratory changes

Source: Barrett et al. (2010)

2.1.7 Stress

Stress is a physical and mental response resulting from our responsibilities for daily activ-

ities, and it is hard to try to avoid it. It is often difficult to identify the state of the stress, and

it is necessary to know the common symptoms. The symptoms include chronic pain, insomnia,

trouble sleeping, digestive problems, loss of appetite, difficulty concentrating, and tiredness. So

that stress does not become a chronic problem, we must control it. Following some guidelines

that may help, such as maintaining a good diet, sleeping enough hours of sleep, about 7 to 8

hours a night, accomplishment regular physical exercise, as well as a decrease in alcohol and

coffee intake (LEGG, 2020).

According to Cohen, Janicki-Deverts and Miller (2007), stress has two main divisions of

how the body reacts. The first is acute stress, which has a rapid response triggered by the

sympathetic-adrenal-medullary axis (SAM). The second is the response to chronic stress fol-

lowing the hypothalamic-pituitary-adrenal (HPA) axis, which has a slow response. These ac-

tions result from our autonomic nervous system. We may divide the autonomic nervous system

into the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS).

Stress is often associated with other problems, further aggravating the problem. “Stress

and anxiety often go hand in hand. Stress comes from the demands placed on our brain and

body. Anxiety is when we feel high levels of worry, unease, or fear. (LEGG, 2020).”. Thus, we

concluded that stress is undoubtedly a problem that we must monitor and treat, directly affecting

the person’s quality of life. Cohen, Janicki-Deverts and Miller (2007) explains that chronic

stress frequently causes other diseases, such as cardiovascular disease, depression, increased
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blood pressure, and decreased immunity.

Recent studies have analyzed the effect and impact of allostatic load on the behavior of

physiological signs of people who have or do not have some psychological support. As Corri-

gan et al. (2021) explains, the allostatic load is the metabolic energy composed by biological

measurements. Allostatic load captures the dysregulation of various physiological systems as

a result of chronic exposure to stress (GUIDI et al., 2021). An overload of allostatic load can

generate several problems in various organs. As a consequence, cellular degeneration, hyper-

sensitivity, hypertension, anxiety, and depression (CORRIGAN et al., 2021).

2.2 Internet of Things

2.2.1 Architecture

Di Martino et al. (2018) argues that the Internet of Things (IoT) has a wide variety of tech-

nologies and application areas. This application results in a great diversity of solutions with a

flexible architecture. The application may be specific, as applied to health, safety, and industry,

or generic, resulting in different architectures for each case. Sethi and Sarangi (2017) defines

two architectures possibilities for IoT models (Figure 6), a model with three layers and another

more specific, formed by five layers.

Figure 6 – IoT Layers

Source: Sethi and Sarangi (2017)

In model A, the first layer, called the perception layer, is the physical layer, which has

sensors to detect and acquire information about the environment. The second layer, called

the network layer, is when communication between devices happens. The devices may be

intelligent, standard network equipment, or servers, local or on the cloud in this layer. In the

case of the last layer of model A, the application layer is responsible for the services that are

available to the user (SETHI; SARANGI, 2017). It is possible to check the details of protocols
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present in each layer of the model through Figure 7.

Figure 7 – IoT Protocol Layers

Source: Nour et al. (2019)

Related to model B, the Network layer has become two other layers. Another alteration

in this model is the addition of another layer after the Application layer. The transport layer is

responsible for transferring the sensor data from the perception layer to the processing layer and

vice versa through networks such as wireless, LAN, Bluetooth, RFID, or NFC. The Processing

layer, also known as the middleware layer, stores, analyzes and processes the data from the

transport layer. At least, the business layer manages the whole IoT system (SETHI; SARANGI,

2017).

Nour et al. (2019) explains that Smart Healthcare is one of the most relevant applications of

the IoT. Smart healthcare uses devices to measure the vital signal of the patients, it is possible

to facilitate the diagnosis of the diseases through remote exams or health monitoring. In this

context, many technologies are used, such as sensors, actuators, wireless networking devices,

medical applications, and wearable sensors. Medical sensors may acquire data from physio-

logical signals. Personal mobile devices are also reliable options in this context, as they have

motion and location sensors, such as an accelerometer (ACC) and GPS.

According to Costa et al. (2018) the IoT area has one sub-area, called the Internet of Health

Things (IoHT), in which the focus is on the patient monitoring. The authors explain that one

of the essential features of this area is machine learning techniques to correlate the data, trans-

forming it into useful information.

2.2.2 Single-board computer

Jovanovic et al. (2014) define the single-board computer (SBC) as a general-purpose com-
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puter built on a single board with a microprocessor, memories, communication protocols, digital

and analog ports. Due to their flexibility, these devices are often used in automation, industrial

and residential systems. The single-board computer has had its capabilities increasing in recent

years, allowing these devices to take on more responsibility in IoT networks. An appreciable

characteristic of this type of device is the possibility to support an operating system, which

allows great flexibility of applications.

In the case of conventional computers, the dominant operating system is Windows. How-

ever, the presence of the Linux operating system in embedded systems is much more prevalent.

Linux is an open-source operating system characterized by high reliability and easy develop-

ment JOVANOVIC et al., 2014. It is possible to compare some SBCs in Table 1, it contains

four different models from two different manufacturers. We compare them concerning their

main characteristics, such as model, processor architecture, the processor’s model, number of

cores, and frequency of operation of the processor.

Besides the operating system supported by the board, as well as the amount of RAM avail-

able. In addition to this more performance-oriented information, we can also see in the Table

1 data about the physical interfaces. Some examples of the physical interfaces listed are the

Ethernet interface, the presence of Wi-Fi or not, Bluetooth, which is the model of the video

output, and the number of General Purpose Input/Output (GPIO).

Table 1 – Comparision of SBCs
Raspberry Pi Raspberry Pi BeagleBone BeagleBone

Model 3 Model B+ 4 Model B Black AI
Architecture Cortex-A53 Cortex-A72 Cortex-A8 Cortex-A18
Processor BCM2837B0 BCM2711 AM335x AM5729
Number of cores 4 4 1 2
CPU Frequency 1.4 GHz 1.5 GHz 1 GHz 1 GHz
Supported OS Linux / Windows Linux / Windows Linux / Android Linux
RAM 1 GB 2/4/8 GB 512 MB 1 GB
Ethernet Gigabit Gigabit Megabit Gigabit
Wi-Fi Yes Yes No Yes
Bluetooth Yes Yes No Yes
Video Output HDMI micro-HDMI HDMI micro-HDMI
GPIO 40 40 2x46 2x46

Source: Adapted from Raspberry Pi Foundation (2021) and Texas Instruments (2020)

Raspberry Pi stands out due to its low cost combined with good processing capacity, as

seen in Table 1. This platform is the one adopted for this project. The Raspberry Foundation,

from the United Kingdom, is responsible for the device development, with an ARM architecture

processor based on the System on Chip (SoC). In addition, the Raspberry Pi has the possibility

of Bluetooth and serial communication via SPI (RASPBERRY PI FOUNDATION, 2021).

Raspberry has a wide variety of boards available, as shown in Figure 8. Figure 8 (a) shows

the Raspberry Pi 4 Model B, the board with the highest processing power developed so far,
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with models with different amounts of RAM, USB 3.0, and the possibility to connect up to two

HDMI monitors. In Figure 8 (b), we can see the Raspberry Pi 3 Model B +, which has many

similarities with the model presented previously (Figure 8 (a)), but with the main differences

the processor and the available RAM.

Figure 8 – Raspberry models

Source: Adapted from Raspberry Pi Foundation (2021)

Figure 8 (c) shows the Raspberry Pi Zero W, a model focused on low cost, reduced process-

ing, and also with a smaller size. This model features a processor with only a 1 GHz core and

512 MB of RAM, looking very similar to the BeagleBoard models. It has GPIOs available, as

well as Bluetooth and Wi-Fi connection. Finally, we have the Raspberry Pi Pico, exemplified

in Figure 8 (d). Unlike the previous ones, this card does not aim to actuate as a computer but

rather as a microprocessor. However, it has a dual-core ARM processor with only 264 KB of

internal RAM.

2.2.3 Wearable Sensors

Nasiri (2019) defines wearable sensors as devices with the ability to be integrated directly

over the body as a way to monitor the individual’s health status. Due to the nanosensors inte-

grated into devices, these devices provide an excellent non-intrusive approach. These sensors

usually provide information related to physiological signals, which allows monitoring in several

areas, not only in health, as can be seen in Figure 9.

Jovanov et al. (2005) argues that wearable sensors, when integrated with solutions with

artificial intelligence, allow automatic detections of the user’s health status. They also allow the

sending of alerts to health professionals based on previously defined physiological parameters.

Wearable sensors can assist in monitoring chronic diseases or even preventing them. Wilson and

Laing (2018) defend the use of wearable sensors in rehabilitation and postoperative situations.

Wilson and Laing (2018) explains that for good use of wearable sensors, several other devices

must be close to the system, such as actuators, controllers, microcontrollers, source of energy,

acquisition software, and storage location.

There are several types of wearable sensors available nowadays, each aimed at a kind of

signal, focusing on different areas, such as for personal use, we can mention the Apple Watch

(APPLE WATCH, 2021). It has good accuracy for measuring data such as oxygenation in the

blood and electrocardiogram. The measure happens through green, red, and infrared LEDs.
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Figure 9 – Wearable Sensors Application

Source: Sreenilayam et al. (2020)

These LEDs shine light into the blood vessels of the pulse, and the photodiodes measure the

amount of reflected light. Concerning wearable sensors for sports use, we can mention the

company Polar (POLAR, 2021), which develops commercial products aimed at physiological

monitoring in physical activities, such as watches with heart monitors and integrated GPS or

straps to monitor the variation of heart rate.

The company PLUX (PLUX WIRELESS BIOSIGNALS, 2021), developer of the wearable

sensor, already mentioned, BITalino has a wide variety of models. The models have a wide

variability of objectives, such as MuscleBIT (Figure 10 (a)), aimed at monitoring the electrical

signals of muscles. The HeartBIT (Figure 10 (b)) to monitor the cardiovascular system through

sensors such as ECG and PPG. The NeuroBIT (Figure 10 (c)) aimed at monitoring EEG signals.

Finally, the PsychoBIT (Figure 10 (d)) is a set of sensors aimed at monitoring a set of signals

influenced by the nervous system, influenced by psychological effects, such as stress.

In addition to these kits presented, there are also options with only the controller and unit

sensors, which allows for more personalized development when desired. The model that we

use in this work is PsychoBIT (Figure 10 (d)) due to the wide variety of sensors, which can

be identified both for detecting mood changes, detecting stress, and, also, cardiac monitoring

(PLUX WIRELESS BIOSIGNALS, 2021). The communication of this wearable sensor, like

the vast majority, uses Bluetooth to perform a data transfer. Another essential feature is the

possibility of using the battery as a power source. Among the available sensors, we have:

• Electrocardiography (ECG) Sensor

• Electrodermal Activity (EDA) Sensor

• Respiration (PZT) Sensor

• Light (LUX) Sensor
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Figure 10 – BITalino Models

Source: Adapted from PLUX Wireless Biosignals (2021)

• PulseSensor (PPG)

• Pushbutton (BTN) Sensor

2.3 Artificial Intelligence

In this section, we make a short description of artificial intelligence. Initially, we talked

about Machine Learning and, next, talking about Deep Learning. Artificial Intelligence (AI)

is analogous to human intelligence but performed by software. Kaplan and Haenlein (2019)

defines artificial intelligence as a system capable of learning based on data provided, making a

relationship between information to identify patterns. Among the possible data sources that AI

can use are IoT systems.

2.3.1 Machine Learning

Machine learning (ML) is one of the sub-areas of AI, which aims to develop models to

identify, classify, predict data, and perform systems control. Supervised learning is a possible

approach to intelligent systems based on data provided by the user. In this case, the system tries

to infer if they can group the data by general parameters. Another possibility is unsupervised

learning, which performs the classification based on the data characteristics. Machine learning,

although very useful, is a tool that we cannot apply in the same way to all problems HAYKIN,

2009.

According to Heaton (2015), ML has great capacity for generalization. Generalization con-

sists of classifying a dataset not yet seen previously correctly. If the model has low general-

ization capacity, it usually occurs due to overfitting in the training of the data, which results
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from low classification rates for new instances. There is a wide variety of algorithms capable of

detecting patterns. We can mention Linear Regressions (LR), Decision Tree (DT), Random For-

est (RF) Algorithm, Naive Bayes Algorithm, K-Nearest Neighbors (kNN) Algorithm, Support

Vector Machine (SVM) Algorithm, and Artificial neural networks (ANN).

Linear regression draws a straight line from a relation in a scatter plot. The data is displayed

graphically, and the algorithm tries to draw a line that separates the data. This line summarizes

a relationship between the data of two variables and can also make predictions. This type of

algorithm has a recommendation for datasets that have any constant growth/de-growth trend

(HAYKIN, 2009). DT is a supervised non-parametric Machine Learning method that makes

decisions walking from the root node to the leaf node. The purpose of a decision tree is to

decompose all available data and then tries group with their peers about the defined metric

(BISHOP, 2006).

Random Forest Algorithm is a supervised learning algorithm that creates decision trees

randomly, thus forming a forest. This method uses each tree in the choice of the final result.

The RF adds the elements randomly, and instead of looking for the best feature to perform

the separation of the nodes, the algorithm searches for the best feature (RUSSELL; NORVIG,

2009). The Naive Bayes algorithm is a probabilistic classifier based on the Bayes Theorem.

Among the possibilities of applications is the classification of an e-mail as SPAM or Non-SPAM

and identifying a subject based on its content, such as natural language processing (NLP) and

medical diagnostics. The method is usually applied when the attributes that describe instances

are conditionally independent (BISHOP, 2006).

kNN is a non-parametric algorithm, also classified as a lazy algorithm because it does not

require training data to generate the model. All data from the dataset are used in the test, making

training fast and slow testing and validation. kNN has a variable called K, defined as the main

parameter to be selected (BISHOP, 2006). SVM is a supervised learning algorithm focusing on

datasets training and classification. This method also can actuate on regressions, most indicated

for binary sorting. SVM operates by seeking a separation line, called a hyperplane, between the

class data to maximize the distance between the nearby points and minimize the error. SVM

has four types of functions, also called the kernel, which is linear, quadratic, polynomial, and

radial (HAYKIN, 2009).

ANNs are ML models based on the activity of biological neurons. Analog to the brain hu-

man, learning through training and weight adjustment. The main example of an ANN network

is the Multilayer Perceptron (MLP), an architecture with greater use in Artificial Neural Net-

works and usually applied to supervised learning, widely used in standard classification and

prediction of values. The network has an input, hidden layers that perform processing and out-

put (HAYKIN, 2009). The artificial neurons, as can be seen in Figure 11, have several inputs,

being able to suffer external stimulus, varying from x1 to xm, or stimulation of other neurons.

Inputs are weighted, modified during the learning process (wk1, wk2, ... wkm). All inputs are

added to the next neuron and sent to an activation function (Haykin (2009)).



32

Figure 11 – Model of a Neuron

Source: Adapted from Haykin (2009)

As stated by (Haykin2009), the activation functions limit the possible range for the ampli-

tude of the output signal (yk) to a finite value. Typically this range of the neuron output is

normalized from [0.1] to [−1.1]. Among the most used activation functions, we can mention

the Step Function, or Heaviside, which allows the neuron output to be only positive or nega-

tive, indicated for binary classifications. The Sigmoid function with increasing characteristics

behaves between linear and non-linear. The Rectified Linear Unit (ReLu) function is currently

one of the most used activation functions. Convolutional Neural Networks (CNN) is the main

application of the ReLu, because of an efficiency close to more advanced functions. Finally, we

have Softmax, which transforms each output to values in the range between 0 and 1, and the

sum of all outputs does not exceed 1, widely used for multi-class classification BISHOP, 2006.

2.3.2 Deep Learning

The traditional ML techniques have a negative aspect, the need to extract features. The

feature extraction requires a wide dominance of both the algorithms and the data. The scientists

seeking to solve this problem developed the Deep Learning (DL) method, an AI approach in

which computers learn to understand the world and identify patterns. This learning happens

through models represented graphically through multiple layers of processing BISHOP, 2006.

DL models have an automatic feature extraction through a cascade of several layers. These

layers have non-linear processing units for the extraction and feature transformation. As an

ANN, this technique applies a series of layers that actuate similarly to a neuron. The neurons

perform the processing of a small part of the total information. There are two main classes of

deep neural networks. The first we can say is the feedforward (Figure 12 (a)), which has as a

characteristic of decision-making only based on the information received in the previous layer.

The second type is the recurring network (Figure 12 (b)), whose main difference is decision

making based on decisions previously taken HAYKIN, 2009.

When it comes to models of approach to DL models, we can mention three main ones. The
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Figure 12 – Types of Neural Network

Source: Adapted from Haykin (2009)

main models are Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),

and Long Short-Term Memory (LSTM). CNN is a class of artificial neural networks, classified

as feedforward, which has as a characteristic the decision making based only on the information

received and passes its decision to the neurons of the next layer. Processing and analysis of dig-

ital images is the main application. Convolutional networks follow biological processes, such

as the connectivity between neurons in the organization of the visual cortex. The convolution

is part of the CNN recognition process, which has three stages: the convolution of each input

layer; the application of a non-linear activation function; subsampling, called pooling (BISHOP,

2006).

RNN is a neural network that detects sequences in data streams, mapping output to an input,

depending on the output of the previous layers. In other words, we can say that the RNN makes

decisions based not only on the data received but also on decisions taken previously. As such,

recurrent networks have two sources of input, the present and the recent past, which combine to

determine how they respond to new data. Due to this characteristic, we can say that an RNN has

memory (HAYKIN, 2009). LSTM is an RNN architecture that has the feature of storing values

in intervals. We generally use this network in scenarios where we desire to classify, process,

and predict time series. One of the main appreciable differences in this model is that it may

store data at much higher intervals when compared with an RNN. It seeks to solve a common

problem in RNNs, in which the vanishing gradient occurs, which consists of the loss of gradient

information in networks with many layers (HEATON, 2015).

Some functions are valuable when dealing with DL, such as pooling, which is a network

evolution process. The pooling groups the features in a higher-level layer, generated from lower

layer patterns. Another relevant function is the Dropout, a function widely used to reduce

network overfitting. It is necessary due to the large number of neurons in the hidden layers

(HEATON, 2015).
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2.3.3 Evaluation

According to (Haykin2009), an efficient evaluation of the trained algorithm or model is

essential to certificate the efficiency of the classifiers. We can carry out the evaluation process

through quality metrics or a confusion matrix. After training, we need a method to assess how

many instances were classified correctly and incorrectly in each class of the problem.

Firstly, we must mention the accuracy (Eq. 2.1), which is the most used method to evaluate.

The accuracy evaluates the correctness rate concerning the number of correctness in the model.

Corresponds to the number of correct answers that the model obtained based on the number of

tested instances. Precision (Eq. 2.2) is the rate of samples labeled as "True" which are effective

in the "True" class. Recall (Eq. 2.3), also known as sensitivity, is the measure that corresponds

to the proportion of positive examples that are correctly classified. F1 score (Eq. 2.4) consists

of performing the harmonic average between precision and recall. The main characteristic of

this metric is the fact that if the precision, or the recall, is zero or very close to that, the F1 score

is shallow (HEATON, 2015).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

F1 Score = 2 ·
Precision ·Recall

Precision+Recall
(2.4)

The confusion matrix has two dimensions, the true classes, and the predicted classes. For

a confusion matrix with two classes, the matrix has its choices structured to classify whether

the event occurred (positive class) or not (negative class). Thus, when a sample is positive

and receives the classification as positive, it is called True Positive (TP). Moreover, if the neg-

ative sample is classified correctly, we have True Negative (TN). Conversely, if the negative

example has a positive classification, it is called False Positive (FP). On the other hand, if the

positive sample received a negative classification, we say that we have a False Negative (FN).

Another relevant metric is the Receiver Operating Characteristic (ROC) Curve, an interesting

metric for tasks with disproportionate classes, measuring the area under a curve formed by the

graph between the rate of positive examples, which are positive, and the rate of false positives

(HEATON, 2015).

Haykin (2009) present three other relevant metrics the Mean Squared Error (MSE) (Eq.

2.5) is one of the most used, responsible for calculating the average of the squared model er-

rors. Hence, the more minor differences have less impact than the more prominent differences.
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Derived from the MSE, it is possible to calculate the Root Mean Squared Error (RMSE) (Eq.

2.6), which consists of a measure that calculates the errors between observed values (real) and

predictions (hypotheses). Mean Absolute Error (MAE) (Eq. 2.7) calculates weights by squaring

all values, assigning the same weight to all differences. Finally, we have the Mean Absolute

Percentage Error (MAPE) (Eq. 2.8) calculates the average percentage of the absolute deviation

between forecasts and reality.

MSE =
1

n

n
∑

i=1

(Yi − Ŷi)
2 (2.5)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Yi − Ŷi)2 (2.6)

MAE =
1

n

n
∑

j=1

|Yi − Ŷi| (2.7)

MAPE =
100%

n

n
∑

j=1

|
Yi − Ŷi

Yi

| (2.8)

In the next chapter, chapter 3, we will present the state of the art of related works to this

work. First, we list the main points of the work, highlighting methodologies and results ob-

tained. Subsequently, we performed a critical evaluation of the results to verify the current

research gap and the strengths of the current papers.
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3 RELATED WORK

This chapter discusses the studied papers related to this research. The reviewed works seek

to guide us concerning the advantages and disadvantages of wearable sensors in health moni-

toring and pattern identification. We intended to verify which ones are most used nowadays and

their applications. Another relevant topic in our research is identifying the most appropriate

approaches for developing a pattern prediction model for different physiological signals. We

seek to design a flexible signal acquisition architecture that accepts different wearable sensors

with distinct signs.

Initially, we do a brief description of the works. In the sequence, we analyze these papers,

highlighting the principal contributions and seeking opportunities. To select the most relevant

papers on the subject of this dissertation, we carried out exploratory research in scientific works.

Some studies analyzed do not meet both requirements. However, they have relevance in at least

one of the two topics of the work. Whether the importance of the current artificial intelli-

gence approach or wearable sensors for physiological signals acquisition. We have surveyed

the CAPES website, Google Scholar, Elsevier, IEEE Explore, and ACM. For each repository,

we used the following strings: "wearable"; "machine learning AND physiological signs"; "deep

learning AND physiological signs"; "wearable AND artificial intelligence"; "stress detection";

"stress monitoring". We have filtered the papers from 2017 to 2021. After the selection outlined

above, we have analyzed 20 papers.

3.1 Related Work Analysis

This section relates to some recent works relative to wearable sensors and artificial neural

networks applied to physiological signs. We have reviewed several papers with this theme to

check the state-of-the-art related to the application of Artificial Intelligence in signals obtained

through wearable sensors. According to Sreenilayam et al. (2020) and Rienzo and Mukkamala

(2021), in reason of the current increasing demand for wearable sensors to monitoring people’s

health, these devices are more and more accurate in their measures. The authors also highlight

that wearable sensors are an excellent option for monitoring and preventing diseases at a low

cost. In addition to having a wide variety of applications, they are being able to acquire data

such as cardiovascular, ECG, EMG, EEG, EDA, accelerometer (ACC), a global positioning

system (GPS), temperature sensors (TEMP), metabolic, gastrointestinal monitoring, sleep, neu-

rology, movement disorders, mental health, maternal, and pulmonary health (DUNN; RUNGE;

SNYDER, 2018). However, during the acquisition of the signs, the wearable sensors can mea-

sure noise with the raw signs. Consequently, the literature recommends analyzing the signal and

applying some filters to eliminate these noises with various pre-processing techniques (MURAT

et al., 2020).

As stated by Jacobsen et al. (2021), in the hospital environment, it is essential for efficient
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medical evaluation signals such as HR, BP, oxygen saturation, and temperature (Figure 13).

Wearable sensors are a relevant way to get reliable signals at a low cost. The authors proposed a

review of the current papers to prove and discover the real situation of wearable sensors applied

in this context. After the revision of the works, Jacobsen et al. (2021) claim that wearable

sensors have great potential in the medical care area and already have many successful cases.

Nevertheless, they emphasize that it is essential to choose adequate wearable sensors according

to the context. Mishra et al. (2020) describe a work that relates to the use of wearable sensors

to detect COVID-19 cases. According to the authors, wearable sensors are valuable devices

for detecting COVID-19 patients. The authors have used smartwatches for data acquisition

like Fitbits and Apple watches. The process happened with about 5,000 participants with 32

infected cases. The authors observed an elevation in resting heart rates and increased heart rates

relative to the number of steps. The study showed that at last, 63% of the COVID-19 cases

could identify before the first symptoms.

Figure 13 – Example of Wearable Sensors Placement

Source: Adapted from
Elenko, Underwood
and Zohar (2015)

Kim and Ko (2021) explains that wearable sensors are an alternative to monitoring arrhyth-

mia based on sensors like ECG or PPG. The authors also emphasize that an approach combining

both sensors has been showing excellent results. The researchers combined two wearable sen-

sors, the ATP100 for the ECG and the AliveCor for the PPG. However, Kim and Ko (2021)

warns that there are still many legal issues surrounding telemedicine and wearable sensors. Han

et al. (2017) carried out work intending to detect stress. For it, they applied a stress induction

protocol, the Montreal Imaging Stress Task (MIST). The authors acquired the signals using un-

specified wearable sensors. The experiment had the participation of 39, which measured the

RSP and ECG data. The best result was achieved using a combination of Random Forest and

Support Vector Machine, obtaining an accuracy of 84% for the stress classification with three

classes and 94% for binary classification.

In a complete study carried out by Schmidt et al. (2018), they collected data through a

wearable sensor to detect stress. The authors used RespiBAN to acquire data in this study, such

as ECG, EDA, EMG, RSP, and TEMP. After the acquisition, the authors consolidated the data

into a dataset. The protocol performed for data acquisition had four main stages. Being the
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baseline, in which the participant sat neutrally. The second is called amusement, in which the

participant watches some fun videos. The next was the stress stage, in which the participant had

some stressful tasks to perform. The protocol followed was the TSST. Finally, they instructed

the participant to calm down through meditation. The authors have used Machine Learning

algorithms to detect patterns. The techniques that Schmidt et al. (2018) used was DT, RF, and

kNN. They got for binary classification 87.00%, 92.28%, and 74.20%, respectively. The results

for classification with three classes were between 63.56% and 79.57%.

Al-shargie et al. (2017) presented a paper in which he uses the wearable sensor Discovery

24E to obtain EEG signals to perform stress detection. The author explains that it was necessary

to apply a Butterworth filter to reduce noise. The main reason is that the EEG signal is sensitive.

The authors applied machine learning algorithms to perform stress detection, applying the Sup-

port Vector Machine algorithms with error-correcting output code (ECOC) to classify them in

three levels. Thus, the authors obtained satisfactory results of 94.79% of accuracy. Kwon, Shin

and Kim (2018) developed a Deep Learning model, more specifically a Two-Dimensional CNN

(2D), based on data from the DEAP dataset. They obtained an effectiveness of 73.4% through

the EEG and GSR analysis. Nevertheless, the data was processed using a wavelet transform

before applying the DL model.

Based on the arguments before listed connected wearable sensors, Murat et al. (2020) ex-

plains that Deep Learning techniques have become an important alternative to classify signals.

For example, the electrocardiogram (ECG) is an exam that measures a person’s heart rate (HR).

They have analyzed five different classes of signals with more than 100,000 beats using the

MIT-BIH arrhythmia database (MOODY; MARK, 2015). They are classified using as Normal

Beats (NB), Atrial Premature Beats (APB), Left Bundle Branch Block (LBBB), Right Bundle

Branch Block (RBBB), and Premature Ventricular Contraction (PVC). During the experiments

was used the, Scikit-Learn and Keras with TensorFlow. Both are essential Python libraries fo-

cused on Machine Learning (ML) algorithms. Firstly was made the pre-processing of the raw

data. In sequence, they determined the patterns using ML techniques. After the pre-processing,

the authors separated the data into three groups. The first group is the “Training Data”, with

80% of signals. The remaining signals had 10% as validation and 10% as testing. The point

used as reference was the R peak, with 99 samples before and 160 after the R peak. The authors

(MURAT et al., 2020) argue that the results obtained in the study are satisfactory and solve a

relevant problem in the field, which obtained 99.26% of accuracy.

Mozos et al. (2017) used three Machine Learning algorithms to identify stress in young

people. They acquired the signals through pairs of sensors and followed the gold standard

protocol for stress induction, the Trier Social Stress Test (TSST). During the experiments carried

out with all participants, the accuracy obtained was above 90%. However, when performing the

training experiments removing half of the participants and using this group for tests, the result

obtained dropped to about 60% (MOZOS et al., 2017). Ahuja and Banga (2019) carried out

an experiment in which they monitored young people during exam preparation and while using
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the internet. This work aimed to detect mental stress. The experiments had 206 students’ data,

and for the AI experiments, the authors used Linear Regression (LR), Naïve Bayes (NB), RF,

and SVM algorithms. Ahuja and Banga (2019) used the 10-Fold Cross-Validation to check for

possible overfitting. The best values obtained were with Support Vector Machine, with 85.71%

accuracy.

Bringas et al. (2020) propose a study to identify the Alzheimer’s stage in patients using Deep

Learning (DL) models through the data obtained using accelerometers. The authors conducted

the study with 35 participants with Alzheimer’s Disease (AD) in different stages. Based on the

data collected, it was possible to identify the level of mobility for each patient and estimate

the disease stage. They developed the model using a Convolution Neural Network (CNN), a

class of ANN focused on two-dimensional sets, and it does not require any pre-processing.

The study had an accuracy of approximately 90%, confirming the hypothesis raised by the

researchers. Although, Murat et al. (2020) points out that the models using only CNN have the

problem of designing a structure compatible with several datasets. Yang et al. (2021) developed

a motion monitoring system to acquire and detect the lower limb motions. The prototype has

inertial measurement units (IMUs) and flexible membrane compression sensors as the base. A

K-nearest neighbor was applied to detect the patterns. The results obtained were 99.96% for

kNN and 99.57% for SVM.

As stated by Faust et al. (2018) that have reviewed 53 papers about Deep Learning methods

applied to physiological signals, the research focused on EMG, EEG, ECG, and electrooculog-

raphy (EOG). The author highlights the importance of the dataset’s large volume of data on an

excellent performance in training the model using Deep Learning. The result obtained using

a combination between CNN and LSTM have presented a relevant improvement in terms of

the results using just one of these methods (SALEHZADEH; CALITZ; GREYLING, 2020).

Nevertheless, in contrast, Murat et al. (2020) explain that besides the results obtained using

Convolutional Neural Network usually being better than other methods, this kind of Neural

Networks demands a high computational cost and can be considered a disadvantage. Another

disadvantage highlighted is that this method requires a large dataset for proper training. More-

over, a hybrid system as proposed for Salehzadeh, Calitz and Greyling (2020), also is detached

by Murat et al. (2020), such as CNN-LSTM, tends to have better and more successful results.

However, the problem generated is more extensive than before because LSTM models require

more time and processing when compared to other algorithms. Besides that, this method needs

more volume of data.

Wang and Guo (2020) argue that the use of DL in the context of stress detection shows better

results, as CNN captures local dependency between multiple sensors, and the RNN could learn

the material resources of the time-series signals. Li and Liu (2020) conducted a study comparing

the results of a DL model and an ML algorithm using the same dataset ( WESAD SCHMIDT

et al., 2018). The experiments have shown significant accuracy improvement. The experiment

analyzed EMG, ECG, GSR, HR, RSP, ACC, and BVP. The results for DL were 99.55%, besides
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Linear Discriminant Analysis (LDA) was 76.50%, AdaBoost 75.21%, and Random Forest with

76.17%.

Ali et al. (2020) present a study developed that intends to predict heart disease efficiently

to treat cardiac patients before a heart attack occurs. The authors (ALI et al., 2020) seek to

resolve this problem using Deep Learning models with healthcare data about heart diseases. The

intelligent healthcare system proposed to combine DL methods and feature fusion approaches.

The feature fusion method combines sensors data and electronic medical records (EMR). In the

sequence, they have eliminated all irrelevant or redundant information. The developed system

is compared with conventional classifiers to evaluate the results. The proposed system had

an accuracy of approximately 98.5%. Another fact highlighted by the authors is the accuracy

obtained in the Deep Learning model. The accuracy obtained was highest compared to the

results of the other methods. The authors compared the DL model with the Support Vector

Machine (SVM), Logistic Regression, Random Forest, Decision Tree, and Naive Bayes.

Tripathi et al. (2018) describe the model developed to recognize emotions using EEG signals

in a group with 32 participants, using two different neural networks, the first being a Deep

Neural Network (DNN), consisting of an Artificial Neural Network with multiple layers, and

the second a CNN. The authors have applied four layers to the first model, with 5000 nodes in

the first layer and 500 neurons in the second layer. The third layer added 1000 neurons and 2, or

3, nodes in the fourth layer. The second model has used two convolutional layers to convert the

data into 2D image format, with Tan Hyperbolic in the first layer and MaxPooling in the second

layer. The accuracy obtained in the model was between 81% and 73% for the two classes.

Another important subject related to pattern detection is the feature extraction in physiological

signs.

Nevertheless, despite this, it is a complicated theme because of the unique characteristics

of each signal. According to Ferreira, Attrot and Sakuray (2011), the analysis for feature ex-

traction needs to be done for each sign, taking into account the information present in each

signal. For example, the ECG has, at last, four different features to extract, the R-R interval,

P-P interval, Q-T interval, and the QRS complex. We can mention several feature extraction

methods, such as derivates, digital filters, wavelet transform, neural networks, and frequency

analysis. Furthermore, in adding, Faust et al. (2018) says that the researcher must evaluate var-

ious feature extraction algorithms for each kind of physiological sign. However, on the other

hand, Santamaria-Granados et al. (2018) suggests in their work to use a CNN for automatic

feature extraction.

Related to stress detection, a point that has been studied recently is the influence of allostatic

load on the behavior of the signals of individuals. Corrigan et al. (2021) highlight the use of

heart rate variability as a way to monitor stress and allostatic load. The allostatic load consists

of metabolic energy composed of biological measures. It captures the dysregulation of multiple

physiological systems as a result of chronic exposure to stress (GUIDI et al., 2021). HRV

decreases in response to a stressful situation, whether physically or cognitively (CORRIGAN
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et al., 2021). They observed that HRV recovery is usually slow in response to higher magnitude

stressors. They also conclude that people with allostatic load disorder usually have a lower

standardization HRV response. The authors emphasize that further studies are needed to further

the usefulness of HRV in assessing allostatic load.

The use of AI for stress detection has several limitations and uncertainties that we need to

deepen. Research indicates that experiments in controlled laboratory environments have high

precision for detecting stress (CAN; ARNRICH; ERSOYA, 2019). The stress level is often

significantly different from the induced stress level outside of controlled environments. They

also emphasize that wearable sensors are excellent means to carry out these experiments. The

participants tend to accept easily non-intrusive and discreet devices. Based on the state-of-the-

art, we can conclude that there is still a lot to be explored in stress detection.

Ali et al. (2021) proposed a work that consists of integration between wearable sensors and

social networking for data collecting. The authors claim that this method is an efficient health-

care monitoring, Ali et al. (2021) describe the scenario with a cloud environment and a big data

engine. As can be seen in Figure 14, the big data stage can have a relation with data mining,

ontologies, and DL. The system developed for the authors (ALI et al., 2021) can classify the

patients’ health status based on their physiological data such as BP, diabetes, social networking

data, and drug review. The accuracy obtained through this method was around 79% and 89%,

using only LSTM. Furthermore, between 90% to 94% when combined LSTM and ontologies.

The authors used the following metrics accuracy, precision, recall, function measures, RMSE,

and mean absolute error (MAE). The authors performed experiments with CNN (70%), MLP

(80%), SVM (73%), Fuzzy Logic (83%), Logistic Regression (72%), Random Forest (70%),

and K-Nearest Neighbors (KNN) (58%). The PhysioNet MIMIC-II dataset obtained an accu-

racy of 88% with this dataset applied to training.

Figure 14 – Example of an Integrated Architecture

Source: Adapted from Ali et al. (2021)
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3.2 Evaluation and Research Opportunities

Based on the survey results, all the papers were related and compared. We assessed which

are the most commonly used signals in the works. We also intended to verify how they obtained

the data and the method used to generate the model.

Table 2 has columns that contain the information concerning the papers previously men-

tioned. The first column presents the author’s name and the year of publication of the work.

The second column shows the principal theme of the work. The third column refers to the sig-

nals analyzed by the paper. The fourth column presents the data source that the authors have

used, which can be two different types. According to the application of the work, the data

source may be a dataset or some wearable sensors. Finally, we have the fifth column, which

refers to the method used for the classification. It can be ML algorithms or DL models.

Table 2: Summary of the related works

Paper Application Sign / Sensor Data

Source

Method

Ahuja and Banga

(2019)

Stress Detection ECG Dataset RF; SVM; RL;

NB

Al-shargie et al.

(2017)

Stress Detection EEG Wearable SVM-ECOC

Ali et al. (2020) Arrhythmia

Detection

ECG; BVP Dataset DL

Ali et al. (2021) Health Monitor-

ing

ECG; BVP Wearable LSTM

Bringas et al.

(2020)

Stage of

Alzheimer’s

Disease

ACC Wearable CNN

Can, Arnrich and

Ersoya (2019)

Stress Detection ECG Wearable RF; SVM;

MLP

Corrigan et al.

(2021)

Stress Detection HRV Wearable -

Dunn, Runge and

Snyder (2018)

Health Monitor-

ing

ECG; HR; EMG;

EDA; TEMP;

ACC; GPS

Wearable -

Faust et al. (2018) Arrhythmia

Detection

ECG; EEG;

EMG; EOG

Dataset CNN; LSTM

Guidi et al.

(2021)

Stress Detection ECG - -
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Han et al. (2017) Stress Detection ECG; RSP Wearable Random

Forest-SVM

Jacobsen et al.

(2021)

Health Monitor-

ing

ECG; PPG;

TEMP; ACC

Wearable -

Kim and Ko

(2021)

Arrhythmia Mon-

itoring

ECG; PPG Wearable -

Kwon, Shin and

Kim (2018)

Emotion Recog-

nition

EEG; GSR Dataset CNN

Li and Liu (2020) Stress Detection ECG; HR; EMG;

GSR; RSP; BVP;

ACC

Dataset MLP

Mishra et al.

(2020)

COVID-19

Detection

ECG; HR Wearable -

Mozos et al.

(2017)

Stress Detection ECG; EDA;

EMG

Wearable SVM, MLP,

RF

Murat et al.

(2020)

ECG Recognition ECG Dataset CNN-LSTM

Rienzo and

Mukkamala

(2021)

Health Monitor-

ing

ECG; PPG; BP;

ACC

Wearable -

Salehzadeh,

Calitz and

Greyling (2020)

ECG Recognition ECG Wearable CNN-LSTM

Santamaria-

Granados et al.

(2018)

Emotion Recog-

nition

ECG; EEG; GSR Wearable CNN

Schmidt et al.

(2018)

Stress Detection ECG; EMG;

EDA; TEMP

Wearble DT; AB; LDA;

KNN

Sreenilayam et al.

(2020)

Health Monitor-

ing

ECG; BP; TEMP;

RSP

Wearable -

Tripathi et al.

(2018)

Emotion Recog-

nition

EEG Dataset DNN; CNN

Wang and Guo

(2020)

Stress Detection ECG; EMG; HR;

GSR; RSP

Wearable AB; MLP

Source: Elaborated by the author.

A relevant aspect that we concluded about the analyzed papers is the possibility of acquiring

data to develop our signal dataset, as made by (SCHMIDT et al., 2018 and SANTAMARIA-
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GRANADOS et al., 2018). Other researchers like (ALI et al., 2020, FAUST et al., 2018, and

KWON; SHIN; KIM, 2018, LI; LIU, 2020) have used these datasets in their applications. In

other words, we can consider that the composition of a dataset represents a double contribution

to the area. Not only contributing to the research but also providing a database helpful to other

research. Moreover, it stayed explicit in the papers the great variety of signals that we may

acquire with wearable sensors. Besides, many studies have used the same signals to detect

different anomalies.

Among the topics covered by the works, we can mention arrhythmia detection, disease

detection, movement detection, stress detection, and emotional state, a more subjective theme.

Nevertheless, we verified a gap in current work on psychological state and the effect of stress

in patients with few research and papers before 2013. Few studies analyze the effects of stress

on the human body through wearable sensors, as the study carried out by Schmidt et al. (2018).

As shown in Table 2, we can separate the analyzed works into two major classes. We use

the term classes to classify the kind of paper reviewed in this context. In other words, the papers

have two different groups, as previously stated. We have six papers focused on health monitor-

ing using wearable sensors in the first group. Five papers relate to general health monitoring,

and one about arrhythmia monitoring. Fourteen works are in the second group focusing on

the artificial intelligence applied to physiological signals patterns detection. There are five pa-

pers on Stress Detection and four papers on Emotion Recognition within these classifications.

Among the other classifications analyzed were Arrhythmia Detection two papers and COVID-

19 Detection, ECG Detection, and Stage of Alzheimer’s Disease with just one work each.

We have used two different paper classes to represent different parts of the project. The

first represents continuous patient monitoring without automatic detection or intervention. We

describe the use of the term in the context of this work to clarify any doubts. We use this termi-

nology to refer to the monitoring of the patient without pauses during long periods. It includes

monitoring outside the hospital environment. The second group of papers refers to artificial

intelligence techniques applied to physiological signals. We must highlight that separating the

classes of papers during the state-of-the-art review was necessary. We needed to do this because

we did not find any work with both themes (Figure 15).

We found that the most used signals are the ECG, present in 80% of the papers, and the

EMG in 24%. The use of EEG, HR, and ACC 25%. Other widely used (20%) signals are GSR,

RSP, and TEMP (Figure 16). With the study of related works, we have verified that the most

used method for predicting patterns in physiological signals is Machine Learning models, with

32% of all the reviewed papers. It is possible to check a tendency to use the Random Forest

algorithm as an efficient classifier. These models have shown good results regardless of the

signals. We also verified a great use of Deep Learning as an alternative. The authors indicate

several ways to use Deep Learning networks but always focus on large datasets with a wide

variety of participants. For this reason, we believe that the use of Machine Learning is present

in most examples.
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Figure 15 – Subjects Distribution in the Reviewed Papers

Source: Elaborated by the Author

Figure 16 – Signals Distribution in the Reviewed Papers

Source: Elaborated by the Author
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Consonant with the papers reviewed, it is possible to observe that the study related to ML

models in physiological signals shows promising results. The works indicate wearable sensors

as a reliable method for physiological signal acquisition. Following this line and gathering

both systems, we intend to develop an integrated architecture mixing wearable sensors and

Machine Learning models. The architecture has a complete application, making the acquisition,

processing, and, in the sequence, the diagnostic with the patterns predicted previously.

We could observe a gap in works that reconcile both topics analyzed during the state-of-the-

art review. Many works address the continuous monitoring of patients, but within not flexible

architectures, which do not allow the replacement of devices. On the other hand, we review

many papers that approach signal detection using artificial intelligence. The research opportu-

nity we have observed is stress detection using artificial intelligence through a flexible, multi-

signal data acquisition architecture through continuous patient monitoring.

The papers analyzed demonstrated a research opportunity that integrates both themes, con-

tinuous monitoring of physiological signals with artificial intelligence for patterns detection in

physiological signals. All works focus on data acquisition and storage or aim to extract patterns

of data already acquired. Consequently, none of the analyzed papers have a real-time detection

system applied to continuous monitoring. We used the terminology real-time to refer to the

signal monitoring as close as possible to the moment when the architecture measures the data.

Thus, the architecture analyzes the data obtained as soon as possible and not just at a specific

time of day.

In the following chapter (chapter 4), we present the proposed architecture and its function-

ing. We present the architecture at the conceptual level and then the architecture at the design

level to explain the objectives of the architecture, how it works and what the main features are.
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4 ATHENA I

This chapter presents the architecture at the conceptual and design level. We also describe

the initial choices of devices made for the prototype implementation. We designed the proposed

architecture to use as few devices as possible. However, always consider the possibility of

integrating more devices into the ecosystem, even distributing tasks across different devices.

The architecture can operate autonomously, with only an acquisition device and a processing

and registration device. However, we designed it to reconcile the approach in cloud computing.

The following sections present an overview of architecture (4.1) at the conceptual level and

level of design, as well as a brief explanation of the choices made in the project (4.2).

4.1 Overview

This work aims to develop an architecture that can be easily adapted to other applications,

such as different wearable sensors, increasing/decreasing the number of signals and the number

of channels treated. For example, suppose we desired to add a new wearable sensor to the

acquisition ecosystem. In that case, we could distribute the applications to the data acquisition

between Wearable sensors and Single-Board Computer. Considering that most wearable sensors

currently in the market use Bluetooth for communication, it allows them to transmit their data

to other devices wirelessly. For this reason, the communication between the wearable and the

SBC takes place via Bluetooth communication. However, if we consider a network of SBCs,

this communication could be over the network, centralizing the records and the detection into

one other device.

The developed architecture aims to meet both the acquisition of physiological signals and

the patterns detection in these signals. Another feature that this architecture allows, besides

pattern detection, is the data acquisition and composition of a dataset to generate an artificial

intelligence model that can detect anomalies in physiological signals. As seen, many works

approach wearable sensors to monitor patients. As well, many research analyses use physio-

logical signals to perform pattern detection. However, we have not found papers that reconcile

both stages, acquisition and classification, all in real-time.

We divided the architecture into four main blocks, intending to distribute the functionali-

ties among the blocks, thus allowing greater flexibility. We conceived the developed architec-

ture following the guidelines of SAP AG (2007) regarding the notation Technical Architecture

Modeling (TAM), defined as a standard to represent the definition of architectures. The TAM

reconciles the Unified Modeling Language (UML)1 standards, for design, and Fundamental

Modeling Concepts (FCM)2, at the conceptual level (KNOPFEL, 2007).

Firstly, we have conceived the architecture at a conceptual level, which follows the guide-

1https://www.uml.org/#UML2.0
2http://www.fmc-modeling.org
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lines present in the FCM, separating the functions of the architecture into blocks. With a primary

focus on flexibility, after defining the bases of the architecture, we planned the design level. In

Figure 17, we can see the proposed architecture representation at the conceptual level. This

description consists of four blocks and their integration flow.

Figure 17 – Architecture Conceptual Level

Source: Elaborated by the Author

The process starts with the user interacting with the architecture. In terms of the architecture,

the first step is the acquisition block, responsible for performing the acquisition and decoding

of the data acquired from the user. The next is the processing block, responsible for filtering

and processing the signals. After this step, the architecture passes the data to the storage block,

where the architecture stores the data in the database. Nevertheless, also there is the option

of implementing a cloud storage option. At this point, there are two possible operations for

the architecture. The first mode is called Offline Mode, in which the architecture only stores

the data for the composition of a dataset. The second option is using the Online Mode, in

which the architecture passes the data to the fourth block. The classification block performs

the detection in real-time, based on a previously trained artificial intelligence model. If the

architecture detects any signal change based on the classification, the architecture may send a

message describing this situation.

Advancing in the designing of architecture, we move to the design level (Figure 18) ac-

cording to UML guidelines, which describes the blocks in more detail and the components

responsible for interacting with the architecture are presented more clearly. As demonstrated in
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architecture at the conceptual level, the architecture starts with the user. The first component

of the architecture, and the only one with which the user has contact, is the wearable sensor,

which measures the data. The wearable sensor is part of the acquisition block, the other part of

this block is the decoding data. The acquisition block only performs operations related to the

wearable sensor because if we change the wearable sensor for another device, it is necessary to

adapt only this block. Because the decoding happens in the acquisition block, this process is

specific for each wearable sensor.

Figure 18 – Architecture Design Level

Source: Elaborated by the Author

The wearable sensor measures the physiological signals and sends them via Bluetooth to

the SBC. Bluetooth was chosen as the primary form of communication because most studied

wearable sensors support Bluetooth communication. After the SBC receives the data, they

decode it for signal extraction and store it in text files to communicate with the next block.

The next block is the processing block, as previously indicated, performing the filtering and

processing of data through specific libraries for this purpose. The processing step is essential

for the architecture to remove noise and obtain the signal in the desired format. In the third

block, the architecture store the data based on information defined by the user. The storage can
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occur in two ways. First, as soon as the architecture reads the text file, it stores the data without

filtering or processing directly in comma-separated values (CSV) file. Then, the architecture

store the processed data in a database.

The architecture has two possibilities of operation, the Offline Mode and the Online Mode.

The first refers to the mode used for the composition of a dataset. This option is valuable

if the user does not have a dataset or wants to use the architecture to compose the own dataset

following some specific protocol. After the composition of the dataset, it is necessary to perform

the model training to supply the fourth block. The second available operating mode is the Online

Mode. The architecture must have the pattern detection model previously loaded for this model

to work. In this way, the data stored by the storage block is sent to the classification block

and analyzed; if the architecture considers the signal as altered, it sends a message, but if it

evaluates the signal as regular, the architecture continues to operate normally. However, there

is the possibility to configure a message in a normal state.

The architecture can send a message to another device via the socket or another device via

the cloud. A new element presented in architecture at the design level is the configuration file,

edited through a web interface. The principal function of the configuration file is to define the

most basic parameters of the architecture. The possibilities are the operating mode, number of

channels, signals, type of storage, and DL model file. This element’s principal function is to

allow for system flexibility. In the sequence, we make a brief description of the choices made

for the implementation of the architecture prototype (chapter 5).

4.2 Specific View

In this section, we present an even closer view of architecture, describing the choices for

the proposed architecture implementation. The proposed architecture consists of two principal

devices. The first device is the wearable sensor BITalino (PLUX WIRELESS BIOSIGNALS,

2021), Model PsychoBIT, and the second device is the Raspberry Pi 4, Model B + (RASP-

BERRY PI FOUNDATION, 2021. The choice of BITalino as the wearable sensor used in the

architecture is because it is an open-source wearable sensor with low-cost and easy adaptabil-

ity. As an aspect of adaptability that we can mention, the company that develops this platform

provides several kits. There are kits for development, expansion, or commercial use among the

possibilities.

In addition to the existing flexibility, the company provides many sensors. As we chose the

model PsychoBIT, which focused on measuring psychological effects, the architecture provides

ECG, EDA, and RSP.

The choice of Raspberry occurred due to the processing power of the board. In addition to

the availability of Bluetooth and Wi-Fi interfaces, requirements for implementation in a project

that seeks flexibility. The processing power is essential considering the number of applications

that the architecture executes internally within the SBC. However, if we expand the ecosystem
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and distribute the applications within a more significant architecture, we can reduce processing

power in each board.

BITalino acts on the physiological signals acquisition arranged directly on the participant’s

body through electrodes. The architecture sends the data measured by BITalino to Raspberry

via Bluetooth. When Raspberry receives the signals, Raspberry processes the data and stores it.

The subsequent steps are filtering and detection.

Due to the characteristics of the Raspberry Pi, we have developed the codes in two different

languages (Figure 19), the first in C++3, due to the need to use Bluetooth for communication,

since libraries with support for Bluetooth existing at Raspberry are focused on C++. The sec-

ond programming language used was the Python 34, the reason for choosing this language is

motivated by the libraries for data manipulation and artificial intelligence.

Figure 19 – Example of Raspberry Architecture Topology

Source: Elaborated by the Author

IAs seen previously, the programming languages used follow a cycle of operation, which

starts with C++ performing communication with the Bluetooth interface. After decoding the

data, Python is responsible for performing all other steps in sequence.

In Figure 20, the code presented in a simple schematic form belongs to C++, which has

as fundamental functions the decoding of the data received via Bluetooth and then decoding

them. The data after decoded needs to be stored so that the process is as dynamic as possible.

To improve the dynamism of the architecture, we decided to record the data in text files. This

storage in the text files happens with each cycle of execution of the code to avoid data loss. After

each cycle of program execution, the code checks the time after receiving the data. Moreover,

if a minute has passed, the architecture sends a notification via socket to the next block.

From the processing block, we have written in the code Python. We have chosen Python

for the rest of the development because this language has the more accessible manipulating

3https://docs.microsoft.com/en-us/cpp/
4https://docs.python.org/3/
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Figure 20 – Example of the C++ Code

Source: Elaborated by the Author

data as the main feature. It is necessary to carry out several steps such as data range selection

and application of the filter, like low-pass, high-pass, band-pass filters, and even digital fil-

ters. Furthermore, Python has several libraries dedicated to filtering, data science, and artificial

intelligence.

The code in Python has an operation cycle that includes the other three blocks, which in

the short act of filtering and processing, which have support by the BioSPPY5 (CARREIRAS

et al., 2015) physiological signal processing library. Next, we have storage, carried out through

databases and CSV files, with support from libraries such as Pandas6 and SQLite37. Finally, we

have the classification block, which has the support of Keras8, a library dedicated to artificial

intelligence. The last function of Python within the architecture is to prepare the sending of

the message. The architecture can send this message via socket to another device over a local

network or cloud.

In the next chapter (Chapter 5, we detail the implementation of the prototype, following

the architecture proposed in this chapter (Chapter 4). We describe the choices made and the

difficulties encountered during the development. In addition, we relate the necessary changes

for the architecture if compared with the previously idealized.

5https://github.com/PIA-Group/BioSPPy
6https://pandas.pydata.org
7https://www.sqlite.org/index.html
8https://keras.io
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5 PROTOTYPE

This Chapter describes the prototype implementation process based on the architecture pro-

posed in Chapter 4. As previously described by Wilson and Laing (2018), an integrated wear-

able sensor architecture must have a single-board computer, power source, acquisition software,

and storage location. Hence, the proposal makes the architecture as flexible as possible, allow-

ing the maximum of steps with the least number of devices. On the other hand, there is no

intention to limit the architecture, allowing anyone to expand the architecture.

We have designed the architecture in blocks. We explain the decisions and explain what can

change in the architecture. In the description, we describe according to the code duty cycle, first

describing the acquisition block (section 5.2), then the section 5.3, the processing and filtering

block, and the section 5.4, block that stores the data. Lastly the section 5.5, responsible for the

patterns classification. The classification section describes the Deep Learning training model

developed. However, we carry out the training model and the fourth block implementation as

continuity of this work in the next steps.

5.1 Configuration

The configuration file is an element to be highlighted, which directly interferes with all

blocks. The configuration file has the function of providing a simple way to configure the

parameters of the architecture. Among the parameters that the file can configure are the physio-

logical signals that the architecture process and the wearable sensor’s channels for acquisition.

They are being able also to define which wearable sensor we are using. In addition, we can

also define information such as the MAC of the Bluetooth interface, the forms in which the

architecture stores the data, and define the ML model provided to the architecture.

The ATHENA I has this configuration in a configuration file inside the main point of the

architecture. In addition to the points listed, this configuration file defines which architecture

blocks are active and if any are disabled. Another possible configuration is defining the storage

servers used, whether internal or external to the collection device.

5.2 Acquisition Block

This block is responsible for establishing Bluetooth communication between the wearable

and the SCB. This block also must decode the information received and send it to the next block.

As previously described, this code is all written in C++ due to the need to use Bluetooth

libraries, whose performance is better on the Raspberry Pi. With support from the BITalino

library for C++, developed by Hugo Silva and Carlos Azevedo3, made available by the manu-

facturer (PLUX WIRELESS BIOSIGNALS, 2021), it was possible to adapt the code that would

3https://github.com/BITalinoWorld/cpp-api
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allow communication between SCB and BITalino through Bluetooth and to decode the received

data. It is essential to note that, as previously informed, this architecture focuses on providing

an easily adaptable architecture. For this reason, the main function of the code can be used

almost entirely for other wearable sensors, being necessary only to change the libraries that

perform the decoding.

Figure 21 shows the BITalino used in the prototyping of the architecture. The BITalino used

in the architecture is the PsychoBIT model. The model used has sensors to measure signals

such as electrocardiogram, electrodermal activity, and respiratory pattern. We used the signals

from these sensors in the development of the prototype.

Figure 21 – Wearable BITalino PsychoBIT

Source: Elaborated by the Author

The developed code needs parameters for the program call, the participant’s name and sur-

name, and information that the architecture uses throughout the process to relate the data to

the individual. At the beginning of the code, we define the most relevant parameters that can

change according to the adjustment. Among the parameters is the selection of the signals the

architecture acquires.

In this implementation, the architecture measures the ECG, EDA data, and RSP. In addition

to being necessary to define the channels that the wearable sensor makes the acquisition, as

an example of the configuration used {0, 1, 2}. Another necessary adjustment is to define the

acquisition rate that we want. The acquisition rate is essential because it defines the number of

data obtained per second of the acquisition. Therefore, the more data, the more precision.

Regarding the SBC used in the architecture prototype, we have the Raspberry Pi 4, chosen

for its cost-effectiveness and processing power. Figure 22 shows the Raspberry used for the

development of the prototype inside the case used for protection and cooling.

Finally, concerning the storage file, it is possible to define the directory in which the archi-

tecture stores the data. Furthermore, it is possible to change the IP address and port that the

block sends to another about the socket. In other words, it is possible to define another device
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Figure 22 – Single-Board Computer Raspberry Pi 4

Source: Elaborated by the Author

to acquire and perform the other blocks’ tasks. We distributed blocks across other devices. All

devices need to be on the same network. Then, through the configuration file, we define the

addresses of each device on the network and its respective block.

The same device acts for acquisition and processing as in the implemented architecture. We

defined that the IP 127.0.0.1 and port 18000. Before starting the acquisition, we must pair the

wearable sensor with the Raspberry. For this, we can use the command bluetoothctl to access

the Bluetooth settings and then pair with the MAC address of the wearable sensor with the

command pair xx : xx : xx : xx : xx : xx. However, if we do not know the MAC address, we

can scan nearby devices to find BITalino, using the scan on command.

Figure 23 illustrates the operation cycle of the acquisition block of the architecture. The

process starts when anyone starts the acquisition through the web page that calls the acquisition

code, passing the participant’s name as a parameter. In the sequence, the program establishes

communication between Raspberry with BITalino, using the MAC address of the Bluetooth

card of BITalino to connect. Then, the parameters mentioned previously are defined, given the

rate of signal acquisition and which channels acquire.

In the next step, the Raspberry receives the data in frames with a maximum of 8 bytes. The

BITalino libraries support decoding the data correctly, as each channel has a different range

of possible values. When decoding the data, the code needs to check the time and verify if a

minute has passed since started the acquisition process. If it is still within the same minute,

the program opens the text file with the participant’s name, date, and time acquisition, stores

the acquired data, and returns to the Bluetooth connection to wait for another frame. The cycle

happens successively until one minute has elapsed since the reference minute. The reference

minute receives the value when starting the acquisition or each time that minute pass, so the

reference minute is updated.

With an acquisition rate of 1 kHz, this cycle occurs 60,000 times per minute. We chose

to store the data in text files because the other option would be to send the data via socket.

However, the process of sending the socket was slow because the socket was unable to respond
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Figure 23 – Acquisition Flowchart

Source: Elaborated by the Author

in the necessary time, less than 0.001 seconds. Therefore, we decided to implement the socket

connection to inform the participant’s name, date, and reference minute; the next block must

read the text file each time. In this way, the other application can check if the read file is the

correct one. The files are divided by minute so that the volume of data acquired in this period can

be processed by the second block and analyzed by the Machine Learning model present in the

fourth block. During development, we found that a smaller volume of data may be insufficient

for processing and analysis.

The architecture opens the communication socket and sends a UDP packet when it reaches

the reference minute. Following the code, the reference value changes, and the file that stores

the data also changes. This process occurs successively until the wearable sensor interrupts the

communication. The acquisition program sends a packet notifying the processing block when

interrupting the communication.

We added the minimum possible number of operations to make the architecture as efficient

as possible. We avoid adding unnecessary functions in the main acquisition loop to ensure this.

Among the operations performed by the architecture during the execution of the loop while the

reference minute remains the same as the real minute are receiving the data, decoding it, getting

date and time values from the architecture, and then checking the time. If the reference time has

not changed, the data is saved to the text file and returned to the zero point of the loop. If the

reference time has changed, the code has a few more operations, such as a socket connection

check. In case of the socket is closed, it is opened again for sending the packet. In addition, a

new text file is created with a new reference value and in the same way as before. The data is
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stored in the text file and returns to the zero points of the loop.

5.3 Processing Block

When passing to the blocks developed in Python, the blocks are chained more clearly, based

on packets received via socket from different applications. The primary choice of using a socket

for this application is the transparency allowed between the communication of different devices

in a network. Whether or not the same device, so thinking in a context with more devices on

a network, it is acceptable to assume that there are different devices with different applications

that need to communicate (STEVENS; FENNER; RUDOFF, 2003). It works so that the socket

is always open for listening, ready to receive any notification, following a working cycle passing

to the blocks. In Figure 24 we can check the operation cycle of the code for Offline Mode,

used to perform the acquisition of the dataset. We decided to represent all blocks in the same

flowchart to make it easier to understand how one block interacts with another.

Figure 24 – Offline Mode Flowchart

Source: Elaborated by the Author
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The Python scripts are configured directly in Cron4 to start with the Raspberry startup, so

the Python codes remain running continuously in the background. As mentioned, the core

of the architecture remains attentive to any request received via socket, so the first step is to

open a server communication socket, with localhost defined as the socket’s IP address and, as

previously informed, the port 18000, as a way to avoid conflict risks.

The architecture starts the monitoring and acquiring data after receiving a notification from

the web page. We developed a web page to generate requests to the architecture, as can be seen

in Figure 25. The user only needs to enter the participant’s name and surname, and the web

page sends a request. We developed the web page using ngnix5 as the base, with the backend

also developed in Python with only one Application Programming Interface (API) route for

sending a socket via the network, notifying that the user wants the acquisition to start. The web

page was developed in a separate application thinking about the context, which means that the

architecture may have more wearable sensors and SBCs in the same ecosystem. For this reason,

it is more convenient that the application that initiates the acquisition is separate.

Figure 25 – Web Page Developed to Acquisition Block

Source: Elaborated by the Author

Upon receiving the requisition, the architecture checks the received package. Suppose the

information received is included in the request to start the acquisition. In that case, the ar-

chitecture calls the acquisition program, passing as a parameter the name and surname of the

participant. At the end of the program, the code cycle returns to the waiting point for the next

package. The next expected package is with instructions to read the text file.

After reading the data, they must be filtered and processed. This step extracts the relevant

data to make this process simpler and more efficient we are using the BioSPPY6 for this process.

The BioSPPY (CARREIRAS et al., 2015) is a library dedicated precisely to the physiological

signals processing, for various biosignals, like ECG, EDA, RSP, EEG, EMG, and PPG, whose

4https://man7.org/linux/man-pages/man5/crontab.5.html
5https://nginx.org/en/docs/
6https://github.com/PIA-Group/BioSPPy
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main characteristic is the reduction of noise, distortions’ correction, through frequency analysis,

and, finally, the extraction of information.

Analyzing the procedure performed with the BioSPPy library, we verified how the library

applies the filters in each sign. The library utilizes a filter to remove noise and interference,

starting with the ECG. The applied filter is a Finite Impulse Response (FIR) digital filter of the

bandpass type, and the order is defined based on the sampling frequency. We are 30% of the

sampling, as we have used a frequency of 1 kHz, the FIR filter of order 300. As a bandpass

filter, it is essential to define the limits. The lower limit is 3 Hz, and the upper limit is 45 Hz.

Then, for the extraction of ECG data, the Hamilton (2002) method is used, the first step

of which is the application of a Butterworth low-pass filter. The filter has order four and a

cutoff frequency of 25 Hz. The next step is to apply a high-pass filter, Butterworth of order 4.

The library defines a cutoff frequency of 3 Hz. Lastly, a derivative function obtains a moving

average of 80 ms. Finally, peak detection and QRS complex detection are applied.

The first step is to apply a Butterworth low-pass filter of order four, with a cutoff frequency

of five Hz when it comes to the EDA filter. Furthermore, a moving average function of N

terms is applied to smooth out the distortions. Finally, the library applies differential functions

with an analysis in frequency, and it extracts the intrinsic values through zeros of the transfer

functions. Regarding the processing of the RSP, it is relatively more superficial than the two

previous signals. A second-order Butterworth bandpass filter is applied, with cutoff frequencies

set to 0.1 Hz and 0.35 Hz. Then, a zero-crossings function is utilized, which checks the points at

which the signal intercepts the axis. Finally, a derivative function and smoothing with a moving

average are applied.

After filtering and processing, the architecture must save. For this, we have used the Python

library for SQLite3. The details of how the storage happens are in the section 5.4. After

finishing the data storage, if the architecture is operating on Offline Mode, the code returns to

the initial block to wait for the receipt of another packet via socket. So that this cycle repeats

successively until the acquisition ends. However, if the architecture has the dataset ready and

the artificial intelligence model is loaded, the next block performs pattern detection.

Finally, after completing the acquisition and ending the communication between Raspberry

and BITalino, the code in Python receives a package informing the end of the communication.

Upon receiving this information, the code terminates the communication with the acquisition

program and restarts the Bluetooth interface to clear any stuck record, as was verified in some

tests. During the tests, we verified problems with the next connection. It happened when the

last acquisition stopped restarting the services. The verified problems are loss of communica-

tion, not pair, and data distortion. In parallel to the restart of the Bluetooth reset, the filtering,

processing, storage, and detection process is carried out one last time.

To clarify how the code works in Online Mode, Figure 26 shows the flowchart of the three

blocks in operation. This flowchart differs mainly from the one shown in Figure 24 by the

presence of the classification function, which sends a notification via socket or a message to the
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cloud periodically. Then returns to listen to the socket coming from the acquisition block. We

describe the operation of the classification step in detail in section 5.5.

Figure 26 – Online Mode Flowchart

Source: Elaborated by the Author

5.4 Storage Block

Data storage is a fundamental step in any process because it is precisely the architecture

stores data. That data is the main objective of the architecture. Due to this importance, there

must be safe storage means, minimizing the risk of loss as much as possible. For this reason,

the architecture has redundancy in the forms of storage. Bearing in mind that the blocks do

not necessarily need to be on the same device, they can operate on different devices. For this

reason, each must-have blocks part of the data. Therefore, we intend to provide the data in case

of problems in any part of the architecture.

First, we can mention, even outside the storage block, the storage performed by the Acqui-
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sition block, which, in addition to serving as a way to obtain data from one service to the other,

also serves as a backup. Text files take up little space concerning other storage media since they

have no formatting. Besides, allowing quick access to the content and can be easily read by

any program or application, being able to be considered universal (DALE; LEWIS, 2007). The

data in these files are stored only raw, without any processing. All files have a header to guide

the kind of data. The columns on the files have semicolons to separate them. The architecture

stores the acquired signals (name, surname, ECG, EDA, RSP, and Time) on a new line. As

already mentioned, for each change in the reference minute, a new file is created, resulting in a

large volume of files.

The second storage medium used is the CSV files. These files are separated one by the par-

ticipant. The architecture creates the files with the participant’s name used for the requisition to

start the acquisition. CSV files are easy to use for data science and a structured visualization of

data through spreadsheet software. However, they have the disadvantage of a higher consump-

tion for storage. This storage medium is optional and can be disabled if it is not necessary. The

CSV file store only raw data, with no filtering nor processing like the text file.

Finally, we have the principal storage, which consists of storing the data in a database. For

this process, we opted to use SQLite7 because it is a lightweight database and developed for

applications that need storage that does not take up so much space. Among other advantages

that SQLite has is being compatible with several platforms, such as Linux, Windows, macOS,

Android, and iOS. In addition to being a database that does not require any previous configu-

rations and can even easily create new tables within the code that stores the data if they do not

exist. The database stores the data as the principal storage medium; it saves both processed and

raw data. For the processed data, as its temporality is different, the acquisition time is removed,

but the time obtained through processing keep as a temporal reference.

5.5 Prediction Block

The classification block has two possible operating modes. The offline mode in which we

use the acquired data to generate an AI model for classification. The second mode of operation

is the online mode. The architecture loads the generated ML model, and the acquired data

is analyzed in real-time to evaluate the classification of the data. The block always operates

by acquiring and storing data. In this way, we can expand the dataset with each new data

acquisition. It is possible to define where the artificial intelligence model will be loaded through

the configuration file. The architecture will only operate in Offline Mode if no model is loaded.

7https://www.sqlite.org/index.html
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5.5.1 Offline Mode

Prediction Block in offline mode uses the data acquired and stored in Storage Block to

generate a Machine Learning model that will be later loaded into the architecture so that it can

operate in online mode. The architecture acquires a dataset in offline mode, and the data is

stored internally to generate a Machine Learning model. To generate the model, we apply a

windowing process to all data from participants to emphasize the characteristics of the data.

After this adjustment of the data, the data undergo a set of model tests to evaluate the algorithm

with the most incredible accuracy. Among them are Decision Tree (DT), K-Nearest Neighbors

(kNN), Random Forest (RF), Ada Boost (AB), and Multilayer perceptron (MLP).

5.5.2 Online Mode

We must have the ML model previously trained to use the architecture in online mode. The

model is then loaded into the architecture to predict the data. The architecture analysis the

acquired data every 30 seconds, evaluating whether the participant is in a stressed state or not.

After processing and storage steps, the architecture sends the data to the classification block.

We reshape the data into the matrix format used in the model training step.

The signals are analyzed every 30 seconds; however, the model classifies the values in

periods of 300 ms. Consequently, for each period of 30 seconds, 300 classifications need to

be analyzed to generate a single classification. Ranking results are stored for future reference

in log files. In rating analysis, rating results need to be at least 70% rated overall for status

to be considered stress. If classified as stress, the data sends an alert. This alert is under

implementation work in future work.

In the next chapter (chapter 6), we present the scenarios developed to evaluate the architec-

ture and carry out experiments. We present three scenarios designed to evaluate architectural

stability. In sequence, we present the other scenarios. The first is to carry out data acquisition

experiments through a stress induction protocol, and the second is a model training experiment

using artificial intelligence. Finally, a new stress-inducing experiment for real-time acquisition

detection validation.
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6 EXPERIMENTS

This chapter deals with the experiments carried out with the developed prototype. We per-

formed experiments with each block to guarantee the architecture stability. For this reason, the

chapter has five sections that address each of the blocks reporting the problems found in the

preliminary tests. Moreover, in the last section, we describe how we performed the practical

experiment to acquire the dataset, detailing the followed protocol and presenting relevant in-

formation. All the results obtained in the experiments are analyzed and discussed in Chapter

7.

6.1 Scenario 01 - Evaluation of Communication Stability

As a first step after developing the code, it was necessary to test the stability of the communi-

cation. We have tested both communications: the Bluetooth communication, between BITalino

and Raspberry, for the signals acquisition and the communication between applications. The

stability of the Bluetooth communication is the most crucial point of the architecture because

problems in the acquisition can generate several other issues in the following steps. From a

flawed dataset, even an unsuccessful detection. With previous experiences in the acquisition of

physiological signals (RODRIGUES et al., 2020), we already knew how fundamental it is that

the data is complete, with no continuity failure in the acquisition, as this fact has a direct impact

on the performance and accuracy of the application of ML techniques.

We must emphasize that data being in an integral state is essential for an adequate evaluation

without loss of continuity. We have to remember that the physiological signals are continuous,

and they have as a principal feature the level variation. The absence of this signal represents

an abrupt change from one level to the next, without continuity, mischaracterizing the signal,

or even deforming it. This absence may lead to a diagnostic error, depending on the amount of

data lost in a period.

This section has two sub-sections that address each topic separately, initially focusing on the

stability of the Bluetooth communication and the observed results. Furthermore, the sequence

describes the socket communication and the changes needed to correct the data communication

strategy between applications.

6.1.1 Bluetooth Communication

As previously reported, the Bluetooth communication must be stable for the architecture.

The code responsible for the communication between both devices is as short as possible, per-

forming only the necessary operations. Part of the objective is consuming the minimum pro-

cessing possible to avoid slowdowns, thus causing data loss.

During development, we performed some tests and experiments that required some adjust-
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ments to the code, such as reducing the number of operations performed within the script. While

testing, we found that using an acquisition rate of 1 kHz and the architecture trying to send the

data acquired via socket caused slowness. This slowness caused less than 1000 records per sec-

ond, thus presenting significant data loss. The evaluation took place by analyzing the volume

of data generated per minute of acquisition. As all data are stored right after the acquisition, it

is possible to validate the acquisition stability. We expect approximately 60,000 rows of data in

the text file for every full minute.

We observed good communication stability during the Bluetooth communication experi-

ment, making acquisitions of different periods and varying the distance between the devices.

Acquisition periods ranged from 30 seconds acquisitions to 2-hour acquisitions, without com-

munication loss or failure in data continuity. Among the tests carried out by varying the dis-

tance, the distance variation was 30 centimeters between both devices, up to a distance of 5

meters, with no walls in the way, only objects.

6.1.2 Socket Signaling

Another relevant point of the architecture is the communication between applications. Af-

ter ensuring good communication between the devices, it is essential to ensure that the data is

well synchronized between both applications so that there are no problems in processing and

detection. The first approach tested was sockets communication for data transmission. How-

ever, even using a more dynamic protocol has not shown sufficiently good results. When the

architecture used an acquisition rate higher than 100 Hz, the architecture began to present a

slowdown in transferring the data from one application to the other, causing a significant loss

of data.

We decided to store the data in a text file to solve the socket issue and make it available in

a shared directory. Thus, it was enough for the application of any other block to consult these

files. However, it was still necessary to ensure synchronicity between applications to allow

real-time application of data. We used the existing socket structure to send a package according

to the defined period as a solution. In the case developed, it occurs from minute to minute,

according to the reference minute, as explained earlier in the section 5.2.

After the adjustments, the communication and access to the file became fluid. We veri-

fied a perfect synchronization of the communication without impacting the acquisition or the

stability of the Bluetooth communication. It is relevant to highlight the option concerning the

protocol used for Ethernet communication. We defined that the socket would use the UDP pro-

tocol. When implementing the TCP protocol, there was a slight slowness due to the waiting for

confirmation of receipt of the packet by part of the Python application.

Another important reason for choosing UDP instead of TCP was because if the application

in Python presents any problem, we do not lose the acquired data. It did not happen because

the UDP sends a package, and it does not wait for the confirmation, not stopping the process.
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in other words, the acquisition block would continue to get the data and store it in the text files.

It allows certain independence of the block acquisition with the processing block. It is worth

noting that we can use the acquisition block separately to collect raw data without processing

without the need to use another application to start it.

6.2 Scenario 02 - Evaluation of Data Processing to Real-Time

This section covers the experiments carried out to test the data processing. We also evaluate

the results obtained, validating the minimum amount of data necessary so that the filters and the

processing performed can be applied.

6.2.1 BioSPPy

The tests related to processing sought to validate the plausibility of the processed data.

However, the architecture must have minimal data to apply the BioSPPy library. During the

tests, we have observed that with an acquisition rate of 1 kHz, it would be necessary to acquire

at least 30 seconds of data, about 30,000 lines of raw data, to obtain a good analysis result.

We have decided to acquire data referring to at least one minute before applying any pro-

cessing to guarantee a sufficient volume of data. Thus, the block is responsible for processing

about 60,000 lines for each signal acquired, providing a reasonable volume of data. It allows

the data to be processed satisfactorily concerning the context of the data. In this way, the data

volume does not require much processing time to filter and process the data on the Single-Board

Computer.

6.3 Scenario 03 - Evaluation of Storage

The third test scenario aimed to analyze data storage and its different forms. The block

focuses on storing data in CSV files per participant and the database. Nevertheless, we also

carry out a brief analysis of the storage process in a text file, evaluating performance. We also

present some information about the volume of storage generated. However, we discuss this

topic in the chapter 4, section 7.2.

6.3.1 Text File

Firstly, analyzing the data storage in text files, as can be concluded based on the two previous

scenarios, satisfied the two primary purposes of its implementation. First, the text file provided

an intermediate database between applications due to having a large volume of data acquired by

one application and read by another. So because it is a light and unformatted file, its opening

and reading are very dynamic.
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The second point we opted for its use is a backup of the acquisition block. It proved to be a

reliable way of storing the data, mainly thinking about a scenario in which the acquisition and

processing blocks are on different devices, perhaps in a context with more devices.

As a negative aspect, we have a large volume of files generated by each acquisition. Keep

in mind that each minute the block generates a new file. If the acquisition lasts 10 minutes, the

process generates at least ten files. If we extrapolate the acquisition period to one hour, we have

about 60 files. On the other hand, despite being a large volume of files, each file requires an

average of 2.5 MB of storage.

6.3.2 Structured Data File

Regarding CSV files, there is little to be analyzed. The way the storage happens is quite

similar to that used for storage in text files. However, the main difference that we have is that

the data become structured due to the characteristic of this type of file, as the name indicates.

Another aspect to be highlighted as a differential is that this file makes up the storage block. In

theory, it can act on devices other than the one that performed the data acquisition.

CSV files are generated one per participant, with no segmentation of files by time. Like text

files, CSV files have a date column to guide the temporality of the data. A standard CSV file

with a 10-minute acquisition contains approximately 27.5 MB. It represents an increase of 2

MB if we compare it to the same data acquisition period in text files (comparative value of 24.8

MB on average for text files).

6.3.3 Database

The database is the principal storage medium used by the architecture. All the data of all

the participants are concentrated. The architecture store the data in raw and processed forms

for each signal. For this reason, the database tends to occupy a larger volume on disk for the

same period of a participant by other means. However, it has more tables than the other storage

media.

The principal advantage of the database is the possibility of exporting the entire database

to another device. Besides, we can use the data in any format without applying filters or pro-

cessing. The data are ready for graphical analysis, analysis in the domain frequency, spectral

analysis, or use on dashboards.

The architecture showed excellent stability in recording the data regarding efficiency and

performance. The architecture recorded all the data in all the tests that we performed practically

directly. The functions for creating the database and creating the tables also work. In cases

where we have removed the database, the script created the database without problems.

During the collections carried out, both short collections, from 1 to 5 minutes, and longer

acquisitions, from one to three hours. The data were stored correctly, without presenting data
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losses or discontinuities. The database also had no problems such as access denied or database

corruption. To compare the disk space occupied by the database, when it acquired data over

10 minutes, it occupied approximately 55.5 MB, remembering that the database stored a much

larger volume of data. In the context of the experiments, there were at least three more tables

of data. We can check the database view in figure 27.

Figure 27 – Example of the Data Collected in the Database

Source: Elaborated by the Author

6.4 Scenario 04 - Data Acquisition Following Stress Induction Protocol

In this section, we present the dataset acquisition process in practice. To perform this exper-

iment, we followed a stress induction protocol.

We have performed this practical experiment in a multi-discipline partnership with the Grad-

uate Program in Psychology at the University of Vale do Rio dos Sinos, conducted by a master’s

student, Daiane Rocha de Oliveira. The ethics committee (CAAE number 40555420.0.0000.5344)

approved the experiment to further studies regarding repetitive negative thoughts (RNT) on the

body. The experiment had the objective of measuring the HRV at rest. However, in the ex-

periments, we have included the sensors such as ECG, EDA, and RSP. Due to the pandemic
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scenario, we followed all safety protocols, and the procedure happened only with the partici-

pant and the psychologist in the room. Another aspect that we can highlight about the prototype

is the test of the architecture’s stability and to assess simplicity because guidance about the use

of the prototype happened remotely regarding the use of the architecture and all procedures.

We intend to compose a proprietary dataset with the experiment. With the stress induction

protocol, it is possible to obtain three classes of data: pre-stress, stress, and post-stress (medita-

tion). This experiment was also part of the master’s research of the psychologist Daiane Rocha

de Oliveira. She aims to evaluate the heart rate variability in clinical and non-clinical partici-

pants (without a prior diagnosis) and verify the behavior of this signal throughout a process that

leaves the normal state, with orientation to concentrate, going to a moment of stress, and then

returning to the normal state, trying to remove the stress.

6.4.1 Protocol

The protocol developed for this experiment starts from the premise of inducing stress based

on negative thoughts. Initially trying to prove this hypothesis, we performed an initial experi-

ment using the commercial wearable sensor Polar H10 to detect the change of state regular to

stress based on HRV. The initial results confirmed the hypotheses raised, making it possible to

verify the difference in the R-R intervals when under stress.

With the hypothesis of the protocol confirmed, we performed the experiments with a larger

volume of participants. The protocol seeks to assess stress induction in clinical and non-clinical

participants, comparing the body’s responses to the effect of stress. We can see Figure 28

the steps of the experiment carried out to acquire the data for the compilation of the dataset.

We have considered clinical participants who have some psychological follow-up previously

diagnosed, whereas non-clinical participants who have nothing diagnosed. We have not made

any previous tests to assess whether non-clinical participants have something to be diagnosed.

Figure 28 – Stress Induction Protocol Flowchart

Source: Elaborated by the Author

The first stage of the protocol is the coupling of the wearable sensor. We decided to place

the electrodes at the beginning of the experiment. This way, the participants would get used

to using the sensors. We intended to reduce the impact of the bother of the sensors during the

acquisition. In the next step, participants filled in sociodemographic data and relevant data for
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inclusion in the model as the social context and physiological information tend to impact the

physiological stress response.

After completing the sociodemographic data, the pre-stress meditation process begins, in

which the participant remains looking at a white screen, oriented to try not to think about any-

thing specific. The participant remains that way for five minutes. After completing the five

pre-stress minutes, the white screen changes to a screen with the phrase "Think about a recent

situation that has made you distressed or upset ..." (Figure 29). In this stage, the induction of

stress occurs through negative thinking. The participant spends 1 minute thinking about the

current situation that has made him go through some unpleasant moments.

Figure 29 – Photo with part of the experiment, participant looking at the laptop screen with the
orientation

Source: Elaborated by the Author

After completing this minute of stress induction, the screen returns to a white screen, in

which the participant again tries to ward off any thinking, constituting a post-stress stage. In

this stage, as in pre-stress, it occurs for 5 minutes to return to a neutral state. When completing

the period time of the post-stress stage, the participant performs a self-report. He explains what

he thought and what was the feeling he felt during the process. This step also is relevant because

it can explain possible differences in data for the same classifier during a stage.

Moreover, it may show differences in the groups analyzed. Finally, we removed the sensors,

and thanks for participating in the experiment and research. It can be seen in Figure 30 some

photos taken during an experiment with the participants.
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Figure 30 – Photos of the participants during the stress induction experiment with the sensors
placed

Source: Elaborated by the Author

6.4.2 Participants

We have performed the experiments with 27 participants, 12 non-clinical and 15 clinical

cases. Of these 27 participants, 66.67% of the participants were women ages 18 and 38. Male

participants represent 33.33%, aged between 19 and 38 years. We can check the relation of

some data of the participants in the Table 3. Among the data present in the table are the par-

ticipant’s reference name, which for privacy reasons, we kept as ’Participant’, and the experi-

ment number. The second column presents whether the participant is a clinical participant or

not. The third column presents the participant’s gender and valuable information when eval-

uating the data directly related to the levels of the measured signals. The data of age (fourth

column), weight (fifth column), height (sixth column), and Body Mass Index (BMI) is an inter-

national measure used to calculate whether a person is an ideal weight (DISEASE CONTROL

AND PREVENTION, 2020).

6.5 Scenario 05 - Prediction - Offline

This section presents a description of the data preparation to generate the artificial intel-

ligence model. In the preparation of the data, we first separate the ranges of values used in

training, and then we apply the windowing technique to reinforce the characteristics of the data.

In the next step, we present the algorithms used in training to demonstrate the algorithm with

the best performance among Machine Learning approaches to generate the model. We used the

data obtained through the stress induction experiment described in the 6.4 section in a controlled

experiment; all carried out in the exact location.
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Table 3 – List of Participants - First Experiment
Participants Clinical Gender Age [y] Weight [kg] Height [m] BMI[kg/m2]

Participant 01 No Woman 26 91 1.65 33.43
Participant 02 No Woman 31 62 1.60 25.39
Participant 03 No Woman 26 58 1.56 23.83
Participant 04 No Woman 24 73 1.59 28.88
Participant 05 No Woman 24 61 1.58 24.44
Participant 06 No Woman 24 64 1.55 26.64
Participant 07 Yes Woman 38 68 1.57 23.53
Participant 08 No Woman 32 58 1.64 21.56
Participant 09 Yes Woman 33 90 1.73 30.07
Participant 10 No Man 20 86 1.67 30.84
Participant 11 No Woman 30 52 1.58 21.10
Participant 12 Yes Woman 36 67 1.63 25.22
Participant 13 No Man 37 79 1.75 25.80
Participant 14 Yes Man 21 71 1.75 23.18
Participant 15 Yes Man 34 94 1.86 27.17
Participant 16 Yes Woman 28 78 1.59 30.85
Participant 17 Yes Woman 37 62 1.60 24.22
Participant 18 Yes Woman 18 49 1.57 19.88
Participant 19 Yes Woman 22 62 1.58 24.84
Participant 20 Yes Woman 38 83 1.70 28.72
Participant 21 No Woman 32 64 1.63 24.09
Participant 22 Yes Woman 20 64 1.65 23.51
Participant 23 Yes Man 23 85 1.77 27.13
Participant 24 Yes Man 23 58 1.72 19.61
Participant 25 Yes Woman 34 57 1.53 24.35
Participant 26 Yes Man 19 102 1.71 34.88
Participant 27 No Man 31 82 1.77 27.45

Source: Elaborated by the Author

6.5.1 Data Selection

The data selection step ensures that all categories have the same amount of data. This step

has relevance because it is crucial for proper training that all categories provide the same amount

of data for the training. An adequate balance of the dataset prevents the model from having a

classification tendency. The dataset has 13 minutes of acquisition for each participant. Of these

13 minutes, the first and last minutes are guard values.

Removing these values, we have 11 minutes of data, of which the initial 5 minutes refer

to pre-stress, 1 minute of stress, and the last 5 minutes of post-stress. To balance the data, we

defined that the data that we would use for pre-and post-stress would be the third minute because

in an evaluation carried out, these points correspond better to the objective of the classifier step.

In other words, of the 11 minutes acquired in the experiment, we selected the third, sixth, and

ninth minutes. Thus, the data we used during the AI experiment totaled 3 minutes of acquisition
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per participant, with 27 participants.

6.5.2 Windowing

The windowing process aims to reinforce the characteristics of physiological signals. For

this, the data, after going through the filtering process, are arranged into matrices. Each column

is a signal, and the lines its instant in time. We defined 600 ms windows for each of the signals

with overlapping of 50% for each window, according to Figure 31.

Figure 31 – Example of Data Windowing Technique

As seen in Figure 31, we split the data into 600 ms windows, and windowing occurs with

the overlapping of these windows by sliding one over the other. For example, the first window

occurs from time 0 ms to 600 ms, so we relocate these selected data to the new dataset. The

second window has an overlapping of 50%. This overlapping of 50% means that the window

advances 300 ms, thus forming a time window of 300 ms to 600 ms. We relocate this second

window again into the new dataset, repeating 300 ms of data. This technique tends to reinforce

the characteristics of the trained data. This process repeats for the entire dataset.
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6.5.3 Machine Learning Algorithms and Evaluation

We used eight different machine learning algorithms for the model training to explore the

approach to present the best results since the training performed had multiple physiological

signals. The Machine Learning algorithms used are SVM, NB, DT, Ada Boost Classifier, Mul-

tilayer Perceptron, kNN, RF, and Gaussian Process (RUSSELL; NORVIG, 2009). In addition to

the variation of algorithms used, we performed experiments with different approaches regarding

the dataset.

We performed the ML experiments with variations regarding the participants and the clas-

sification objectives. We performed experiments with all and part of the dataset dedicated to

identifying the clinical and non-clinical behavior. We also evaluated classification with the three

classes (pre-stress, stress, and post-stress) and with some binary combinations. We described

the complete set of experiments in the following.

We performed a series of ML experiments using five different classification algorithms.

Among the algorithms used, we can mention DT, kNN, RF, Ada Boost, and MLP. We separated

these experiments into four sets. The first was using binary classification with all participants.

The second experiment had all participants and classification using the three classes. Finally,

we performed experiments separating the dataset into clinical and non-clinical participants. For

each of these sets, we carried out experiments to detect stress.

Furthermore, it is essential to evaluate broadly the results obtained. In the evaluation step,

we used the accuracy, precision, F1, and Recall metrics. In addition to the before-mentioned

metrics, we also used the confusion matrix to assess how the model classified the data. More-

over, we use a cross-evaluation method to evaluate the possible overfitting. We selected the

kFold method for the cross-evaluation.

6.6 Scenario 06 - Prediction - Online

This section presents the methodology used in the experiments to validate the detection

in real-time. To evaluate the real-time detection, we performed new experiments for stress

induction. The new experiments followed the same steps as the first experiment to compose

the dataset. In this new experiment, we performed 20 acquisitions; 8 participants were clinical

and 12 non-clinical participants. Of the analyzed participants, 7 participants were in the first

experiment, and 13 we acquired for the first time.

6.6.1 Real-time Detection

We can check the data of the participants in Table 4. Among the data present in the table

are the participant’s reference name, which for privacy reasons, we kept as ’Participant’, and

the new experiment number. The second column is whether the participant is a clinical par-
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ticipant or not. The third column presents the participant’s gender and valuable information

when evaluating the data directly related to the levels of the measured signals. The data of age

(fourth column), weight (fifth column), height (sixth column), and Body Mass Index (BMI)

is an international measure used to calculate whether a person is an ideal weight (DISEASE

CONTROL AND PREVENTION, 2020). The last column indicates if the participant was in

the first experiment and which was his serial identification in the first experiment.

Table 4 – List of Participants - Second Experiment
Part. Clinical Gender Age [y] Weight [kg] Height [m] BMI[kg/m2] New Part.

Part. 01 No Man 32 1.77 89 28.41 No (27)
Part. 02 No Man 47 1.65 88 32.32 Yes
Part. 03 No Woman 28 1.67 70 25.09 Yes
Part. 04 No Man 29 1.79 100 31.21 Yes
Part. 05 No Woman 31 1.60 65 25.39 No (2)
Part. 06 No Man 43 1.82 100 30.18 Yes
Part. 07 No Woman 25 1.55 66 27.47 No (6)
Part. 08 Yes Man 35 1.86 98 28.32 No (15)
Part. 09 Yes Woman 33 1.73 85 28.40 No (9)
Part. 10 Yes Woman 19 1.58 50 20.02 No (18)
Part. 11 Yes Woman 38 1.57 78 31.64 Yes
Part. 12 Yes Woman 33 1.71 73 24.96 Yes
Part. 13 No Woman 25 1.53 50 21.35 Yes
Part. 14 No Woman 29 1.64 64 23.79 Yes
Part. 15 No Woman 32 1.63 65 24.46 No (21)
Part. 16 Yes Woman 43 1.60 84 32.81 Yes
Part. 17 Yes Woman 35 1.60 77 30.07 Yes
Part. 18 No Woman 25 1.63 73 27.47 Yes
Part. 19 No Woman 35 1.68 64 22.67 Yes
Part. 20 Yes Woman 33 1.60 69 26.95 Yes

Source: Elaborated by the Author

The first step of the experiment is the placement of ATHENA I electrodes on the participant,

after which the participant fills in the sociodemographic data. As in the first experiment, we

instructed the participant to remain in their relaxed state for 5 minutes. After this period, we

again instruct the participant to think about a situation that has recently made him/her distressed

or upset to acquire the stress stage. After 1 minute, we instruct the participant to return to their

normal state; this step lasts for 5 minutes.

After carrying out the experiments, we analyzed the data obtained. ATHENA I generated

a record file for each participant with the classification values for each analyzed moment. To

automatically analyze the classified values, we developed a code to evaluate them classified

values. The developed code considers the start of the experiment and, according to the time,

evaluates whether the architecture classified the signals correctly.

Finally, we performed new training and classification experiments using Machine Learning

for the data from both stress induction experiments. Again, we carried out the experiments using
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the algorithms Decision Tree, kNN, Random Forest, Ada Boost, and Multilayer Perceptron. In

the next chapter, chapter 7, we will present the results obtained in the evaluation scenarios

throughout the experiments. We present the results and evaluate them to verify plausibility.
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7 RESULTS

In this chapter, we present results obtained in the experimentation stages. We describe the

results obtained during the stability testing and the results obtained in the practical experiments.

Concerning the data obtained in the practical experiments, we perform a more in-depth analysis,

evaluating the results and the prototype. The chapter has seven sections, of which three address

subjects such as the dataset, the volume of data generated, and an analysis of the signals ob-

tained. The other four sections cover the Machine Learning experiments, real-time acquisition

experiment, new ML experiment with all the data, and a brief discussion justifying the results.

7.1 Description of Dataset Acquired Through Stress Induction Experiments

The acquired dataset has a total of 27 participants. For each participant, the acquisition

period performed was approximately 13 minutes. We must remove the first and last minute

because these data refer to pre and post-experiment. For each participant, we obtained about

700,000 lines of raw data. As mentioned earlier, the architecture provided the data in three

ways, via text files (.txt), separated by semicolons, in CSV files, separated in the same way

as was done in the text file, separated by semicolons. Finally, we have the database, which

provides the data from the dataset already processed.

The developed dataset has columns called participant’s name and surname, hidden for pri-

vacy reasons. The dataset also has columns with electrocardiograms, electrodermal activity,

respiratory pattern, date, and time.

For simple analysis, we recommend using the database. Because, in this case, it is not nec-

essary to apply filters or processing. Since the data has already been previously filtered and

processed, it allows the graphical analysis of the data more directly. However, if we want to use

the raw data, we recommend using the data in CSV format because we can select which partic-

ipants we want to use. One of the reasons is that we do not need to move the entire database,

which has the data of all participants and, in addition, also has the data already processed, as in

the section 7.2.

7.2 Volume of Data Generated by the Architecture

Based on the acquisition made for the composition of the training dataset, we can obtain

some relevant data. It is possible to extrapolate the values for a longer acquisition period or

even a period of continuous acquisition. We estimate the storage space required for a given

project or evaluate the possible acquisition period time. Table 5 contains the values obtained

during the experiment. We compare the values using the three storage methods used by the

architecture.

Regarding the complete dataset, the total values were slightly higher since the period ac-
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Table 5 – Amount of Data
Time txt [MB] CSV [MB] SQLite [MB]

1 min. 2.5 2.6 5.6
5 min. 12.8 13.5 27.3
10 min. 25.6 27.1 56.8
15 min. 37.9 39.2 86.3
30 min. 75.6 77,2 172.6
60 min. 151.0 154,3 346.7
120 min. 299.7 305.5 691.5

Source: Elaborated by the Author

quired was longer. The volume of acquired data referring to the text files generated approxi-

mately 824.4 MB of storage. The experiment generated 357 files for 27 participants acquired.

Regarding CSV files, 27 files were generated, totaling 842.6 MB of files, representing an in-

crease of 2.21% concerning CSV files. Finally, the database generated a single file, with all

the data organized in tables. The generated dataset file contains 1,544.3 MB. It represents an

increase of 83.27% in the CSV data and an increase of 87.32% in data stored in text form.

7.3 Analysis of Acquired Signals

After collecting the data for the dataset, it is necessary to evaluate the data to verify its

integrity of the data. We also must check whether the data represents the expected theory.

We performed an initial graphic analysis of the data for all participants. We found that the

non-clinical participants in the study showed a more significant change in the physiological

signals during the stress induction period, and soon after the stress reduction period, the signals

returned to normal. However, we observed that clinical participants had a lower variation during

the stress-inducing period.

It is important to note that the data evaluated in this stage we delimited to show only the

period of the experiment itself, which comprises 660 seconds (11 minutes). There are 300

seconds of pre-stress, 60 seconds of stress induction, and 300 seconds post-induction in each

experiment. To assess the differences between the two groups, we selected two participants,

with Participant 03 being a non-clinical case and Participant 23 as a clinical case.

We can evaluate in Figures 32 (Participant 03) and 33 (Participant 23) the ECG signals for

the two participants. In analysis, for Participant 03, it is evident that the heart rate increased

at 300 s at the beginning of the stress induction period, and there was a decrease at 360 s. For

Participant 23 (Figure 33), the increase in heart rate does not have a significant increase as

observed in Participant 03. It is important to note that the beginning of Participant 03’s signal

increases the heart rate. It happens because the participant is agitated at the beginning of the

process, which during the meditation period decrease.

We can verify a similar behavior in the signals related to RSP as we have seen in the Heart
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Figure 32 – Participant 03 (Non-clinical) - ECG

Source: Elaborated by the Author

Figure 33 – Participant 23 (Clinical) - ECG

Source: Elaborated by the Author

Rate. The non-clinical participant (Figure 34) shows a significant change in frequency and

amplitude during the stress induction stage at 300 seconds. This behavior is not evident in the

clinical participant (Figure 35). There is an increase in the clinical participant’s signal amplitude

during the stress induction stage. This increase is the opposite behavior observed in the non-

clinical participant. Another aspect that we can point out is that the signal related to Participant

23 shows a lower respiratory rate during the entire period observed.

Figure 34 – Participant 03 (Non-clinical) - RSP

Source: Elaborated by the Author

Finally, the last signal we obey is the EDA for the same two participants observed previously.

We may observe similar behavior in both participants. However, for the non-clinical participant
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Figure 35 – Participant 23 (Clinical) - RSP

Source: Elaborated by the Author

(Figure 36), the electrical conductivity of the skin reaches a higher value when compared to the

electrical conductivity of the clinical participant (Figure 37). Another difference that we must

point out between the two cases is that Participant 03 takes longer to return to the natural level

of electrical conductivity of the skin compared to the behavior of the EDA for Participant 23.

Figure 36 – Participant 03 (Non-clinical) - EDA

Source: Elaborated by the Author

Figure 37 – Participant 23 (Clinical) - EDA

Source: Elaborated by the Author

To represent the results, we calculated the average of the signals for each participant. To get

the most accurate data possible and to be able to carry out a relative comparison, for each of

the three-stage, we have used the same period (1 min). As the pre and post-stress stages have

5 minutes, we used the period between the 3rd and 4th minutes of the experiment (pre-stress).
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The period we selected to represent the post-stress was from 8 to 9. In the data comparisons,

we have added relevant information to compare the data between participants, such as gender

and whether the participant is a clinical or non-clinical case.

In the Table 6, check the participant data for the ECG data. In the first column, we have the

participant. In the second and third columns, we have the information on whether it is a clinical

case or not and the participant’s gender. In columns 4, 5, and 6, we can see the data for the

pre-stress, stress, and post-stress classes, all measured in bpm.

Table 6 – Participants’ ECG Averages
Participant Clinical Gender Pre-Stress [bpm] Stress [bpm] Post-Stress [bpm]

Participant 01 No Woman 66.592 78.049 63.836
Participant 02 No Woman 68.123 84.257 95.049
Participant 03 No Woman 73.104 87.008 72.252
Participant 04 No Woman 84.391 84.424 89.686
Participant 05 No Woman 88.400 93.082 82.289
Participant 06 No Woman 76.672 80.065 76.989
Participant 07 Yes Woman 79.733 81.085 79.564
Participant 08 No Woman 89.247 87.351 82.599
Participant 09 Yes Woman 73.378 73.891 73.360
Participant 10 No Man 65.476 68.611 67.273
Participant 11 No Woman 89.447 88.094 86.193
Participant 12 Yes Woman 82.818 83.528 84.947
Participant 13 No Man 58.879 59.066 59.854
Participant 14 Yes Man 103.680 104.695 107.264
Participant 15 Yes Man 84.596 86.497 82.593
Participant 16 Yes Woman 79.052 83.439 82.047
Participant 17 Yes Woman 85.897 84.154 86.257
Participant 18 Yes Woman 103.470 105.820 103.517
Participant 19 Yes Woman 75.679 77.410 73.893
Participant 20 Yes Woman 90.271 91.906 93.488
Participant 21 No Woman 84.718 85.428 86.716
Participant 22 Yes Woman 89.880 89.992 88.209
Participant 23 Yes Man 91.731 97.519 91.738
Participant 24 Yes Man 70.135 71.968 73.600
Participant 25 Yes Woman 77.758 78.437 78.266
Participant 26 Yes Man 71.486 66.985 69.151
Participant 27 No Man 69.526 73.542 68.677

Source: Elaborated by the Author

Table 7 presents the averages of the values obtained for the RSP signal. As with the ECG

data (Table 6), the first, second, and third columns present participant, clinical status, and gender

data, respectively. Columns 4, 5, and 6 present the RSP data for the pre-stress, stress, and post-

stress classes, all in volts [V], since we have gotten the signals through the piezoelectric sensor.

Finally, we have the Table 8 Table that demonstrates the EDA averages, as well as As Tables

6 and 7 have the same three starting columns, participant, clinical status and gender. However,
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Table 7 – Participants’ RSP Averages
Participant Clinical Gender Pre-Stress [V] Stress [V] Post-Stress [V]

Participant 01 No Woman 0.251 0.298 0.289
Participant 02 No Woman 0.256 0.282 0.287
Participant 03 No Woman 0.252 0.242 0.231
Participant 04 No Woman 0.284 0.282 0.276
Participant 05 No Woman 0.241 0.227 0.235
Participant 06 No Woman 0.178 0.233 0.217
Participant 07 Yes Woman 0.162 0.181 0.186
Participant 08 No Woman 0.263 0.268 0.243
Participant 09 Yes Woman 0.164 0.185 0.245
Participant 10 No Man 0.258 0.219 0.250
Participant 11 No Woman 0.224 0.262 0.226
Participant 12 Yes Woman 0.293 0.291 0.320
Participant 13 No Man 0.263 0.267 0.259
Participant 14 Yes Man 0.296 0.291 0.292
Participant 15 Yes Man 0.245 0.303 0.294
Participant 16 Yes Woman 0.219 0.246 0.214
Participant 17 Yes Woman 0.322 0.317 0.327
Participant 18 Yes Woman 0.246 0.235 0.222
Participant 19 Yes Woman 0.213 0.204 0.225
Participant 20 Yes Woman 0.278 0.274 0.270
Participant 21 No Woman 0.222 0.272 0.224
Participant 22 Yes Woman 0.216 0.240 0.264
Participant 23 Yes Man 0.196 0.141 0.112
Participant 24 Yes Man 0.262 0.264 0.250
Participant 25 Yes Woman 0.242 0.243 0.255
Participant 26 Yes Man 0.293 0.299 0.296
Participant 27 No Man 0.167 0.205 0.218

Source: Elaborated by the Author

columns 4, 5, and 6 present EDA data for the same classes, measured in microsiemens [µS].

7.4 Machine Learning Model Training

We performed a series of Machine Learning training experiments evaluating classification

approaches and exploring the results with the acquired dataset. The new dataset has two differ-

ent groups of participants, clinical and non-clinical participants, so we also sought to evaluate

them in isolation. According to the allostatic load theory (CORRIGAN et al., 2021), people

with some mental disorders may present different behavior in stressful situations. Furthermore,

clinical people may not feel anything in a stressful situation. Alternatively, after starting a

stressful situation, they can take more time to return to a normal state or even do not return.

We separated the results obtained in the Machine Learning experiments according to the set

of participants used and the type of classification. In Table 9, we listed the results obtained in the
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Table 8 – Participants’ EDA Averages
Participant Clinical Gender Pre-Stress [µS] Stress [µS] Post-Stress [µS]

Participant 01 No Woman 1.655 1.239 0.957
Participant 02 No Woman 3.230 3.195 3.030
Participant 03 No Woman 1.701 3.363 2.003
Participant 04 No Woman 1.427 1.237 1.143
Participant 05 No Woman 4.747 3.795 2.585
Participant 06 No Woman 5.846 6.885 5.363
Participant 07 Yes Woman 0.580 0.552 0.538
Participant 08 No Woman 10.20 10.200 10.200
Participant 09 Yes Woman 5.487 4.923 3.890
Participant 10 No Man 6.378 6.371 4.145
Participant 11 No Woman 7.535 7.634 5.822
Participant 12 Yes Woman 0.856 0.826 0.807
Participant 13 No Man 2.959 3.136 2.777
Participant 14 Yes Man 6.764 6.869 9.165
Participant 15 Yes Man 6.79 6.294 5.702
Participant 16 Yes Woman 0.751 0.661 0.647
Participant 17 Yes Woman 1.644 1.533 1.574
Participant 18 Yes Woman 2.370 1.895 1.981
Participant 19 Yes Woman 8.626 8.532 8.402
Participant 20 Yes Woman 1.950 1.989 1.604
Participant 21 No Woman 1.878 1.878 2.013
Participant 22 Yes Woman 9.082 7.778 7.278
Participant 23 Yes Man 10.200 10.117 9.876
Participant 24 Yes Man 2.627 3.130 3.010
Participant 25 Yes Woman 3.399 2.543 2.375
Participant 26 Yes Man 8.962 7.917 6.560
Participant 27 No Man 6.286 6.793 5.362

Source: Elaborated by the Author

experiments using all participants to perform binary classification. The two classes considered

are baseline and stress. The Decision Tree and Random Forest classification algorithms stand

out, with results above 95%. Algorithms tested such as kNN and Ada Boost also showed

promising results for binary classification but in the range of 92%.

Table 9 – Results from all participants - First Experiment | Classes: Baseline and Stress
Algorithm Accuracy F1 Precision Recall kFold

DT 97.512 97.512 97.502 97.512 97.117
kNN 91.212 91.211 91.233 91.212 89.988
RF 98.207 98.207 98.207 98.207 97.320
Ada Boost 92.601 92.598 92.632 92.601 92.655
MLP 55.858 52.887 58.119 55.858 56.723

Source: Elaborated by the Author

The second set of tests performed involved all participants, classifying three classes. The
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predicted classes are pre-stress, stress, and post-stress. The results verified (Table 10) in this set

of experiments showed significantly lower accuracy when compared with the first experiment.

However, we consider this result expected, considering that the classification went from two

to three classes. In this set of tests, the algorithms that stand out are still Decision Tree and

Random Forest, with 90% and 92% accuracy, respectively.

Table 10 – Results from all participants - First Experiment | Classes: Pre-stress, Stress, and
Post-stress

Algorithm Accuracy F1 Precision Recall kFold

DT 90.522 90.521 90.521 90.522 86.341
kNN 72.046 72.075 72.136 72.046 69.992
RF 92.720 92.724 92.725 92.725 89.697
Ada Boost 57.605 57.279 57.273 57.605 58.042
MLP 33.551 18.173 33.357 33.551 33.806

Source: Elaborated by the Author

In the third and fourth Machine Learning experiments performed, we divided the dataset into

non-clinical and clinical participants, using the three classes. This division aimed to identify

whether any of these two sets had any impact on the trained values obtained. According to

the allostatic load theory, we expected lower results with the clinical participant set. The third

experiment, with non-clinical participants (Table 11), showed better values when compared to

training values with all participants. The accuracy for DT and RF was above 93%.

Table 11 – Results of non-clinical participants - First Experiment | Classes: Pre-stress, Stress,
and Post-stress

Algorithm Accuracy F1 Precision Recall kFold

DT 93.035 93.036 93.037 93.035 90.532
kNN 80.861 80.898 80.962 80.861 79.536
RF 94.564 94.564 94.564 94.564 92.845
Ada Boost 64.917 64.703 64.817 64.917 65.157
MLP 41.428 39.836 43.532 41.428 39.561

Source: Elaborated by the Author

In the fourth experiment we carried out with clinical participants, the values obtained were

lower than non-clinical ones, according to Table 12. We expected this range of values, as the

signals of clinical participants tend not to respond in a standard way in stressful situations.

Therefore the model presents difficulties in classifying these individuals correctly. Even though

the values obtained are lower than those of the previous experiments, the accuracy and precision

values for Decision Tree and Random Forest continued to be above 90%.

The values obtained in Cross-Validation are a means of varying the model’s generalization.

Thus, in these experiments, all values obtained are close to the accuracy and precision values

for the data sets and the algorithms, with an average of 3% difference.
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Table 12 – Results of clinical participants - First Experiment | Classes: Pre-stress, Stress, and
Post-stress

Algorithm Accuracy F1 Precision Recall kFold

DT 90.081 90.081 90.083 90.081 86.547
kNN 70.276 70.289 70.322 70.276 68.407
RF 92.083 92.081 92.083 92.081 88.940
Ada Boost 60.140 59.986 60.071 60.140 59.046
MLP 36.344 30.248 35.039 36.344 34.242

Source: Elaborated by the Author

Another way to validate the values obtained in training is using confusion matrices. We

selected the algorithm Random Forest Classifier with three classes for this verification. We

first analyzed the results with all participants. Next, we compared the set of non-clinical and

clinical participants. In Figure 38, we look at the predicted values in each class in percentage

terms using DT. The number of occurrences is related to the different data obtained with the

windowing process.

Figure 38 – Confusion Matrix Percentage Values of all participants | Classes: Pre-stress, Stress,
and Post-stress

Source: Elaborated by the Author

As we can see, the classification occurred adequately, with the Post-Stress classifications

with the highest number of correct classifications. In the Figure 39, we check the confusion

matrix with absolute values. By analyzing the matrix, we verified that the correctly predicted

values in each class were very close. We can also highlight that the class that presented the

greatest error was pre-stress, in which the model classified it as stress. The confusion between

the two classes occurred in the opposite direction because the second-biggest misclassification

was the model’s stress values classified as pre-stress.
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Figure 39 – Confusion Matrix Absolute Values of all participants | Classes: Pre-stress, Stress,
and Post-stress

Source: Elaborated by the Author

On the other hand, the model made fewer classifications between post-stress and stress. We

can justify it because the final period of participant stress is at its maximum stress level. The

post-stress used has already passed 2 minutes of the participant trying to get back to his basal

state.

We can analyze the impact of allostatic load on non-clinical and clinical participants by

comparing the confusion matrix. In Figure 40, we have the confusion matrix in percentage

values for non-clinical participants with a three-class classification. In figure 41, we see the

confusion matrix for clinical participants, also in percentage values for three classes. Both

matrices are obtained from the training using RF. Comparing the values of the two matrices, we

verified an average decrease of 2.5% in the model accuracy with clinical participants compared

to non-clinical participants. The most significant difference found is in post-stress, in which the

classification for non-clinical participants reached 95.49% and dropped to 92.71% with clinical

participants.

If we analyze the matrices of non-clinical (Figure 42) and clinical (Figure 43) participants in

absolute values, we verify the magnitude of the difference in classifications. Before performing

this direct comparison of absolute values, it is necessary to highlight the number of participants

in each group in the dataset. The dataset has 12 non-clinical and 15 clinical participants, totaling

three more participants for the set of clinical participants. One of the possible comparisons

between the two groups is the significant increase in post-stress classification errors. This aspect

aligns with our expectations because clinical participants have greater difficulty returning to

their normal state.

Furthermore, clinical participants already have an altered baseline state. When compared
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Figure 40 – Confusion Matrix Percentage Values of non-clinical participants - Classes: Pre-
stress, Stress, and Post-stress

Source: Elaborated by the Author

Figure 41 – Confusion Matrix Percentage Values of clinical participants - Classes: Pre-stress,
Stress, and Post-stress

Source: Elaborated by the Author

to clinical participants, we found fewer errors in this classification—the previously verified

characteristic of the most significant number of errors occurring when classifying stress and

pre-stress remains. The highlight is the increase in post-stress classification errors.

We performed a brief analysis of the means of some clinical and non-clinical participants
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Figure 42 – Confusion Matrix Absolute Values of non-clinical participants - Classes: Pre-stress,
Stress, and Post-stress

Source: Elaborated by the Author

Figure 43 – Confusion Matrix Absolute Values of clinical participants - Classes: Pre-stress,
Stress, and Post-stress

Source: Elaborated by the Author

in a comparative way. Using ECG data as a basis, we can verify the behavior of the signs.

It justifies the drop in the accuracy value. In Table 13, we have the average heart rate of eight

participants for the three stages of the protocol. Four of these participants are non-clinical cases,

and the other four are clinical cases. By analyzing the non-clinical participants, we verified the
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expected behavior in the stress-inducing protocol. Starting with lower heart signals, during the

stress period, an increase in the signals, and during the stress period again a relaxation, thus

decreasing the heart rate levels.

Table 13 – Comparison of ECG values between participants
Participant Clinical Pre-Stress [bpm] Stress [bpm] Post-Stress [bpm]

Part. 01 No 66.592 78.049 63.836
Part. 03 No 73.104 87.008 72.252
Part. 05 No 88.400 93.082 82.289
Part. 06 No 76.672 80.065 76.989
Part. 12 Yes 82.818 83.528 84.947
Part. 17 Yes 85.897 84.154 86.257
Part. 18 Yes 103.470 105.820 103.517
Part. 20 Yes 90.271 91.906 93.488

Source: Elaborated by the Author

However, if we analyze the clinical participants’ heart rates, we see different behaviors in

the signs. For example, participant 12 has an average of 82.81 bpm in pre-stress, the heart

hates rises to 83.53 bpm, and in post-stress, instead of from lower, the heart rate rises to 84.95

bpm. Participant 17, on the other hand, has a heartbeat behavior that is the opposite of what

we expected, starting with 85.90 bpm, decreasing to 84.15 bpm, and rising again to 86.26

bpm. Analyzing participant 18, we verified that the behavior is as expected but at much higher

levels when compared to the other participants. Finally, participant 20 had similar behavior to

participant 12. The data start lower in the first stage, in the second stage, the signals rise, and in

the third stage, there is a new average increase in heart rate, showing that the participant could

not return to his basal state.

It is essential to highlight that clinical participants showed signals as expected and non-

clinical participants with unexpected behaviors. There are two possible justifications for the

non-clinical participants to have shown different signs. The first is the experiment’s effective-

ness, as the experiment requires the participant’s concentration. The second possibility is that

the non-clinical participant may have some undiagnosed or untreated clinical condition, as we

did not perform previous evaluations of the non-clinical participants.

7.5 Real-time Detection

In real-time detection experiments, we performed acquisitions with 20 participants; 8 par-

ticipants were clinical and 12 non-clinical participants. Seven participants were in the first

experiment, and 13 were acquired for the first time. For each 30-second acquisition, the ar-

chitecture generates a unique overall rating. For this unique classification to be generated, the

architecture evaluated the signals in this period, classifying them from 300 ms to 300 ms. This

generated 300 ms by 300 ms ratings are evaluated and analyzed to generate the overall rating
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for the period. In order to be classified as a given class, the values must be at least 70% of the

classified results.

We can verify the classification accuracy values in the second stress induction experiment

in Table 14. The Table presents the participant reference number in the first column, starting

with the participants in the first stress-inducing experiment. The second column presents the

information if the participant is a clinical or non-clinical case. The third column highlights the

data if the participant is new to the experiment or if he is participating again in the experiment.

Finally, in the fourth column, we have the accuracy value obtained for each participant.

Table 14 – Real-time Classification
Participant Clinical New Part. Accuracy

Part. 01 No No - 27 64.52
Part. 02 No Yes 47.12
Part. 03 No Yes 31.51
Part. 04 No Yes 53.29
Part. 05 No No - 2 73.67
Part. 06 No Yes 52.32
Part. 07 No No - 6 60.13
Part. 08 Yes No - 15 71.52
Part. 09 Yes No - 9 62.97
Part. 10 Yes No - 18 78.93
Part. 11 Yes Yes 61.51
Part. 12 Yes Yes 38.63
Part. 13 No Yes 21.78
Part. 14 No Yes 46.31
Part. 15 No No - 21 71.29
Part. 16 Yes Yes 31.37
Part. 17 Yes Yes 52.94
Part. 18 No Yes 43.39
Part. 19 No Yes 59.51
Part. 20 Yes Yes 57.82

Source: Elaborated by the Author

7.6 Machine Learning Model Update

After performing the second induction experiment, we performed a new Machine Learning

training to update the model. The new experiments followed the previously-formed format,

training the model using five different Machine Learning algorithms and comparing the values.

As in the previous Machine Learning experiment, we separated the results obtained in the

Machine Learning experiments according to the set of participants used and the type of clas-

sification. In Table 15, we list the results for all participants using binary classification. The

two classes considered are baseline and stress. The new experiments showed a little improved

result in binary classification values but still showed better results with the Decision Tree and
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Random Forest classification algorithms, with results of 92.38% and 94.62%.

Table 15 – Results from all participants - Second Experiment | Classes: Baseline and Stress
Algorithm Accuracy F1 Precision Recall kFold

DT 98.351 98.351 98.351 98.351 97.580
kNN 91.592 91.611 91.613 91.592 89.988
RF 98.686 98.686 98.687 98.686 98.016
Ada Boost 92.701 92.691 92.681 92.701 92.925
MLP 56.578 53.817 58.699 56.578 56.723

Source: Elaborated by the Author

Finally, we performed tests with all participants of both stress-inducing experiments, using

the three classes. Classes are pre-stress, stress, and post-stress. The verified results (Table 16)

showed greater accuracy than previously presented. The results with the best accuracy remain

Decision Tree and Random Forest, with 91% and 93% of correct answers, respectively.

Table 16 – Results from all participants - Second Experiment | Classes: Pre-stress, Stress, and
Post-stress

Algorithm Accuracy F1 Precision Recall kFold

DT 91.478 90.521 90.521 91.478 89.617
kNN 72.046 72.361 72.375 72.046 70.620
RF 93.648 93.648 93.649 93.648 91.761
Ada Boost 54.278 54.043 54.030 54.278 55.692
MLP 34.667 20.702 49.006 34.667 36.883

Source: Elaborated by the Author

To evaluate the classified values, we can analyze Figures 44 and 45 that present the confu-

sion matrices for classification using Random Forest. The two matrices present the rank values

in percentage terms. Figure 44 presents the confusion matrix with the values of the binary clas-

sification, analyzing the Baseline and Stress classes. In Figure 45 the confusion matrix presents

the classification for Pre-stress, Stress, and Post-stress.

7.7 Critical Analysis and Discussion

We justified the difference between the values obtained in the ML test experiments and the

real-time detection experiments due to the participants in the first experiment not knowing what

the experiment would be like. In the second experiment, the participants who had participated in

the first experiment no longer had the exact expectations, which could affect the classification

result. In addition, there is a one-minute period before and after the stress induction, which

tends to present more uncertain signals. In a new training of the model, this time adding the

second experiment participants, the model showed a slight improvement in the classifications,

with values of 98,686% for binary classification and 93,648% for classification using three

classes, both using the Random Forest algorithm.
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Figure 44 – Confusion Matrix - Second Experiment - Classes: Baseline and Stress

Source: Elaborated by the Author

Figure 45 – Confusion Matrix - Second Experiment - Classes: Pre-stress, Stress, and Post-stress

Source: Elaborated by the Author

The different values verified for clinical and non-clinical participants are also worth men-

tioning. If we compare the training model with the set of clinical and non-clinical participants,

the values obtained with non-clinical participants were significantly better. However, the values

agree with the allostatic load theory. We expected clinical participants to have different physi-

ological signal behavior than non-clinical people. Clinical participants tend to have a naturally

higher (non-stress) baseline and do not return to baseline as quickly. The following chapter
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(chapter 8) presents the conclusions obtained from the results, in addition to defining the con-

tributions of this work and possible future works.
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8 CONCLUSION

With the rapid advancement of technology and society, routines have become much more

full of tasks and activities, a dynamic world that does not stop, that requires lots of effort.

As a consequence of this effort and continuous exhaustion, we have stress and physical and

psychological exhaustion. When a person is under stress, his performance in all aspects of life

is affected. Several papers have already demonstrated that stress manifests itself in different

ways in the human body. The stress may have a direct and indirect impact on several vital

signs.

One way of monitoring these people is through wearable sensors, which can measure phys-

iological signals and thus, identify stress. Stress, like depression, is pointed out as one of the

principal diseases of modern society. Wearable sensors have made great strides in recent years,

improving their accuracy, flexibility, and autonomy. Furthermore, allowing the user to monitor-

ing a simplified way.

It is essential to highlight that wearable sensors can be used in several areas, such as in the

hospital and the industry, to monitor professionals in places requiring monitoring and sports

to assess physical performance, among other fields. Even within the hospital area, wearable

sensors have a wide applications variety, such as remote monitoring of a patient in rehabilitation

or post-surgery. Another alternative is the patients monitoring who need psychological support

or even the health professionals’ monitoring.

This work seeks to find a solution to these aspects before listed. To achieve this objective, we

propose the development of a complete architecture. This architecture makes the acquisition,

processing, and detection of physiological signals. The applied context of this work is, already

highlighted, stress detection. However, another objective of this work is to provide a flexible

architecture that can be retrofitted to other Wearable platforms, including more devices and

equipment, if desired.

For this reason, the architecture has four blocks, which can operate synchronously or, with

few adjustments, may operate separately. In addition, the architecture can acquire a proprietary

dataset, which is the most advisable since the levels of the signals can vary according to the

application’s purpose or the wearable sensor used in the process.

We can affirm that the developed architecture has excellent stability based on the performed

experiments. The architecture did not present a loss of communication or crashes during the

experiments. We carried out more than forty-seven practical experiments in which all the ac-

quisitions did not have any oscillation of communication or failure data acquisition. Another

relevant aspect we must mention is data storage, which proved to be a reliable form of storage.

The study showed good values in detecting stress in clinical and non-clinical individuals us-

ing ML algorithms for classification. Among the algorithms used, we can highlight the Random

Forest with 92.72% accuracy in the classification using three classes and the cross-validation

test with 89.69%. The three classes we used for detection were pre-stress, stress, and post-stress.
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For binary classification, the model using RF Classifier obtained accuracy and cross-validation

of 98.20%.

We also verified which classes the model failed the most when analyzing the results. The

model showed more wrong classifications among the classes stress and pre-stress. A hypothesis

for this misclassification is an exit transition from the pre-stress in part of the stress-inducing

period. Thus, the initial stress values tend to be lower and, consequently, more similar to pre-

stress.

Another conclusion highlighted is the impact that clinical participants have on the model. If

we compare the training model with the set of clinical and non-clinical participants, the obtained

values with non-clinical participants were significantly better. Nonetheless, the values are in line

with expectations. According to the allostatic load theory, clinical participants tend to have a

different behavior toward physiological signals than non-clinical people. Clinical participants

may have a naturally higher basal (non-stress) level. Alternatively, their physiological signal

levels do not return to normal without intervention when going through a stressful situation.

We can also cite the results obtained with the real-time detection experiments. We per-

formed experiments with 20 participants following the same protocol used in the first experi-

ment. Of these 20 participants, seven were present in the first experiment, and we used their data

to train the model. The average accuracy obtained in the experiments with all 20 participants

was 52.33%. However, if we only analyze the participants in the first experiment, the average

accuracy goes up to 69.00%. These data prove the importance of adjusting the model for each

new participant, having a direct impact on the model’s performance.

Regarding the analysis of the data acquired for the dataset composition, in collaboration with

the Graduate Program in Psychology at UNISINOS, it was concluded that there are significant

differences in the data values for clinical and non-clinical participants. The behavior of the data

in the two groups is quite different. Non-clinical participants, in general, have a more significant

difference in the stress induction stage. The clinical participants have shown a much smaller

change. Another verified aspect is that the non-clinical participants tend to have a slower and

gradual return to the normal state than clinical participants.

It is imminent to evaluate how we treat these differences by the Machine Learning model

with the presented aspects. Another relevant aspect that we must mention is acquiring physio-

logical information from the participants. The physiological aspect collected are age, weight,

height, gender, and BMI. As verified in the literature, physiological aspects such as those men-

tioned directly affect physiological signals. The data must be carefully evaluated during the

experiments to generate an efficient artificial intelligence model. We know that maybe the ob-

tained model does not work with every people. There is the possibility that the model must

have a target group based on the physiological aspects of the participant. Something similar

happens with mechanical prostheses, in which the signals need to be obtained from the user of

the prosthesis because the level of the signals is characteristic for each individual (EDWARDS

et al., 2015, LEMOYNE et al., 2015).
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In synthase, we can list some positive aspects obtained with the work developed so far.

The architecture is divided into blocks so that each block can operate autonomously and on

different devices. Easy reproducibility, so installation and configuration on different devices

are simplified. We can also highlight the integration of continuous monitoring with real-time

detection through artificial intelligence. On the negative side, the architecture may need to train

a new model with data from the participant.

8.1 Contribution

Among the contributions of this work, we can list at least seven main contributions. Firstly

we can mention the mapping of the state-of-the-art approaches for physiological pattern detec-

tion, with a literature review conducted considering both computing and healthcare.

Regarding the second contribution, the developed architecture, ATHENA I, is a complete

architecture to perform the acquisition, filtering, processing, storage, and detection of physio-

logical signals, reliably and adaptively. We can highlight the way that we had developed the

architecture. Focused on being a modular architecture and designed in blocks, thus allowing

easy changes, such as changing the wearable sensor used and adding signals to measure. Also,

it can change a block without impacting the rest of the architecture. The blocks can operate so

that, with some requirements, we can implement another block in place of that one.

Regarding the third contribution, we can highlight the acquisition of a dataset in collabo-

ration with the Graduate Program in Psychology at the University of Vale do Rio dos Sinos

(UNISINOS). This dataset aims to detect stress in clinical and non-clinical participants through

stress induction based on negative thoughts. Based on the results evaluated, it is possible to

verify the difference in signals in non-clinical participants in normal states and under stress.

However, in clinical participants, it is necessary to observe other aspects. There is the possibil-

ity that a specific group is not possible to classify.

The fourth contribution that we can mention is the validation system process. As each of the

blocks was extensively tested and validated, we can guarantee the functionality of each block

independently. Since the flexibility between blocks is one of the differentials of this work, it

is essential that if one block changes, the others remain stable. As we described the validation

process in detail, it is possible to validate the block in the same way if someone reproduces the

development process.

As a fifth contribution, we can cite the development of real-time detection. Real-time de-

tection experiments showed promising results for participants in the first experiment, thus high-

lighting the need to evaluate a method to make classification more efficient for participants

outside the group used in training.

The sixth contribution of the work is the comparative analysis of the results of clinical and

non-clinical participants. We found that non-clinical participants present more periodic signals

and similar behavior. On the other hand, non-clinical participants do not present well-defined
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behavior and may or may not have an increase in signals after the incidence of stress. Alter-

natively, clinical participants may not return to baseline after a stressful situation, as observed

during the experiments. As highlighted in the text, this is due to disturbances in the participants’

allostatic load.

Finally, we can cite the submitted papers. We submitted the paper entitled ’Hybrid Deep

Learning Model for Pattern Detection - a Multiple Physiological Signal Approach using Wear-

able Sensors’ to IEEE - BSN 2021, which performs a comparison between datasets using ML

for classification. The paper ’SIF Dataset: A Dataset Based on Stress Induction’ was submitted

and accepted to LVI Congresso Anual da SBFI. This paper describes the dataset acquired during

the stress induction experiments performed. We also submitted the papers entitled ’The Impact

of Allostatic Load of Clinical Patients on Machine Learning models’ to the International Jour-

nal of Pattern Recognition and Artificial Intelligence (IJPRAI) and ’ATHENA I - Architecture

for Healthcare reinforced by Artificial Intelligence’ to Frontiers of Information Technology and

Electronic Engineering (FITEE). The first one relates the impact of allostatic load on physio-

logical signals with the classification of signals through the use of machine learning algorithms;

the second paper describes the developed architecture and its modules.

8.2 Future Work

The present work presents an architecture for acquiring, processing, storing, and classifying

physiological signals with stress detection using Machine Learning algorithms. This architec-

ture was named ATHENA I, an acronym for Architecture for Healthcare Reinforced by Arti-

ficial Intelligence. We found that the generated model presented a lower performance when

classifying participants who were not within the dataset used in training during the final exper-

iments carried out. The problem encountered was already expected since each individual has

physiological signals with their characteristics, and their signals have different levels.

As a topic for future work, we intend to deepen our approaches to Machine Learning al-

gorithms to develop a robust enough model that does not require an adjustment for each new

participant. We may need to merge classification techniques or expand the dataset to encompass

the broadest possible range of cases.

Another suggestion for future work is the implementation of the cloud storage and noti-

fication system. With the notification through a cloud system, it would be possible for any

professional to be informed if the architecture identifies anomalies in the signals. For greater

architecture robustness, we suggest developing a mobile application that could perform the in-

terface between architecture, cloud, and user, allowing a more transparent use of the entire

ecosystem.

Another possibility to expand the architecture is implementing a mobile application for the

notification of detections on the cell phone. In addition, the mobile application would allow the

interaction between the health professional and the participant, allowing the health professional
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to make recommendations and the participant to give feedback on how they are feeling.

Finally, another suggestion to expand the work would be to develop an architecture inte-

gration with more devices on the same network, which could be managed in a simplified way.

Expanding the architecture to use multiple wearable sensors and SBCs would allow real appli-

cations with a more significant number of possibilities synchronously and without conflicts in

data communication.
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